Robust regression modeling via L; regularization

Abstract—There is currently much discussion about lasso-type
regularized regression which is a useful tool for simultaneous
estimation and variable selection. Although the L-type regular-
ization has several advantages in regression modeling, it suffers
from outliers because their procedures are constructed by non-
robust manners. To overcome the problem, we propose robust
modeling strategies via L;-type regularization in the various
perspectives: methodology, model estimation and evaluation.
We observe through simulation studies and real data analyses
that our robust modeling strategies outperform for regression
modeling in the presence of outliers.

I. INTRODUCTION

The lasso-type regularization consisting of the least squares
loss function with L;-type penalty has drawn a large amount of
attention in recent years. By imposing an L;-type penalty to a
least squares loss function, the L;-type regularization methods
can perform not only variable selection and estimation simul-
taneously, but also stable regression modeling by preventing
high variances of estimates. Although the modeling procedure
shows the remarkable performance in regression modeling, its
performance takes a sudden turn for the worst in the presence
of outliers, since the modeling procedures are based on non-
robust manners.

We introduce the robust modeling strategies via the L-
type regularization in various perspectives. We first discuss a
robust L -type regularization based on the robust loss function
not least squares loss function. Then, robust algorithms are
proposed to estimate Li-type regularized regression model.
We also introduce the methods for tuning parameter selection,
which is crucial in the robust sparse regression modeling, in
the viewpoint of information-theoretic approaches.

The efficiency of the proposed robust modeling procedure
is investigated through Monte Carlo experiments and real data
analyses.

II. ROBUST REGRESSION MODELING VIA L;
REGULARIZATION

Suppose we have n independent observations {(y;,x;);i =
1,...,n}, where y; are random response variables and x; are
p-dimensional vectors of the predictor variables. Consider the
linear regression model,

Yi :x;’rﬂ—i_gh N, (1)

where 3 is an unknown p-dimensional vector of regression
coefficients and ¢; are the random errors which are assumed
to be independently and identically distributed with mean
0 and variance o?. For estimating the parameters in (1),
there is currently much discussion about L;-type regularized
regression (e.g., lasso (Tibshirani, 1996), elastic net (Zou
and Hastie, 2005), SCAD (Fan and Li, 2001)). Although the
modeling procedure is a useful tool for regression modeling,
owing to its sparsity, it suffers from outliers since their
procedures are based on non-robust manners. To overcome
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this drawback, we propose robust modeling strategies via the
L;-type regularization in the aspects of methodology, model
estimation and evaluation.

A. Robust Li-type approaches

The robust Li-type regularization was proposed to over-
come the demerit of the L;-type regularization by replacing
the least squares loss function with robust loss function as
follows:

n P
B = arg min [ 3 p(risk) + 3 omlIB]. @
i=1 j=1

where p(r;; k) is a robust loss function (e.g., least absolute
deviation, M-function) with tuning constant k for outlier
detection, r; = y; — =} 3 and >25—10x(1B;]) is a lasso-type
penalty with regularization parameter . The existing robust
L -type regularization, however, do not have high breakdown
point, since M-function and LAD loss function have a low
breakdown point.

For the robust lasso-type approaches having a high break-
down point, we consider the least trimmed squares (LTS)
estimator having the maximum breakdown point {[(n—p)/2]+
1} /n, which is asymptotically equal to 50%, for s = [(n+p+
1)/2] (see Rousseeuw and Leroy (1987), Theorem 6). In the
LTS procedure, the sample size used to estimate is decreased
from n to s. In other words, there is a possibility that sample
size s, is smaller than the number of predictor variables p.
Hence, although the LTS has a high breakdown point, it is
unsuitable for using with the lasso because of the limitation
of the lasso as variable selection method in p > n situation.
Thus, we consider an elastic net, which was proposed to settle
the problem of the lasso in p > n situation (Zou and Hastie,
2005), and propose a robust elastic net (Park et al., 2012a),
called a least trimmed squares-elastic net (LTS-Ela),

s P p
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where s is the tuning constant and 7, is the it" order statistic
of squared residuals. The proposed LTS-Ela performs well
regression modeling in the presence of outliers, and is useful
for p > n data.

B. Estimation of sparse regression model

The lasso-type approaches provide a useful tool for the
sparse regression modeling. Their estimates, however, cannot
be analytically derived due to indifferentiability of the L-type
penalty term. To settle on this issue, several algorithms have
been proposed, such as local quadratic approximation (Fan and
Li, 2001), LARS (Efron et al., 2004) and coordinate descent
algorithm (Friedman et al., 2007). We focus on the coordinate
descent algorithm which is competitive with the well known
LARS. Although the coordinate descent algorithm effectively



performs sparse regression modeling, it suffers from outliers,
since the solution path is delivered based on standardized data
by mean, standard deviation, and inner product of predictor
x;; and partial residual (y; — ;) obtained by a non-robust
manner. To overcome this drawback, we first standardize data
by median and median absolute deviation instead of mean and
standard deviation like Khan et al. (2007), and propose robust
coordinate descent algorithm based on an outlier-resistant
inner product.

B.1. W.coordinate descent algorithm

In order to control the outliers in ;%" predictor and partial
residual, we proposed a robust bivariate winsorization via the
robust Mahalanobis distance based on the minimum covari-
ance determinant,

RD.W.ob; = min( 1) xj, “4)

where x; = (245, (yi — %:))T, RD(x;) is robust Mahalanobis
distance and k = 5.99 as the 95% quantile of the x?(df = 2)
distribution like Khan et al. (2007). The coordinate descent
procedure is conducted based on a robust inner product
calculated by the winsorized data RD.W.ob; as follows:
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B.2. T.coordinate descent algorithm

k/RD(x;),
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where zV are winsorized data by (5).

We also propose the robust bivariate trimming technique,
which controls an effect of outliers by eliminating extreme
observations at each tails, similar to robust bivariate winsoriza-

tion,
RDTOb] :X]{I(\/k/RD(XJ) > 1)} (6)

RD.T.ob; is updated in each iterations step, and then the
variable selection and estimation are conducted base on the
robust inner product by the trimmed data RD.T.ob; in the
coordinate descent procedure as follows:

B eS(Zx —5)"".7), ™
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C. Model evaluation criteria for tuning parameter selection

where 2% are trimmed data by (7).

Crucial issues in the robust modeling procedure include
the selection of regularization parameters and also a tuning
constant in outlier detection. We introduce novel methods for
choosing the tuning parameters in an information-theoretic
viewpoint.

C.1. Efficient bootstrap information criterion

We introduce to use the efficient bootstrap information criteria
(Konishi and Kitagawa, 1996) for choosing the optimal set
of the tuning parameters of the robust lasso-type approaches.
Consider the case in which a model is given in the form
of a probability distribution {f(y|0);0 € © C RP} having
p-dimensional parameters. We assume that the data y,, =
{y1,...,yn} are generated from the true distribution function
G(y). The model is estimated by some estimator 6. Our task is

to evaluate the expected goodness or badness of the estimated
model f(z|@) when it is used to predict the independent future
data Z = z generated from the unknown true distribution.

The general form of an information criterion can be given
as follows:

IC(yn; G)=—2 Z log f (:|0)+2{estimator for b(G)}, (8)
i=1

where b(G) is the bias of the log-likelihood as an estimator

of the expected log-likelihood defined by

b(G) = Ec logf (y,10(y.))—nEa |logf (Z16(va)] | ©)

The difference between the log-likelihood of the model and
(n times) the expected log-likelihood

D(ysi G) = logf(y16) ~n [ logf(:16)dG (), (10)
can be decomposed into sum of the following three terms
Di(yn; G) = logf(yn|6) — logf(y4|6),
Da(y3G) = 1o/ (32[6) ~ 1 [ 1o/ (:16)dG (=)

Da(yiG) =n [ logf(216)dG(z) ~n [ logf(:16)dG(z).

In the information criterion, the bias represents as the expected
value of D(y,; G). By taking the expectation term by term in
(11), we obtain the second term: Eg[D2(yy;G)] = 0. Thus,
the expectation of (10) can be expressed as follows;

Ec|D(yn; G)] = Eg[D1(yn; G) + D3(yn; G)].

In constructing the bootstrap information criterion, the true
distribution G(y) is replaced with an empirical distribution
function G‘(y) Let us extract B sets of bootstrap samples
of size n and write the b bootstrap sample as y7(b) =
{y5 (D), ...,y%5(b)}. In the bootstrap estimate, (12) is replaced
by

Ee[D(y3:C)

(1)

(12)

= Ea[D1(y,: G) + Ds(y;; G)].

Conditional on the observed data, it can be shown that
the orders of asymptotic conditional variances of two boot-

strap estimates are Var [% S {D(yr; CA}')}} = £0(n) and

Var [ S0 (D1 (v &) + Dalyi @)} = $0(). This
implies that the variance due to the bootstrap resampling can
be reduced significantly, and thus we can expect to efficient
modeling. Consequently, the efficient bootstrap information
criterion based on variance reduction method is defined as
follows

ElCq=

13)

(14)

f2zlogf vil0)+ Z{Dl Y (0); G)+Ds(y (b); )}

For details on the theoretical justification for sample variance
reduction technique, see Konishi and Kitagawa (1996; 2008).

C.2. Generalized information criterion for M-lasso

We derive an information criterion to evaluate robust regular-
ized regression model in line with the generalized information
criterion (GIC) (Konishi and Kitagawa, 1996). The GIC, which



is constructed with asymptotic bias for a statistical model
as a function of the influence function and score function,
can evaluate models estimated by various techniques not only
maximum likelihood method. In case of the lasso-type ap-
proaches, however, we cannot calculate an influence function,
which plays a key role in deriving the GIC, because of L-
norm type penalty. To settle on this issue, we use the local
quadratic approximation (Fan and Li, 2001), and then derive
the information criterion (Park et al., 2012b).

For the linear regression model, we use robust lasso-type
estimates (e.g., with Huber function) of the regression co-
efficients 3 given as the following solution. If Tg q,0(G)
is very close to 0, then set Tg;,(G) = 0. Otherwise
it is assumed that the functional Tg,;,(G) is given as a
solution of the implicit equation: [{¢(y —x T Ra(G))x —
Pr(|Tr.1a.0)sign(Tr1a)}dG(y) = 0. By using the local
quadratic approximations (Fan and Li, 2001), we can rewrite
the implicit equation as

[ (6~ x"Trin(@)x
~{PA(Trt00])/ a0} Tr1a(G) ) dG(y) = .

To derive the influence function Tg‘)la(G), G in (15) is
substituted with (1 — ¢)G + €6,, and then differentiating
both sides of the equation with respect to € and setting =0.
Consequently, we calculate the influence function, Tgi)la(G),
of the functional that defines the robust lasso-type estimator,
and then derive the asymptotic bias of the log-likelihood of
f(y‘xv IGR.la()‘)) is given by

(1
bR.)la =

5)

ol |60 XT a1 (@) 4 (T DT 100l G|
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Ologf(ylx, B) ‘

opr B=Tr.1a(G)
By replacing the unknown distribution G by the empirical
distribution G, and subtracting the asymptotic bias estimate
from the log-likelihood, we have an information criterion
for the statistical model f(y|x,Br.a(\)) with the functional

estimator, ﬁR,la()\) = T(G), in the following
GICRia=

~2[ Y logf (il Bria(X) ~ (R, G) Q. )Y

aG]) +O(n™). (16)

A7)

where R(¢), G) is
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and Q (v, G) is
1 S ,
ﬁzz [(¢(yi_X?TR.la)mi,j_{p)\(ITR.la,jOD/ITR.la,jO‘}TR.la,j

j=li=1
Olog f (yilxi, B)

aﬂj ’ﬁZTR,la:|.

C.3. Robust efficient bootstrap information criterion
We introduce the robust tuning parameter selection, which is
critical in the robust sparse regression modeling. Although the
bootstrap information criterion has several advantages on its
flexibility and weak assumptions, a bootstrap sample may con-
tain more outliers compared with those in the original sample,
since the bootstrap sample is drawn randomly. This implies
that the resulting criterion from the highly contaminated
bootstrap sample may produce biased results. To overcome the
drawback, we propose a robust bootstrap information criterion
via winsorization technique (Srivastava et al., 2010) in line
with the efficient bootstrap information criterion (Konishi and
Kitagawa, 1996; Park, 2012).

First, we introduce a winsorization bootstrap method (Sri-
vastava et al., 2010). Suppose that the order statistics of the
original data be denoted by y[1], Y[2), ---; Y[n)- For winsorizing
proportion 6 = {/n, 0 < § < 1/2, a d-winsorized sample {y;}
is yp41) if i < ypy and ypn—g) if yi > Yp—i41), otherwise {y; }
is y;. The winsorized bootstrap sample {y;*} are randomly
drawn from the §-winsorized sample {y;}.

By wusing the winsorized bootstrap sample, the
bootstrap bias estimate of (9), b**(G), is given by
B |00 logf (7°10(v;7) —n B, [logf (27 16(y;"))]

Let us extract B sets of winsorized bootstrap samples of size
n and write the b*" winsorized bootstrap sample as y:*(b) =
{y7*(b), ..., y=*(b)}. The winsorized bootstrap bias estimate of

(9) is substituted by
B

D1y (0): G) + Ds(yy (0); &)}
b=1

B(G) =

B (18)

Consequently, we propose a robust efficient bootstrap infor-
mation criterion as follows;

REICq =—2 logf(y:|0) + 2{b5(G)}.

i=1

19)

By using the R.EIC., the variance of the bootstrap estimates
caused by simulation can be reduced extensively and then the
number of bootstrap replications may be greatly reduced. Fur-
thermore, we can perform accurate and stable model evaluation
even in the presence of outliers.

III. SIMULATION STUDIES

We simulated N datasets consisting of n observations from
the following model

yi = xl B+ osy, i=1,..,n, (20)

where 3 is a p-dimensional vector and ¢; are distributed as
a standard normal. The correlation between x; and =x,, is
pl'=™! with p=0.5. In the simulation studies, the results of
variable selection are shown as true negative ‘T.N” (i.e., the
average percentage of true zero coefficients) and false negative
“FN” (i.e., average number of the true non-zero coefficients,
incorrectly set to zero). And, forecasting accuracy is measured
forecasting root mean squares error (RMSE) by N simulated
datasets.
Part 1: LTS-Ela and EIC..

In Part 1, we evaluate the proposed LTS-Ela compared with
LTS-lasso, and efficient bootstrap information criterion as a



tuning parameter selector in Table 1. We simulated N = 50
datasets in ¢ = 1. The simulation is conducted in the
presence of 10% and 20% outliers for £; ~ N(10,3) and
B = (2,3,0,0,1.5,0,0,1,0,0)".  From the column “T.N”

TABLE 1
T.N (%) EN (%)
LTS-lasso LTS-Ela LTS-lasso LTS-Ela
Ccv 043 0.31 0.01 0.03
10% BIC 0.05 0.38 0.00 0.11
Outliers EIC. 0.50 0.61 0.11 0.15
CV 0.44 0.37 0.05 0.07
20% BIC 0.05 0.25 0.02 0.05
EIC. 0.42 0.60 0.11 0.19

in Table 1, it can be seen that the proposed LTS-Ela based on
the efficient bootstrap information criterion is outstanding in
the viewpoint of the “sparsity”, which is a crucial property of
the lasso-type approaches.

Part 2: Robust coordinate descent procedure.

In part 2, we evaluate the proposed robust coordinate descent
algorithm for lasso. We simulated N = 100 datasets consisting
of n = 80 with B = (3,1.5,0,0,2,0,0,0)” and o = 1. We
consider the two situations: (a) 10% outliers for N(30,1) in
only y; and (b) 5% outliers for N (30, 1) in y;, and 5% outliers
for N(0,5) in x1 and x5. We evaluate the forecasting accuracy
and variable selection results. From the results, it is observed
that the proposed robust procedures produce reliable regression
modeling results even in the presence of outliers, especially the
W.coordinate descent algorithm shows the best performance.

Part 3: GICpR , via local quadratic approximation.

In part 3, we evaluate the proposed GICp;, as a tuning
parameter selector for M-lasso and M-SCAD with Huber
function. In order to evaluate the GICg ;,, we compare with
results by the BIC and cross-validation. The simulation was
conducted under the cases ¢; are standard normal with 1%
outliers for ; ~ N(10,1) in o = 1, and sensible outliers for
g; ~ D/y/var(D),oc = 9.67, where D is a standard double
exponential distribution with 3 = (3,1.5,0,0,2,0,0,0)” for
n = 80. For model estimation of the M-lasso and M-SCAD,
we used an iterative reweighted least square (IRLS) algorithm.
We observed that the proposed GICpr ;. is a useful tool for
robust Li-type regression modeling in the viewpoint of the
variable selection.

Part 4: Robust efficient bootstrap information criterion.

In part 4, we evaluate the robust efficient bootstrap information
criterion as a tuning parameter selector compared with the
ordinary bootstrap information criterion and 10-fold cross-

validation. =~ We simulated NV = 50 datasets consisting of
TABLE I

Outlier Method TN FN RMSE
cv 0.076 0.000 175

5% Eff.Boot.IC 0.076 0.000 175
Robust.Eff.Boot.IC 0.086 0.003 1.74

cv 0.076 0.007 3.59

10% Eff.Boot.IC 0.054 0.000 3.47
Robust.Eff.Boot.IC 0.086 0.003 3.44

n = 80 with B8 = (3,1.5,0,0,2,0,0,0)" and o = 1.
Simulations are conducted in the presence of 5%, and 10%
outliers for ; ~ N(30,3). To find the solution of the M-lasso
with Huber function, we use the IRLS algorithm. From the
column “T.N” and “RMSE” in Table 2, it can be seen that
the proposed robust efficient bootstrap information criterion is
effective for robust sparse regression modeling.

IV. CONCLUDING REMARKS

We have discussed the robust regression modeling via
L, regularization. The robust modeling strategies have been
proposed in the various perspectives: methodology, model
estimation, evaluation and numerical aspect. We have observed
through Monte Carlo experiments that the proposed robust
modeling strategies are superior to existing ones, in the pres-
ence of outliers. For the future studies, the present studies
may be extended to robust non-linear regression modeling.
Furthermore, a work remains to be done for constructing a
model for high dimensional data via robust coordinate descent
algorithm.
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