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CONTINUOUS INFINITESIMAL GENERATORS OF A CLASS OF
NONLINEAR EVOLUTION OPERATORS IN BANACH SPACES

YUKINO TOMIZAWA

ABSTRACT. A class of nonlinear evolution operators is introduced and a characterization
of continuous infinitesimal generators of such evolution operators is given by applying the
results on semigroups of Lipschitz operators.

Let X be a real Banach space with norm ||-||. Let 2 be a closed subset of [0,00) x X such
that Q(t) = {z € X;(t,z) € Q} # 0 for t € [0,00). Let A be a continuous mapping from €
into X. Given (7, ) € €2, we consider the following initial value problem:

(IVP: 7, 2) { () =A(t,u(t)) for 7<t< o0,
u(r) = .

Set A = {(t,7);0 < 7 <t < oo}. Suppose that the problem (IVP;7,z) has a unique

(continuously differentiable) solution u(-) on [1,00). Defining by U(t,7)z = u(t), we have

the following properties:

(E1) U(r,7)x =z and U(t,s)U(s,7)x = U(t, 7)x for (1,2) € Q and t, s € [0, 00) such that

t>s>T.

(E2) For any (7,z) € Q, U(s, T)x converges to U(t,7)r in X as s — ¢ in [r, 00).

By a (nonlinear) evolution operator on ), we mean a family {U(t,7)}rea of operators
U(t,7): Q(1) — Q(t) satisfying (E1) and (E2). We consider the following additional condi-
tion on such a family {U(t,7)}rea which ensures the continuous dependence of solutions
u(-) on the initial data (7,z) €
(E3) For any T' > 0, there exists My € (0,00) such that
|U(r+t,7)z—U(o+t,0)y|| < Mr(|r — ol + |z — yl|)
for (7,2), (0,y) € Q and t € [0,T].

The aim of this paper is to prove the following theorem, which provides a characterization
of the continuous infinitesimal generator A such that the solution operator to (IVP;7,z)
becomes an evolution operator on (2 satisfying condition (E3). Our class of evolution opera-
tors is rather narrow but closely related to the ones discussed in Murakami [12], Martin [9],
Lakshmikantham et al. [8] and Kato [4]. The theorem is proved by the use of the results for
the autonomous case by Kobayashi-Tanaka [6].

Theorem 1. There exists an evolution operator {U(t,7)}urea on 0 such that (E3) is
satisfied and that u(t) = U(t, 7)x is a unique solution to (IVP; 7, x) on [1,00) for any (1,x) €
Q if and only if the mapping A on § satisfies the following conditions (1) and (22):

(Q1) For any (7,x) € €,

lihm i%f d(xz + hA(T,2),Q(T + h))/h =0,
—+
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where d(z,S) = infyecg||z — y|| forx € X and S C X.
(Q2) There exist a number w € [0,00) and V : (Rx X)x (Rx X) — [0,00), which satisfies
conditions (V1) and (V2) below, such that

1) DLV (1), (0, )(A(,2), Al ) < @V ((7,2), (0,9))
for (1,2),(0,y) € Q, where
D+V<(T, ZL’), (07 y))(fa 7])
= liminf(V((T +h,xz+h§), (0 +h,y+hn) - V((1,), (0, y)))/h

h—10
for (1,2),(0,y) € Rx X and ({,n) € X x X.
(V1) There exists L € (0,00) such that
’V((Ta Jf), <U7 y)) - V((%v i’)a (6-7 /g))|
< L(lr =7+ lo— ol + e — 2 + ly — al)
7,

for (7, x),(0,y),(7,%),(6,9) € Rx X.
(V2) There exists M € [1,00) such that

T —ol+lz—yl <V((r,2).(0.9) < M(|7 = ol + ||z — y])

for (1,2), (0,) € 9.
Moreover, in this case, we have

(2) V((T +t,U(t+t,7)x), (0 +t,U(0 +t, a)y)) <e'V((1,2),(0,y))
and
(3) U (7 +t,7)z — Ulo +t,0)y]| < Me*' (|7 — o] + ||z — y]))

for (1,x),(0,y) € Q and t € [0, 00).
Proof. Let X be the real Banach space R x X with norm ||(¢,2)||x = [t| + ||z|| for (¢,2) € X.
We define A : Q — X by A(t,z) = (1, A(t,z)) for (¢t,z) € Q. Obviously, A is a continuous

mapping on 2 into X. We note that € is closed in X'. We note also that, for any (7, z) € €,
u : [0,00) — R x X is a solution to the initial value problem

(@) u'(t) = Au(t) for 0<t< 0,
u(0) = (7, ),
if and only if w(t) = (t+7,v(t+ 7)) for t > 0, where v(t) is a solution to (IVP; 7, x). Indeed,
let u(t) = (s(t),u(t)) be a solution to (4). Then, s'(t) = 1 and s(t) = t + 7 since s(0) = 7.
Therefore,
u'(t) = A(s(t),u(t)) = At + 7,u(t)) for t>0 and wu(0)==z.
Hence, v(t) defined by v(t) = u(t — 7) for t € [1,00) is a solution to (IVP;7,z) and u(t) =
(t+7,v(t+7)). Conversely, let v(t) be a solution to (IVP;7,z) and u(t) = (t+ 7, v(t + 7)).
Then, u(0) = (7,v(7)) = (7,z) and
u(t)= (Lo ({t+7)=(LAE+ 7,0t +7))=Alt+ 71,0t + 7)) = Au(t)
for t > 0.

Suppose that there exists an evolution operator {U(t,7)}rea on Q such that (E3) is
satisfied and that v(t) = U(t, 7)x is a unique solution to (IVP; 7, z) on [, 00) for any (7, ) €
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Q. Let (1,2) € Qand v(t) = U(t,7)x for t > 7. Then, since v(7+h) = U(7+h,7)x € Q(T+h)
for h > 0, we have

limsup d(z + hA(7,z),Q(1 + h))/h
h—+0

< limsupl|z + hA(r, z) —v(7 + W) /h = [[A(7, v(r)) - V(7)]| = 0.

Thus, (1) is satisfied. We define U(t) : Q2 — by
Ut)(r,z) = (1+t,U(1 +t,7)x)
for (1,2) € Q and t € [0,00). By (E1), we have U(0)(r,x) = (7, U(7, 7)) = (7,2) and
UU(s)(Tyx) =U)(T + s, U(T + s, 7))

=(r+s)+t,U(t+s)+t, 7+ s)U(T +5,7)x)

=14+ (s+t), U+ (s+1t),7)x) =U({t+ s)(T,z)
for s,t € [0,00) and (7,2) € Q. By (E2), U(s)(1,2) = (1 + s, U(T + s,7)x) — (T + t,U(T +
t,7)x) = U(t)(r,z) in R x X as s — ¢t in [0,00). Hence the family {U(t)}ico00) is 2
semigroup on €. Since, for any (7, ), w(t) = U(t)(r,z) is a solution to (4), the mapping A

is the infinitesimal generator of the semigroup {U(t)}icp,). Condition (E3) implies that,
for any T > 0, there exists My € (0, 00) such that

[U@) (T, 2) —Ut) (o, y) ]| x
=|t+t)—(c+ )|+ ||U(T+t,7)z—U(c+t, o)y
<|r—ol+ Mp(lr — ol + 1z —yl) < (Mr+1)|[(1,2) — (0,9) ]|«

for (7, ), (0,y) € Qand t € [0,T]. Hence, it follows from [6, Theorem 4.2] that there exist a
number w € [0,00) and V' : X x X — [0, 00) satisfying conditions (V1) and (V2) such that

VU@ (r,2),U(t)(0,y)) < e V((T,2),(0,y))

for (7,2),(0,y) € Q and t € [0,00). Hence, by the definition of U(t), (2) holds for
(1,2),(0,y) € Q and t € [0,00). By (2) and (V2), (3) also holds for (7,z),(0,y) € Q
and t € [0,00). Since A is the infinitesimal generator of {U(t)}ic0,00), [6, Theorem 4.2]
implies that

(5) lim inf (V (7, 2) + hA(7, ), (0,9) + hA(0,y)) = V((7,2), (0,9))) /h
<wV((7,2),(0,9))
for (7,2), (0,y) € Q. By the definition of A, we have
6)  DyV((1,2), (0,9))(A(7, 2), Alo, y))
= timinf (V((7 + bz + hA(r,2)), (0 + by + hA(o,))) = V((7,2), (0,1)) ) /A

h——+0

— limnf (V (7. 2) + hA(r,2). (7.9) + hA(o,)) — V(r. ). (0.3)) /
for (7,), (0,y) € Q. Hence, (1) holds for any (7, z), (0,y) € Q.
We suppose conversely that the mapping A satisfies conditions (Q21) and (Q2). Let (7,z) €
Q2. Then, by (1), there exist h, > 0 and z,, € Q(7 + h,) such that h, — 0 and ||z +
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hoA(T, 2) — || /hn, — 0 as n — oco. We have

(7, 2) + hoA(T, ) — (T + B, 0) | 2/
= [|(7, %) + h(1, A(T,2)) = (T + o, ) || 2/ o
= ||z + h,A(T,2) — z,||/hpy — O

as n — 00. Since (7 + hy, x,) € €, it follows that

liminf dy((7, z) + hA(7,2),Q)/h =0,

h——+0

where dx((t,2),S) = inf(,es||(t,z) — (s,y)|x for (t,z) € X and S C X. By (Q2), there
exist a number w € [0,00) and V : X x X — [0, 00) satisfying (V1) and (V2) such that (1)
holds true for any (7,z), (0,y) € §2. Using (6) again, we see from (1) that (5) holds true
for any (7,2), (0,y) € Q. Therefore, [6, Theorem 4.2] implies that A is the infinitesimal
generator of a semigroup {U(t)}icj0,00) o0 €2 such that, for any (7,2) € Q, u(t) = U(t)(, x)
is a unique solution to the initial value problem (4) and

(7) VU)(r,x),U(t)(o,y) < e V((r,2), (0,y))

for (1,2), (0,y) € Qand t € [0,00). Let (7,2) € Q and u(t) = U(t)(7,z) for t € [0,00). Then
we have u(t) = (t+7,v(t+7)), where v(t) is a solution to (IVP; 7, ). By virtue of the unicity
of the solution w(t) to (4), the solution v(¢) is uniquely determined by (7, ). Thus, we define
U(t,7)x € X by U(t,7)x = v(t) for t € [1,00). Since u(t —7) = (t,v(t)) = (t,U(t,7)x) € Q,
we see that U(t, 7)x € Q(t) for t € [1,00). Since {U(t)}icjo,00) is @ semigroup on 2, we have

(t,U(t,7)x) =Ut—T)(r,2) = lirr%b{(s —7)(1,2) = lirr%(s, U(s,T)x)
in Rx X and U(t,7)xr = lims_, U(s,7)x in X for ¢t > 7. Let t > s > 7. Then,

(t, U, m)x)=U{t—T)(T,2) =U({t — s)U(s — 7)(T,x)
=U(t —s)(s,U(s, 7)) = (t,U(t,s)U(s,T)x)

and U(t,7)x = U(t,s)U(s,7)x. Thus {U(t,7)}rea is an evolution operator on 2. More-
over, (7) implies that

[U(r +t,m)z = Ulo +t,0)yl| < [UE)(r,z) = U(t)(o,y)]lx
S VUE)(r,2),Ut)(o,y) < e V((T,2),(0,y))
< Me“'|[(r,2) = (o, y)]|lx = Me*" (|7 — 0| + ||z — y]])

for (7,z),(0,y) € Qand t € [0,00). Hence, condition (E3) is satisfied by {U(t,7)}¢,rea. O

Remark 1. The kinds of conditions (21) and (£22) were found by Nagumo [13] and Okamura
[14], respectively.

Remark 2. Our proof of Theorem 1 is suggested by Evans-Massey [3].
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