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1. Introduction

In the canonical models of Bayesian games each player with private information correctly
knows his own type. If we recognize the implications of game theory as normative sugges-
tions, the complete knowledge about his own type is reasonable assumption. On the other
hand, if we turn to the empirical aspect of game theory, each player’s knowledge about his
own type would not necessarily be correct. Players’ deduction about his own type might not
necessarily be correct.

Mbobius et al. (2012) is an experimental study and finds self-confidence bias of subjects
about their own ability. Zhang (2013) considers a following evolutionary scenario in which
a single agent decides his effort level for self-reproduction and justifies such bias success-
fully. Before the agent’s decision, Nature assigns to the agent his type of ability for self-
reproduction according to a probability distribution over the set of his own types. The set of
his own types consists of high type and low type. The agent knows this probability distri-
bution. Unlike the usual game-theoretic model, the agent can not observe directly this true
type assigned by Nature. After Nature has picked up the true type, a noisy signal about his
own type is generated through a mechanism that is a probability distribution conditional
on that true type. The agent is assumed to be able to observe the signal and knows the
conditional probability distribution. For example GPA scoring might be such a mechanism
that generates the noisy signal about each student’s ability. Given the signal, the agent
forms a belief about his own ability.

With this belief, the agent decides the effort level for self-reproduction. In order to survive
natural selection, the agent chooses the effort level so that his expected material payoff is

maximized. This is as if Nature chooses the effort level that maximizes the expected fitness
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of a risk neutral agent based on a Bayesian belief about the agent’s ability which is consis-
tent with probability distributions generating the signals that the agent catches. However
the real agent has his utility function that is not necessarily risk neutral. If the agent had
a risk averse utility function, then the effort level chosen to maximize its expected utility
might be different from the effort level that maximize the material payoff with Bayesian
reasoning. In such a case the belief about the ability for self-reproduction should be ad-
justed to a non-Bayesian belief by the agent. Consequently, it is shown that the adjusted
belief has self-confidence bias.

Consider, for example, a firm that is run by a risk-averse manager. If we follow the argu-
ment above, that manager is realizing the appropriate amount of investment to survive the
competition by overestimating his firm’s production technology. In the production process
of such firms, there might be fixed costs. In our paper we introduce such a fixed cost for self-
production into the model of Zhang (2013) and investigate its impact on the self-confidence
bias.

Remaining part of this paper is organized as follows. Section 2 presents Zhang (2013)
equipped with a fixed cost for self-reproduction. In Section 3 we show that depending types
of risk averse, i.e., CRRA or CARA, the fixed cost has sharply different impacts on self-

confidence bias. Section 4 is our concluding remarks.
2. Model

2.1 A system of generating signals

Let T ={H,L} be the set of possible types of an agent. Each type represents his ability for
self-production. At the beginning Nature picks up a type H (L) of the agent with probability
o (resp.1-p,). We suppose that the agent can not directly observe his own true type te T,
but observe a signal s € T. This signal is generated through publicly known conditional
probabilities p; = p(s = H|t = H) and py = p(s = H|¢t = L). Combining the knowledge about the
prior y, the conditional probabilities p1,po above, and the observed signal s € T, the agent
could form his belief u that his true type is H. One of possible beliefs is the Bayesian poste-
rior belief. Let u® denote the Bayesian posterior belief that his true type is H. Using logit(.),
we can compactly write down all information about the Bayesian belief u? as follows:

logit (uB) = logit (o) + 1s=pr Ar + Le=p AL,

1_ pz) and each 1,cr is an indicator function

of the signal s € T of which value is 1 or 0. Figure 1 illustrates this system generating the

where logit(u) = log(r’lﬂ),/lH = log(;;—;),/lL = log(:=22
signals and the way to form the Bayesian posterior beliefs in the system.

2.2 Evolutionarily stable effort level
We consider a situation in which the agent with a belief about his own type chooses an
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Figure 1 The system of generating signals and the derived Bayesian posterior beliefs
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effort level to produce his own fitness i.e., material payoff. Let a € R, denote an effort level
chosen by the agent. We assume a production functions for producing the material payoff
f(a,t) € Ry, such that f(a,H) > f(a,L) for each effort level a e R, and f' >0, f” <0 (with
lilr(l) f'(a,) = 0o and algglo f'(a,-) =0.). Moreover we assume the cost function for producing the
material payoff C(a) = c(a)+ F in which c(a) € R, is the variable cost such that ¢/ >0, ¢ >0
and F € R, denotes the fixed cost. Nature selects the optimal level of action ¢* maximizing
his fitness uy(a) under the Bayesian belief u® so that

a* carg maxuy(a) = 1B (f(a,H) - C()+ (1 - tB)f(a,L) - Cla)).

Let f, denote %. The first order condition for the Nature’s optimization problem above
becomes

B _ | fala’ L) - c'(a™)

1-pB | falatH)-c'(a*)

(o)

where a* is the optimal level of action under the Bayesian posterior belief p5.

2.3 Evolutionarily stable non-Bayesian belief y*

Whereas Nature maximizes the agent’s fitness, we suppose that the agent maximizes his
expected utility ua(a) with some belief u. This belief y is regarded as a subjective probability
that the agent believes that his own type is H and it might not necessarily coincide with
the Bayesian belief up. We assume that the agent has a von Neumann-Morgenstern func-
tion u : R — R with u” <0, that is, the agent has risk averse preferences. The optimization

problem for the agent is given by
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méaqu(a) = pu(f(a,H)-C(a))+ (1 - pu(f(a,L) - C(a)).

The first order condition of this problem implies

g _|fala,L)=c'@) | w(f(a,L)=cla)=F) @
1-p | fola,H)-c'(a)

u'(f(a,H)—cla)-F)’
Given the optimal level of effort a* determined implicitly in (1), the agent is assumed to

adjust his belief y to be consistent with the condition (2). Substituting the optimal level of
effort a* into the condition (2), we get the adjusted belief u* satisfying

fala3L)—c'(@®) | u/(f(aL)—cla*)-F)

fola’H)=c'(e*)| w'(f(a’H)-c(a*)-F) 3)

*

u
1-p*

From (2) and (3), we get the logit representation of difference between the adjusted belief
p* and the Bayesian belief u® as follows.
u'(f(a%L)—cla*)-F)
u(flasH)—cla*)-F) |’

Since u" <0 and f(a*,H) > f(a*, L), we have 4He-L-¢@ 0 > 1 that is, logit(u")-logit(1®) > 0.

We see that risk averse agents tend to have self-confidence bias (Zhang, 2013). The amount
of log[%] is called the magnitude of self-confidence bias for a fixed cost F and

denoted by B(F).

logit(u*) —logit(u?) = log

3. Analysis

The magnitude of self-confidence bias B(F) is a function of the fixed cost F for self-
reproduction. We show that depending on the type of risk aversion the impact of this fixed
cost on the magnitude of self-confidence bias is shaply different. We consider two different
classes of risk averse utility functions. One is the constant relative risk aversion (CRRA)
utility function and the other is the constant absolute risk aversion (CARA) one. A von Neu-

mann Morgenstern utility function u(-) is CRRA if its coefficient of relative risk aversion

_au(x)
u'(x)

tion. A von Neumann Morgenstern utility function u(-) is CARA if its coefficient of absolute

u'(x)
u'(x)

is constant. Let p be the coefficient of relative risk aversion for a CRRA utility func-

is constant. Let a be the coefficient of relative risk aversion for a CARA

risk aversion —

utility function.

Theorem 1 Ifthe agent’s utility function is the CRRA, then the magnitude of self-confidence

bias B(F) is strictly increasing in the fixed cost F for self-reproduction.

Proof. Define b(F) to be a function % of F, that is the variable part of B(F).

From (1), a* does not depend on F i.e., %“—F* =0. So the following calculation becomes simple.

0b(F)  —u"(f(a’L)-c(a*)-F)u'(f(a’H) - cla*)-F)+u"(f(a*H) - cla*) - F)u'(f(a’ L) - c(a*) - F)
oF W'(f(atH) - c(a*)—F))?
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_ u"(f(a¥L)-c(a*)—F) . u"(f(a H)—c(a®)-F) u'(f(a’L)-cla*)-F)
u'(flaH)-cla*)-F) u/'(flasH)-c(a*)-F) u/(f(a’H)-cla*)-F)

_u"(f@’L)-c(a®)-F) {_ u"(flayH)—cla”)-F) u'(f(a}L)-cl@")-F) }
~u(fatH)-ca*)-F) u(f(asL)~cl@*)=F) u'(fatH)~cla*)-F)]

u"(f(a* L)—c(a*)-F)
s Wit B=cta)-F) <9

Our remaining task for for determining the sign of % is to check the sign of the second

Since u'>0and u” <0

half of the above formula (4). By arranging the second half of the above formula, we get
u"(fat*H)—ca*)-F) u'(f(a*L)-c(a*)-F)

u"(f(@*L)—ca*)—F) u/(f(a*H)—cla*)—F)

u'(fla’L)—cla*)-F) 1

u"(f(a¥L)—c(a*)-F) . f(a*,L)—c(a*)—F]

_ u"(f(a*,H)—c(a*)—F).
u'(f(atH)—c(a*)-F)

f@iL)-c@")-F @)

(fla H)—c(a™)-F) f@ H) —c@)—F

: : u'(f(a’ L)~c(a*)-F) 1 u'(f(a’ H)=c(a*)-F) * *
Both ingredients of iz Tycan m rarmra@r T 204 e meanm (@ H)—cla”)=F)]

of the second half of (4) are the coefficient of relative risk aversion —x;&g)

utility function. Since u is a CRRA utility function, the value of these coefficients

of this agent’s

is equal to some constant p. Substituting p into the formula (4), we get a formula

-1+ % -0 m% Since we have assumed that f(a,H) > f(a,L) for each effort level

1 f(a’ L)-c(a*)-F 1 f@; L)—c(@*)-F
acR,,, 5P Fa H el F < 1, namely -1+ P R H s F < 0.
u"(f(a’ L)=c(a*)-F) u"(f(a H)=cla*)-F) u'(f(a’ L)-c(a*)-F)
u/(f(a* H)—c(a*)-F) u"(f(a* L)-c(a*)-F) u'(f(a* H)—c(a*)-F)

OforeachF. ®

From <0 and -1+

<0,weget%>

Theorem 2 If the agent’s utility function is CARA, then the magnitude of self-confidence

bias B(F) is irrelevant with the level of fixed cost F for self-reproduction.
Proof. Note that B(F) = 10g[%] Define b(F) to be a function % of
F. We check the sign of %. From (1), a* does not depend on F i.e., % =0. So the following

calculation becomes simple.

Ob(F)  u"(f(atL)-cla*)-F) {_ u"(flatH)=c(@*)-F) u’(f(a*,L)—c(a*)—F)}
oF ~ u'(f(a*H)-c(a*)-F) u"(f@*L)—cla*)—F) uw'(f(a*H)—c@*)-F)|"

To check the sign of %, we focus on the sign of the second half of the above formula. By

arranging this part, we have
N u"(f(a*H)—c(a*)-F) . u'(f(@atL)—c(a*)-F)
u(fa¥L)—c(a*)-F) u'(f(a%H)-c(a*)-F)
u"(f(aH)—c(a*)-F) u'(faL)—cla*)-F)
u'(flasH)—cla*)-F) u(f@sL)—cla*)-F) |’

=-1+

Since the agent’s utility function is CARA, let a be the constant value of the coefficient of

absolute risk aversion — ‘,‘4/,/((;)) . Substituting « to that arranged formula, we get -1+ «a- é =0.

That is, % =0. m
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4. Concluding remarks

When the agent is constant relative risk averse, the level of the fixed cost for self produc-
tion has sharp impact on the bias of his self-confidence about his own ability. On the other
hand, the level of the fixed cost has no effect on the bias for the agent who is constant abso-
lute risk averse. Both of these facts above are deduced from the same evolutionary model
of Zhang (2013). Therefore we would be able to test the validity of this evolutionary model
of the bias with adequate designed experiments.

Regardless from whether the agent is risk averse or not, the effort level chosen by agent
is assumed to be the optimal level such that his material payoff is maximized. The agent
modifies his belief from Bayesian belief to attain this optimal effort level. This scenario
is similar to the approach of the preference evolution (Samuelson, 2001). In the model of
preference evolution the preference is adjusted but the belief is not. In our model the belief
is adjusted but the preference is not. Which of the preferences and beliefs is more strongly

subject to evolutionary pressure? This is one of most interesting topics for future research.
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