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CONTINUOUS INFINITESIMAL GENERATORS OF A CLASS OF
NONLINEAR EVOLUTION OPERATORS IN BANACH SPACES

YUKINO TOMIZAWA

Abstract. A class of nonlinear evolution operators is introduced and a characterization
of continuous infinitesimal generators of such evolution operators is given by applying the
results on semigroups of Lipschitz operators.

Let X be a real Banach space with norm ‖·‖. Let Ω be a closed subset of [0,∞)×X such
that Ω(t) = {x ∈ X; (t, x) ∈ Ω} 6= ∅ for t ∈ [0,∞). Let A be a continuous mapping from Ω
into X. Given (τ, x) ∈ Ω, we consider the following initial value problem:

(IVP; τ, x)

{
u′(t) = A

(
t, u(t)

)
for τ ≤ t < ∞,

u(τ) = x.

Set ∆ = {(t, τ); 0 ≤ τ ≤ t < ∞}. Suppose that the problem (IVP; τ, x) has a unique
(continuously differentiable) solution u(·) on [τ,∞). Defining by U(t, τ)x = u(t), we have
the following properties:

(E1) U(τ, τ)x = x and U(t, s)U(s, τ)x = U(t, τ)x for (τ, x) ∈ Ω and t, s ∈ [0,∞) such that
t ≥ s ≥ τ .

(E2) For any (τ, x) ∈ Ω, U(s, τ)x converges to U(t, τ)x in X as s → t in [τ,∞).

By a (nonlinear) evolution operator on Ω, we mean a family {U(t, τ)}(t,τ)∈∆ of operators
U(t, τ) : Ω(τ) → Ω(t) satisfying (E1) and (E2). We consider the following additional condi-
tion on such a family {U(t, τ)}(t,τ)∈∆ which ensures the continuous dependence of solutions
u(·) on the initial data (τ, x) ∈ Ω:

(E3) For any T > 0, there exists MT ∈ (0,∞) such that

‖U(τ + t, τ)x − U(σ + t, σ)y‖ ≤ MT

(
|τ − σ| + ‖x − y‖

)
for (τ, x), (σ, y) ∈ Ω and t ∈ [0, T ].

The aim of this paper is to prove the following theorem, which provides a characterization
of the continuous infinitesimal generator A such that the solution operator to (IVP; τ, x)
becomes an evolution operator on Ω satisfying condition (E3). Our class of evolution opera-
tors is rather narrow but closely related to the ones discussed in Murakami [12], Martin [9],
Lakshmikantham et al. [8] and Kato [4]. The theorem is proved by the use of the results for
the autonomous case by Kobayashi-Tanaka [6].

Theorem 1. There exists an evolution operator {U(t, τ)}(t,τ)∈∆ on Ω such that (E3) is
satisfied and that u(t) = U(t, τ)x is a unique solution to (IVP; τ, x) on [τ,∞) for any (τ, x) ∈
Ω if and only if the mapping A on Ω satisfies the following conditions (Ω1) and (Ω2):

(Ω1) For any (τ, x) ∈ Ω,

lim inf
h→+0

d(x + hA(τ, x), Ω(τ + h))/h = 0,
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where d(x, S) = infy∈S‖x − y‖ for x ∈ X and S ⊂ X.
(Ω2) There exist a number ω ∈ [0,∞) and V : (R×X)×(R×X) → [0,∞), which satisfies

conditions (V1) and (V2) below, such that

D+V ((τ, x), (σ, y))(A(τ, x), A(σ, y)) ≤ ωV ((τ, x), (σ, y))(1)

for (τ, x), (σ, y) ∈ Ω, where

D+V ((τ, x), (σ, y))(ξ, η)

= lim inf
h→+0

(
V ((τ + h, x + hξ), (σ + h, y + hη)) − V ((τ, x), (σ, y))

)
/h

for (τ, x), (σ, y) ∈ R × X and (ξ, η) ∈ X × X.

(V1) There exists L ∈ (0,∞) such that

|V ((τ, x), (σ, y)) − V ((τ̂ , x̂), (σ̂, ŷ))|
≤ L

(
|τ − τ̂ | + |σ − σ̂| + ‖x − x̂‖ + ‖y − ŷ‖

)
for (τ, x), (σ, y), (τ̂ , x̂), (σ̂, ŷ) ∈ R × X.

(V2) There exists M ∈ [1,∞) such that

|τ − σ| + ‖x − y‖ ≤ V ((τ, x), (σ, y)) ≤ M
(
|τ − σ| + ‖x − y‖

)
for (τ, x), (σ, y) ∈ Ω.

Moreover, in this case, we have

V
(
(τ + t, U(τ + t, τ)x), (σ + t, U(σ + t, σ)y)

)
≤ eωtV ((τ, x), (σ, y))(2)

and

‖U(τ + t, τ)x − U(σ + t, σ)y‖ ≤ Meωt
(
|τ − σ| + ‖x − y‖

)
(3)

for (τ, x), (σ, y) ∈ Ω and t ∈ [0,∞).

Proof. Let X be the real Banach space R×X with norm ‖(t, x)‖X = |t|+‖x‖ for (t, x) ∈ X .
We define A : Ω → X by A(t, x) = (1, A(t, x)) for (t, x) ∈ Ω. Obviously, A is a continuous
mapping on Ω into X . We note that Ω is closed in X . We note also that, for any (τ, x) ∈ Ω,
u : [0,∞) → R × X is a solution to the initial value problem{

u′(t) = Au(t) for 0 ≤ t < ∞,
u(0) = (τ, x),

(4)

if and only if u(t) = (t+ τ, v(t+ τ)) for t ≥ 0, where v(t) is a solution to (IVP; τ, x). Indeed,
let u(t) = (s(t), u(t)) be a solution to (4). Then, s′(t) = 1 and s(t) = t + τ since s(0) = τ .
Therefore,

u′(t) = A(s(t), u(t)) = A(t + τ, u(t)) for t ≥ 0 and u(0) = x.

Hence, v(t) defined by v(t) = u(t − τ) for t ∈ [τ,∞) is a solution to (IVP; τ, x) and u(t) =
(t + τ, v(t + τ)). Conversely, let v(t) be a solution to (IVP; τ, x) and u(t) = (t + τ, v(t + τ)).
Then, u(0) = (τ, v(τ)) = (τ, x) and

u′(t) = (1, v′(t + τ)) = (1, A(t + τ, v(t + τ))) = A(t + τ, v(t + τ)) = Au(t)

for t ≥ 0.
Suppose that there exists an evolution operator {U(t, τ)}(t,τ)∈∆ on Ω such that (E3) is

satisfied and that v(t) = U(t, τ)x is a unique solution to (IVP; τ, x) on [τ,∞) for any (τ, x) ∈
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Ω. Let (τ, x) ∈ Ω and v(t) = U(t, τ)x for t ≥ τ . Then, since v(τ+h) = U(τ+h, τ)x ∈ Ω(τ+h)
for h > 0, we have

lim sup
h→+0

d(x + hA(τ, x), Ω(τ + h))/h

≤ lim sup
h→+0

‖x + hA(τ, x) − v(τ + h)‖/h = ‖A(τ, v(τ)) − v′(τ)‖ = 0.

Thus, (Ω1) is satisfied. We define U(t) : Ω → Ω by

U(t)(τ, x) = (τ + t, U(τ + t, τ)x)

for (τ, x) ∈ Ω and t ∈ [0,∞). By (E1), we have U(0)(τ, x) = (τ, U(τ, τ)x) = (τ, x) and

U(t)U(s)(τ, x) = U(t)(τ + s, U(τ + s, τ)x)

= ((τ + s) + t, U((τ + s) + t, τ + s)U(τ + s, τ)x)

= (τ + (s + t), U(τ + (s + t), τ)x) = U(t + s)(τ, x)

for s, t ∈ [0,∞) and (τ, x) ∈ Ω. By (E2), U(s)(τ, x) = (τ + s, U(τ + s, τ)x) → (τ + t, U(τ +
t, τ)x) = U(t)(τ, x) in R × X as s → t in [0,∞). Hence the family {U(t)}t∈[0,∞) is a
semigroup on Ω. Since, for any (τ, x), u(t) = U(t)(τ, x) is a solution to (4), the mapping A
is the infinitesimal generator of the semigroup {U(t)}t∈[0,∞). Condition (E3) implies that,
for any T > 0, there exists MT ∈ (0,∞) such that

‖U(t)(τ, x) − U(t)(σ, y)‖X
= |(τ + t) − (σ + t)| + ‖U(τ + t, τ)x − U(σ + t, σ)y‖
≤ |τ − σ| + MT

(
|τ − σ| + ‖x − y‖

)
≤ (MT + 1)‖(τ, x) − (σ, y)‖X

for (τ, x), (σ, y) ∈ Ω and t ∈ [0, T ]. Hence, it follows from [6, Theorem 4.2] that there exist a
number ω ∈ [0,∞) and V : X × X → [0,∞) satisfying conditions (V1) and (V2) such that

V (U(t)(τ, x),U(t)(σ, y)) ≤ eωtV ((τ, x), (σ, y))

for (τ, x), (σ, y) ∈ Ω and t ∈ [0,∞). Hence, by the definition of U(t), (2) holds for
(τ, x), (σ, y) ∈ Ω and t ∈ [0,∞). By (2) and (V2), (3) also holds for (τ, x), (σ, y) ∈ Ω
and t ∈ [0,∞). Since A is the infinitesimal generator of {U(t)}t∈[0,∞), [6, Theorem 4.2]
implies that

lim inf
h→+0

(
V ((τ, x) + hA(τ, x), (σ, y) + hA(σ, y)) − V ((τ, x), (σ, y))

)
/h(5)

≤ ωV ((τ, x), (σ, y))

for (τ, x), (σ, y) ∈ Ω. By the definition of A, we have

D+V ((τ, x), (σ, y))(A(τ, x), A(σ, y))(6)

= lim inf
h→+0

(
V

(
(τ + h, x + hA(τ, x)), (σ + h, y + hA(σ, y))

)
− V ((τ, x), (σ, y))

)
/h

= lim inf
h→+0

(
V ((τ, x) + hA(τ, x), (σ, y) + hA(σ, y)) − V ((τ, x), (σ, y))

)
/h

for (τ, x), (σ, y) ∈ Ω. Hence, (1) holds for any (τ, x), (σ, y) ∈ Ω.
We suppose conversely that the mapping A satisfies conditions (Ω1) and (Ω2). Let (τ, x) ∈

Ω. Then, by (Ω1), there exist hn > 0 and xn ∈ Ω(τ + hn) such that hn → 0 and ‖x +
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hnA(τ, x) − xn‖/hn → 0 as n → ∞. We have

‖(τ, x) + hnA(τ, x) − (τ + hn, xn)‖X/hn

= ‖(τ, x) + hn(1, A(τ, x)) − (τ + hn, xn)‖X/hn

= ‖x + hnA(τ, x) − xn‖/hn → 0

as n → ∞. Since (τ + hn, xn) ∈ Ω, it follows that

lim inf
h→+0

dX ((τ, x) + hA(τ, x), Ω)/h = 0,

where dX ((t, x),S) = inf(s,y)∈S‖(t, x) − (s, y)‖X for (t, x) ∈ X and S ⊂ X . By (Ω2), there
exist a number ω ∈ [0,∞) and V : X × X → [0,∞) satisfying (V1) and (V2) such that (1)
holds true for any (τ, x), (σ, y) ∈ Ω. Using (6) again, we see from (1) that (5) holds true
for any (τ, x), (σ, y) ∈ Ω. Therefore, [6, Theorem 4.2] implies that A is the infinitesimal
generator of a semigroup {U(t)}t∈[0,∞) on Ω such that, for any (τ, x) ∈ Ω, u(t) = U(t)(τ, x)
is a unique solution to the initial value problem (4) and

V (U(t)(τ, x),U(t)(σ, y)) ≤ eωtV ((τ, x), (σ, y))(7)

for (τ, x), (σ, y) ∈ Ω and t ∈ [0,∞). Let (τ, x) ∈ Ω and u(t) = U(t)(τ, x) for t ∈ [0,∞). Then
we have u(t) = (t+τ, v(t+τ)), where v(t) is a solution to (IVP; τ, x). By virtue of the unicity
of the solution u(t) to (4), the solution v(t) is uniquely determined by (τ, x). Thus, we define
U(t, τ)x ∈ X by U(t, τ)x = v(t) for t ∈ [τ,∞). Since u(t− τ) = (t, v(t)) = (t, U(t, τ)x) ∈ Ω,
we see that U(t, τ)x ∈ Ω(t) for t ∈ [τ,∞). Since {U(t)}t∈[0,∞) is a semigroup on Ω, we have

(t, U(t, τ)x) = U(t − τ)(τ, x) = lim
s→t

U(s − τ)(τ, x) = lim
s→t

(s, U(s, τ)x)

in R × X and U(t, τ)x = lims→t U(s, τ)x in X for t ≥ τ . Let t ≥ s ≥ τ . Then,

(t, U(t, τ)x) = U(t − τ)(τ, x) = U(t − s)U(s − τ)(τ, x)

= U(t − s)(s, U(s, τ)x) = (t, U(t, s)U(s, τ)x)

and U(t, τ)x = U(t, s)U(s, τ)x. Thus {U(t, τ)}(t,τ)∈∆ is an evolution operator on Ω. More-
over, (7) implies that

‖U(τ + t, τ)x − U(σ + t, σ)y‖ ≤ ‖U(t)(τ, x) − U(t)(σ, y)‖X
≤ V (U(t)(τ, x),U(t)(σ, y)) ≤ eωtV ((τ, x), (σ, y))

≤ Meωt‖(τ, x) − (σ, y)‖X = Meωt
(
|τ − σ| + ‖x − y‖

)
for (τ, x), (σ, y) ∈ Ω and t ∈ [0,∞). Hence, condition (E3) is satisfied by {U(t, τ)}(t,τ)∈∆. �

Remark 1. The kinds of conditions (Ω1) and (Ω2) were found by Nagumo [13] and Okamura
[14], respectively.

Remark 2. Our proof of Theorem 1 is suggested by Evans-Massey [3].
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