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Abstract

It is well-known that Goodwin�s nonlinear delay accelerator model can generate diverse
oscillations (i.e., smooth and sawtooth oscillations). It is, however, less-known what conditions
are needed for these dynamics to emerge. In this study, using a piecewise linear investment
function, we solve the governing delay di¤erential equation and obtain the explicit forms of
the time trajectories. In doing so, we detect conditions for persistent oscillations and also
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1 Introduction

It has been well-known that Goodwin�s business cycle model with a delayed nonlinear accelerator
(Goodwin, 1951) can generate multiple solutions. Depending on speci�ed forms of the initial
functions and speci�ed parameter values, it gives rise to smooth cyclic oscillations or sawtooth (i.e.,
slow-rapid) oscillations. This paper aims to analytically and numerically investigate these cyclic
properties of Goodwin�s model by solving the time delay equations and performing simulations.
Goodwin (1951) presents �ve di¤erent versions of the nonlinear accelerator-multiplier model

with investment delay. The �rst version has the simplest form assuming a piecewise linear function
with three levels of investment and aims to exhibit how non-linearities give rise to endogenous
cycles without relying on structurally unstable parameters, exogenous shocks, etc. The second
version replaces the piecewise linear investment function with a smooth nonlinear investment
function. Although persistent cyclical oscillations are shown to exist, the second version includes
unfavorable phenomena, that is, discontinuous investment jumps, which are not observed in the
real economic world. "In order to come close to reality" (Goodwin, 1951, p.11), the third version
introduces an investment delay. However, no analytical considerations are given to this version.
The existence of an endogenous business cycle is con�rmed in the fourth version, which is a linear
approximation of the third version with respect to the investment delay. Finally, alternation of
autonomous expenditure over time is taken into account in the �fth version, which becomes a
forced oscillation system.
This paper reconstructs the third version having a piecewise linear investment function with

�xed time delay. It is a complement to Matsumoto and Szidarovszky (2016) in which the e¤ects
caused by investment delay as well as consumption delay are considered. It is also an extension
of Matsumoto (2009) in which the dynamics of Goodwin�s model is examined under continuously
distributed time delays and the existence of the multiple limit cycles are analytically and numer-
ically shown. Following the method of successive integration provided by Strotz et al. (1953), we
derive explicit forms of the solutions and obtain conditions under which the smooth or sawtooth
oscillations emerge. With the same spirit, Antonova et al. (2013) examine Goodwin�s model.
Their focus is mainly put on the relaxation (i.e., sawtooth) oscillations. We step forward and in-
vestigate periodic properties of the smooth oscillations, which will be called Goodwin oscillations
henceforth. Our main concerns in this paper is on the role of the �xed delay for the birth of cyclic
macro dynamics
The paper is organized as follows. In Section 2, The Goodwin model without delay is consider

to see how nonlinearities of the model contributes emergence of cyclic dynamics. In Section 3, an
investment delay is introduced to construct. E¤ects of investment delay on the smooth oscillations
are considered in Sections 4 and those on the sawtooth oscillations are done in Section 5. Section
6 contains some concluding remarks.

2 Basic Model

To �nd out how nonlinearity works to generate endogenous cycles, we review the second version
of Goodwin�s model, which we call the basic model,8<: " _y(t) = _k(t)� (1� �)y(t);

_k(t) = ' [ _y(t)] :

(1)

Here k is the capital stock, y the national income, � the marginal propensity to consume, which
is positive and less than unity, and the reciprocal of " is a positive adjustment coe¢ cient. Since
the dot over variables means time di¤erentiation, _k(t) and _y(t) are the rates of change in capital
(i.e., investment) and national income. The �rst equation of (1) de�nes an adjustment process
of the national income in which national income rises or falls according to whether investment is
larger or smaller than savings. The second equation determines the induced investment based on
the acceleration principle with which investment depends on the rate of changes in the national
income in the following way,
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'[ _y(t)] =

8>>>>>>>>><>>>>>>>>>:

3n if _y(t) 2 IU =
�
3n

�
;1
�
;

� _y(t) if _y(t) 2 IM =

�
�n
�
;
3n

�

�
;

�n if _y(t) 2 IL =
�
�1;�n

�

�
(2)

where � > 0 and n > 0: This function is piecewise linear and has three distinct regions. Accord-
ingly, there are two threshold values of _y(t) denoted as 3n=� and �n=� and the investment is
proportional to the change in the national income in the middle region, IM ; but becomes perfectly
in�exible (i.e., inelastic) in the upper region IU or the lower region IL. These values are thought
to be "ceiling" and "�oor" of investment where the ceiling is assumed to be three time higher than
the �oor as it was the case in Goodwin�s model.
Inserting the second equation of (1) into the �rst one and moving the terms on the right hand

side to the left give a implicit form of the dynamic equation for national income y,

" _y(t)� '( _y(t)) + (1� �)y(t) = 0 (3)

where the stationary point of the basic model is y(t) = _y(t) = 0 for all t: With equation (2) it is
reduced to either

("� �) _y(t) = �(1� �)y(t) (4)

if _y(t) is in the middle region or

" _y(t) = �(1� �)y(t) + d (5)

where d = 3n if _y(t) is in the upper region and d = �n if in the lower region. Equations (4) and
(5) are linear and thus solvable. We see graphically and then analytically how dynamics proceeds.

2.1 Phase Plot

Solving (4) and (5) for y(t) presents an alternative expression of dynamic equation y(t) = f [ _y(t)]
where

f [ _y(t)] =

8>>>>>>>>><>>>>>>>>>:

3n� " _y(t)
1� � if _y(t) 2 IU ;

(� � ") _y(t)
1� � if _y(t) 2 IM ;

�n+ " _y(t)
1� � if _y(t) 2 IL:

(6)

Once the initial value is given, the whole evolution of national income is determined. The phase
diagram with " < � is shown in Figure 1 in which y = f ( _y) is described by a mirror-imaged N -
shaped curve in the ( _y; y) plane.1 The stationary point is at the origin denoted by E. The locus
of y = f( _y) is the positive sloping line in the middle region while it is the negative sloping upper
or lower line in the upper or lower region: For each value of _y, there is a unique corresponding y
value determined to make a point ( _y; y) satisfy equation (6) and it is also determined whether y
is increasing or decreasing at that point. So the direction of the trajectory is given in all points of
the phase diagram. The directions are shown by arrows. Let A denote the local maximum point
of the curve with positive y and _y always, and let C be the local minimum point with negative y
and _y. Point B and D have the same y values as at points A and C, respectively. Notice that the
direction of the dynamic evolution goes from �1 to C, from the origin to C, from the origin to
A and also from +1 to A: Selecting the initial point denoted as S on the positive-sloping line,
the evolution starts at this point and moves upward until point A as indicated by arrow. Then
it cannot continue on the continuous curve after point A since the direction of evolution changes.

1Mathematica version 11 is used to perform simulations and illustrate this and the fol-
lowing �gures. The color versions of the �gures are found in DP278 at http://www.chuo-
u.ac.jp/research/institutes/economic/publication/disccusion
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Therefore it jumps to point B and continues along the same direction until point C, where the
same problem occurs, so another jump occurs to point D and evolution continues until point
A, at which the next round repeats itself. Thus the di¤erential equation (3) with the piecewise
linear investment function (2) can give rise to a closed orbit ABCD constituting a self-sustaining
slow-rapid oscillation. The stationary point is unstable if " < �; however, the oscillation is stable
in a sense that the locus ( _y; y) sooner or later converges to the same oscillation regardless of a
selection of the initial point. This is a simple exhibition of emerging a stable endogenous cycle of
national income.
The vertex of the closed oscillation in Figure 1 are

A =

�
3n

�
; yMax

�
; B = ( _ym; yMax) ; C =

�
�n
�
; ymin

�
and D = ( _yM ; ymin)

where the maximum and minimum values of _y along the cycle are

_yM =
n(4� � ")

"�
and _ym = �

n(4� � 3")
"�

while the maximum and minimum values of y along the cycle are

yMax =
3n(� � ")
�(1� �) and ymin = �

n(� � ")
�(1� �) :

It should be noticed that the instability and the nonlinearity is crucial sources for the birth
of persistent oscillations since the instability of the stationary point prevents trajectories from
converging and the nonlinearities such as the ceiling and �oor prevent trajectories from diverging.

Figure 1. Phase diagram with � > "

Jumping behavior leads to the kinked time trajectory of y(t) and the discontinuous time
trajectory of _y(t) that are shown as the blue and red curves in Figure 2. A = B holds at the
upper kinked point of the blue curve and C = D at the lower kinked point. The red trajectory
from 0 to t1 describes the movement of _y(t) from point S to A. At time t1 when the left-most red
curve de�ned on interval [0; t1] arrives at the upper horizontal dotted line, the red curve jumps
straightly down to the starting point of the lower red curve de�ned on interval [t1; t2]; the point
of which correspond to point B: At time t2; the red curve crosses the lower dotted line from
below and the intersection corresponds to point C at which the red curve jumps straightly up to
the downward-sloping red curve de�ned on interval [t2; t3], that then crosses the upper horizontal
dotted line and the cross-point correspond to point A: Figure 2 illustrates the same dynamics of
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Figure 1 from a di¤erent view point.

Figure 2. Time trajectories of y(t) (the kinked blue curve) and _y(t) (the
discontinuous red curves)

2.2 Explicit Solutions

Selecting an initial point, we can determine an explicit form of the corresponding time trajectory
and its rate of change. In particular, we take an initial point on the positive sloping part of the
y(0) = f [ _y(0)] curve such as

0 < y(0) = constant and _y(0) =
1� �
� � " y(0) <

3n

�
:

If _y(t) is in the middle region, equation (4) yields explicit forms of the solution y(t) and its time
derivative,

y1(t) = e
1��
��" tK1 and _y1(t) = e

1��
��" t

�
1� �
� � "K1

�
with K1 = y(0) (7)

and if _y(t) enters the upper or lower region, equation (5) yields the following forms of the solution
y(t) and its time derivative,

yi(t) = e
� 1��

" tKi +
di

1� � and _yi(t) = e
� 1��

" t

�
�1� �

"
Ki

�
for i = 2; 3; ::: (8)

where di = �n if i is even and di = 3n if i is odd.
Since _y1(0) < 3n=� and _y1(t) is increasing in t; solving _y1(t) = 3n=� for t presents an arrival

time t = t1;

t1 =
� � "
1� � log

�
3n(� � ")
�(1� �)K1

�
:

Substituting t1 into y1(t) and _y1(t) yields

y1(t1) = yMax and _y1(t) =
3n

�

implying that point ( _y1(t); y1(t)) corresponds to point A in Figure 1. Solutions in (7) describe the
movement from point S to point A: At t = t1; the dynamic system (4) is switched to equation
(5) with d = �n: Equations in (8) with i = 2 presents explicit forms of the solution and its time
derivative,

y2(t) = e
� 1��

" tK2 �
n

1� � and _y2(t) = e
� 1��

" t

�
�1� �

"
K2

�
: (9)
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Since the time trajectory y(t) is continuous in t; solving y1(t1) = y2(t1) gives the value of K2;

K2 =
n(4� � !)
�(1� �) e

� 1��
" t1 :

With this K2; we have
_y2(t1) = _ym and y2(t1) = yMax:

Thus point ( _y2(t1); y2(t1)) corresponds to point B to which point A jumps. This rapid change is
described by the vertical movement of the red curve along the vertical line at t = t1 in Figure
2. Since _y2(t1) < �n=� and _y2(t) increases in t, solving _y2(t) = �n=� gives a necessary time to
arrive at �n=�;

t2 = t1 +
!

1� � log
�
4� � 3"
"

�
:

In the same way above, it is possible to show that

( _y2(t2); y2(t2)) =
�
�n
�
; ymin

�
which is point C: The movement from point B to C is described by solutions in (9). At time
t = t2; the dynamic system with d = �n is switched to the dynamic system with d = 3n and (8)
with i = 3 presents explicit forms of the solutions

y3(t) = e
� 1��

" tK3 +
3n

1� � and y3(t) = e
� 1��

" t

�
�1� �

"
K3

�
: (10)

Solving y2(t2) = y3(t2) presents the value of K3;

K3 = �
n(4� � ")
�(1� �) e

� 1��
" t2 :

It is also able to be shown that point ( _y3(t2); y3(t2)) is identical with point D; implying a jump
to point D from point C. Solving _y3(t) = 3n=� presents a time when _y3(t) arrives at 3n=�;

t3 = t2 +
"

1� � log
�
4� � "
3"

�
:

At t = t3; we can con�ne that the trajectory comes back to point A at which the following holds,

( _y3(t3); y3(t3)) =

�
3n

�
; yM

�
:

A new round starts as time goes further and the same procedure is applied to obtain explicit
forms of the solutions for t � t3: Time segments of y(t) and _y(t) that constitute one cycle of
national income are now given by (9) and (10). Since the length of one cycle is measured by the
time period between one upper (or lower) kinked point and next upper (or lower) kinked point, it
is given by

t3 � t1 =
"

1� � log
�
(4� � ") (4� � 3")

3"2

�
:

Further the length of the recession period along segment BC in which national income is decreasing
is

t2 � t1 =
!

1� � log
�
4� � 3"
"

�
while the length of the recovery period along segment DA in which national income is increasing
is

t3 � t2 =
"

1� � log
�
4� � "
3"

�
:

In what follows, we will perform numerical simulations with the set of the parameter values
given below which are the same parameter values used in Goodwin (1951) and Strotz et al. (1953).
Needless to say, these particular values of the parameters are selected only for analytical simplicity
and do not a¤ect qualitative aspects of the results to be obtained.
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Assumption 1 � = 0:6; " = 0:5; � = 1; � = 2 and n = 3

In particular, Figures 1 and 2 are illustrated under Assumption 1 and the initial values of
y(0) = 2 and _y(0) = 8=15; where the pair ( _y(0); y(0)) corresponds to point S in Figure 2. The
critical times at which the system switching occurs are given

t1 ' 7:998; t2 ' 11:204; t3 ' 13:216; t4 ' 16:422; t5 ' 7:998 and t6 ' 21:640
by solving

_yi(t) =
3n

�
if i is odd or _yi(t) = �

n

�
if i is even.

The length of one cycle given by ti+2 � ti is about 5:218 years.2 In the same way, the recession
period from one peak to trough of the cycle is given by ti � ti�1 ' 3:206 years for i being even
while the recovery period from one trough to peak by ti� ti�1 ' 2:012 years for i being odd. The
constant Ki solves

yi(ti) = yi+1(ti)

with K1 = 2 and the numerical results are as follows,

K2 ' 14641:52; K3 ' �219622:71; K4 ' 951698:40; K5 ' �14275475:98 and K6 ' 61860395:91:

3 Delay Model

We now investigate how the investment delay a¤ects time paths of national income. Observing
the fact that, in real economy, plans and their realizations need time to take e¤ects, Goodwin
(1951) introduces the investment delay, � > 0, between decisions to invest and the corresponding
outlays in order, �rst, to come closer to reality and second, to eliminate unrealistic discontinuous
jumps. Consequently the investment function (6) is modi�ed as follows

'[ _y(t� �)] =

8>>>><>>>>:
3n if _y(t� �) in IU ;

� _y(t� �) if _y(t� �) in IM ;

�n if _y(t� �) in IM :

(11)

With this modi�cation, the dynamic equation (3) turns to be

" _y(t)� '( _y(t� �)) + (1� �)y(t) = 0 (12)

that we call the delay model.3 Equation (12) is reduced to a linear delay di¤erential equation of
neutral type if the delayed rate of change in national income stays in the middle region

" _y(t)� � _y(t� �) + (1� �)y(t) = 0 (13)

and it remains to be a linear ordinary di¤erential equation (5) if the delayed rate is in the upper
or lower region. To solve the delay equation, we need an initial function that determines behavior
of y prior to time zero,

y(t) = �(t) for � � � t � 0:
Although Goodwin (1951) does not analyze delay dynamics generated by the third version, Strotz
et al. (1953), in addition to numerical analysis, derive the explicit forms of the piecewise continuous
solutions of y(t) under the piecewise linear investment function (11). We follow their method of
successive integration to solve the delay equation and derive the explicit forms of time trajectories
of y(t) and _y(t). Since a cyclic oscillation has been shown to exist in the basic model, our main
concern here is to see how the presence of the investment delay and the selection of the initial
function a¤ect characteristics of such a sawtooth oscillation obtained in the basic model.
It has been examined by Strotz, et al. (1953) that the birth of oscillations in the Goodwin

model are caused by a selected form of the initial function and the length of delay. For the
sake of analytical simplicity, we assume the constant initial function in the following numerical
simulations.

Assumption 2
�(t) = y0 6= 0 and _�(t) = 0 for � � � t � 0: (14)

2 It is assumed that � = 1 is one year delay.
3Goodwin assumes a smooth form of the nonlinear investment function in his thrid version.
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3.1 Local Stability

It is well known that if the characteristic polynomial of a linear neutral equation has roots only
with negative real parts, then the stationary point is locally asymptotically stable. The normal
procedure for solving this equation is to try an exponential form of the solution. Substituting
y(t) = y0e

�t into (13) and rearranging terms, we obtain the corresponding characteristic equation:

"�� ��e��� + (1� �) = 0:

To check stability, we determine conditions under which all roots of this characteristic equation
lie in the left or right half of the complex plane. Dividing both sides of the characteristic equation
by " and introducing the new variables

a =
�

"
> 0 and b =

1� �
"

> 0; (15)

we rewrite the characteristic equation as

�� a�e��� + b = 0: (16)

Freedman and Kuang (1991) derive explicit conditions for stability/instability of the n-th order
linear scalar neutral delay di¤erential equation with a single delay. Since (13) is a special case of
the n-th order equation, applying their result (i.e., Theorem 2.1) leads to the following: the real
parts of the solutions of equation (16) are positive for all � > 0 if a > 1. The �rst result on the
�xed delay model is summarized as follows:

Lemma 1 If � > "; then the zero solution of the �xed delay model (13) is locally unstable for all
� > 0:

On the other hand, if v � " or a � 1, characteristic equation (16) has at most �nitely many
eigenvalues with positive real parts. The eigenvalue is real and negative when � = 0: The roots
of the characteristic equation are functions of the delay. Although it is expected that all roots
have negative real parts for small values of �; the real parts of some roots may change their signs
to positive from negative as the lengths of the delay increases. The stability of the zero solution
may change. Such phenomena are often referred to as stability switches. We will next prove that
stability switching, however, cannot take place in the delayed model.

Lemma 2 If � � "; then the zero solution of the �xed delay model (13) is locally stable for all
� > 0:

Proof. (i) It can be checked that � = 0 is not a solution of (16) because substituting � = 0 yields
b = 0 that contradicts b > 0: If the stability switches at � = ��, then (16) must have a pair of pure
conjugate imaginary roots with � = ��: Thus to �nd the critical value of ��; we assume that � = i!;
with ! > 0; is a root of (16) for � = �� > 0: Substituting � = i! into (16), we have

b� a! sin!� = 0;

and
! � a! cos!� = 0:

Moving b and ! to the right hand sides and adding the squares of the resultant equations, we
obtain

b2 + (1� a2)!2 = 0:
Since b > 0 and 1� a2 > 0 as a < 1 is assumed, there is no ! that satis�es the last equation. In
other words, there are no roots of (16) crossing the imaginary axis when � increases. No stability
switch occurs and thus the zero solution is locally asymptotically stable for any � > 0.
(ii) In case of " = � in which a = 1, the characteristic equation becomes

�(1� e���) + b = 0: (17)

It is clear that � = 0 is not a solution of (17) since b > 0. Thus we can assume that a root of (17)
has non-negative real part, � = u+ iv with u � 0 for some � > 0: From (17), we have

(u+ b)2 + v2 = e�2u�(u2 + v2) � (u2 + v2);
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where the last inequality is due to e�2u� � 1 for u � 0 and � > 0: Hence

2ub+ b2 � 0;

where the direction of inequality contradicts the assumption that u � 0 and b > 0. Hence it is
impossible for the characteristic equation to have roots with nonnegative real parts. Accordingly,
all roots of (17) must have negative real parts for all � > 0:

Lemmas 1 and 2 imply the following theorem concerning local stability of the delay model
(13).

Theorem 3 For any � > 0; the zero solution of the delay model (13) is locally asymptotically
stable if � � " and unstable if � > ":

We call y0 in Assumption 2 an initial value for convenience. Fixing the length of delay at � = 1;
we illustrate a bifurcation diagram with respect to the initial value in Figure 3. For given value
of y0; the dynamic system runs for 0 � t � T = 500. The solution for t � 450 are discarded to
eliminate the initial disturbances and the maximum and minimum values of the resultant solutions
for 450 � t � 500 are plotted against y0. The bifurcation parameter y0 increases from �10 to 6
with increment of 0:01 and for each value of y0; the same calculation procedure is repeated. As is
seen in Figure 3 and already pointed out by Antonova (2013), the delay dynamic system with the
constant initial function has the two threshold initial values ymax0 and ymin0 such that the sawtooth
oscillations arise for ymin0 � y0 � ymax0 and so do the Goodwinian oscillations otherwise. These
values depend on the length of the delay and are numerically determined as ymax0 ' 2:39 and
ymin0 ' �6:28 under � = 1. In the following, we �rst set y0 = yG0 = 4:5 and consider Goodwinian
oscillations in Section 4 and then examine sawtooth oscillations with y0 = yS0 = �2 in Section 5.

Figure 3. Bifurcation diagram with respect to y0

4 Goodwinian Oscillations

Given Assumptions 1 and 2 with y0 = yG0 , the time trajectories of y(t) and _y(t) are illustrated by
the blue and red curves, respectively, in Figure 4 in which we can see that delay time trajectories
show sharp di¤erences from non-delay time trajectories depicted in Figure 2. The interval including
the whole parts of one cycle where y(t) starts at point S and ends at point E is divided into eight
subintervals, each of which is distinguished by heavy or light gray color. Solving non-delay dynamic
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equation (5) or delay dynamic equation (13), we will derive the explicit forms of these trajectories
in each subinterval where the detailed derivations are presented in Appendix I.

Figure 4. Time trajectories of y(t) and _y(t):

4.1 Time Trajectories

We omit consideration in interval [0; tS ] with tS = � as behavior there strongly depends on a
choice of initial point. In the �rst interval II = [tS ; tI ] where tI = ta + � ' 4:03 and ta ' 3:03
solves the equation _yI(t) = �n=�, the blue and red trajectories are controlled by equation (5)
with d = �n,

(G-I)

8>>><>>>:
yI(t) = e

� 1��
" tKI �

n

1� �

_yI(t) = e
� 1��

" t

�
�1� �

"
KI

� for t 2 II

where KI ' 21:19: At t = ta; the red trajectory _yI(t) crosses the lower horizontal dotted line at
�n=� and the crossing point is denoted by the left most green dot in Figure 4. The boundary
values of this interval are

yI(tS) ' 2:02; _yI(tS) ' �7:62 and yI(tI) ' �6:66; _yI(tI) ' 0:67:

As seen in Figure 4, the blue trajectory is kinked and the red curve jumps downward at t = tS :
This discontinuity is shown as follows. Let y0(t) and _y0(t) be a solution and its derivative in
interval [0; tS ]:4 Then, constant KI is determined so as to satisfy y0(tS) = yI(tS), that is, the end
point of y0(tS) is coincided with the starting point of yI(tS). Hence it �rst implies the continuity
of y(t) at t = tS : Secondly, the solutions of y0(t) and yI(t) should satisfy the following dynamic
equations respectively,

" _y0(tS) + (1� �)y0(tS) = 0;

" _yI(tS) + (1� �)yI(tS) = �n:
Subtracting the second equation from the �rst presents

_y0(tS)� _yI(tS) =
n

"
> 0 or _y0(tS) > _yI(tS)

where the last inequality implies discontinuity of the derivative at t = tS .

4The explicit forms are given in Appendix I.
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In the second interval III = [tI ; tII ] with tII = tI + � ' 5:03; applying successive integration
for dynamic equation " _y(t) + (1� �)y(t) = � _yI(t� �) gives explicit forms of the solutions,

(G-II)

8><>:
yII(t) = e

� 1��
" t
�
�II1 t+ �

II
0

�
_yII(t) = e

� 1��
" t
�
�II1 t+ �

II
0

� for t 2 III

where

�II1 = ��(1� �)
"2

e
1��
" �KI ' �150:92; �II1 = � 1��

" �II1 ' 120:74;

�II0 ' 440:94; �II0 = �II1 � 1� �
"

�II0 ' �503:67:

The integral constant �II0 is obtained by solving yI(tI) = yII(tI): The boundary values for the
end points of interval III are

yII(tI) ' �6:66; _yII(tI) ' 0:67 and yII(tII) ' �5:69; _yII(tII) ' 1:85:

It can be numerically as well as graphically checked that yII(tI) = yI(tI) and _yII(tI) = _yI(tI): In
consequence yI(t) and yII(t) are smoothly connected (i.e., continuous and di¤erentiable). On the
other hand, _y(t) � �n=� for t � ta induces system change at t = tI leading to that _yI(tI) and
_yII(tI) are connected with kink (i.e., continuous and non-di¤erentiable).

For t in the third interval IIII = [tII ; tIII ] with tIII = tII + � ' 6:03; we have 3n=� >
_yII(t� �) > �n=�: Hence, successive integration implies that equation (13) with � [ _yII(t� �)] =
� _yII(t� �) yields the trajectories described by

(G-III)

8><>:
yIII(t) = e

� 1��
" t
�
�III2 t2 + �III1 t+ �III0

�
_yIII(t) = e

� 1��
" t
�
�III2 t2 + �III1 t+ �III0

� for t 2 IIII

where

�III2 =
�

"
e
1��
" � �

II
1

2
' 537:41; �III2 = �1� �

"
�III2 ' �429; 93;

�III1 =
�

"
e
1��
" �

�
�II0 � ��II1

�
' 5521:58; �III1 = 2�III2 � 1� �

"
�III1 ' 5521:68;

�III0 ' 14044:6; �III0 = �III1 � 1� �
"

�III0 ' �16794:2:

Since yII(tII) = yIII(tII) and _yII(tII) = _yIII(tII) hold, the blue and red trajectories are contin-
uous at t = tII . The boundary values for the right endpoint of interval IIII are

yIII(tIII) ' 0:55 and _yIII(tIII) ' 6:98:

As is seen in Figure 4, the red curve _yIII(t) crosses the upper horizontal dotted line from below
at tb ' 5:19 and _yIII(t) < 3n=� for tII < t < tb. This crossing point is also denoted by the green
dot.

In the fourth interval IIV = [tIII ; tIV ] with tIV = tb+� ' 6:19, equation (13) with � [ _yIII(t� �)] =
� _yIII(t� �) determines the trajectories,

(G-IV)

8><>:
yIV (t) = e

� 1��
" t
�
�IV3 t3 + �IV2 t2 + �IV1 t+ �IV0

�
_yIV (t) = e

� 1��
" t
�
�IV3 t3 + �IV2 t2 + �IV1 t+ �IV0

� for t 2 IIV
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where

�IV3 =
�

"
e
1��
" � �

III
1

3
' �1275:76; �IV3 = �1� �

"
�IV3 ' 1020:61;

�IV2 =
�

"
e
1��
" � �

III
1 � ��III2

2
' 28404:7; �IV2 = 3�IV3 � 1� �

"
�IV2 ' �26551;

�IV1 = �III0 � ��III1 + �2�III2 ' �202487; �IV1 = 2�IV2 � 1� �
"

�IV1 ' 218799;

�IV0 ' �467961; �IV0 = �IV1 � 1� �
"

�IV0 ' �576852:

Since interval IIV is very narrow, the right end point of IIV is labelled at the upper part of Figure
4 to avoid the notational congestion. Due to the continuity of the blue and red trajectories at
t = tIII ; yIII(tIII) = yIV (tIII) and _yIII(tIII) = _yIV (tIII) hold. The boundary values for the
right end point of interval IIV are calculated as

yIV (tIV ) ' 2:49 and _yIV (tIV ) ' 16:01:

Since _yIV (t� �) > 3n=� holds in the �fth interval IV = [tIV ; tV ] where tV = tc+ � ' 8:78 and
tc ' 7:78 solves _yV (t) = 3n=�; equation (13) with � [ _yIV (t� �)] = 3n gives the following forms of
the solution and its time derivative,

(G-V)

8>>><>>>:
yV (t) = e

� 1��
" tKV +

3n

1� �

_yV (t) = e
� 1��

" t

�
�1� �

"
KV

� for t 2 IV

where KV ' �2839:05. The crossing point of the red curve with the upper horizontal dotted line
at tc is denoted by the green dot. The boundary values for the right end point of this interval are

yV (tV ) ' 19:97 and _yV (tV ) ' 2:02:

Since yV (t � �) < 3n=� holds for t of the sixth interval IV I = [tV ; tV I ] with tV I = tV + � '
9:78; dynamic equation (13) with '[ _yV (t� �)] = � _yV (t� �) determines the following evolution of
y(t) and _y(t):

(G-VI)

8><>:
yV I(t) = e

� 1��
" t
�
�V I1 t+ �V I0

�
_yV I(t) = e

� 1��
" t
�
�V I1 t+ �V I0

� for t 2 IV I

where

�V I1 = ��(1� �)
"2

e
1��
" �KV ' 20129; �V I1 = �1� �

"
�V I1 ' �16175:2;

�V I0 ' �155088; �V I0 = �V I1 � 1� �
"

�V I0 ' 144289:

The boundary values for the right end point of interval IV I are

yV I(tV I) ' 17:06 and _yV I(tV I) ' �5:56:

It is seen that the red curve crosses the lower horizontal dotted line from above at td ' 9:05.

In the seventh interval IV II = [tV I ; tV II ] with tV II = td + � ' 10:05, applying successive
integration to dynamic equation (13) with '[ _yV I(t � �)] = � _yV I(t � �) yields the forms of the
solutions,

(G-VII)

8><>:
yV II(t) = e

� 1��
" t
�
�V II2 t2 + �V II1 t+ �V II0

�
_yV II(t) = e

� 1��
" t
�
�V II2 t2 + �V II1 t+ �V II0

� for t 2 IV II
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where

�V II2 =
�

"
e
1��
" � �

V I
1

2
' �71997; �V II2 = �1� �

"
�V II2 ' 51597:63;

�V II1 =
�

"
e
1��
" �

�
�V I0 � ��BI1

�
' 142848:2; �V II1 = 2�V II2 � 1� �

"
�V II1 ' �128678;

�V II0 ' �704149:86; �V II0 = �IV I1 � 1� �
"

�V II0 ' 706168:

The boundary values for the right end point of interval IV II are

yV II(tV II) ' 13:82 and _yV II(tV II) ' �17:06:

Finally, in the eighth interval IV III=[tV II ; tE ] with tE = tV II + � ' 11:05; _yV II(t) < n=� for
t 2 IV II implies dynamic equation (5) with ' [ _yV II(t� �)] = �n controls the trajectories,

(G-VIII)

8>>><>>>:
yV III(t) = e

� 1��
" tKV III �

n

1� �

_yV III(t) = e
� 1��

" t

�
�1� �

"
KV III

� for t 2 IV III

where KV III ' 66133:90: Notice that yV III(tE) = yI(tS) and _yV III(tE) = _yI(tS) hold. The
length of the period is about 10 years.5 Very roughly speaking, the recovery period could be
approximately 4.7 years from tI to tV and then the recession period is 5.3 years. The same cycle
repeats itself for t > tE .

4.2 Phase Plot

Calculating the boundary values of each interval Ii; we have the following set of points ( _y(t); y(t)) in
the phase diagram of Figure 5.

(S) = (�7:62;2:02) (2) = (�0:67;�6:66) (3) = (1:85;�5:69)
(4) = (7:00; 0:55) (5) = (16:01; 2:49) (6) = (2:02; 19:97)
(7) = (�5:56; 17:06) (8) = (�17:06; 13:82) (E) = (�7:62;2:02)

Point denoted by (S) and (E) is the starting point and the ending point of the cyclic oscillation,
both of which are identical. Equation (5) with d = �n governs decreasing movements from (S) to
(2) and from (8) to (E) along the lower red line whereas equation (5) with d = 3n controls upward
movements from (5) to (6) along the upper red line. On the other hand, movements from (2) to
(5) and from (6) to (8) along the dotted curves between these two lines are described by equation
(13). The switching of dynamic equations occurs at the following points:

Point (2) at which equation (5) with d = �n is changed to equation (13);

Point (5) at which equation (13) to equation (5) with d = 3n;

Point (6) at which equation (5) with d = 3n to equation (13);

Point (8) at which equation (13) to equation (5) with d = �n;

Points (3), (4) and (7) at which equations (13) have at di¤erent forms of �[ _y(t� �)]:

We can verify the following.

Theorem 4 The cyclic time trajectories of y(t) and _y(t) are continuous at these switching points.

5With the same parameter values but di¤erent initial values, Goodwin (1951) analytically obtained a 9 years
cycle and Strozt et al. (1953) numerically got a 8.12 year cycle.
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Proof. (i) At point (2) with t = tI , yI(t) is connected to yII(t) and so is _yI(t) to _yII(t): Integral
constant �II0 of yII(t) is determined so as to solve yI(tI) = yII(tI): Further yI(t) and yII(t) should
satisfy the dynamic equations at t = tI ,

" _yI(tI) + (1� �)yI(tI) = �n;

" _yII(tI) + (1� �)yII(tI) = � _yI(tI � �):

_yI(tI � �) = _yI(ta) holds at tI = ta + � and _yI(ta) = �n=� by de�nition of ta; both of which
lead to � _yI(tI � �) = �n: Therefore the above two dynamic equations are identical and thus two
solutions of these dynamic equations take the same values at t = tI ; namely, yI(tI) = yII(tI) and
_yI(tI) = _yII(tI).
(ii) At point (5) with t = tIV ; yIV (t) is connected to yV (t) and so is _yIV (t) to _yV (t): Integral

constant KV of yIV (t) is determined so as to solve yIV (tIV ) = yV (tIV ): Further, yIV (t) and yV (t)
should satisfy the dynamic equations at t = tIV ,

" _yIV (tIV ) + (1� �)yIV (tIV ) = � _yIII(tIV � �);

" _yV (tI) + (1� �)yIV (tI) = 3n:

_yIII(tIV � �) = _yI(ta)holds at tIV = tb + � and _yIII(tb) = 3n=� by de�nition of tb; both of which
lead to � _yIII(tIV ��) = 3n: Therefore the above two dynamic equations are identical and thus two
solutions of these dynamic equations take the same values at t = tIV ; namely, yIV (tIV ) = yV (tIV )
and _yIV (tIV ) = _yV (tIV ). The same procedure applies for points (6) and (8).
(iii) At point (3) with t = tII ; yII(t) and yIII(t) satisfy the dynamic equations

" _yII(tII) + (1� �)yII(tII) = � _yI(tII � �);

" _yIII(tII) + (1� �)yIII(tII) = � _yII(tII � �):

_yI(tII � �) = _yI(tI) and _yII(tII � �) = _yII(tI) as tII = tI + �: From (i), we already have
_yI(tI) = _yII(tI). Further the integral constant �III1 of yIII(t) solves yII(tII) = yII(tII): Then
substituting the second equation from the �rst equation presents _yII(tII) = _yIII(tII): The same
procedure applies for Points (4) and (7).

This theorem con�rms no jumps of the derivatives at the switching points of the dynamic
system, implying the smooth time trajectory of national income just like observed business cycle.
This is what Goodwin (1950) aims to obtain. So we summarize this results as follows:

Theorem 5 If the initial value y0 of the initial function and the length of delay � are selected
such as y0 < ymin0 (�) or y0 > ymax0 (�); then the delay model can generate smooth oscillations of
national income.
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Figure 5. Phase diagram of Goodwin equation (12)

5 Sawtooth Oscillations

Under Assumptions 1 and 2 with ySo = �2, Figure 6 illustrates trajectories of y(t) (blue curve) and
_y(t) (red curve) for t 2 [0; 5]: The blue trajectory has kinks and the red trajectory jumps at ti = n�.
These are initial parts of the trajectories that eventually converge to sawtooth oscillations. The
shapes of these trajectories are di¤erent from those in Figures 2 and 4.

Figure 6. Time trajectories of y(t) (blue) and y0(t) (red) for 0 � t � 5:

It has been pointed out by Strotz et al. (1953) that the delay model also gives rise to sawtooth-like
oscillations.6 Our main aim of this section is to analytically reproduce these numerical results to

6Moree prececisly, Strotz et al. (1953) found at least twenty �ve other limit cycles that were also solution to
the delay model with the same parameter values. Further it was indicated that there were an in�nite number of
additional solutions.
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understand why a trajectory y(t) has kinks and its derivative _y(t) makes jumps. To this end, we
start to divide the interval I = [0; 5] into �ve subintervals with respect to the length of delay �;

Ii = [ti�1; ti] for i = 1; 2; ; 3; 4; 5

where ti�1 = i� 1 and ti = ti�1+ � with � = 1. Detailed derivations of the forms of y(t) and _y(t)
in each interval are presented in Appendix II.

5.1 Time Trajectories

The constant initial function �(t� �) = �2 for t 2 I1 = [t0; t1] is selected. The dynamic equation
(13) with '

h
_�(t� �)

i
= 0 yields the following forms of the solution and its derivative

(S-I)

8>><>>:
y1(t) = e

� 1��
" tK1 with K1 = �2;

_y1(t) = e
� 1��

" t

�
�1� �

"
K1

�
:

The boundary values for the end points of interval I1 are

y1(t0) ' �2; _y1(t0) ' 1:6 and y1(t1) ' �0:897; _y1(t1) ' 0:719:

In the second interval I2 = [t1; t2], solving (13) with '[ _y1(t � �)] = � _y1(t � �) by successive
integration yields the following forms

(S-II)

8><>:
y2(t) = e

� 1��
" t
�
�II1 t+ �

II
0

�
_y2(t) = e

� 1��
" t
�
�II1 t+ �

II
0

�
where

�II1 = �k(1� �)
"2

K1e
1��
" � ' 14:244; �II1 = �k (1� �)

2

"3
e�

1��
" �K1 ' �11:395;

�II0 ' �16:244; �II0 = �1� �
"

�
k

"
e
1��
" �K1 +K2

�
' 27:238:

Integral constant �II0 is determined so as to satisfy y2(t1) = y1(t1); implying the continuity of the
blue curve at t1: The discontinuity of the red curve at that point can be shown in the same way as
in the case of Goodwin cycle. The solutions y1(t1) and y2(t1) satisfy the corresponding dynamic
equations at t = t1,

" _y1(t1) + (1� �)y1(t1) = 0;

" _y2(t1) + (1� �)y2(t1) = � _y1(t1 � �)
where t1 = t0 + � and t0 = 0 implying that _y1(t1 � �) = _y1(0) > 0: Subtracting the �rst equation
from the second equation presents

_y2(t1)� _y1(t1) =
�

"
_y1(0) > 0 or _y2(t1) > _y1(t1):

The last inequality con�rms the discontinuity of the red curve at t = t1: The boundary values for
the end points of interval I2 are

y2(t1) ' �0:897; _y2(t1) ' 7:119 and y2(t2) ' 2:472; _y2(t2) ' 0:898:

It is then numerically con�rmed that

y1(t1) = y2(t1) =) continuity of the blue curve at t = t1;

_y1(t0) 6= _y2(t1) =) discontinuity of the red curve at t = t1.
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As shown in the Appendix II, ta is the value at which the red curve crosses the upper horizontal
dotted line once from above and divides the interval I3 = [t2; t3] into two subintervals, Ia3 = [t2; t

�
a]

and Ib3 = [t�a; t3] where t
�
a = ta + �: So we derive a solution of the di¤erential equation in each

interval. In interval Ia3 equation (5) with d = 3n presents the forms of y(t) and _y(t):

(S-IIIa)

8>><>>:
ya3 (t) = e

� 1��
" tK3 +

3n

1� �;

_ya3 (t) = �
1� �
"

K3e
� 1��

" t;

where solving ya3 (t2) = y2(t2) gives constant value K3 ' �99:20. The boundary values for the end
points of interval Ia3 are

ya3 (t2) ' 2:472; _ya3 (t2) ' 16:023 and ya3 (t�a) ' 6:565; _ya3 (t�a) ' 12:748

where the continuity of the blue curve and the discontinuity of the red curve at t = t2 are also
numerically con�rmed,

y2(t2) = y
a
3 (t2) and _y2(t2) 6= _ya3 (t2):

On the other hand, in interval Ib3; equation (13) with '[ _y2(t � �)] = � _y2(t � �) yields the
solution and its derivative,

(S-IIIb)

8><>:
yb3(t) = e

� 1��
" t
�
�III2 t2 + �III1 t+ �III0

�
_yb3(t) = e

� 1��
" t
�
�III2 t2 + �III1 t+ �III0

�
where

�III2 =
k

"
e
1��
" � �

II
1

2
' �50:719 �III2 = �1� �

"
�III2 ' �22:79;

�III1 =
k

"
e
1��
" �

�
�II0 � ��II1

�
' 343:918; �III1 = 2�III2 � 1� �

"
�III1 ' �255:97

�III0 = �480:253; �III0 = �III1 � 1� �
"

�III0 ' 559:71:

The boundary values for the end points of interval Ib3 are

yb3(t
�
a) ' 6:565; _yb3(t�a) ' 12:748 and yb3(t3) ' 8:621; _yb3(t3) ' �3:309

where the blue and red curves are con�rmed to be continuous at t = t�a;

ya3 (t
�
a) = y

b
3(t

�
a) and _ya3 (t

�
a) = _yb3(t

�
a):

Due to the values of tb and tc obtained in the Appendix II, interval I4 = [t3; t4] is divided into
three subintervals Ia4 =

�
t3; t

�
b

�
, Ib4 =

�
t�b ; t

�
c

�
and Ic4 =

�
t�c ; t4

�
by t�b = tb + � and t

�
c = tc + �: Since

'[ _y3(t � �)] = '[ _y4(t � �)] = 3n for t 2 Ia4 , equation (5) with d = 3n yields the solution of the
di¤erential equation and its derivative

(S-VIa)

8>>><>>>:
ya4 (t) = e

� 1��
" tKa

4 +
3n

1� � with K
a
4 ' �152:994;

_ya4 (t) = e
� 1��

" t

�
�1� �

"
Ka
4

�
with � 1� �

"
Ka
4 ' 122:395:

The boundary values for the end points of interval Ia4 are

ya4 (t3) ' 8:621; _ya4 (t3) ' 11:103 and ya4 (t�b) ' 13:456; _ya4 (t�b) ' 7:236
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where the blue curve is continuous and the red curve jumps at t = t3;

yb3(t3) = y
a
4 (t3) and _y

b
3(t3) 6= _ya4 (t3):

In Ib4; equation (13) with ' [ _y
a
4 (t� �)] = � _ya4 (t� �) gives the solution and its derivative

(S-IVb)

8><>:
yb4(t) = e

� 1��
" t
�
�IV3 t3 + �IV2 t2 + �IV1 t+ �IV0

	
_yb4(t) = e

� 1��
" t
n
�IV3 t3 + �IV2 t2 + �IV1 t+ �IV0

o
where

�IV3 =
k

"
e
1��
" � �

III
2

3
' 180:604; �IV3 = �1� �

"
�IV3 ' �96:322;

�IV2 =
k

"
e
1��
" � �

III
1 � 2��III2

2
' �2037:36; �IV2 = 3�IV3 � 1� �

"
�IV2 ' 1991:1;

�IV1 =
k

"
e
1��
" �

�
�III0 � ��III1 + �2�III2

�
' 10195:4; �IV1 = 2�IV2 � 1� �

"
�IV1 ' �12231;

�IV0 ' �15672:428; �IV0 = �IV1 � 1� �
"

�IV0 ' 22733:3:

The boundary values for the end points of interval Ib4 are

yb4(t
�
b) ' 13:456; _yb4(t�b) ' 7:236; and yb4(t�c) ' 11:677; _yb4(t�c) ' �15:342

where the blue and red curves are continuous at t = t�b ;

ya4 (t
�
b) = y

a
4 (t

�
b) and _y

a
4 (t

�
b) = _ya4 (t

�
b):

Since '[ _yb4(t � �)] = �n for t 2 Ic4 ; equation (5) with d = �n yields the solution and its
derivative

(S-IVc)

8><>:
yc4(t) = e

� 1��
" tK7 � n

1�� with K7 ' 415:092

_yc4(t) = e
� 1��

" t
�
� 1��

" K7

�
with � 1��

" K7 ' �340:074

The boundary values for the end points of interval Ic4 are

yc4(t
�
c) ' 11:677; _yc4(t�c) ' �15:342; and yc4(t4) ' 9:420; _yc4(t4) ' �13:536

where the blue and red curves are continuous at t = t�c

yb4(t
�
c) = y

c
4(t

�
c) and _y

b
4(t

�
c) = _yc4(t

�
c):

Due to the crossing values td and te obtained in the Appendix II, interval I5 = [t4; t5] is divided
into three subintervals Ia5 =

�
t4; t

�
d

�
and Ib5 =

�
t�d; t

�
e

�
and Ic5 =

�
t�e; t5

�
by t�d = td+� and t

�
e = te+�:

Since '[ _yb4(t � �)] = '[ _yb4(t � �)] = 3n for t 2 Ia5 ; equation (5) with d = 3n implies the solution
and its derivative,

(S-Va)

8>>><>>>:
ya5 (t) = e

� 1��
" tK8 +

3n

1� � with K8 ' �320:88

_ya5 (t) = e
� 1��

" t

�
�1� �

"
K8

�
with � 1� �

"
K8 ' 256:704

The boundary values for the end points of interval Ia5 are

ya5 (t4) ' 9:420; _ya5 (t4) ' 10:464; and ya5 (t�d) ' 14:150; _ya5 (t�d) ' 6:680
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where the blue curve is continuous and the red curve jumps at t = t4;

yc4(t4) = y
a
5 (t4) and _y

c
4(t4) 6= _ya5 (t4)

In Ib5; equation (13) with ' [ _y
a
4 (t� �)] = � _ya4 (t� �) yields the solution and its derivative

(S-Vb)

8><>:
yb5(t) = e

� 1��
" t
�
�V4 t

4 + �V3 t
3 + �V2 t

2 + �V1 t+ �
V
0

	
_yb5(t) = e

� 1��
" t
n
�V4 t

4 + �V3 t
3 + �V2 t

2 + �V1 t+ �
V
0

o
where

�V4 =
k

"
e
1��
" � �

IV
3

3
' �214:369; �V4 = �

1� �
"

�IV4 ' 171:495;

�V3 =
k

"
e
1��
" � �

IV
2 � 3��IV3

3
' 6765:83; �V3 = 4�

V
4 �

1� �
"

�V3 ' �9270:135;

�V2 =
k

"
e
1��
" � �

IV
1 � 2��IV2 + 3�2�IV3

2
' �73452:5; �V2 = 3�

V
3 �

1� �
"

�V2 ' 79059:451;

�V1 =
k

"
e
1��
" �

�
�IV0 � ��IV1 + �2�IV2 � �3�IV3

�
' 329841; �V1 = 2�

V
2 �

1� �
"

�V1 ' �410777:286;

�V0 = K9 ' �525028:550; �V0 = �
V
1 �

1� �
"

�V0 ' 749863:287:

The boundary values for the end points of interval Ib5 are

yb5(t
�
d) ' 14:150; _yb5(t�d) ' 6:680; and yb5(t�e) ' 13:793; _yb5(t�e) ' �17:034:

Since '[ _fc4 (t � �)] = �n for t 2 Ic5 ; equation (5) with d = �n yields the solution and its
derivative

(S-Vc)

8>>><>>>:
yc5(t) = e

� 1��
" tK10 �

n

1� � with K10 ' 860:508

_yc5(t) = e
� 1��

" t

�
�1� �

"
K10

�
with � 1� �

"
K10 ' �688:406

The boundary values for the end points of interval Ic5 are

yc5(t
�
e) ' 13:793; _yc5(t�e) ' �17:034 and yc5(t5) ' 8:267; _yc5(t5) ' �12:614

where the blue and red curves are continuous at t = t�e;

yb5(t
�
e) = y

c
5(t

�
e) and _y

b
5(t

�
e) = _yb5(t

�
e):

Notice that the red curves in intervals, I3; I4 and I5 intersect the upper and lower horizontal
dotted curves and a di¤erence between t-values is getting smaller,

tc � tb ' 0:308; td � te ' 0:063 and tf � tg ' 0:015:

As seen above, the delay di¤erential equation (13) describes dynamic behavior of y(t) for t 2 Ibk for
k = 3; 4; 5 while the linear ordinary equation (5) determines the form of y(t) for t 2 Iak or Ick: For
k � 6; the same types of the solutions are obtained and the size of Ibk shrinks, implying that as
k increases, the resultant shape of the solution form of y(t) approaches the sawtooth shape at
whose vertices _y(t) jumps.
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5.2 Phase Plot

We now turn attention to the phase diagram in the ( _y(t); y(t)) plane. The boundary values of each
trajectory that have been obtained are summarized in the following table and plotted in Figure
7. The red curves are the locus of y(t) = f [ _y(t� �)] and the green parallelogram is a sawtooth
limit cycle. Black dotted curve connects the boundary values. The following points are shown in
Figure 7:

(1) = (1:6;�2) (2) = (0:72;�0:90) (3) = (7:12;�0:90) (4) = (0:90; 2:47)
(5) = (16:02; 2:4) (6) = (12:75; 6; 57) (7) = (�3:31; 8:62) (8) = (11:10; 8:62)
(9) = (7:24; 13:46) (10) = (�15:34; 11:68) (11) = (�13:54; 9:42) (12) = (10:46; 9:42)
(13) = (6:68; 14:15) (14) = (�17:03; 13:79) (15) = (�12:61; 8:27)

Point (1) is the starting point of interval I1 at t = 0 and the delay equation (13) transports
it to point (2) at t = 1: At the beginning of the second interval I2, _y(t) jumps, which makes
the horizontal move of point (2) to point (3) that arrives at point (4) at the end of I2: At the
beginning of the third interval I3; _y(t) jumps again and point (4) horizontally shifts to point (5)
at which the dynamic system is changed to the linear equation (5) with d = 3n making a move
along the upper downward line to point (6) as t proceeds from t = t2 to t = t�a: The dynamic
system is changed back to the delay equation at t = t�a and then the dotted trajectory leaves the
upper red curve heading to point (7). This is because for t 2 [t�a; t3]; the delay equation with
_y(t� �) 2 IM controls dynamic behavior. On the way, the _y(t) curve crosses the upper and lower
horizontal dotted curves as seen in Figure 6. The move reaches point (7) at the end of I3 and jumps
to point (8) at the beginning of interval I4 in which we see signs of sawtooth oscillations. Two
intersections obtained in interval I3 causes two changes of the dynamic system; the linear equation
(5) with d = 3n governs the movement from point (8) to point (9) and the delay equation (13)
controls the movement from point (9) to point (10) and then the system is changed to the linear
equation (5) with d = �n managing the movement along the lower downward line from point (10)
to point (11). At the beginning of interval I5; a jump from point (11) to point (12) occurs and
the further movement along the upper red line to point (13) is controlled by the linear equation
with d = 3n; point (13) to point (14) by the delay equation and point (14) to point (15) by the
linear equation with d = �n: Point (15) jumps to a point on the upper red line and the dynamic
system change occurs as well in Ik for integer k � 6 as in I5: By doing so, the trajectory gradually
approaches to the green sawtooth limit cycle as time goes on. It is noticed that a jump occurs
at the local maximum or minimum point in the non-delay model whereas even at the middle of
these boundary values in the delay model.

Figure 7. Phase diagram of sawtooth oscillation
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6 Concluding Remarks

This paper presented Goodwin�s nonlinear accelerator model augmented with investment delay in
continuous time scales. Assuming a piecewise linear investment function and specifying the values
of the model�s parameters, explicit forms of sawtooth oscillations were derived when the initial
value of the constant initial function were selected in the neighborhood of the steady state. Other-
wise the same was done for Goodwin oscillation. With these numerical results, the paper exhibited
valuable insights into the macro dynamics of market economies: the delay nonlinear accelerator-
multiplier mechanism can be a source of various types of business cycles; economies starting in the
neighborhood of the steady state could achieve regular ups and downs while economies starting
away from the steady state presented persistent and irregular cycles.
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Appendix I
In this Appendix, we provide mathematical underpinnings for Goodwin oscillations. Since the
investment delay could make y(t) kinked and _y(t) discontinuous at tn = n� for integer n; the time
interval for t � 0 is reconstructed as the union of unit intervals In = [tn; tn+1] for n and then a
dynamic equation de�ned over interval In is solved to obtain explicit forms of time trajectory and
its derivative. Dynamic equation is solved with successive integration in which an initial point or
function is the solution of dynamic equation de�ned in the proceeding subinterval.

Interval 0 : I0 = [t0; t1] where t0 = 0 and t1 = 1:

The initial function �(t � �) determines dynamics for t � 0. Since '
h
_�(t� �)

i
= 0 by

Assumption 2, solving " _y(t) + (1 � �)y(t) = 0 presents explicit forms of the solution and its
derivative

y0(t) = e
� 1��

" tK0 and _y0(t) = e�
1��
" t

�
�1� �

"
K0

�
with K0 =

3n

�
:

and as can be seen in Figure 4, the red curve is below the lower dotted line or

_y0(t) < �
n

�
for t 2 I0: (A-1)

Derivation of (G-I)

Interval 1: I1 = [t1; t2] where t2 = 2:

(A-1) implies ' [ _y0(t� �)] = �n for t 2 I1 and then (8) with d = �n are

y1(t) = e
� 1��

" tK1 +

�
� n

1� �

�
and _y1(t) = e�

1��
" t

�
�1� �

"
K1

�
where solving y0(t1) = y1(t1) gives

K1 = K0 +
n

1� �e
� 1��

" t1 ' 21:19:

and the following holds,
_y1(t) < �

n

�
for t 2 I1: (A-2)

Intervals 2 and 3: Ii = [ti; ti+1] where ti+1 = ti + � for i = 2; 3:

In the same way as in interval I1, (8) with d = �n leads to the identical forms of yi(t) and
_yi(t) for t 2 Ii as the ones de�ned in I1;

yi(t) = y1(t) and _yi(t) = _y1(t) with Ki = K1:

Notice that the red curve crosses the lower dotted horizontal line from below in interval I3. Solving
_y3(t) = �n=� for t gives

ta ' 3:03

with which the following inequalities hold

_y3(t) < �
n

�
for t < ta and �

n

�
< _y3(t) <

3n

�
for ta < t � t4: (A-3)

Interval 4: I4 = [t4; t5] where t4 = 4 and t5 = 5.

Due to (A-3), tI = ta + � ' 4:03 divides interval I4 into two subintervals, Ia4 = [t4; tI ] and
Ib4 = [tI ; t5]. First, (2) with ' [ _y3(t� �)] = �n for t 2 Ia4 presents the same forms

ya4 (t) = y1(t) and _y
a
4 (t) = _y1(t) with Ka

4 = K1:
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So far we have seen that in II = I1 [ I2 [ I3 [ Ia4 = [tS ; tI ] with tS = t1; a time trajectory of y(t)
is described by

yI(t) = e
� 1��

" tKI +

�
� n

1� �

�
where yI(t) = y1(t) and KI = K1: A form of _yI(t) is obtained by time-di¤erentiating yI(t) and is
identical with _y1(t). yI(t) and _yI(t) construct system (G-I) de�ned in Section 4.1.

Derivation of (G-II)

On the other hand for t 2 Ib4, the investment is delayed and (12) with ' [ _y3(t� �)] = � _y3(t��)
is written as

_y(t) +
1� �
"

y(t) =
�

"
e�

1��
" (t��)

�
�1� �

"
K3

�
:

Multiplying both sides by the term e
1��
" t and arranging the terms present

d

dt

h
y(t)e

1��
" t
i
= e�

1��
" t

�
��(1� �)

"2
K3e

� 1��
" �e

1��
" t

�
:

Integrating both sides yields

y(t)e
1��
" t =

�
��(1� �)

"2
K3e

� 1��
" �

�
t+Kb

4:

Thus the form of the solution is

yb4(t) = e
� 1��

" t
�
�iv1 t+ �

iv
0

�
where

�iv1 = �
�(1� �)
"2

K3e
� 1��

" � and �iv0 = K
b
4:

The integral constant Kb
4 is obtained by solving y

a
4 (tI) = y

b
4(tI);

Kb
4 ' 440:938:

The derivative of y(t) is
_yb4(t) = e

� 1��
" t
�
�iv1 t+ �

iv
0

�
where

�iv1 = �
1� �
"

�iv1 and �iv0 = �
iv
1 �

1� �
"

�iv1 :

It can be checked that
�n
�
< _y4(t) <

3n

�
for t 2 I4 (A-4)

where
_y4(t) = _ya4 (t) for t 2 Ia4 and _y4(t) = _yb4(t) for t 2 Ib4:

Interval 5: I5 = [t5; t6] where t6 = 6.

As in interval I4; the threshold value tII = tI + � ' 5:03 divides interval I5 into two
subintervals, Ia5 = [t5; tII ] and Ib5 = [tII ; t6]. For t 2 Ia5 , equation (12) with ' [ _y

a
4 (t� �)] =

� _ya4 (t� �) leads to the solution and its derivative that are the same as the ones obtained in Ib4;

ya5 (t) = y
b
4(t) and _y

a
5 (t) = y

b
4(t) with K

a
5 = K

b
4:

Therefore time trajectories for t 2 III = Ib4 [ Ia5 = [tI ; tII ] are described by

yII(t) = y
b
4(t) and _yII(t) = _yb4(t)

both of which form (G-II) de�ned in Section 4.1 where �ivj and �ivj for j = 0; 1 are written as �IIj
and �IIj .
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Derivation of (G-III)

Dynamic equation (12) with '[ _yb4(t� �)] = � _yb4(t� �) for t 2 Ib5 has a solution

yb5(t) = e
� 1��

" t
�
�v2t

2 + �v1t+ �
v
0

�
where

�v2 =
�

"
e
1��
" � �

iv
1

2

�v1 =
�

"
e
1��
" �(�iv0 � ��iv1 )

�v0 = K
b
5

Solving ya5 (tII) = y
b
5(tII) presents

Kb
5 ' 140446:6:

Di¤erentiating yb5(t) gives
_yb5(t) = e

� 1��
" t
�
�v2t

2 + �v1t+ �
v
0

�
where

�v2 = �
1� �
"

�v2;

�v1 = 2�
V
2 �

1� �
"

�v1;

�v0 = �
V
1 �

1� �
"

�v0:

Since the _yb5(t) curve crosses the upper horizontal line from below at

tb ' 5:19395;

we then have
�n
�
< _ya5 (t) <

3n

�
for t5 � t � tII ;

�n
�
< _yb5(t) <

3n

�
for tII � t � tb;

_yb5(t) >
3n

�
for tb � t � t6:

(A-5)

Interval 6: I6 = [t6; t7] where t7 = 7.

Due to the two values, tII and tb; we de�ne two threshold values tIII = tII + � ' 6:03
and tIV = tb + � ' 6:19; both of which then divide interval I6 into three subintervals, Ia6 =
[t6; tIII ]; I

b
6 = [tIII ; tIV ] and I

c
6 = [tIV ; t7]: Accordingly conditions in (A-5) determine the induced

investment as

' [ _y(t� �)] =

8>>>><>>>>:
' [ _ya5 (t� �)] = � _ya5 (t� �) for t 2 Ia6 ;

'
�
_yb5(t� �)

�
= � _yb5(t� �) for t 2 Ib6;

'
�
_yb5(t� �)

�
= 3n for t 2 Ic6 :

In consequence, the form of the solution and its derivative in Ia6 are

ya6 (t) = y
b
5(t) and _y

a
6 (t) = _yb5(t):

Therefore blue and red trajectories for t 2 IIII = Ib5 [ Ia6 = [tII ; tIII ] are described by

yIII(t) = y
b
5(t) and _yIII(t) = _yb5(t)

both of which form (G-III) de�ned in Section 4.1 where �vj and �
v
j for j = 0; 1; 2 are written as

�IIIj and �IIIj .
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Derivation of (G-IV)

For t 2 Ib6; successive integral leads to the solution

yb6(t) = e
� 1��

" t
�
�vi3 t

3 + �vi2 t
2 + �vi1 t+ �

vi
0

�
where

�vi3 =
�

"
e
1��
" � �

v
2

2
;

�vi2 =
�

"
e
1��
" � �

v
1 � 2��v2
2

;

�vi1 = �
v
0 � ��v1 + �2�v2;

�vi0 = K
b
6:

Solving ya6 (tIII) = y
b
6(tIII) yields

Kb
6 ' �155088:

Di¤erentiating yb6(t) with respect to t is, after arranging the terms, it can be written as

_yb6(t) = e
� 1��

" t
�
�vi3 t

3 + �vi2 t
2 + �vi1 t+ �

vi
0

�
where

�vi3 = �
1� �
"

�vi3 ;

�vi2 = 3�
V
3 �

1� �
"

�vi2 ;

�vi1 = 2�
V
2 �

1� �
"

�vi1 ;

�vi0 = �
V
1 �

1� �
"

�vi0 :

Therefore blue and red trajectories in IIV = Ib6 are described by

yIV (t) = y
b
6(t) and _yIV (t) = _yb6(t)

both of which form (G-IV) de�ned in Section 4.1 where �vij and �vij for j = 0; 1; 2; 3 are written
as �IVj and �IVj .

Derivation of (G-V)

For t 2 Ic6 ; equation (9) implies a form of the solution,

yc6(t) = e
� 1��

" tKc
6 +

3n

1� �

_yc6(t) = e
� 1��

" t
�
� 1��

" Kc
6

�
where solving yb6(tIV ) = y

c
6(tIV ) gives

Kc
6 ' �2839:05:

Interval 7: I7 = [t7; t8] where t8 = 8.

Since equation (2) implies ' [ _yn6 (t� �)] = 3n for n = a; b; c and t 2 I7; equation (9) implies
that

y7(t) = y
c
6(t);

_y7(t) = _yc6(t):
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Notice that the _y7(t) curve intersects the horizontal dotted line at 3n=� from above at the following
point,

tc ' 7:78001:
Thereby,

_y7(t) >
3n

�
for t7 � t < tc;

�n
�
< _y7(t) <

3n

�
for tc < t � t8:

(A-7)

Interval 8: I8 = [t8; t9] where t9 = 9.

The threshold value in interval I7 de�nes a new threshold value tV = tc + � ' 8:78 in interval
I8 that divides interval I8 into two subintervals, Ia8 = [t8; tV ] and I

b
8 = [tV ; t9]: Since ' [ _y7(t� �)] =

3n for t 2 Ia8 ; (9) implies
ya8 (t) = y7(t) and _y

a
8 (t) = _y7(t)

Therefore trajectories in IV = Ic6 [ I7 [ Ia8 = [tIV ; tV ] are described by

yV (t) = y
c
6(t) = y7(t) = y

a
8 (t) and _yV (t) = _yc6(t) = _y7(t) = _ya8 (t):

yV (t) and _yV (t) construct (G-V) de�ned in Section 4.1where Kc
6 is replaced with KV :

Derivation of (G-VI)

On the other hand, ' [ _y7(t� �)] = � _y7(t� �) for t 2 Ib8; successive integration implies that the
solution of y(t) has the form,

yb8(t) = e
� 1��

" t
�
�viii1 t+ �viii0

�
where

�viii1 = ��(1� �)
"2

K8e
1��
" �;

�viii0 = Kb
8 ' �155088:

Time di¤erentiation of yb8(t) is

_yb8(t) = e
� 1��

" t
�
�viii1 t+ �viii0

�
where

�viii1 = �1� �
"

�viii1 ;

�viii0 = �viii1 � 1� �
"

�viii0 :

It can be checked that
�n
�
< _ya8 (t) <

3n

�
for t 2 Ia8

�n
�
< _yb8(t) <

3n

�
for t 2 Ib8:

(A-8)

Interval 9: I9 = [t9; t10] where t10 = t9 + �.

The threshold value tV I = tV + � divides interval I9 into two subintervals, Ia9 = [t9; tV I ] and
Ib9 = [tV I ; t9]: Since the �rst equation of (A-8) implies ' [ _y8(t� �)] = � _ya8 (t � �) for t 2 Ia9 ; the
solution of (12) is

ya9 (t) = y
b
8(t) and _y

a
9 (t) = _yb8(t)

Therefore trajectories in IV I = Ib8 [ Ia9 = [tV ; tV I ] are described by

yV I(t) = y
b
8(t) = y

a
9 (t) and _yV I(t) = _yb8(t) = _ya9 (t)

both of which form (G-VI) de�ned in Section 4.1where �viiij and �viiij for j = 0; 1; are written as
�V Ij and �V Ij :
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Derivation of (G-VII)

On the other hand, ' [ _y8(t� �)] = � _yb8(t � �) for t 2 Ib9 implies the following form of the
solution,

yb9(t) = e
� 1��

" t
�
�ix2 t

2 + �ix1 t+ �
ix
0

�
where

�ix2 =
�

"
e
1��
" � �

viii
1

2
;

�ix1 =
�

"
e
1��
" �

�
�viii0 � ��viii1

�
;

�ix0 = K
b
9 ' �7:0415� 106

and
_yb9(t) = e

� 1��
" t
�
�ix2 t

2 + �ix1 t+ �
ix
0

�
where

�ix2 = �
1� �
"

�ix3 ;

�ix1 = 2�
IX
2 � 1� �

"
�ix1 ;

�ix0 = �
IX
1 � 1� �

"
�ix0 :

It is to be noticed that the _ya6 (t) curve intersects the horizontal line at �n=� from above at

td ' 9:04967
with which

_ya9 (t) > �
n

�
for t9 � t < td

and �
_ya9 (t); _y

b
9(t)

�
< �n

�
for td < t � t9:

Interval 10: I10 = [t10; tE ] where tE ' 11:05729.
The threshold value tV II = td + � ' 10:04 divides interval I10 into two subintervals, Ia10 =

[t10; tV II ] and Ib10 = [tV II ; tE ]: Since ' [ _y
a
9 (t� �)] = � _ya9 (t� �) for t 2 Ia10; we have

ya10(t) = y
b
9(t) and _y

a
10(t) = _yb9(t)

Therefore time trajectories in IV II = Ib9 [ Ia10 = [tV I ; tV II ] are described by
yV II(t) = y

b
9(t) = y

a
10(t) and _yV II(t) = _yb9(t) = _ya10(t)

both of which form (G-VII) de�ned in Section 4.1 where �ixj and �ixj for j = 0; 1 are written as
�V IIj and �V IIj :

Derivation of (G-VIII)

On the other hand ' [ _ya9 (t� �)] = '
�
_yb9(t� �)

�
= �n for t 2 Ib10 implies that

yb10(t) = e
� 1��

" tKb
10 +

�
� n

1� �

�
with Kb

10 ' 66133:895

and

_yb10(t) = e
� 1��

" t

�
�1� �

"
Kb
10

�
:

The end point ~te is obtained by solving yb10(t) = y1(ts) for t: Therefore time trajectories in
IV III = I

b
10 are given by

yV III(t) = y
b
10(t) and _yV III(t) = _yb10(t)

yV III(t) and _yV III(t) form (G-VIII) de�ned in Section 4.1 where Kb
10 is denoted by KV III . A

cycle starts at t = tS yI(tS) ' 2:02 and �nishes at t = tE with yV III(tE) ' 2:02: The length of
this cycle is equal to tE � tS that is about 10:06:
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Appendix II
Our main aim of this appendix is to analytically reproduce these numerical results of sawtooth

oscillations to understand why a trajectory y(t) has kinks (alternatively, its derivative _y(t) makes
jumps). To this end, we start to divide the whole interval I = [0; 5] into �ve subintervals with
respect to the length of delay � = 1;

Ii = [ti�1; ti] for i = 1; 2; ; 3; 4; 5

with ti = i and ti = ti�1 + �.

Derivative of (S-I)

Interval I: I1 = [t0; t1] where t0 = 0 and t1 = 1:

Equation (13) with the constant initial function y0(t� �) = �(t� �) yields the solution of the
form

y1(t) = e
� 1��

" t �K1 with K1 = �2

and di¤erentiation gives its derivative form

_y1(t) = e
� 1��

" t �
�
�1� �

"
K1

�
:

Both of which form (S-I) de�ned in Section 5.1. Since _y1(t0) = 1:6; _y1(t1) ' 0:719 and _y1(t) > 0
for t 2 I1; _y1(t) stays in the middle region,

�n
k
� _y1(t) �

3n

k
for t 2 I1: (A-9)

Derivative of (S-II)

Interval II: I2 = [t1; t2] where t2 = t1 + �:

Due to (2) and (A-9),
'[ _y1(t� �)] = � � _y1(t� �)

which is substituted into (13) to obtain,

_y(t) +
1� �
"

y(t) = Q(t) with Q(t) = �k(1� �)
"2

K1e
� 1��

" �e�
1��
" t:

Since this equation can be written as

d

dt

�
y(t)e

1��
" t
�
= Q(t)e

1��
" t

Integrating both sides and arranging the terms present the solution of y(t); denoted as y2(t);

y2(t) = e
� 1��

" t

��
�k(1� �)

"2
K1e

1��
" �

�
t+K2

�
:

Since the trajectory of y2(t) is piecewise continuous, solving y1(t1) = y2(t1) presents

K2 ' �16:244:

The form of y2(t) is rewritten as

y2(t) = e
� 1��

" t
�
�II1 t+ �

II
0

�
with

�II1 = �k(1� �)
"2

K1e
1��
" � ' 14:244 and �II0 = K2
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A time derivative of y2(t) is

_y2(t) = e
� 1��

" t
�
�II1 t+ �

II
0

�
with

�II1 = �k (1� �)
2

"3
e�

1��
" �K1 ' �11:395 and �II0 = �1� �

"

�
k

"
e
1��
" �K1 +K2

�
' 27:238.

These y2(t) and _y2(t) form (S-II) de�ned in Section 5.1. Under Assumption 1, we calculate the
boundary values of interval I2;

y2(t1) ' �0:899, _y2(t1) ' 7:119 and y2(t2) ' 2:472 and _y2(t2) ' 0:898:

The red curve crosses the upper horizontal dotted line once from above at point

ta ' 1:286

with which the following inequalities hold, as is seen in I2 in Figure 2,

_y2(t) >
3n

�
for t1 � t < ta

�n
�
< _y2(t) <

3n

�
for ta < t � t2:

(A-10)

Derivations of (G-IIIa), (G-IIIb) and (G-IIIc)

Interval III: I3 = [t2; t3] where t3 = t2 + �:

Due to the value of ta; the interval I3 is divided into two subintervals, Ia3 = [t�2; ta) and
Ib3 = (t

�
a; t3] where t

�
a = ta + �: Delay investment is di¤erently determined according to conditions

in (A-10),

'[ _y2(t� �)] =

8<: 3n if t 2 Ia3

k _y2(t� �) if t 2 Ib3:
(18)

di¤erent dynamic systems are de�ned on di¤erent subintervals. So we derive the solution of the
di¤erential equation in each subinterval.

Interval III-1: t2 � t < t�a:

In this subinterval, equation (8) with the �rst equation of (A-11) yields the solution

y3(t) = e
� 1��

" tK3 +
3n

1� �

and its derivative
_y3(t) = �

1� �
"

K3e
� 1��

" t

where solving y3(t2) = y2(t2) gives
K3 ' �99:2.

These two functions form (S-IIIa) where y3(t) and _y3(t) are denoted by ya3 (t) and _y
a
3 (t). Boundary

values of this interval are

ya3 (t2) ' 2:472; _ya3 (t2) ' 16:02 and ya3 (t�a) ' 6:565; _ya3 (t�a) ' 12:748:

Interval III-2: t�a < t � t3:

In this interval, we have equation (13) with the second equation of (A-11) that is rewritten as

_y(t) +
1� �
"

y(t) = Q(t)
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where

Q(t) =
k

"
_y2(t� �)

=
k

"2
e�

1��
" (t��)

n
�II1 (t� �) + �II0

o
:

Rewriting the dynamic equation as

d

dt

�
y(t)e

1��
" t
�
= Q(t)e

1��
" t

and integrating both sides give the following form of a solution,

y4(t) = e
� 1��

" t

(
k

"
e
1��
" �

"
�II1
2
t2 +

�
�II0 � ��II1

�
t

#
+K4

)

where solving y3(t�a) = y4(t
�
a) gives

K4 ' �480:253:

Then the form of y4(t) is rewritten as

y4(t) = e
� 1��

" t
�
�III2 t2 + �III1 t+ �III0

�
where

�III2 =
k

"
e
1��
" � �

II
1

2
' �50:719

�III1 =
k

"
e
1��
" �

�
�II0 � ��II1

�
' 343:918;

and
�III0 = K4:

A derivative of y4(t) is

_y4(t) = e
� 1��

" t
�
�III2 t2 + �III1 t+ �III0

�
where

�III2 = �1� �
"

�III2 ' �22:79;

�III1 = 2�III2 � 1� �
"

�III1 ' �255:97

and
�III0 = �III1 � 1� �

"
�III0 ' 559:71:

Boundary values are
y4(t

�
a) ' 6:565; _y4(t�a) ' 12:748

and
y4(t3) ' 8:621; _y4(t3) ' �3:309:

These y4(t) and _y4(t) form (S-IIIb) in which y4(t) and _y4(t) are denoted as yb3(t) and _yb3(t): As
is seen in Figure 6, the red curve crosses the horizontal dotted lines at 3n=k and �n=k once at
points

tb ' 2:535 with _yb3(tb) =
3n

k

tc ' 2:843 with _yb3(tc) = �
n

k
:
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It is apparent from Figure 6 that

_ya3 (t) >
3n

k
for t3 � t < t�a,

_yb3(t) >
3n

k
for ta� � t < tb,

3n

k
> _yb3(t) > �

n

k
for tb < t < tc,

�n
k
> _yc3(t) for tc < t � t3.

(A-12)

Derivation of (S-IVa), (S-IVb) and (S-IVc)

Interval IV: I4 = [t3; t4] where t4 = t3 + �:

Due to the properties described in (A-12); interval I4 is divided into three subintervals by
t�b = tb + � and t

�
c = tc + � in which

'[ _ya3 (t� �)] = '[ _yb3(t� �)] = 3n for t3 � t < t�b (A-13)

'[ _yb3(t� �)] = k _yb3(t� �) for t�b < t < t�c (A-14)

and
'[ _yb3(t� �)] = �n for t�c < t � t4: (A-15)

Interval IV-1: t3 � t < t�b

Equation (2) with (A-13) implies that the solution of the di¤erential equation

" _y(t) + (1� �)y(t) = 3n

is given by

y5(t) = e
� 1��

" tK5 +
3n

1� � with K5 ' �152:994

where K5 solves
y4(t3) = y5(t3):

A derivative of y5(t) is

_y5(t) = e
� 1��

" t

�
�1� �

"
K5

�
with � 1� �

"
K5 ' 122:395:

These y5(t) and _y5(t) form (S-IVa) in which y5(t) and _y5(t) are denoted as ya4 (t) and _y
a
4 (t): We

then have the boundary values of ya4 (t) of interval [t3; t
�
b ],

ya4 (t3) ' 8:621; _ya4 (t3) ' 11:103 and ya4 (t�b) ' 13:456; _ya4 (t�b) ' 7:236:

Interval IV-2: t�b < t < t
�
c .

Rewriting the delay di¤erential equation (2) with (A-14) as

_y(t) +
1� �
"

y(t) = Q(t)

where

Q(t) =
k

"
_y4(t� �)

=
k

"
e�

1��
" (t��)

n
�III2 (t� �)2 + �III1 (t� �) + �III0

o
:

31



Successive integration yields the solution,

y6(t) = e
� 1��

" t

�Z
k

"
e
1��
" �

h
�III2 t2 +

�
�III1 � 2��III2

�
t+

�
�III0 � ��III1 + �2�III2

�i
dt+K6

�
or

y6(t) = e
� 1��

" t
�
�IV3 t3 + �IV2 t2 + �IV1 t+ �IV0

	
with

�IV3 =
k

"
e
1��
" � �

III
2

3
' 180:604;

�IV2 =
k

"
e
1��
" � �

III
1 � 2��III2

2
' �2037:36;

�IV1 =
k

"
e
1��
" �

�
�III0 � ��III1 + �2�III2

�
' 10195:4;

�IV0 = K6 ' �15672:428
where K6 solves

f5(t
�
b) = f6(t

�
b):

A derivative of y6(t) is

_y6(t) = e
� 1��

" t
n
�IV3 t3 + �IV2 t2 + �IV1 t+ �IV0

o
with

�IV3 = �1� �
"

�IV3 ' �96:322;

�IV2 = 3�IV3 � 1� �
"

�IV2 ' 1991:1;

�IV1 = 2�IV2 � 1� �
"

�IV1 ' �12231;

�IV0 = �IV1 � 1� �
"

�IV0 ' 22733:3

These y6(t) and _y6(t) form (S-IVb) in which y6(t) and _y6(t) are denoted as yb4(t) and _y
b
4(t): The

boundary values of the interval are

yb4(t
�
b) ' 13:455; _yb4(t�b) ' 7:236 and yb4(t�c) ' 11:677; _yb4(t�c) ' �15:342:

Further the downward-sloping curve of _yb4(t) intersects each of the two dotted horizontal lines at
3n=k and �n=k at the points

td ' 3:561 with _yb4(td) =
3n

k

and
te ' 3:624 with _yb4(te) = �

n

k
:

Interval IV-3: t�c < t � t4

Equation (A-15) implies that the dynamic equation (2) has the following forms for the solution
y7(t) and its derivative _y7(t)

y7(t) = e
� 1��

" tK7 �
n

1� � with K7 ' 415:092

an

_y7(t) = e
� 1��

" t

�
�1� �

"
K7

�
with � 1� �

"
K7 ' �340:074

where K7 solves
y6(t

�
c) = y7(t

�
c):
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These y7(t) and _y7(t) form (S-IVc) in which y7(t) and _y7(t) are denoted as yc4(t) and _y
c
4(t): The

boundary values of the interval are

yc4(t
�
c) ' 11:671; _yc4(t�c) ' �15:342 and yc4(t4) ' 9:420; _yc4(t4) ' �13:536

It is seen that
_ya4 (t) >

3n

k
for t3 � t < t�b ,

_yb4(t) >
3n

k
for t�b � t < td,

3n

k
> _yb4(t) > �

n

k
for td < t < te,

�n
k
> _yb4(t) for te < t � t4.

Derivation of (S-V)

Interval V: I5 = [t4; t5]

Due to the threshold values, tIVA and tIVB ; interval I5 is divided into three subintervals by
tVA = t

IV
A + � and tVB = t

IV
B + � in which

'[ _f5(t� �)] = '[ _f6(t� �)] = 3n for t4 � t < tVA (A-16)

'[ _f6(t� �)] = k _f6(t� �) for tVA < t < tVB (A-17)

and
'[ _f7(t� �)] = �n for tVB < t � t5: (A-18)

Repeating the same procedure done just above, we can derive the explicit forms of a solution of
the delay dynamic equation.

Interval V-1: t4 � t < tVA :

Equation (8) with (A-16) presents the following forms of the solutions,

f8(t) = e
� 1��

" tK8 +
3n

1� � with K8 ' �320:88

and
_f8(t) = e

� 1��
" t

�
�1� �

"
K8

�
with � 1� �

"
K8 ' 256:704

where K8 solves f7(t4) = f8(t4). These f8(t) and _f8(t) form (S-Va) in which f8(t) and _f8(t) are
replaced with ya5 (t) and _y

a
5 (t):

Interval V-2: tVA < t < t
V
B :

Applying successive integration to equation (2) with (A-17) yields the following forms of the
solutions,

f9(t) = e
� 1��

" t
�
�V4 t

4 + �V3 t
3 + �V2 t

2 + �V1 t+ �
V
0

	
with

�V4 =
k

"
e
1��
" � �

IV
3

3
' �214:369

�V3 =
k

"
e
1��
" � �

IV
2 � 3��IV3

3
' 6765:83;

�V2 =
k

"
e
1��
" � �

IV
1 � 2��IV2 + 3�2�IV3

2
' �73452:5;

�V1 =
k

"
e
1��
" �

�
�IV0 � ��IV1 + �2�IV2 � �3�IV3

�
' 329841;

�V0 = K9 ' �525029
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where K9 solves f8(tIVA ) = f9(t
IV
A ): A derivative of f6(t) is

_f9(t) = e
� 1��

" t
n
�V4 t

4 + �V3 t
3 + �V2 t

2 + �V1 t+ �
V
0

o
with

�V4 = �
1� �
"

�IV4 ' 171:495;

�V3 = 4�
V
4 �

1� �
"

�V3 ' �9270:135;

�V2 = 3�
V
3 �

1� �
"

�V2 ' 79059:451;

�V1 = 2�
V
2 �

1� �
"

�V1 ' �410777:286;

�V0 = �
V
1 �

1� �
"

�V0 ' 749863:287

These f9(t) and _f9(t) form (S-Vb) in which f9(t) and _f9(t) are replaced with yb5(t) and _y
b
5(t): As

is seen in Figure 6, the red curve crosses the horizontal dotted lines at 3n=k and �n=k once at
points

tf ' 4:566 with _yb5(tf ) =
3n

k

tg ' 4:581 with _yb5(tg) = �
n

k
:

To avoid notational congestion in Figure 6, tf and tg are not labelled.

Interval lV-3: tVB < t � t5

Equation (8) with (A-18) presents the following forms of the solutions,

f10(t) = e
� 1��

" tK10 �
n

1� � with K10 ' 860:508

and
_f10(t) = e

� 1��
" t

�
�1� �

"
K10

�
with � 1� �

"
K10 ' �688:406

where K10 solves f9(tVB) = f10(t
V
B): These f10(t) and _f10(t) form (S-Vc) in which f10(t) and _f10(t)

are replaced with yc5(t) and _y
c
5(t):

It is seen that
_ya5 (t) >

3n

k
for t4 � t < t�d,

_yb5(t) >
3n

k
for t�d � t < tf ,

3n

k
> _yb5(t) > �

n

k
for tf < t < tg,

�n
k
> _yc5(t) for tg < t � t5.
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