異種の不揮発性メモリで構成される半導体ストレージシステムに関する研究

Research on Semiconductor Storage System with Heterogeneously Integrated Non-volatile Memories

情報セキュリティ科学専攻 松井 千尋

Chihiro MATSUI, Information Security Sciences

1. 論文の概要

新たな半導体不揮発性メモリであるストレ ージクラスメモリ(storage class memory, SCM) は次世代のコンピュータアーキテクチャを大 きく変化させる.本論文では異なる種類の半導 体不揮発性メモリを用いた,二種類のヘテロジ ニアスストレージおよびそのデータ管理アル ゴリズムを提案する. 頻繁にアクセスされるデ ータをメモリタイプ SCM あるいはストレージ タイプ SCM に保存することで,NAND フラッ シュメモリを用いたストレージを高速化する ことを実現した. さらに、ストレージアプリケ ーションによって適切な半導体不揮発性メモ リの組み合わせが異なることを明らかにした. またエラー訂正符号を用い,半導体不揮発性メ モリの高信頼化を実現した.図1に本論文の構 成を示す.

2. 半導体不揮発性メモリの特性

図2にメモリおよびストレージ階層を示す. 階層の上から下へアクセス性能は低下するが, メモリチップ当たりの容量は増加する.新たな 半導体不揮発性メモリである SCM は, DRAM より大容量であり NAND フラッシュメモリよ り高速なアクセス性能を有する.磁気抵抗型メ モリ(MRAM),抵抗変化型メモリ(ReRAM),相 変化メモリ(PRAM)が主な SCM である. それ ぞれ材料や書き換え原理が異なるため,アクセ ス速度,容量などの特性が異なる.本論文では DRAM に近い高速なアクセス性能を持つ MRAM をメモリタイプ SCM (memory-type SCM, M-SCM)と呼び, NAND フラッシュと同 等に大容量な ReRAM および PRAM をストレ ージタイプ SCM (storage-type SCM, S-SCM)と 呼ぶ[1].

NAND フラッシュメモリセルに2 bit 以上を 割り当てる多値化技術は, NAND フラッシュ メモリの大容量化を推し進めてきた. Multilevel cell (MLC, 2 bit/cell), Triple-level cell (TLC, 3 bit/cell) NAND フラッシュメモリはメモリセ ルにそれぞれ 2 bit, 3 bit を割り当てる. NAND

図1 本論文の構成

図2 メモリおよびストレージ階層

図 3 ストレージアプリケーションの特性分類. (a)書き込みの多いアプリケーション,(b) 読み出しの多いアプリケーション[3]

フラッシュメモリの多値化技術により大容量 化する一方,しきい値分布が狭くなることでそ のアクセス性能および信頼性は低下するとい う利害得失がある.

アプリケーション特性に適したストレージの必要性

表 I 半導体不揮発性メモリの特性[4]

Memory device	M-SCM (MRAM)	S-SCM (ReRAM, PRAM)	MLC flash	TLC flash
Read latency	0.1 us/sector	10 us/sector	52 us/page (U) 36 us/page (L)	80 us/page (U) 100 us/page (M) 80 us/page (L)
Write latency	0.1 us/sector	10 us/sector	2000 us/page (U) 370 us/page (L)	4400 us/page (U) 1500 us/page (M) 640 us/page (L)
Erase latency	Not required		3300 us /block	3200 us /block
I/O frequency	1066 MHz		400 MHz	
V _{DD} (Core, I/O)	1.8V, 1.2V		3.3V, 1.8V	
Access unit	Sector (512 byte)		Page (16 kbyte)	
Acceptable endurance	1012	108	10^{4}	10 ³
Bit cost	10	4	1	2/3

U: Upper page, M: Middle page, L: Lower page of NAND flash

ストレージアプリケーションもまたその種 類によってさまざまな特性を持つ.図3はプロ キシデータベースサーバ,プロジェクト用ディ レクトリなどから取得した1週間の読み出し・ 書き込みリクエストを含むストレージアプリ ケーション[2]を,書き込み・読み出し量の多寡 (write/read-intensive), 平均アクセス頻度 (hot/cold), 平均データサイズ (random/ sequential)を用いて分類した[3]. このように複 雑な特性を持つストレージアプリケーション に対し、従来研究では SCM および NAND フラ ッシュメモリを用いたハイブリッドストレー ジを提案した[3]. しかし,より複雑化した将来 のストレージアプリケーションに対応するた め,異種の半導体不揮発性メモリを用いたヘテ ロジニアスストレージを構築する必要がある. ヘテロジニアスストレージの記憶には,表1に 示す特性を有する M-SCM, S-SCM, MLC およ び TLC NAND フラッシュメモリを用いる.

4. 異種の不揮発性メモリを用いたヘテロジ ニアスストレージ

図4にヘテロジニアスストレージを示す.ス トレージアプリケーションに含まれる頻繁に アクセスされるデータを高速な M-SCM ある いは S-SCM に,アクセス頻度の低いデータを 低速・大容量な MLC あるいは TLC NAND フ ラッシュメモリに保存する.図5に二種類のデ ータ管理アルゴリズムを提案する.

第一の SCM, MLC および TLC NAND フラ ッシュメモリを用いたヘテロジニアスストレ ージは, MLC および TLC NAND フラッシュメ モリの低い書き換え性能を隠ぺいするため,書 き込みに適したデータ管理アルゴリズムを提 案する[5]. 図 5(a)に示すように書き込みデータ の書き換え頻度に着目し,データ書き換え頻度 の低いコールドデータを SCM から MLC NAND フラッシュメモリに移動する. さらに MLC NAND フラッシュメモリのガベージコレ クションのタイミングで,書き換え頻度の低い

図 4 異種の半導体不揮発性メモリを用いたヘテ ロジニアスストレージの構成

図 5 (a) SCM, MLC および TLC NAND フラッシ ュメモリ用いたヘテロジニアスストレージに適 用する Cold and frozen data eviction (CFDE) [5]. (b) M-SCM, S-SCM および MLC NAND フラッ シュメモリ用いたヘテロジニアスストレージに 適用する 2 non-volatile memory write-back (2NV-WB)キャッシュ[6]

データを MLC NAND フラッシュメモリのか ら TLC NAND フラッシュメモリに移動する. これを Cold and frozen data eviction (CFDE)アル ゴリズムと呼ぶ.

第二の M-SCM, S-SCM および MLC NAND フラッシュメモリを用いたヘテロジニアスス トレージは、高速な M-SCM および S-SCM か ら読み出し・書き込みを行うよう、読み出し・ 書き込みに適したデータ管理アルゴリズムを 提案する[6]. そのために二種類の SCM を用い るヘテロジニアスストレージ向けに、2 nonvolatile memory write-back (2NV-WB)キャッシ ュアルゴリズム[図 5(b)]を提案した. 下位の不 揮発性メモリ(S-SCM あるいは MLC NAND フ ラッシュメモリ)へ保存されたデータに読み出 し・書き込みリクエストがあると、上位の不揮 発性メモリ(M-SCM あるいは S-SCM)ヘデータ をコピーする. そのため図 5(a)に示した CFDE と異なり、図 5(b)に示す 2NV-WB は不揮発性

図 6 ストレージアプリケーションに最適なメ モリ構成の評価. (a) prxy_0, (b) prxy_1 アプリ ケーション[4,6]

表 II ストレージアプリケーション特性に適切な ヘテロジニアスストレージの構成

Application characteristic	Best non-volatile memory combination
Write-hot-random (prxy_0)	(1%, 9%, 90%, 0%)
Read-hot-random (prxy_1)	(5%, 0%, 95%, 0%)
Write-hot-sequential (proj_0)	(0%, 10%, 22.5%, 67.5%)
Write-cold-random (hm_0)	(0%, 10%, 78.8%, 11.2%)
Cold-sequential (src2_2, src2_1) Read-cold-random (proj_3)	(1%, 0%, 99%, 0%) or (0%, 0%, 100%, 0%)

メモリ間でデータを二重に持つ場合がある. 揮 発性メモリを用いるキャッシュマネジメント と異なり,不揮発である SCM を用いた提案の CFDE および 2NV-WB アルゴリズムは下位の メモリへ定期的なデータフラッシュが不要で ある.

アプリケーションに適したヘテロジニアスス トレージの構成

ヘテロジニアスストレージに用いる半導体 不揮発性メモリの容量比を変化させ、ストレー ジ性能(Input/Output per second, IOPS)の評価し、 ストレージアプリケーションに最適なヘテロ ジニアスストレージの構成を明らかにする. SystemCを用いたストレージエミュレータに 図5に示したデータ管理アルゴリズムを実装 した.表Iに示す半導体不揮発性メモリの特性 および図3に示すストレージアプリケーショ ンのうち代表的な7種をエミュレータの入力 とする.

M-SCM 容量および S-SCM 容量の和を, ヘ テロジニアスストレージの総容量の 10%以内 と仮定する.図6に prxy_0 および prxy_1 アプ リケーションの IOPS 性能を示す. これらのス トレージアプリケーションは、図3の特性分類 によるとそれぞれ書き込み、読み出しが多く、 平均的なアクセス頻度が高く平均データサイ ズが小さい.全体のストレージ容量に対する M-SCM あるいはS-SCM の容量比が同じでも、 M-SCM とS-SCM のアクセス性能の差により、 高速な M-SCM 容量が多いほど、ストレージ性 能が向上することを明らかにした.また総スト レージコストを式(1)で定義すると、

Total storage cost = Σ (memory capacity ratio (1) × bit cost ratio)

表 I のビットコスト比から, M-SCM あるいは S-SCM 容量が多いほど総ストレージコストが 上昇する. 総ストレージコストを考慮し IOPS/cost という指標を導入すると,図 6(a)に 示す prxy_0 アプリケーションの場合, M-SCM は小容量用い, S-SCM は大容量用いることが 適切であることを明らかにした.一方で図 6(b) の prxy_1 アプリケーションでは,高速な M-SCM をできるだけ大容量用いると性能を向上 できることを明らかにした.

図3に示した他の5アプリケーションにつ いても同様に,アプリケーションに特性に適切 なヘテロジニアスストレージの構成を表Ⅱに 示す. M-SCM が必要なアプリケーションは, ホット・ランダムなアプリケーション(prxy 0. prxy 1)である. 書き込みが多く, ホットあるい はランダムなアプリケーション(proj 0, hm 0) には S-SCM, MLC および TLC NAND フラッ シュメモリを用いたヘテロジニアスストレー ジが適している.しかしコールドなアプリケー ション(src2 1, src2 2, proj 3)については, SCM による性能向上が限定的であるため SCM を用 いる必要は無い.またストレージ性能の高い不 揮発性メモリの組み合わせほど, M-SCM ある いは S-SCM へ多くアクセスされるため、これ に反比例してストレージの消費エネルギーは 低いことを明らかにした[5,6].

6. エラー訂正符号を用いたストレージの高 信頼化

半導体不揮発性メモリは書き換えやデータ 保持によってメモリセルにエラーが発生する ため,エラー訂正符号(error-correcting code, ECC)を用いて高信頼化を実現する.ランダム エラーを訂正する Bose-Chaudhuri-Hocquenghem (BCH)符号を用い,M-SCM およ びMLC NAND フラッシュメモリを用いたスト レージを高信頼化し,そのときの性能を評価し た.図7(a)に示すように,読み出しの多いアプ リケーション(prxy_1)は M-SCM の訂正可能ビ ットを増やすほど性能が低下することを明ら

図 7 エラー訂正符号を用いた (a) SCM の 高信頼化, (b) MLC NAND フラッシュメモ リの高信頼化[8]

かにした.また,M-SCM 容量が多いほど M-SCM から読み出されるデータ量が増えるため, ECC により性能が低下する.そのため,ウエア レベリングによる書き換え回数の均一化,デー タリフレッシュによるデータ保持時間の均一 化などを用いることで,SCM の必要な ECC 訂 正能力を低く抑えることが必要である.

一方で NAND フラシュメモリは多値化およ びスケーリングにより多くのエラーが発生す るため、より強力な ECC である low-density parity-check (LDPC)符号を用いることが必要と 考える. Error-Prediction (EP-) LDPC 符号および Quick-LDPC 符号[7]を用い、LDPC 符号および Quick-LDPC 符号[7]を用い、LDPC 符号に必要 な読み出し回数を減らしつつ信頼性を担保す る.図7(b)に MLC NAND フラッシュに符号化 率9/10の BCH および LDPC 符号を適用したと きのストレージ性能を示す.SCM 容量を増や すほど MLC NAND フラッシュメモリから読み 出されるデータ量が減少するため、図7(b)に示 すように MLC NAND フラッシュメモリには BCH と比較して訂正能力の高い LDPC 符号を 適用することができることを明らかにした[8].

7. まとめと今後の展望

本研究では,新たな半導体不揮発性メモリで ある SCM および NAND フラッシュメモリの 特性を考慮し,異種の半導体不揮発性メモリを 用いたヘテロジニアスストレージおよびその データ管理アルゴリズムを提案した.ストレー ジアプリケーション特性によって適切なメモ リの構成は異なり、特に頻繁にアクセスがあり 平均データサイズの大きいアプリケーション には高速な M-SCM が必要であることを明ら かにした.一方で低速だが大容量の TLC NAND フラッシュメモリが必要なストレージ アプリケーションが存在することも明らかに した. また ECC を用い,半導体不揮発性メモ リの高信頼化技術を実現した. SCM の特性お よびストレージアプリケーションにより, ECC を適切な ECC の強度があることを明らかにし た.

3 次元積層された NAND フラシュメモリの 特性を考慮したデータマネジメントアルゴリ ズムや, 三種以上の半導体不揮発性メモリを用 いたへテロジニアスストレージの高信頼化技 術を検討することが今後の課題である.

関連する発表文献

学術雑誌	筆頭著書4件,	共著書4件
国際会議	筆頭著書5件,	共著書9件
国内会議	筆頭著書4件,	共著書4件
その他	筆頭著書2件,	共著書1件

参考文献

- [1] IBM Almaden Research Center, "Storage class memory: Towards a disruptively low-cost solidstate non-volatile memory," http://researcher.watson.ibm.com/researcher/file s/us-gwburr/Almaden_SCM_overview_Jan 2013.pdf, Jan. 2013.
- [2] MSR Cambridge Traces, http://iotta.snia.org /traces/388.
- [3] S. Okamoto, C. Sun, S. Hachiya, T. Yamada, Y. Saito, T. O. Iwasaki, and K. Takeuchi, *IEEE International Memory Workshop*, May 2015, Monterey, pp. 157-160.
- [4] <u>C. Matsui</u>, T. Yamada, Y. Sugiyama, Y. Yamaga, and K. Takeuchi, "Optimal memory configuration analysis in tri-hybrid solid-state drives with storage class memory and multi-level cell/triple-level cell NAND flash memory," *Japanese Journal of Applied Physics (JJAP)*, vol. 56, no. 4S, pp. 04CE02-1 - 04CE02-9, Apr. 2017.
- [5] <u>C. Matsui</u> and K. Takeuchi, "8.9-times performance improvement by tri-hybrid storage system with SCM and MLC/TLC NAND flash memory," *International Conference on Solid State Devices and Materials (SSDM)*, Tsukuba, Sep. 2016, pp. 105-106.
- [6] <u>C. Matsui</u> and K. Takeuchi, "22% higher performance, 2x SCM write endurance heterogeneous storage with dual SCM and NAND flash memory," *European Solid-State Device Research Conference (ESSDERC)*, Leuven, Sep. 2017, pp. 6-9.
- [7] T. Tokutomi, M. Doi, S. Hachiya, A. Kobayashi, S. Tanakamaru, and K. Takeuchi, "Enterprisegrade 6x fast read and 5x highly reliable SSD with TLC NAND-flash memory for big-data storage," *IEEE International Solid-State Circuits Conference*, San Francisco, Feb. 2015, pp. 140-141.
- [8] <u>C. Matsui</u>, R. Kinoshita, and K. Takeuchi, "Analysis on applicable ECC strength of SCM and NAND flash in hybrid storage," *Japanese Journal of Applied Physics (JJAP)*, to be published in vol. 57, no. 4S, Apr. 2018.