非圧縮性流体解析法の音速法による開発

Development of incompressible flow analysis by using acoustic velosity method

都市環境学専攻 内山 一郎

Ichiro Uchiyama

1. はじめに

港湾施設や海岸保全施設の耐波設計や耐津波設計では、 国土交通が監修している「港湾の施設の技術上の基準・ 同解説(以降、港湾基準と称す)」や「海岸保全施設の 技術上の基準・同解説(以降、海岸基準と称す)」を用 いて、実務的な設計を行っている。現行の港湾基準は、 平成19年に改訂されており、性能設計がその基本コン セプトとなっている。例えば重力式防波堤のような標準 的な港湾構造物では、現行の港湾基準を参照すれば、所 要の耐波性能・耐津波性能・耐震性能を満足する構造物 を設計することは可能である。しかし、最近では、耐津 波性能や耐震性能の向上等を目的とした構造物の改良を 行う場合や、標準的な構造から逸れる構造物の設計を行 う場合も増えてきており、現行の港湾基準のみでは適切 な設計ができないこともある。このような場合、水理模 型実験や高精度の数値シミュレーション技術を駆使して、 設計を行うことになる。

水の流体を対象とした数値シミュレーションに関して も、港湾・海岸分野で様々な数値シミュレーションが開 発されているため、目的に応じて適切なシミュレーショ ン手法を適用することなる。耐波性能・耐津波性能の検 討に際しては、3次元モデルも実務的に使われるように なりつつあり、流体の挙動をかなり高精度にシミュレー トすることが可能となってきている。

本研究の動機は、まずは、港湾・海岸分野で様々な形 状を有する構造物の耐波設計・耐津波設計にも適用でき る流体解析手法を開発することである。

2. 基礎方程式

(1) 基礎方程式

本研究では、従来から、川原ら(1984)が適用してき た音速法を一般化させ、空気および水の両方の流体を対 象とし、適用性に優れる計算モデルを開発した。この計 算モデルにより、従来の音速法における課題として考え られていた無次元化基準流速の設定や孤立波反射後の減 衰等の数値計算上の課題も解決することができた。

基礎方程式は、以下の式(1)と(2)に示すように、密度を 考慮した流体の連続式と運動方程式を用いる。

$$\dot{\rho} + v_i \rho_{,i} + \rho v_{i,i} = 0$$
(1)
$$\rho (\dot{v}_i + v_j v_{i,j}) + p_{,i} - \tau_{ji,j} - \rho f_i = 0$$
(2)

今、音速 c は式(3)のように定義されるので、式(1)の連続 式は式(4)のように表すことができる。

$$c^2 = \frac{\partial p}{\partial \rho} \tag{3}$$

$$\dot{p} + v_i p_{,i} + \rho c^2 v_{i,i} = 0 \tag{4}$$

また、定数 φ を式(5)のように定義すると、結局、式(1) の連続式は式(6)のように表すことができる。また、運動 方程式は、式(7)の通りである。これらの式が、一般化さ れた音速法の基礎方程式である。連続式を式(6)のように 変形するとにより、SUPG法を本来の形で包括的に組込む ことができる。また、Navier-Stokes方程式を解く際には、 例えばポアソン方程式を解くプロセスが必要となる。し かし、本手法では流速・圧力が直接法で同時に求まり、 計算アルゴリズムも比較的簡単である。

$$\phi = \frac{1}{\rho c^2} \tag{5}$$

$$A = \phi(\dot{p} + v_i p_{,i}) + v_{i,i} = 0$$
(6)

$$B_{i} = \rho(\dot{v}_{i} + v_{j}v_{i,j}) + p_{,i} - \tau_{ji,j} - \rho f_{i} = 0$$
(7)

(2) 有限要素方程式

式(6)と式(7)の基礎方程式に対して、有限要素方程式を 導出する。SUPG法を考慮した式(8)の重み関数を用いると 式(9)の有限要素方程式を満たす必要がある。

 $(\widetilde{p^*} \ \widetilde{v^*}_i) = (p^* \ v_i^*)$

$$+\tau_{M}(p^{*}v_{i}^{*})_{,k}\begin{pmatrix}\phi v_{k} & \delta_{ik}\\\delta_{jk} & \rho v_{k}\delta_{ij}\end{pmatrix}\begin{pmatrix}\rho \|v\|^{2} & \\ & 1/\rho\end{pmatrix}$$
(8)

$$\int_{v} \left(\widetilde{p^*} A + \widetilde{v^*}_i B_i \right) = 0 \tag{9}$$

式(9)に、式(6)と(7)を代入すると、以下の式(10)と式(11) ような有限要素方程式を導き出すことができる。

$$\begin{split} \phi \int_{v} (p^* \dot{p}) dv + \phi \int_{v} (p^* v_i p_{,i}) dv + \int_{v} (p^* v_{i,i}) dv \\ + v_A \phi^2 \int_{v} (p^*_{,i} v_i \dot{p}) dv \\ + v_A \phi^2 \int_{v} (p^*_{,i} v_i v_j p_{,j}) dv \\ + v_A \phi \int_{v} (p^*_{,i} v_i v_{j,j}) dv \\ + \tau_p \rho \int_{v} (p^*_{,i} v_i v_{i,j}) dv \\ + \tau_p \rho \int_{v} (p^*_{,i} v_i v_{i,j}) dv \\ + \tau_p \rho \int_{v} (p^*_{,i} v_i v_{i,j}) dv \\ + \tau_p \int_{v} (p^*_{,i} p_{,i}) dv = 0 \end{split}$$

$$\rho \int_{v} (v_{i}^{*}\dot{v}_{i})dv + \rho \int_{v} (v_{i}^{*}v_{j}v_{i,j})dv - \int_{v} (v_{i,i}^{*}p)dv$$
$$+ \int_{v} (v_{i,j}^{*}\tau_{ij})dv + v_{c}\phi \int_{v} (v_{i,i}^{*}\dot{p})dv$$
$$+ v_{c}\phi \int_{v} (v_{i,i}^{*}v_{j}p_{j})dv$$
$$+ v_{c}\phi \int_{v} (v_{i,i}^{*}v_{i,j})dv$$
$$+ \tau_{M}\rho \int_{v} (v_{i,j}^{*}v_{j}\dot{v}_{i,k})dv$$
$$+ \tau_{M}\rho \int_{v} (v_{i,j}^{*}v_{j}v_{j}v_{k}dv)dv$$
$$+ \tau_{M}\int_{v} (v_{i,j}^{*}v_{j}\dot{v}_{i,k})dv$$
$$= \int_{s} (v_{i}^{*}t_{i})ds + \rho \int_{v} (v_{i}^{*}f_{i})ds$$
(11)

 $\begin{aligned} v_A &= \rho \|v\|^2 \tau_M \tag{12} \\ v_C &= \rho \|v\|^2 \tau_M \tag{13} \\ \tau_p &= \frac{1}{\rho} \tau_M \tag{14} \end{aligned}$

すなわち、式(8)のように重み関数を現すことで、 SUPG・PSPG・LSIC等の安定化項を本来の形で包括的に 組み込むことができる。この手法を一般化された音速法 と呼ぶことにする。

3. 2次元Cavityの計算

最初に、モデルの妥当性を確認するため、Cavity内の強 制滞留問題に対する検討を行った。

Cavityの計算結果に関して、Ghiaとの比較を行った結果 を図-1に示す。本研究で開発した一般化された音速法モデ ルの結果は、非圧縮モデルの結果とほぼ一致している。 このことから、連続式における圧力の時間項・移流項は 微小な値であることがわかる。また、従来の音速法モデ ルと一般化された音速法モデルでは、計算結果に差異が 見られる。これは、変数の無次元化処理の有無、安定化 項の数値粘性の効果が影響しているものと考えられる。 なお、安定化項を考慮することで、計算の時間刻みdtは 10⁻⁶secから10⁻³secのオーダーまで大きくとることが可能 となり、計算効率が大幅に改善された。

4. 2次元孤立波の計算

次に、自由表面の取り扱いが必要となる孤立波の事例 で、側方境界と下方境界は、slip条件とした。孤立波の初 期水位・流速は、Laitone式を用いて設定した。なお、孤 立波が砕波しないように、波高水深比 (ζ/h) は0.1とした。

また、本計算では、計算中のメッシュの破綻を回避す るためにALE法を用いた。自由水面は、Lagrange的にノー ド点を移動させた。また、流体内部ではALE法を用い、 ノード点のx座標が自由水面のノード点のx座標と常に一 致するようにした。

孤立波の計算結果として、いくつかのタイムステップ のスナップショットを図-3に示す。カラーの凡例は圧力分 布を示している、図-3の結果から、孤立波の形状が保持さ れ安定的に伝搬している状況、孤立波が形状を保持した まま壁から反射している状況がわかる。

(上段; T=30sec, 中段; T=45sec, 下段; T=60sec)

(10)

5. リーフ地形上の孤立波の計算

次に、3次元モデルを用いた孤立波の計算の計算条件を 図-4に示す.水路の途中に1/20の勾配を設け、下流側に水 深を半分とした0.5mのリーフ地形を設けた.

図-4 リーフ地形上の孤立波の計算条件

計算結果として,Streetら(1968)の実験結果との比較 を図-4に示す。図-5は、リーフ地形上のx/h=41.6における 水位時刻歴の比較であるが、計算結果はStreetらの実験結 果と非常によく一致している。この計算結果より,3次元 孤立波の計算でも、安定的かつ正確な計算結果が得られ ていることがわかる。

図-5 水位時刻歴の計算値と実測値の比較

本研究で示した計算結果により、一般化した音速法に より、空気・水いずれの流体においても、安定的かつ正 確に計算できることが明らかとなった。また、従来の音 速法の課題として、無次元化の基準流速を正確に設定す る必要があった点、孤立波が反射後に減衰する点が、改 善された。

6. 一般化された音速法の応用例

本研究で開発した一般化された音速法を用いて、海岸 護岸の最適断面の推定問題に応用した。海岸護岸を例に あげると、断面の最適化の観点では、構造物に作用する 水平力(ΣFx)と鉛直力(ΣFy)の和を時間方向にも積 分し、最小化する方法が考えられる。評価関数は、以下 のように表すことができる。

図-5 海岸護岸に作用する水平力・鉛直力

流体の中では、前章で記述した流体の連続式と運動方 程式も満たすため、前述の評価関数に流体の連続式・運 動法手式を加味すれば、以下のような拡張評価関数が得 られる。

$$J^{*} = \frac{1}{2} \int_{t_{0}}^{t_{f}} \left(F_{i}Q_{ij}F_{j} \right) dt$$
$$+ \int_{t_{0}}^{t_{f}} p_{\alpha}^{*} (\phi_{0}M_{\alpha\beta}\vec{p}_{\beta} + K_{\alpha\beta\gamma j}u_{\beta j}p_{\gamma} + H_{\alpha\beta i}u_{\beta i}) dt$$
$$+ \int_{t_{0}}^{t_{f}} u_{\alpha i}^{*} (\rho_{0}M_{\alpha\beta}\vec{u}_{\beta i} + K_{\alpha\beta\gamma j}u_{\beta j}u_{\gamma i} - H_{\beta i\alpha}p_{\beta} - S_{\alpha i\beta j}u_{\beta j} - T_{\alpha i}) dt$$

この拡張評価関数を最小化できる海岸護岸の断面形状 を求めることになるが、最小点では、各変数で微分した 値がゼロになる条件を探していけばよい。そこで、拡張 評価関数を各変数で微分すると、以下の式が得られる。

 t_f

$$\begin{split} \delta J^* &= \int\limits_{t_0} \delta p_{\alpha}^* \big(\phi_0 M_{\alpha\beta} \dot{p_{\beta}} + K_{\alpha\beta\gamma j} u_{\beta j} p_{\gamma} + H_{\alpha\beta i} u_{\beta i} \big) dt \\ &+ \int\limits_{t_0}^{t_f} \delta u_{\alpha i}^* \big(\rho_0 M_{\alpha\beta} \dot{u_{\beta i}} + K_{\alpha\beta\gamma j} u_{\beta j} u_{\gamma i} \\ &- H_{\beta i \alpha} p_{\beta} - S_{\alpha i \beta j} u_{\beta j} - T_{\alpha i} \big) dt \\ &+ \int\limits_{t_f} \delta p_{\beta} \big(-\phi_0 M_{\alpha\beta} \dot{p}_{\alpha}^* + \phi_0 K_{\alpha\beta\gamma j} u_{\beta j} p_{\alpha}^* \\ &- H_{\beta i \alpha} u_{\alpha i}^* \big) d \\ &+ \int\limits_{t_0} \delta u_{\beta i} \big(-\rho_0 M_{\alpha\beta} \dot{u}_{\beta i}^* + \phi_0 K_{\alpha\beta\gamma j} u_{\beta j} p_{\alpha}^* \\ &+ \rho_0 K_{\alpha\beta\gamma j} u_{\beta j} u_{\alpha j}^* + \rho_0 K_{\alpha\beta\gamma j} u_{\beta j} u_{\alpha i}^* \\ &- S_{\alpha i \beta j} u_{\alpha j}^* \big) dt \\ &+ \int\limits_{t_0} \delta T_{\alpha i} \big(-u_{\alpha i}^* - Q_{i j} F_{j} \big) dt \\ &+ M_{\alpha\beta} p_{\alpha}^* (t_f) \delta p_{\beta} (t_o) \\ &+ M_{\alpha\beta} u_{\alpha i}^* (t_f) \delta u_{\beta i} (t_f) \\ &- M_{\alpha\beta} u_{\alpha i}^* (t_0) \delta u_{\beta i} (t_0) + G_{\delta k} X_{\delta k} = 0 \end{split}$$

 $\delta J^* = 0$ となるためには、上の式の各項がそれぞれゼロ にならなければならない。結局、 $\delta J^* = 0$ となるためには、 下の式に基づきメッシュを移動させながら、評価関数を 最小化できる条件を繰り返し計算により求めていくこと になる。

$$\begin{split} \delta J^* &= G_{\delta k} X_{\delta k} = 0\\ G_{\delta k} &= \int\limits_{t_0}^{t_f} p_{\alpha}^* \left(\phi_0 \frac{\partial M_{\alpha \beta}}{\partial X_{\delta k}} \dot{p}_{\beta} + \frac{\partial K_{\alpha \beta \gamma j}}{\partial X_{\delta k}} u_{\beta j} p_{\gamma} + \frac{\partial H_{\alpha \beta i}}{\partial X_{\delta k}} u_{\beta i} \right) dt\\ &+ \int\limits_{t_0}^{t_f} u_{\alpha i}^* \left(\rho_0 \frac{\partial M_{\alpha \beta}}{\partial X_{\delta k}} \dot{u}_{\beta i} + \frac{\partial K_{\alpha \beta \gamma j}}{\partial X_{\delta k}} u_{\beta j} u_{\gamma i} u_{\beta j} u_{\gamma i} u_{\beta j} \right) dt \end{split}$$

計算結果として、孤立波の計算メッシュ中に、図-5のも たれ式護岸を模した高さ2.5mの円弧上の壁を初期条件と して設置した計算事例を示す。なお、この計算では長さ 一定の制約条件の他、壁の下端は固定条件とした。

計算結果より、評価関数 J がほぼ一定となっており、 最適形状が得られていると判断できる。この事例計算で は、最適形状がほぼ直線状になっている。海岸護岸等で 最適断面の推定を行った事例はほとんどなく、本研究に より一つの設計アプローチを提起することができた。ま た、将来的には、以下のような港湾・海岸分野での応用 が考えられる。ただし、実務に応用するためには、越波 や砕波現象も考慮できるよう、別のアルゴリズムを流体 解析モデルに追加する必要がある。

参考文献

- U.Ghia, KN.Ghia, ST.Chan:High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, Journal of Computational Physics, 48(1), 1982, 387-411.
- [2] M. Kawahara: Finite element method of incompressible, adiabatic, and compressible flows: From Fundamental Concepts to Applications (Mathematics for Industry), *Springer*, 2016.6.
- [3] A. Maruoka, I. Uchiyama, M. Kawahara: Finite element analysis of solitary wave propagation by acoustic velocity method, 2016.10, Journal of Computational Mechanics.
- [4] H. Okumura, Y. Hikino and M. Kawahara: A shape optimization method of a body located in adiabatic flows, *International Journal of Computational Fluid Dynamics*, Vol.27 (2013), 297-306.
- [5] R.L. Street, S.L. Burges, P.W. Whitford: Dept. of Civil Engng., *Stanford Univ. Tech. Rept.* No.93, 1968.