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Abstract

We remark that there is no smooth function f(x) on [0,1] which

is flat at 0 such that the derivative f") of any order n > 0 is positive

n (0,1]. Moreover, the number of zeros of the n-th derivative f (n)
grows to the infinity and the zeros accumulate to 0 when n — co.

We consider smooth functions on the interval [0,1] which are flat at
the origin, namely of class C® and any derivative (") (x) converges to 0
when x — 0+ 0. Eventually it is equivalent to say that f extends to the
whole real line as a smooth function by defining f(x) = 0 for x < 0. In
this short note we make a couple of remarks on the asymptotics of higher
derivatives around the origin.

Among non-tirivial flat functions the most well-known might be the
one which is defined as follows.

f(0)=0 and f(x):e_% for x >0

If we imagine its graph, of course it seems smooth enough, and it can
be extended as constantly 0 on (—oo,0] as a smooth function on the real
line R. Its first derivative is positive on (0, ), but the second derivative
vanishes at x = 2 = x5 and the third vanishes at x3 = 1= 1/ V3 < x5, and so
on. That is, setting x, = min{x; f )( )=0,x>0} forn =2,34,...,it
is clear that {x, }, is strictly decreasing, and in fact lim,,_,« X, = 0. More
over, if we fix any interval [0, a) (« > 0), f(")(x) tends to behave more and

more wildly when n — oo on the interval.
Also, if we take go(x) = f(x)(sin(1) + 1) and

n—1
/ / /O o tO)dtO dtn—Zdtnflz

then for n = 1,2,3,-- -, gu(x) is positive on (0,00) and is flat at x = 0,
and apparently gﬁlk) (x) > 0when x > 0 for 0 < k < n — 1 but there is no
interval (0, «) on which g,g") (x) is positive.

They seem to exhibit not particular for these examples but rather com-
mon or inevitable phenomena of higher derivatives of flat functions.

Theorem 1  There exists no smooth function f(x) on [0,1] which is flat
at x = 0 and satisfies f(")(x) > 0 on (0, 1] for any n > 0.

This fact is refined as follows.
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Theorem 2  For a smooth function f(x) on [0,1] which is flat at x = 0,
put Z(n) = {x € (0,1) | f")(x) = 0} and z(n) = $Z(n) for n > 0. Then

Jim 201) =

holds, where co might be N..

Corollary3 1) In general, lgn infZ(n) =0.
n—oo
2) More strongly, for any k > 0 there exist N > 0 and y™(I) € Z(n)
forn > Nand ! = 1,...,k which are strictly increasing in [ and strictly
decreasing in 1, namely, satisfying
for each fixed n, y™ (1) <y (14+1) for 1 <1 <k—1,
for each fixed I, vy (1) > y("+1)(1).

Moreover it satisfies for any I lim ¥y (1) = 0.

The accumulation of Z(n) to 0 (n — 0) must be formulated in many more
stronger statements. The above corollary is one of them.

Proof of Corollary 3. There is a zero of f("+1) between two zeros of f(").
This simple argument, which will be used repeatedly, tells that once Z(n)
accumulates to 0 for some n, so does Z(k) for any k > n. Therefore in
this case the proof is done. Otherwise, 0 is always isolated from Z(n) and
then we can pick up the least element ¥ (1) € Z(n). Now it is clear
that y("*1)(1) < y(")(1) for any n. Then, if lim y(1) =¢ >0, fliog
contradicts to Theorem 1. This proves 1).

Now let us prove 2). Theorem 2 implies for any k there is N’, §Z(n) > k
for n > N'. Like in 1), once 0 is accumulated by Z(N), take any decreas-
ing sequence (") (k) € Z(n) for n > N, and then it is fairy easy to take
{y")(I)} for other I's s0 as to satisfy the conditions. Therefore we assume
that 0 is isolated from Z(n) for any n € IN.

Next, take A(n) C Z(n) to be the set of points which is accumulated
from above by points in Z(n). Clearly this set has 77(n) = min A(n) when-
ever A(n) # @. If A(n) = @, puty(n) = 1. I y(n) < 1, f) is flat at 57(n)
and n7(n) € A(n') for n’ > n. Therefore the sequence {7 (n)}, is weakly
decreasing.

In the case where ¢ = nh_r>r010 1(n) > 0, applying Theorem 2 to f||y, we
can find N such that §(Z(N) N (0,¢)) > k. Moreover, in this case, for any
n > N we can take the k least zeros 0 < y(" (1) < y"(2) < --- <y (k)
because there is no accumulation from above. Automatically {y") (1)}, is
strictly decreasing for each . If nl1_r>101° y" (k) = ¢ > 0, then again |
contradicts to Theorem 2. Therefore this case is done.

In the case where nlglgo n(n) = 0, a similar argument in the case where 0

is accumulated by some Z (1) enable us to arrange {y(") (1)} so as to satisfy
the conditions. O



Proof of Theorem 1.  The theorem is easily deduced from Lemma 4 by
contradiction. Assume for some a > 0 that f(x) is smooth on [0, «], is flat
at x = 0, and that its n-th derivative is positive on (0, «] for any n € IN.
We adjust the function f into ¢(x) = f(a)~!f(ax). Then g(x) satisfies the
condition of the lemma for any n € IN. Therefore ¢(x) = 0 on [0,1), and
we obtain a contradiction. g

Lemma4 Let n be an integer and g(x) be a function on [0, 1] of class
C"*1 with the following properties.

1) ¢W0)=0fork=0, .., nand g(1) =1,
2 g™ (x) > 0for x > 0.
Then g(x) <x™ holdson (0,1).

Proof of Lemma 4. It is enough to show that g(x)/x" is increasing on

/
[0,1]. As 4 (8 _ ) = ng(x)’ it is also sufficient to show that
dx \| x" a1
the numerator xg’(x) — ng(x) is positive on (0,1).

Then because (xg'(x) — ng(x))™ = xg("+1(x) is positive on (0,1]
from our condition, we see successively that each k-th derivative (xg'(x) —
ng(x))® = xg*k+1) — (n — k)¢ (x) vanishes at x = 0 and therefore is pos-
itiveon (0,1] fork =n—1,n—2, ...,0. This completes the proof. ]

A variant of this lemma is used to prove Theorem 2.

Proof of Theorem 2.  The key idea is not to look at z(n) bt at the num-
ber s(11) of the quasi-positive and quasi-negative intervals of f"). For a
smooth (continuous) function g on [0,1] a connected component of the
closure of g71(0, o) [resp. g~ !(—00,0)] is called a quasi-positive [resp. quasi-
negative] interval. Such intervals are exactly maximal ones on which the
primitive [ g(x)dx of g is strictly monotone. Let us define s(g) € N U {oo}
to be the number of all the quasi-positive and quai-negative intervals of g.
Then we put s(n) = s(f(").

If we have s(n) = oo for some n, s(k) = oo for k > n as follows. If
Z(n) has interior points for some 1, so does Z(k) for k > n, If for some n
we have z(n) = coand int Z(n) = @, the complement [0,1] \ Z(n) consists
of infinitely many intervals and possibly of one half open interval. Each
open interval contains an element in Z(n + 1).

Therefore, eliminating such cases, , we can assume z(n) < co for any
n € IN. Consequently s(n) < oo (Vn € IN) holds as well. We want to prove

lim s(n) = co under this assumption.
n—oo

Let x(”)(l) (I=12,...,s(n)—1,n=0,1,2,...) denotes the bigger
end point of the I-th of quasi-positive/negative intervals for f("), namely
0, x(D(1)], [x( (1), xM(2)],..., [x"W(1=1),xDD)],..., [x")(s(n) —1),1]
are the maximal intervals. Except for the final one, any quasi-positive [resp.
quasi-negative] interval contains a maximal [resp. minimal] point in its in-
terior. From this observation it is easy to see the following, among which
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1) is a conclusion of Theorem 1, because it implies z(n) > 1 for some n and
then we haves(n +1) > 2.

Assertion5 1) s(n) > 2 for some n.

2) {x(®) (1)} is strictly decreasing (k = n, n +1, n+2,...) for n in 1).

3) Also for any mand 0 < I < s(m), the sequence {x¥) (1)} is strictly
decreasing (k =m, m+1, m+2,...).

4) {s(n)}, is weakly increasing, namely, s(n) < s(n + 1) for any n.

Now let us procede by contradiction. We assume that s(#) does not grow
to oo, i.e., for some N, s(n) = s(N)(= S) for any n > N. For fixed
1 € {1,---,S}, the quasi-positivity /negativity of the I-th interval is in-
dependent of n > N. Under the assumption we also see the following.

Assertion6 Forn > N,
1) f( is strictly monotone on the final interval [x(") (S — 1), 1].
2) In particular f(")(1) # 0. More precisely, if the final interval is quasi-
positive [resp. quasi-negative] we have f()(1) > 0 [resp. f)(1) < 0].
3) The final intervals are increasing, namely, we have
xN(S—1) >N+ (5 —1) > ... x(W(§ — 1) > x(H (S —1) > ...

By multiplying a non-zero constant to f, we assume that forany n > N

£ is weakly increasing on the final interval and that f(N) (1) = 1.

Lemma?7 Under these assumptions, the following estimate holds.
FN(x) <xP on [xN)(§—1),1] for any p € N.

This lemma apparently implies f(N)| N (5—1),1] = 0 and contradicts to
our assumption. This completes the proof of Theorem 2. [

Proof of Lemma 7.  We adjust the proof of Lemma 4 in order to apply to
fN) Put a, = x("(S — 1) to simplify the notation.

It is enough to show that for any p > 0, f(N)(x) - xP is strictly in-
creasing on [ay, 1] because f(N)(x) - x~P|,_; = 1. So it suffices to show

/
(f(N)(x) 'x*”) > 0, namely, xf (N (x) — pfN)(x) > 0on (ay, 1).
For this purpose we prove inductively fork =p, p—1,p—-2,---,0
(k)
(xfN (@) = pfN () >0 on (ayk1).
For k = p, on (an1p+1,1) and in particular on (anp, 1), we have clearly

(@) — pf () = xf () > 0.

Then on each step, as f(NT5+D (g, ) > 0 and fNTR (ay,4) =0,

=0
(k)
(xf ™) = pfMN(x)) T = N () = (p— k) FN ) (x)
is positive at x = ap,r. Because the inductive hypothesis implies its

derivative is positive on (ay ¢, 1) (and even on (ayx+1,1)), the induction
is completed. O



Problem8 1) For some smooth functions on [0, 1] which are flat at 0,
U’ ,Z(n) seems to be dense in [0, 1]. However, we do not see which kind
of further properties as flat functions are essential for this phenomena,
because it discusses points away from 0. Verify this phenomena for certain
f’s and explain the reason.

2) Does there exist a smooth function on [0, 1] which is flat at 0 such that
lim, o max Z(n) = 0 ? Or how about flat at 0 such that the derived set
of U’ , Z(n) coincides with {0}? It seems plausible that such functions do
not exist, while we do not know how to prove it.
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