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Notation

• A ring means a commutative ring with unity.

• n : a positive integer

• m = φ(n) : the value of the Euler function φ

• G : a cyclic group of order n with a generator σ0

• Spec B/ Spec A : a G-torsor

• ζ : a primitive n-th root of unity

• R∗ : the group of inverse elements in a ring R

• Gm,R : the multiplicative group scheme over a ring R

• µn,R : the group scheme over a ring R of the n-th root of unity

vi



Chapter 1

Introduction

The aim of this thesis is to determine the torsors for the finite group schemes Ga,b of

order p, which were classified by John Tate and Frans Oort. Roughly speaking, X is

a torsor for Ga,b if X is locally isomorphic to Ga,b with respect to the flat topology

on the base scheme of Ga,b.

The concept of torsors has its origin in Galois theory. The ideas of Galois theory

have been developed by many mathematisians such as Newton, Lagrange, Galois,

Kronecker, Artin and Grothendieck. In classical Galois theory, the fundamental re-

sult is the Galois correspondence between the intermidiate fields of a finite Galois

extension K/k and the subgroups of its Galois group Gal(K/k). The Galois corre-

spondence was developed to the one between the intermidiate separable extensions

of k and the closed subgroups of Gal(ksep/k) with the profinite topology. From the

viewpoint of geometry, Galois theory gives the correspondece between the covering

spaces of a topological manifold V and the foundamental groups of V . Galois theory

for schemes classifies the finite étale coverings of a connected scheme X in terms of
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the fundamental group π(X). Furthermore, this concept is generalized to the notion

of torsors for group schemes.

The description of torsors can be regarded as the inverse problem of Galois theory

for group schemes. The inverse Galois problem asks whether or not a finite group G

occurs as a Galois group of some extensions K over k. The inverse Galois problem

for schemes asks whether a group scheme G occurs as a torsor over a scheme X.

One of the excellent solutions to the inverse Galois problem is given by Kummer

theory. Let X be a scheme and n a positive integer that is coprime to the characteristic

of the residue field k(x) for all x ∈ X. We denote by Gm,X the multiplicative group

scheme over X. We have an exact sequence of abelian sheaves on Xét

1 −→ µµµn,X −→ Gm,X
n−→ Gm,X −→ 1,

where the morphism n : Gm,X → Gm,X is given by raising to the n-th power and

µµµn,X is its kernel of the morphism n : Gm,X → Gm,X . This is called the Kummer

sequence. If X is a scheme over a strictly local ring A such that n ∈ A is invertible,

then µµµn,X is (noncanonically) isomorphic to the constant sheaf Z/nZ on X. Hence the

Kummer sequence yields the long exact sequence

0 −→ Γ(X,Z/nZ) −→ Γ(X,Gm,X)
n−→ Γ(X,Gm,X)

−→ H1
ét(X,Z/nZ) −→ H1

ét(X,Gm,X)
n−→ H1

ét(X,Gm,X)

−→ H2
ét(X,Z/nZ) −→ · · · .

Note that Γ(X,Gm,X) = Γ(X,O∗
X) and H1

ét(X,Gm,X) = Pic(X). Then we obtain an

exact sequence

0 −→ Γ(X,O∗
X)/Γ(X,O∗

X)n −→ H1
ét(X,Z/nZ) −→ Pic(X)[n] −→ 0.
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In particular, we consider the case that X = Speck, where k is a field containing a

primitive n-th root ζ of unity. By Hilbert theorem 90, we get an isomorpism

k∗/(k∗)n ∼= H1
ét(X,Z/nZ),

which explicitly describes the cyclic extensions of degree n over k.

In this thesis, we denote by n a positive integer, by m = φ(n) the value of the Euler

function and by G a cyclic group of order n with a generator σ0. Let Spec B/ Spec A

be a G-torsor. We suppose that B is a free A-module. Let ζ be a primitive n-

th root of unity and I the representation matrix of the action of ζ on Z[ζ] by the

multiplication for the standard basis of a Z-module Zm. Then we can define the

canonical G-action on B [x1, . . . , xm, 1/
∏m

i=1 xi] by (x1, . . . , xm)σ0 := (x1, . . . , xm)I

and on B by the Galois action. (See Definition 5 for details.) Galois descent theory

for Gm
m,B yields a group scheme over A, which we call a cyclotomic twisted torus of

degree n and denote it by G(n)A. Then the cyclotomic twisted torus can be written

explicitly:

Assertion 1. (Theorem 3.2.1.) There exist an ideal A given explicitly and G-

invariant parameters ξ1, . . . , ξn such that

G(n)A = Spec A[ξ1, . . . , ξn]/A.

A cyclotomic twisted torus is canonically isomorphic to the intersection of the

kernel of norm maps. We denote by ResB/AGm,B the Weil restriction of the group

scheme Gm,B to A. For each positive integer ` dividing n, we define B` = B

D
σ

n/`
0

E
⊂ B

and denote by Nm` : ResB/AGm,B → ResB`/AGm,B`
the norm map from B to B`. The

group scheme T (n)A := ∩`|n Ker(Nm`) ⊂ ResB/AGm,B is introduced to cryptologists
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by K. Rubin and A. Silverberg [13, 14]. They pointed out that this group scheme

T (n)A is a twisted torus. However, it is curious that any explicit expression of such

twisted tori can not be found in literature. Our second assertion is that the group

scheme T (n)A is nothing but the cyclotomic twisted torus G(n)A.

Assertion 2. (Theorem 3.4.1.) There exists the canonical isomorphism G(n)A
∼=

T (n)A.

Note that the assertion above is relative to consequences by B. Mazur, K. Rubin

and A. Silverberg [9].

We assume that n is greater than or equal to 2. Let p ∈ Z be a prime number with

n|(p− 1). By n|(p− 1), p is completely decomposed in the number field Q(ζ)/Q. We

suppose that prime ideals p lying above p are principal, namely, there exists θ ∈ Z[ζ]

such that p = (θ) for each p ⊂ Z[ζ]. By Z[ζ] ⊂ End(Gm,B), we can regard θ as an

endomorphism on Gm,B. Hence we have

1 −→ Ker θ −→ Gm
m,B

θ−→ Gm
m,B −→ 1.

The Galois descent yields an exact sequence

1 −→ Ker θ −→ G(n)A
θ−→ G(n)A −→ 1, (1.1)

where Ker θ is the Galois descent of Ker θ from B to A. Then we obtain a long exact

sequence as cohomology groups

1 −→ H0(X, Ker θ) −→ H0(X,G(n)A)
H0(θ)−→ H0(X,G(n)A)

∂0−→ H1(X, Ker θ) −→ H1(X,G(n)A)
H1(θ)−→ H1(X,G(n)A)

∂1−→ · · · .
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From the long exact sequence above, T. Sekiguchi and Y. Toda [16] described torsors

for Ker θ in terms of the first cohomology group H1(Spec A, Ker θ).

In particular, we consider the case of n = p− 1. Assume that there exists an n-th

root u ∈ B of b ∈ A. Let B = A[u]. Then T. Sekiguchi and Y. Toda pointed out that

(µµµp,B)G ∼= Ga,b,

where Ga,b is a finite group scheme of order p classified by F. Oort and J. Tate [11].

Note that Ker θ ∼= µµµp,B. We have a short exact sequence by the sequence (1.1):

1 −→ Ga,b −→ G(n)A
θ−→ G(n)A −→ 1,

which we call the Kummer sequence for cyclotomic twisted tori. Then using the exact

sequence above, T. Sekiguchi and Y. Toda described torsors for Ga,b in the paper [16].

We call their consequence Kummer theory for cyclotomic twisted tori in the principal

case.

In this thesis, we consider torsors for the finite group scheme Ga,b of order p. We

need not assume that the prime ideal p is principal. We consider homomorphisms

defined by ideals of the endomorphism ring on G(n)A. T. Sekiguchi and Y. Toda

proved that Z[ζ] ∼= End(G(n)A) in [16]. Let a ⊂ Z[ζ] be a non-zero ideal. There

exists ξ, η ∈ Z[ζ] such that a = (ξ, η). We define a homomorphism ψa from G(n)A

to G(n)A × G(n)A by the ideal a ⊂ Z[ζ]. We denote by G(n)A[a] the kernel of the

homomorphism ψa. Then we have the assertion of the order of G(n)A[a]:

Assertion 3. (Theorem 5.1.1) For each unramified ideal a ⊂ Z[ζ], we have

|G(n)A[a]| = NmQ[ζ]/Q a.
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Note that G(n)A[a] is independent of the choice of the generators of the ideal a

(see Lemma 11). We provide the following exact sequence, which plays a key role to

describe torsors. Here, let θ′ be an element of Z[ζ] such that p = (p, θ′).

Assertion 4. (cf. Theorem 5.2.1) For p = (p, θ′), there exists a homomorphism ψ

such that the following sequence is exact as sheaves of groups on (Spec B)flat:

1 −→ Ker ψp −→ Gm
m,B

ψp−→ Gm
m,B ×Gm

m,B

ψ−→ Gm
m,B ×Gm

m,B.

Therefore we obtain the exact sequence

1 → Ker ψp → Gm
m,B

ψp−→ Ker ψ → 1.

We will give the defining equations of Ker ψ (see Appendix A.2). Here, we denote

by Ker ψp and Ker ψ the Galois descent of Ker ψp and Ker ψ respectively. The Galois

descent yields the exact sequence

1 → Ker ψp → G(n)A
ψp−→ Ker ψ → 1.

Then we describe torsors for Ker ψp by computing the first cohomology group H1(Spec A,

Ker ψp). In particular, when n = p− 1, we have

Ker ψp = (µµµp,B)G = Ga,b.

Then we get the exact sequence

1 → Ga,b → G(n)A → Kerψ → 1,

which we call the Kummer sequence for cyclotomic twisted tori in the general case.

Thus we obtain the description of Ga,b-torsors in the non-principal case. We call the

consequence above Kummer theory for cyclotomic twisted tori in the general case.
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This thesis consists of five chapters.

In Chapter 2, we give a short review of the Galois descent for affine group schemes

and the Weil restriction.

In Chapter 3, we define the cyclotomic twisted torus. We give its coordinate ring

explicitly and some examples. Finally we prove the second assertion, namely, we give

the canonical isomorphism between G(n)A and T (n)A.

In Chapter 4, we briefly review the description of Ga,b-torsors by T. Sekiguchi and

Y. Toda [16].

In Chapter 5, we show Assertion 3, which is the claim of the order of the kernel of

a homomorphism defined by an ideal of Z[ζ] ∼= EndG(n)A. Then we prove Assertion

4 and we compute Ga,b-torsors explicitly using Assertion 4.

As Appendix A.1, we give an elementary proof of a result on a cyclotomic poly-

nomial, which is crucial in our proof of the second assertion. Let n = pe1
1 pe2

2 · · · per
r

be the factorization of n into prime numbers. For each pi, we set Fi(X) = (Xn −

1)/(Xn/pi − 1). Then the greatest common divisor of Fi’s is obviously the cyclotomic

polynomial Φn(X):

Assertion 5. (Lemma 10, Proposition 15.) There exist polynomials Ai(X) ∈ Z[X]

for i = 1, . . . , r such that Φn(X) =
∑r

i=1 Ai(X)Fi(X).

Note that this fact is already given by N. G. de Bruijn [3] in a completely different

way. At the end of this thesis, we describe the defining equations of the subgroup

scheme Ker ψ of Gm
m,B ×Gm

m,B.

Finally, we add a few comments. L. G. Roberts [12] considers Ga,b-torsors in the

case where the base ring of Ga,b is the ring of integers of a local number field. And
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F. Andreatta and C. Gasbarri [2] describe Ga,b-torsors in the case where the base ring

of the finite group scheme Ga,b is a complete discrete valuation ring of the residue

characteristic p, and b admits a (p− 1)-th root in Fp.
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Chapter 2

Preliminaries

In this chapter, we recall the Galois descent for affine group schemes and the Weil

restriction. We give the Galois descent theory in the case of affine group schemes.

Next we define the Weil restriction. We consider the one of an affine group scheme

and give some examples. For details of the faithfully flat descent and the Galois

descent, one can refer to U. Görtz and T. Wedhorn [6] and W. C. Waterhouse [21].

For details of the Weil restriction, one can refer to A. Weil [22], M. Demazur and

P. Gabriel [5] and W. C. Waterhouse [21].

2.1 Galois descent

Let G be a finite group of order n. We let SpecB/SpecA be a G-torsor. We denote

the G-action on B by x 7→ xσ for any x ∈ B and any σ ∈ G. Then we know that B

is a faithfully flat A-algebra and B has a G-action over A such that ϕ : B ⊗A B
'→

B ⊗A

∏
G A; b1 ⊗ b2 7→

∑
σ b1b

σ
2 ⊗ eσ, where eσ is the element of

∏
G A whose entries

are zero except 1 at σ.

9



Furthermore we suppose that B is a free A-module. Note that if A is a principal

ideal normal domain, then B is automatically a free A-module (see [4], Chap. 5, § 1,

no 7, Cor. 2 to Prop. 18). Let {ω1, . . . , ωn} be a free basis of A-module B. Then

ϕ(1 ⊗ ωi) = (ωσ
i )σ∈G. Therefore ∆ = ∆(ω1, . . . , ωn) := det(ωσ

i )i,σ is an invertible

element of B. Note that B ⊃ BG := {x ∈ B | xσ = x ∀σ ∈ G} = A. Let C and C ′

be B-algebras. For any element σ ∈ G and any morphism ϕ : Spec C → Spec C ′ over

B, we denote by

ϕσ :
{

Spec C
ϕ−→ Spec C ′

}
×Spec B

{
Spec B

Spec σ−→ Spec B
}

the morphism induced from ϕ by taking the base change Spec B
Spec σ−→ Spec B.

Now let G = Spec C be an affine group scheme over B. We assume that for any

element σ ∈ G, ρσ : G → Gσ is a B-isomorphism of B-group schemes. If these

isomorphisms satisfy the condition

ρσ
τ ◦ ρσ = ρστ ∀σ, τ ∈ G,

then there exists uniquely, up to isomorphism, a group scheme G0 over A such that

G0 ×Spec A Spec B ∼= G. This group scheme G0 is called the Galois descent of G by G.

In fact, G0 is given as follows: For any σ ∈ G, we denote the composition C →

C ⊗B (σ,B)
(ρσ)∗−→ C again by (ρσ)∗ : C → C. Then this gives a G-action on C, and

the G-invariant subring CG ⊂ C yields the Galois descent G0 = Spec CG of G. In the

sequel, abusing the terminology, we denote (ρσ)∗ simply by σ. For an A-algebra C,

we also denote the automorphism idC ⊗σ of C ⊗A B simply by σ.
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2.2 Weil restriction

We recall the Weil restriction. An useful tool of “realification” of a complex lin-

ear space is generalized to an operation in the theory of schemes, calling the Weil

restriction.

Let S be a scheme and Sfl be the flat site ((Sch /S), cov(Sch /S)fppf ). Moreover,

we let X be an S-scheme. For each S-scheme U , we define F(U) by

F(U) = X(U) = HomS(U,X).

Then F is a sheaf on Sfl, and it is called representable by X.

Let f : S → T be a morphism of schemes and F a presheaf on Sfl. Then we

define a presheaf f∗F on Tfl by

(f∗F)(V ) = F(f−1(V )) for each T -scheme V .

Here, the presheaf f∗F has the restriction maps, which is induced by them for F . We

call f∗F the direct image of F under f . Then we immediately check that if F is a

sheaf on S, the direct image f∗F is a sheaf on T .

Proposition 1. Let K and k be rings and f : Spec K → Spec k a morphism of affine

schemes. Let X be a K-scheme and F the sheaf on (Spec K)fl represented by X.

Suppose that the k-module K is projective and finitely generated. Then we have

(1) if X is an affine K-scheme, then the sheaf f∗F on Spec k is represented by an

affine k-scheme.

(2) if X a K-scheme and for each finite subset P of X, there exists an affine open

subscheme U of X such that P ⊂ U , then the sheaf f∗F on Spec k is represented

by a k-scheme.
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We denote by ResK/k X the scheme representing f∗F . We call it the Weil restric-

tion of X to k. Then, by the definition we have

(
ResK/k X

)
(L) = X(L×k K)

for each k-algebra L.

Example 2. Let k1, k2, . . . , kd be d copies of k. We set K = k1 × k2 × · · · × kd. For

each i = 1, 2, . . . , d, we assign ki the K-algebra structure induced by the i-th canonical

projection pi : K = kd → k. Let ui : Spec k → Spec K be the immersion correspond-

ing to pi and we set Xi = X ×Spec K (Spec k, ui). Then we have the isomorphism

ResK/k X ∼= ∏d
i=1 Xi.

Example 3. Let K be a finite extension field over k of degree n and a group scheme

X = Spec R over Spec K of finite type. We give the defining equations of ResK/k X.

There are α1, α2, . . . , αn ∈ K such that

K = kα1 ⊕ kα2 ⊕ · · · ⊕ kαn.

Since X = Spec R is of finite type over K, there exists an ideal (F1, F2, . . . , Fr) ⊂

K[T1, T2, . . . , Td] such that

R = K[T1, T2, . . . , Td]/(F1, F2, . . . , Fr).
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For any k-algebra L, we have the equalities

(
ResK/k X

)
(L) = X(L⊗k K)

= HomK(R,L⊗k K)

= HomK(K[T1, T2, . . . , Td]/(F1, F2, . . . , Fr), L⊗k K)

= {ψ : K[T1, T2, . . . , Td] → L⊗k K : K-alg. homo. |

ψ(Fi(T1, T2, . . . , Td)) = 0 for i = 1, 2, . . . , r}

= {(t1, t2, . . . , td) ∈ (L⊗k K)d | Fi(t1, t2, . . . , td) = 0

for any i = 1, 2, . . . , r},

where we set ti = ψ(Ti) for each i = 1, 2, . . . , d. Note that L⊗k K =
⊕n

i=1 L⊗k kαi.

We set

t1 = t11 ⊗ α1 + t12 ⊗ α2 + · · ·+ t1n ⊗ αn

t2 = t21 ⊗ α1 + t22 ⊗ α2 + · · ·+ t2n ⊗ αn

...

td = td1 ⊗ α1 + td2 ⊗ α2 + · · ·+ tdn ⊗ αn,

where tij ∈ L for all i = 1, 2, . . . , d and j = 1, 2, . . . , n. For i = 1, 2, . . . , r we define

fij(t) ∈ k[t11, t12, . . . , t1n, t21, t22, . . . , t2n, . . . , td1, td2, . . . , tdn]

by

Fi(t1, t2, . . . , td) = fi1(t)⊗ α1 + fi2(t)⊗ α2 + · · ·+ fin(t)⊗ αn.
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Then we have the equalities

(
ResK/k X

)
(L) = {t = (tij)i,j ∈ Ldn | fij(t) = 0

for i = 1, 2, . . . , r and j = 1, 2, . . . , n}

= Homk−algebra(k[x]/(fij(x), L)

= Spec(k[x]/(fij(x))(L).

Therefore we obtain the following defining equations of ResK/k X:

0 = f11(x11, x12, . . . , x1n, x21, x22, . . . , x2n, xd1, xd2, . . . , xdn)

0 = f21(x11, x12, . . . , x1n, x21, x22, . . . , x2n, xd1, xd2, . . . , xdn)

...

0 = fr1(x11, x12, . . . , x1n, x21, x22, . . . , x2n, xd1, xd2, . . . , xdn)

0 = f12(x11, x12, . . . , x1n, x21, x22, . . . , x2n, xd1, xd2, . . . , xdn)

0 = f22(x11, x12, . . . , x1n, x21, x22, . . . , x2n, xd1, xd2, . . . , xdn)

...

0 = fr2(x11, x12, . . . , x1n, x21, x22, . . . , x2n, xd1, xd2, . . . , xdn)

...

0 = f1n(x11, x12, . . . , x1n, x21, x22, . . . , x2n, xd1, xd2, . . . , xdn)

0 = f2n(x11, x12, . . . , x1n, x21, x22, . . . , x2n, xd1, xd2, . . . , xdn)

...

0 = frn(x11, x12, . . . , x1n, x21, x22, . . . , x2n, xd1, xd2, . . . , xdn).

Example 4. We have the isomorphism

ResC/R P1
C
∼= ProjR[x, y, z, w]/(x2 + y2 + z2 − w2).
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Chapter 3

Cyclotomic twisted tori

We introduce a concept of cyclotomic twisted tori along [8]. It is a main object of

this thesis. We describe the coordinate ring of a cyclotomic twisted torus of degree

n. Furthermore, we prove that the cyclotomic twisted torus is canonically isomorphic

to an intersection of all kernels of norm maps between the Weil restrictions of the

algebraic torus (cf. B. Mazur, K. Rubin and A. Silverberg [9] Remark 5.11).

3.1 Cyclotomic twisted tori

We give the definition of cyclotomic twisted tori of degree n. Let Φn(x) = xm +

a1x
m−1 + · · ·+ am be the cyclotomic polynomial, namely,

Φn(x) =
∏

k∈(Z/nZ)∗

(x− ζk).

It is well-known that the coefficients of Φn(x) are rational integers. In particular, we

can easily see that am = 1. We take {1, ζ, ζ2, . . . , ζm−1} as a Z-basis of Z[ζ]. Now we

consider the representation of ζ with respect to the standard Z-basis of a Z-module
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Zm:

(1, ζ, ζ2, . . . , ζm−1)ζ

= (ζ, ζ2, . . . , ζm−1,−am − am−1ζ − · · · − a1ζ
m−1)

= (1, ζ, ζ2, . . . , ζm−1)




0 0 · · · 0 −am

1 0 · · · 0 −am−1

0 1 · · · 0 −am−2

...
...

. . .
...

...

0 0 · · · 1 −a1




and

(1, ζ, ζ2, . . . , ζm−1)ζ−1

= (−am−1 − am−2ζ − · · · − a1ζ
m−2 − ζm−1, 1, . . . , ζm−2)

= (1, ζ, ζ2, . . . , ζm−1)




−am−1 1 0 · · · 0

−am−2 0 1 · · · 0

...
...

...
. . .

...

−a1 0 0 · · · 1

−1 0 0 · · · 0




.

Therefore ζ and ζ−1 are represented by the matrices

I =




0 0 · · · 0 −am

1 0 · · · 0 −am−1

0 1 · · · 0 −am−2

...
...

. . .
...

...

0 0 · · · 1 −a1



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and

I−1 =




−am−1 1 0 · · · 0

−am−2 0 1 · · · 0

...
...

...
. . .

...

−a1 0 0 · · · 1

−1 0 0 · · · 0




respectively.

In general, for k, ` ∈ Z, any vector x = (x1, x2, . . . , xk) and any matrix M =

(mij) ∈ Mk,`(Z), we define the vector xM obtained by raising to the power of the

matrix M by

xM =

(
k∏

j=1

x
mj1

j ,
k∏

j=1

x
mj2

j , . . . ,
k∏

j=1

x
mj`

j

)
.

Now we consider the algebraic torus

Gm
m,B = Spec B

[
x1, x2, . . . , xm,

1∏m
i=1 xi

]

over B. It is well-known that Aut(Gm
B ) ∼= GLm(Z). We define an action of G on Gm

m,B

by

σ0 :





B[x1, x2, . . . , xm, 1/
∏m

i=1 xi]
σ0−→ B[x1, x2, . . . , xm, 1/

∏m
i=1 xi];

x = (x1, x2, . . . , xm) 7−→ xσ0 = (xσ
1 , . . . , x

σ
m) := xI

b ∈ B 7−→ bσ0 .

Definition 5. The Galois descent of Gm
m,B by G is called a cyclotomic twisted torus

of degree n and denoted by G(n)A:

G(n)A := Gm
m,B/G = Spec B

[
x1, x2, . . . , xm,

1∏m
i=1 xi

]G

.
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3.2 The coordinate ring of a cyclotomic twisted

torus

We suppose that B is free over A of rank n. Let B = A ·ω1 + · · ·+A ·ωn and G(n)A =

Spec B
[
x1, x2, . . . , xm, 1Qm

i=1 xi

]G

be the cyclotomic twisted torus as Section 3.1.

Now we define the elements ξi ∈ B[x1, x2, . . . , xm, 1/
∏m

i=1 xi] for i = 1, . . . , n by

ξi :=
∑
σ∈G

ωσ
i xσ

1 .

Then since ∆ = ∆(ω1, . . . , ωn) = det(ωσ
i )i,σ is invertible in B, the linear equations

above can be solved in xσ
1 ’s over B:

x
σi
0

1 = fi+1(ξ1, . . . , ξn) ∈
n∑

j=1

Bξj for i = 0, . . . , n− 1.

For each i = 1, . . . , n − m, we set x
σm+i−1
0

1 = xA1i
1 xA2i

2 · · ·xAmi
m . Note that A11 =

−am, A21 = −am−1, . . . , Am1 = −1 and Aij ∈ Z.

Now we prepare more notation. For any integer a, we set a′ :=
1

2
(|a| − a) and

a′′ :=
1

2
(|a|+ a). Then we define some equations in B[ξ1, . . . , ξn]:

Fi(ξ1, . . . , ξn) := fm+if
A′1i
1 f

A′2i
2 · · · fA′mi

m − f
A′′1i
1 f

A′′2i
2 · · · fA′′mi

m

for i = 1, . . . , n−m.

For each polynomial F ∈ B[ξ1, . . . , ξn], we denote the isotropic subgroup at F by

GF := {σ ∈ G | F σ = F} ⊂ G. Under these notation, we have the theorem:

Theorem 3.2.1. The coordinate ring of the cyclotomic twisted torus G(n)A is de-

scribed as

B

[
x1, x2, . . . , xm,

1∏m
i=1 xi

]G

= A[ξ1, . . . , ξn]/A,
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where the ideal A is generated by

F̃ki :=
∑

σ∈G/GωkFi

(ωkFi)
σ

for k = 1, . . . , n and i = 0, . . . , n−m− 1.

Proof. First, we check the equality

B
[
x1, x

σ0
1 , . . . , x

σn−1
0

1

]
= B[x1, . . . , xm, 1/(x1 · · ·xm)].

Since B
[
x1, x

σ0
1 , . . . , x

σn−1
0

1

]
is G-stable, we have only to check that 1/x1 belong to

it. Note that End(Gm
m,B) ∼= Mm(Z), and the correspondence Z[ζ] → Mm(Z) defined

by
∑n−1

k=0 ckζ
k 7→ ∑n−1

k=0 ckI
k is an injective ring homomorphism. Since

∑n−1
k=0 ζk = 0,

we have
∑n−1

k=0 Ik = O ∈ Mm(Z) and
∑n−1

k=0 σk
0 = 0 ∈ End(Gm

m,B). Then we have the

equality xσ0
1 x

σ2
0

1 · · ·xσn−1
0

1 = x−1
1 . Hence we have the equalities

B
[
x1, x

σ0
1 , . . . , x

σn−1
0

1

]
= B[x1, . . . , xm, 1/(x1 · · ·xm)] = B[ξ1, . . . , ξn].

In the ring B[x1, x2, . . . , xm, 1/
∏m

i=1 xi], the ideals (F0, . . . , Fn−m−1) and ({F̃ki |

k = 1, . . . , n; i = 0, . . . , n −m − 1}) are equal to each other. We denote by A these

ideals. Therefore we see that

B

[
x1, x2, . . . , xm,

1∏m
i=1 xi

]
∼= B[ξ1, . . . , ξn]/(AB[ξ1, . . . , ξn])

and

(A[ξ1, . . . , ξn]/A)⊗A B ∼= B

[
x1, x2, . . . , xm,

1∏m
i=1 xi

]
.

Note that we recognize ξi’s as variables. Since B is faithfully flat over A and

(A[ξ1, . . . , ξn]/A) ⊗A B ∼= B[x1, x2, . . . , xm, 1/
∏m

i=1 xi] is flat over B, we know that

A[ξ1, . . . , ξn]/A is flat over A. Hence from the exact sequence

0 → A = Ker(σ0 − id) → B
σ0−id−→ Im(σ0 − id) → 0,
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we have the exact sequence

0 → (A[ξ]/A)⊗A A → (A[ξ]/A)⊗A B

id⊗(σ0−id)−→ (A[ξ]/A)⊗A Im(σ0 − id) → 0,

where ξ = (ξ1, . . . , ξn). Note that Im(σ0 − id) ⊂ B and (A[ξ]/A) ⊗A Im(σ0 − id) ⊂

(A[ξ]/A)⊗A B. This implies that

B

[
x1, x2, . . . , xm,

1∏m
i=1 xi

]G

= A[ξ1, . . . , ξn]/A.

3.3 Example

In this section, we provide some examples of cyclotomic twisted tori.

Example 6. Suppose that n = pe is a power of a prime number p. Then m = φ(n) =

pe−1(p− 1),

Φn(X) = Φp(X
pe−1

) = Xm + Xm−pe−1

+ · · ·+ Xpe−1

+ 1,

and

ak =





1 if k = ipe−1

0 otherwise,

where k = 1, . . . , m and i = 1, . . . , p−1. Hence we have x
σm
0

1 = x−1
1 x−1

(p−2)pe−1+1 · · ·x−1
pe−1+1

and

B[x1, . . . , xm, 1/(x1 · · ·xm)]G = A[ξ1. . . . , ξn]/A,

where

A = ({F̃ki | k = 1, . . . , n; i = 1, . . . , n−m− 1}).
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Example 7. Let B = F76, A = F7 and n = 6. Then m = φ(n) = 2 and Φ6(X) =

X2 − X + 1. Note that F76 = F7[X]/(X6 − 3) and we set α = X ∈ F76. Then

F76 = F7 · 1 + F7 · α + · · ·+ F7 · α5. Let σ0(x) = x7 for any x ∈ F76. In this case, we

obtain

I =




0 −1

1 1




and xσ0
1 = x2, xσ0

2 = x−1
1 x2. Therefore we have x

σ3
0

1 = x−1
1 and

F76 [x1, x2, 1/(x1x2)]
G = F7[ξ1, . . . , ξ6]/A.

Here

ξ1 = x1 + x2 + x−1
1 x2 + x−1

1 + x−1
2 + x1x

−1
2

ξ2 = αx1 + 3αx2 + 2αx−1
1 y − αx−1

1 − 3αy−1 − 2αx1x
−1
2

ξ3 = α2x1 + 2α2x2 − 3α2x−1
1 x2 − α2x−1

1 + 2α2x−1
2 − 3α2x1x

−1
2

ξ4 = α3x1 − α3x2 + α3x−1
1 x2 − α3x−1

1 + α3x−1
2 − α3x1x

−1
2

ξ5 = α4x1 − 3α4x2 + 2α4x−1
1 x2 − α4x−1

1 − 3α3x−1
2 − 2α4x1x

−1
2

ξ6 = α5x1 − 2α5x2 − 3α5x−1
1 x2 − α5x−1

1 + 3α5x−1
2 + x1x

−1
2 ,

x1 = f1 = −ξ1 + 2α5ξ2 + 2α4ξ3 + 2α3ξ4 + 2α2ξ5 + 2αξ6

xσ0
1 = f2 = −ξ1 + 3α5ξ2 + α4ξ3 − 2α3ξ4 − 3α2ξ5 − αξ6

x
σ2
0

1 = f3 = −ξ1 + α5ξ2 − 3α4ξ3 + 2α3ξ4 + α2ξ5 − 3αξ6

x
σ3
0

1 = f4 = −ξ1 − 2α5ξ2 + 2α4ξ3 − 2α3ξ4 + 2α2ξ5 − 2αξ6

x
σ4
0

1 = f5 = −ξ1 − 3α5ξ2 + α4ξ3 + 2α3ξ4 − 3α2ξ5 + αξ6

x
σ5
0

1 = f6 = −ξ1 − α5ξ2 − 3α4ξ3 − 2α3ξ4 + α2ξ5 + 3αξ6
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and

F1 = f3f1 − f2, F2 = f4f1 − 1

F3 = f5f2 − 1, F4 = f6f2 − 1.

Note that F
σ5
0

1 = F4, F σ0
2 = F3 and GF2 = Gα2F2

= Gα4F2
= 〈σ3

0〉. Hence we have

F̃i1 =
∑
σ∈G

(αi−1F1)
σ for i = 1, . . . , 6

F̃12 =
∑

σ∈G/〈σ3
0〉

F σ
2

F̃22 =
∑
σ∈G

(αF2)
σ = 0

F̃32 =
∑

σ∈G/〈σ3
0〉
(α2F2)

σ

F̃42 =
∑
σ∈G

(α3F2)
σ = 0

F̃52 =
∑

σ∈G/〈σ3
0〉
(α4F2)

σ

and

A = ({F̃i1, F̃12, F̃32, F̃52 | i = 1, . . . , 6}).

3.4 A cyclotomic twisted torus as kernel of norm

maps

In this section, we prove that we can regard the cyclic twisted torus as the intersection

of all kernels of norm maps between the Weil restrictions of the algebraic torus.

The theorem in this section indicates the generalization of discussions on twisting
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commutative algebraic groups in [9]. In [9], B. Mazur, K. Rubin and A. Silverberg

consider twists of commutative algebraic groups over a field. The following theorem

gives a example of their consequences over a ring.

For each positive integer ` dividing n, we set G` =
〈
σ

n/`
0

〉
⊂ G and B` = BG` ⊂ B.

For any group scheme G over B, we denote by ResB/A G the Weil restriction of G to

over A. For each positive integer ` with `|n, let

Nm` : ResB/AGm,B → ResB`/AGm,B`

be the norm map from B to B`. We define the subgroup scheme T (n)A of ResB/AGm,B

by the intersection of all kernels of norm maps:

T (n)A := Ker


(Nm`)`|n : ResB/A (Gm,B) →

∏

`|n
ResB`/A (Gm,B`

)


 .

The follwing theorem is our main result of this section.

Theorem 3.4.1. The cyclotomic twisted torus G(n)A is canonically isomorphic to

the group scheme T (n)A over A:

G(n)A
∼= T (n)A.

Though the way of B. Mazur, K. Rubin and A. Silverberg in [9] makes a proof of

this theorem easier, we provide another one (cf. B. Mazur, et al. [9] Remark 5.11).

Proof. Let C be any A-algebra. We will define a functorial group isomorphism ρ(C) :

G(n)A(C) ∼= T (n)A(C). Note that

G(n)A = Spec B[x1, . . . , xm, 1/(x1 · · ·xm)]G

and

B[x1, . . . , xm, 1/(x1 · · ·xm)]G ⊗A B ∼= B[x1, . . . , xm, 1/(x1 · · ·xm)].
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Therefore we have a correspondence

G(n)A(C) = HomA

(
B[x1, . . . , xm, 1/(x1 · · ·xm)]G, C

)

⊂ HomB

(
B[x1, . . . , xm, 1/(x1 · · ·xm)]G ⊗A B, C ⊗A B

)

= HomB(B[x1, . . . , xm, 1/(x1 · · ·xm)], C ⊗A B);

ϕ 7→ ϕ⊗ idB .

We define a G-action on HomB(B[x1, . . . , xm, 1/(x1 · · ·xm)], C⊗AB) by ψσ := (idC ⊗σ)◦

ψ ◦ σ−1 for any ψ ∈ HomB(B[x1, . . . , xm, 1/(x1 · · ·xm)], C ⊗A B). By this G-action,

we obtain the Lemma:

Lemma 8. We have the equality

(HomB(B[x1, . . . , xm, 1/(x1 · · ·xm)], C ⊗A B)G

= HomA

(
B[x1, . . . , xm, 1/(x1 · · ·xm)]G, C

)
.

In fact, if ψ ∈ HomB(B[x1, . . . , xm, 1/(x1 · · ·xm)], C ⊗A B) is of the type ψ =

ϕ ⊗ idB for some ϕ ∈ HomA

(
B[x1, . . . , xm, 1/(x1 · · ·xm)]G, C

)
, then ψσ = σ ◦ ψ ◦

σ−1 = σ ◦ (ϕ ⊗ idB)σ−1 = (idC ⊗σ)(ϕ ⊗ idB)(id⊗σ−1) = ϕ ⊗ idB = ψ. Con-

versely, if σ0 ◦ ψ ◦ σ−1
0 = ψ, then the restriction map ϕ := ψ|B[x1,...,xm,1/(x1···xm)]G :

B[x1, . . . , xm, 1/(x1 · · ·xm)]G → C ⊗A B satisfies σϕσ−1 = σϕ = ϕ. Therefore we

have Im(ϕ) ⊂ C = (C ⊗A B)G. Since ψ is B-algebra homomorphism, we have

ψ = ϕ⊗ idB, which proves Lemma 8.
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Moreover we define an action of G = 〈σ0〉 on ((C ⊗A B)×)
m

by

(u1, . . . , um)σ0 = (uσ0
1 , . . . , uσ0

m )

:= (idC ⊗σ0)(u1, . . . , um)I−1

= (idC ⊗σ0)(u
−1
1 u

−am−1

2 · · ·u−a1
m , u1, u2, . . . , um−1)

for (u1, . . . , um) ∈ ((C ⊗A B)×)
m

. Then we obtain

Lemma 9. The canonical correspondence

HomB(B[x1, . . . , xm, 1/(x1 · · ·xm)], C ⊗A B) → ((C ⊗A B)×)
m

ψ 7→ (ψ(x1), . . . , ψ(xm))

is G-equivariant.

In fact, for ψ ∈ HomB(B[x1, . . . , xm, 1/(x1 · · ·xm)], C ⊗A B), we have

(idC ⊗σ0) ◦ ψ ◦ σ−1
0 7→(idC ⊗σ0)(ψσ−1

0 (x1), . . . , ψσ−1
0 (xm))

= (idC ⊗σ0)ψ(x1, . . . , xm)I−1

= (idC ⊗σ0)(ψ(x1), . . . , ψ(xm))I−1

= (ψ(x1), . . . , ψ(xm))σ0 ,

which gives the proof of Lemma 9.

By using these lemmas, we obtain the canonical correspondence

G(n)A(C) ∼=
((

(C ⊗A B)×
)m)G

.
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Furthermore, for any u = (u1, . . . , um) ∈ ((C ⊗A B)×)
m

, we have the equivalences

u is G-invariant ⇐⇒ (idC ⊗σ0)u
I−1

= u

⇐⇒





(idC ⊗σ0)(u
−am−1

1 u
−am−2

2 · · ·u−a1
m−1u

−1
m ) = u1

(idC ⊗σ0)ui = ui+1 for i = 1, . . . , m− 1

⇐⇒





u
σi
0

1 = ui+1 (i = 1, . . . , m− 1)

u
1+am−1σ0+···+a1σm−1

0 +σm
0

1 = 1

⇐⇒





u
σi
0

1 = ui+1 (i = 1, . . . , m− 1)

u
Φn(σ0)
1 = 1.

Therefore we have the canonical isomorphism

ResB/A (Gm,B) (C)

||

(C ⊗A B)×

⋃

G(n)A(C) ∼= (((C ⊗A B)×)
m

)G ∼→ {u | uΦn(σ0) = 1}

(u1, u2, . . . , um) 7→ u1.

On the other hand, let n = pe1
1 pe2

2 · · · per
r be the prime decomposition of n. We set

ni = n/pi and

Fi(X) = X(pi−1)ni + X(pi−2)ni + · · ·+ Xni + 1 =
Xn − 1

Xni − 1

for i = 1, . . . , r. We readily see that (F1(X), . . . , Fr(X)) = Φn(X). By the transitivity

of the norm maps, we have

T (n)A = Ker

(
(Nmni

)i=1,...,r : ResB/A(Gm,B) →
r∏

i=1

ResBni/A

(
Gm,Bni

)
)
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and for any u ∈ (C ⊗A B)∗

Nmni
(u) =

pi−1∏

k=0

uσ
kni
0 = uFi(σ0)

for i = 1, . . . , r. Therefore we have the inclusion

{u | uΦn(σ0) = 1} ⊆ T (n)A(C).

To prove the converse relation, we will use the following lemma, whose proof can

be seen in N. G. de Bruijn [3]. However in Appendix A.1 to this thesis, we will

give an elementary proof of it. According to Lemma 10 or Proposition 15, there

exist polynomials A1(X), . . . ,Ar(X) with integral coefficients such that Φn(X) =

∑r
i=1 Ai(X)Fi(X). Hence for any v ∈ T (n)A(C), we have

vΦn(σ0) = v
Pr

i=1 Ai(σ0)Fi(σ0)

=
∏(

vFi(σ0)
)Ai(σ0)

= 1

and v ∈ {u | uΦn(σ0) = 1}.

Lemma 10. There exist polynomials A1(X), . . . , Ar(X) with integral coefficients such

that Φn(X) =
∑r

i=1 Ai(X)Fi(X).

Proof. See Appendix A.1 in this thesis.
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Chapter 4

Review : Torsors for Ga,b in the

case of principal ideals

In this chapter, we review the description of torsors for Ga,b by T. Sekiguchi and

Y. Toda [16] in the case of the principal ideals.

Suppose that n is a positive integer with n ≥ 2. Let p ∈ Z be a prime number

with n|(p− 1). Note that p ≥ 3. We assume that A is a local ring. We consider the

number field Q(ζ)/Q of degree m = φ(n). By n|(p− 1), p is completely decomposed

in Q(ζ), namely, (p) = pp1 · · · pm−1. Suppose that the ideal p is principal in this

section. Let θ ∈ Z[ζ] with (θ) = p.

We recall the definition of the vector xM obtained by raising to the power of the

matrix M :

xM =

(
k∏

j=1

x
mj1

j ,

k∏
j=1

x
mj2

j , . . . ,

k∏
j=1

x
mj`

j

)

for k, ` ∈ Z, any vector x = (x1, x2, . . . , xk) and any matrix M = (mij) ∈ Mk,`(Z)

(see Section 3.1).
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We denote by I the representing matrix of ζ with respect to the standard basis of

a Z-module Zm. (See Section 3.1.) Then we have an exact sequence

1 −→ Ker θ −→ Gm
m,B

θ−→ Gm
m,B −→ 1, (4.1)

where we regard θ as an endomorphism on Gm
m,B by Z[ζ] ⊂ End(Gm

m,B) (see Section 3.2

or [8]). The morphism θ is precisely defined by

θ(u) = uθ(I),

where θ(I) is the representing matrix of θ with respect to the standard basis of Zm.

Note that det θ(I) = p. We denote by G(n)A the Galois descent of Gm
m,B from B to

A, called a cyclotomic twisted torus. See Chapter 3 or [8] for details. The Galois

descent yields an exact sequence

1 −→ Ker θ −→ G(n)A
θ−→ G(n)A −→ 1,

where Ker θ is the Galois descent of Ker θ from B to A. Therefore we get the following

long exact sequence as cohomology groups on Xfl = (Spec A)flat

1 −→ H0
fl(X, Ker θ) −→ H0

fl(X,G(n)A)
H0(θ)−→ H0

fl(X,G(n)A)

∂0−→ H1
fl(X, Ker θ) −→ H1

fl(X,G(n)A)
H1(θ)−→ H1

fl(X,G(n)A)

∂1−→ · · · .

Thus we have the non-canonical isomorphism

H1
fl(X, Ker θ) ∼= Coker[H0

fl(X,G(n)A)
H0(θ)→ H0

fl(X,G(n)A)]

×Ker[H1
fl(X,G(n)A)

H1(θ)→ H1
fl(X,G(n)A)].

(4.2)

Let n = pe1
1 pe2

2 · · · per
r be the factorization of n into prime numbers. T. Sekiguchi

and Y. Toda [16] computed the first cohomology group H1
fl(X,G(n)A) by a cyclotomic
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resolution

1 −→ G(n)A −→ ResB/AGm,B
δ0−→

r∏
i=1

(
ResBi/AGm,Bi

)

δ1−→
∏

1≤i0<i1≤1

(
ResBi0i1

/AGm,Bi0i1

) δ2−→ · · ·

δr−1−→ ResB12···r/AGm,B12···r −→ 1,

where ni0i1···is =
n

pi1pi2 · · · pis

and Bi0i1···is = B<σ
ni0i1···is > for integers 0 ≤ i0 < i1 <

· · · < is ≤ r. Then we have the short exact sequence

1 −→ G(n)A −→ ResB/AGm,B
δ0−→ Ker δ1 −→ 1.

Then we have the long exact sequence

1 −→ H0
fl(X,G(n)A) −→ H0

fl(X, ResB/AGm,B)
H(δ0)−→ H0

fl(X, Ker δ1)

∂−→ H1
fl(X,G(n)A) −→ H1

fl(X, ResB/AGm,B) = 0.

Therefore there is the canonical isomorphism

H1
fl(X,G(n)A) ∼= Coker

[
H0

fl(X, ResB/AGm,B)
H(δ0)−→ H0

fl(X, Ker δ1)

]
.

We have the explicit correspondence in the isomorphism above as follows: for any

s ∈ Coker

[
H0

fl(X, ResB/AGm,B)
H(δ0)−→ H0

fl(X, Ker δ1)

]
, s∗(ResB/AGm,B), which is the

pull-back of ResB/AGm,B by s : X → Ker δ1, is in H1
fl(X,G(n)A).

Since we explicitly give the correspondence in the isomorphism (4.2) in [16], we

provide (Ker θ)-torsors in terms of the cohomology groups of G(n)A. In the case

of n = p − 1, we get Ga,b-torsors under the assumption that the ideal p ⊂ Z[ζ] is

principal.

In fact, let Spec Λp be the base scheme of Spec A and Spec B, where

Λp = Z
[
ζ,

1

p(p− 1)

]
∩ Zp.
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Note that ζ is a primitive (p − 1)-st root of unity in the ring Zp of p-adic integers.

First, we explain the Oort-Tate group schemes Ga,b. F. Oort and J. Tate completely

classified the finite A-group schemes of order p. Let (M,a, b) be a tuple consisting of

a projective A-module M of rank one together with a ∈ M⊗(p−1) and b ∈ M⊗(1−p)

satisfying a ⊗ b = ωp, where ωp is the product of p and an invertible element of Λp.

The finite group scheme corresponding to (A, a, b) is given by

Ga,b = Spec(A[x]/(xp − ax))

with the comultiplication

m∗(x) = x⊗ 1 + 1⊗ x− b

p− 1

p−1∑
i=1

U(i)xi ⊗ xp−i,

where U(i) is an invertible element of A.

Now, we describe Ga,b-torsors in the case where the ideal p is principal i.e. p = (θ)

for some θ ∈ Z[ζ]. We assume that B = A[u], where we denote by u an n-th root of

a non-zero divisor b ∈ A. In other words, we assume that there exists an n-th root

u ∈ B of a non-zero divisor b ∈ A. From the exact sequence (4.1), we have an exact

sequence

1 −→ µp,B −→ Gm
m,B

θ−→ Gm
m,B −→ 1.

Note that deg θ = p. The Galois descent makes it the exact sequence

1 −→ (
µp,B

)G −→ G(n)A
θ−→ G(n)A −→ 1.

T. Sekiguchi and Y. Toda confirmed that

(
µp,B

)G ∼= Ga,b
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by choosing suitable elements a, b ∈ A in [16]. Therefore we obtain the Kummer

sequence for the cyclotomic twisted torus G(n)A:

1 −→ Ga,b −→ G(n)A
θ−→ G(n)A −→ 1.

Then we have a long exact sequence

1 −→ H0
fl(X,Ga,b) −→ H0

fl(X,G(n)A)
H0(θ)−→ H0

fl(X,G(n)A)

∂0−→ H1
fl(X,Ga,b) −→ H1

fl(X,G(n)A)
H1(θ)−→ H1

fl(X,G(n)A)

∂1−→ · · · .

We have the explicit correspondence in the noncanonical isomorphism

H1
fl(X,Ga,b) ∼= Coker H0(θ)×Ker H1(θ) :

for any g ∈ Coker H0(θ) and any s∗(ResB/AGm,B) ∈ Ker H1(θ), we have the commu-

tative diagram

ρ−1({1} ×X) −−−→ s∗(ResB/AGm,B)
ρ−−−→ θ∗s∗(ResB/AGm,B)y

y
y

X X X.

Note that θ∗s∗(ResB/AGm,B) ∼= G(n)A×X and ι∗(ρ−1({1}×X)) ∼= s∗(ResB/AGm,B).

See [16] for details. Furthermore Ga,b, G(n)A and G(n)A act on ρ−1({1} × X),

s∗(ResB/AGm,B) and θ∗s∗(ResB/AGm,B) respectively. Then we have

∂0g + ρ−1({1} ×X) ∈ H1
fl(X,Ga,b),

where the operation “+” is on H1
fl(X,Ga,b).
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Chapter 5

Ga,b-torsors in the general

conditions

In this chapter, we introduce Kummer theory for cyclotomic twisted tori in the general

case along [7]. This is the main chapter in this thesis. First, we consider the homo-

morphisms defined by ideals of End(G(n)A). Second, we provide the exact sequence

inducing the Kummer sequence for cyclotomic twisted tori in the non-principal case.

Finally, we describe torsors for Ga,b in the general case.

5.1 Homomorphisms defined by ideals of End(G(n)A)

Suppose that n is an integer with n ≥ 2. Let p ∈ Z be prime with n|(p−1). We provide

the claim of an order of the kernel of a homomorphism on G(n)A corresponding to

an ideal in Z[ζ]. This plays a key role when we consider finite subgroup schemes of

the cyclotomic twisted torus.

Let a ⊂ Z[ζ] be a non-zero ideal. It is well-known that there exist ξ, η ∈ Z[ζ]
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such that a = (ξ, η). Note that Z[ζ] ∼= End(G(n)A) (see [16] Theorem 4.1). We

denote by I the representing matrix of ζ with respect to the standard Z-basis of

Zm (see Section 3.1). We define a homomorphism ψa : G(n)A → G(n)A × G(n)A

corresponding to the ideal a = (ξ, η) by

ψa(x) = (xξ(I), xη(I)),

where ξ(I) and η(I) are the representing matrixes of ξ and η respectively. For sim-

plicity, we may denote a vector xα(I) obtained by raising to the power of a matrix

α(I) by xα for any α ∈ Z[ζ]. We set G(n)A[a] = Ker(ψa : G(n)A → G(n)A ×G(n)A).

The following lemma indicates that this construction of G(n)A[a] is independent of

the choice of the generators of a.

Lemma 11. Suppose that an ideal a admits a pair of generators

a = (ξ, η) = (ξ′, η′).

Then we have

G(n)A[(ξ, η)] = G(n)A[(ξ′, η′)].

Proof. It suffices to show that G(n)A[(ξ, η)] ⊃ G(n)A[(ξ′, η′)]. Fix a local section

x ∈ G(n)A[(ξ′, η′)]. Therefore the local section x satisfies 1 = xξ′ = xη′ . By the

assumption, there is the matrix M =




m1 m2

m3 m4


 ∈ GL2(Z[ζ]) such that




m1 m2

m3 m4







ξ

η


 =




ξ′

η′


 .

Then we have 



xm1ξ = x−m2η

xm3ξ = x−m4η.

34



Hence we get the equalities

xm1m4ξ = x−m2m4η

=
(
x−m4η

)m2

=
(
xm3ξ

)m2

= xm2m3ξ.

Since det




m1 m2

m3 m4


 ∈ Z[ζ]∗, we obtain xξ = 1. Similarly, we have xη = 1.

Theorem 5.1.1. For each unramified ideal a ⊂ Z[ζ], we have

|G(n)A[a]| = NmQ(ζ)/Q a.

Proof. If two unramified ideals a and b are coprime, we easily see that G(n)A[ab] =

G(n)A[a] ⊕ G(n)A[b]. Hence we may assume that a = p`, where p is an unramified

prime ideal and ` ∈ Z. Let p ∈ Z be a prime number with (p) = Z ∩ p. There exists

θ ∈ Z[ζ] such that p = (p, θ). Then we have p` = (p`, θ`) by the factorization into

prime ideals. Let f ∈ Z be the degree of p i.e. f = [Z[ζ]/p : Z/pZ]. Therefore, we

obtain NmQ[ζ]/Q p` = pf`.

In the rest of the proof, we see that |G(n)A[p`]| = pf` by induction on `. It suffices

to check that the p-part of Z[ζ]/θ`Z[ζ] is isomorphic to (Z/p`Z)f . In the case of ` = 1,

since p is lying above p we have the isomorphisms

(Z[ζ]/θZ[ζ])p
∼= Z[ζ]/p

= Fpf

∼=
f⊕

i=1

Z/pZ as Z/pZ-modules,
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where we denote the p-part of Z[ζ]/θZ[ζ] by (Z[ζ]/θZ[ζ])p. Suppose that our claim is

true for `, namely, we have

(Z[ζ]/θ`Z[ζ])p
∼= (Z/p`Z)f .

Note that we have the isomorphism

(Z[ζ]/θ`Z[ζ])p
∼= Z[ζ]/p`

in the same way as above. We get the exact sequence

0 −→ p`/p`+1 −→ Z[ζ]/p`+1 π−→ Z[ζ]/p` −→ 0.

Let xi = (0, . . . , 1, . . . , 0) ∈ (Z/p`Z)f for i = 1, . . . , f . Then we have the isomorphism

Z[ζ]/p` ∼=
f⊕

i=1

(Z/p`Z)xi.

Let ξi ∈ Z[ζ]/p`+1 satisfying π(ξi) = xi for i = 1, . . . , f . Hence we obtain a ba-

sis {[x1], . . . , [xf ]} of Z[ζ]/p ∼= Fpf , where [xi]’s are the images of xi’s under the

isomorphism (Z[ζ]/p`)/(p/p`)→̃Z[ζ]/p ∼= Fpf . Since Z[ζ]/p` is an Artin local ring,

all xi’s are in (Z[ζ]/p`)∗. Therefore since xi = π(ξi), we have ξi ∈ (Z[ζ]/p`+1)∗ for

any i = 1, . . . , f . We take any a1, . . . , af ∈ Z satisfying π(
∑f

i=1 aiξi) = 0. Since

x1, . . . , xf are generators of Z[ζ]/p`, a1 = · · · = af ∈ p`Z. On the other hand, we

have the equivalences

aξi = 0 in Z[ζ]/p`+1 ⇐⇒ vp(aξi) ≥ ` + 1

⇐⇒ p`+1|a.

In fact, the first equivalence is true by the definition of a p-exponent. We know that

vp(aξi) = vp(a) + vp(ξi). Since a ∈ Z and (p) = Z ∩ p, we have vp(a) = vp(a). Since
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ξi ∈ (Z[ζ]/p`+1)∗, vp(ξi) = 0. Therefore we get vp(aξi) = vp(a) ≥ ` + 1 by which we

check the last equivalence. Let Z[ζ]p be the local ring of Z[ζ] at p and t a generator

of the maximal ideal pZ[ζ]p. Then we have the isomorphisms

p`/p`+1 ∼= (Z[ζ]/p)t
`

as Z[ζ]/p-modules

⊃
f∑

i=1

p`(Z/p`+1)ξi

∼=
f⊕

i=1

Fpξi as Fp-modules

∼= Fpf .

Note that
∑f

i=1(Z/p`+1Z)ξi ⊂ Z[ζ]/p`+1. We see that the homomorphism π re-

stricted to
∑f

i=1(Z/p`+1Z)ξi is surjective. In fact, we have the isomorphism Z[ζ]/p` ∼=

(Z/p`Z)x1⊕· · ·⊕(Z/p`Z)xf as Z/p`Z-modules. Let a1x1 + · · ·+afxf be fixed. Since

the map Z/p`+1Z → Z/p`Z is surjective, there is αi such that its image is ai for

each i = 1, . . . f . Thus π(
∑f

i=1 αiξi) =
∑f

i=1 aixi, as desired. Therefore we have a

commutative diagram

0 −−−→ p`/p`+1 −−−→ Z[ζ]/p`+1 −−−→ Z[ζ]/p` −−−→ 0

o
y

x
∥∥∥

0 −−−→ Fpf −−−→ ∑f
i=1(Z/p`+1Z)ξi −−−→ Z[ζ]/p` −−−→ 0.

By the snake lemma, we have Z[ζ]/p`+1 ∼= ∑f
i=1(Z/p`+1Z)ξi, which completes the

proof.
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5.2 The key exact sequence for calculating Ga,b-

torsors

Here we show an exact sequence, which induces the short exact sequence like the

Kummer sequence. This will play a key role to consider Ga,b-torsors in terms of the

first cohomology group of Ga,b in Section 5.3.

Suppose that n is an integer with n ≥ 2. Let p ∈ Z be a prime number with

n|(p − 1) and hence p ≥ 3. We consider an algebraic number field Q(ζ)/Q. Let

p ⊂ Z[ζ] be one of the prime ideals lying above p ∈ Z. We know that there exists

θ ∈ Z[ζ] such that p = (p, θ). Then we have the theorem for the key exact sequence:

Theorem 5.2.1. For the ideal p = (p, θ) above, we can choose a homomorphism ψ

such that the following sequence is exact as sheaves of groups on (Spec B)flat:

1 −→ Ker ψp −→ Gm
m,B

ψp−→ Gm
m,B ×Gm

m,B

ψ−→ Gm
m,B ×Gm

m,B,

where we set ψp(x) = (xp, xθ) and ψ(u, v) = (uβv−α, uβ′v−α′).

First, we explain the morphisms ψp and ψ in the theorem above. Recall the

definition of a homomorphism ψa corresponding to the ideal a ⊂ Z[ζ] in Section

5, 5.1. Then we have the morphism

ψp(x) = (xpEm , xθ(I)),

where Em is the identity element of Mm(Z) , I the representing matrix of ζ with

respect to the standard basis of a Z-module Zm and θ(I) the representing matrix of

θ.
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Now we give the definition of the morphism ψ. We have

(p) = pp1 · · · pm−1,

(θ) = pqe1
1 · · · qer

r

by the factorization into prime ideals with pi + qj = (1) for any i = 1, . . . , m− 1 and

j = 1, . . . , r. We denote an uniformizing parameter at a prime ideal q by xq ∈ Z[ζ]q.

By the approximation theorem, there exists α ∈ Q[ζ] such that



vpi
(α− xpi

) ≥ 2 (i = 1, . . . , m− 1)

vqj
(α− 1 + x

ej
qj) ≥ ej + 1 (j = 1, . . . , r)

vq(α) ≥ 0 (q 6= pi, qj),

where vq is a q-exponent for each prime ideal q. Then we easily see that α belongs

to Z[ζ] satisfying α ∈ p1 · · · pm−1 = (p)p−1. There exists an ideal a to be coprime to

all pi and qj such that (α) = p1 · · · pm−1a. Moreover for each prime ideal qj, we have

the equations

α = 1− x
ej
qj + (terms of higher degree in xqj

).

Then there exists an ideal b to be coprime to all pi and qj such that (1 − α) =

qe1
1 · · · qer

r b. We have the equation

(p(1− α)) = pp1 · · · pm−1q
e1
1 · · · qer

r b.

Note that b is coprime to p by 1 − α ∈ (θ)p−1. And we have the equality (θα) =

pp1 · · · pm−1q
e1
1 · · · qer

r a. Note that the ideal a satisfies that (p, a) = (b, a) = 1 by

1−α ∈ (θ)p−1. Hence we see that θα ∈ pp1 · · · pm−1 = (p) and p(1−α) ∈ pqe1
1 · · · qer

r =

(θ). Then there exists β ∈ Z[ζ] such that θα = pβ and α′ ∈ Z[ζ] such that p(1−α) =

θα′. We set β′ = 1− α. We define a morphism ψ by

ψ(u, v) = (uβ(I)v−α(I), uβ′(I)v−α′(I)),
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where α(I), β(I), α′(I) and β′(I) are the repsresenting matrixes of α, β, α′ and β′

respectively.

Second, we give a proof of Theorem 5.2.1.

Proof. It suffices to show that Im ψp = Ker ψ. By the definitions of homomorphisms

ψp and ψ, we immediately see that Im ψp ⊂ Ker ψ. Conversely, for any B-algebra R,

let a local section (u, v) ∈ Ker[ψR : (Gm
m,B×Gm

m,B)(R) → Gm
m,B×Gm

m,B)(R)] be fixed.

Since Gm,B is a sheaf of group on the flat topology, we choose x ∈ Gm,B(R′) such

that xp = u for some suitable flat extension R′ of R. Then we have xpβv−α = 1 and

xpβ′v−α′ = 1. Since θα = pβ and pβ′ = θα′, we get




( v

xθ

)α

= 1

( v

xθ

)α′

= 1.

We set ξ =
v

xθ
. Hence we have ξα = 1 = ξα′ . Since we know that





(α) = p1 · · · pm−1a

(α′) = p1 · · · pm−1b,

we have

(α, α′) = p1 · · · pm−1 ⊃ pp1 · · · pm−1 = (p).

There exist x, y ∈ Z[ζ] such that p = xα + yα′. Then we have ξp = 1, since ξα =

ξα′ = 1. We easily see that (θ) + (α) = 1. Then there exist z, w ∈ Z[ζ] such that

θz + αw = 1. Hence we get ξ = ξθz+αw = ξθz. Therefore, we have equations





u = xp = (ξzx)p

v = ξxθ = (ξzx)θ.

This completes the proof.
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5.3 On the general Ga,b-torsors

In this section, we provide the description of Ga,b-torsors in terms of elements in the

first cohomology group of G(n)A in the case of non-principal ideals.

Let p ∈ Z be a prime number with p ≥ 3. We let n = p − 1. Let p ⊂ Z[ζ]

be an ideal lying above p. We assume that A is a local ring. Now we describe the

Ga,b-torsors in the general case. In this section, we do not assume that the ideal p

is principal. Suppose that B = A[u], where u is an n-th root of a non-zero divisor

b ∈ A. By Theorem 5.2.1, we have the exact sequence

1 → µµµp,B → Gm
m,B

ψp−→ Ker(ψ : Gm
m,B ×Gm

m,B → Gm
m,B ×Gm

m,B) → 1. (5.1)

We will give the defining equations of Ker ψ explicitly in Appendix A.2.

The Galois descent for the exact sequence (5.1) yields an exact sequence

1 −→ Ga,b −→ G(n)A
ψp−→ Ker ψ −→ 1,

where Ker ψ is the Galois descent of Ker ψ to A. We call the exact sequence above

the Kummer sequence for cyclotomic twisted tori in the general case. Then we have

a long exact sequence as cohomology groups on Xfl = (SpecA)flat

0 −→ H0
fl(X,Ga,b) −→ H0

fl(X,G(n)A)
H0(ψp)−→ H0

fl(X, Ker ψ)

∂0−→ H1
fl(X,Ga,b) −→ H1

fl(X,G(n)A)
H1(ψp)−→ H1

fl(X, Ker ψ)

∂1−→ · · · .

We have the noncanonical isomorphism

H1
fl(X,Ga,b) ∼= Coker

[
H0

fl(X,G(n)A)
H0(ψp)−→ H0

fl(X, Ker ψ)

]

×Ker

[
H1

fl(X,G(n)A)
H1(ψp)−→ H1

fl(X, Ker ψ)

]
.
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The explicit correspondence on the isomorphism above is obtained as follows: for any

g ∈ Coker

[
H0

fl(X,G(n)A)
H0(ψp)−→ H0

fl(X, Ker ψ)

]

and any

s∗(ResB/AGm,B) ∈ Ker

[
H1

fl(X,G(n)A)
H1(ψp)−→ H1

fl(X, Ker ψ)

]

(see Section 4), we have the commutative diagram

ρ−1({1} ×X) −−−→ s∗(ResB/AGm,B)
ρ−−−→ ψp∗s∗(ResB/AGm,B)y

y
y

X X X.

Note that ψp∗s∗(ResB/AGm,B) ∼= Ker ψ×X and ι∗(ρ−1({1}×X)) ∼= s∗(ResB/AGm,B)

(cf. See [16] for details). Furthermore Ga,b, G(n)A and Ker ψ act on ρ−1({1} × X),

s∗(ResB/AGm,B) and ψp∗s∗(ResB/AGm,B) respectively. Then we have

∂0g + ρ−1({1} ×X) ∈ H1
fl(X,Ga,b),

where the operation “+” is on H1
fl(X,Ga,b).

The discussion above can be generalized to the case of n|(p− 1). In other words,

we have torsors for Ker ψp.
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Appendix A

A.1 On the cyclotomic polynomial

In this section, we prove that for each positive integer n the cyclotomic polynomial

Φn(X) can be written down as a linear combination of Fi(X) over Z[X]. There are

two key facts in our proof. The first one is the well-known fact that O∩Q = Z, where

O is the set of algebraic integers. The second one is Newton’s interpolation formula.

We summarize these things as the following three lemmas to prove our main result.

Lemma 12. Suppose that α0, . . . , αn ∈ O. Let f(X) = a0 + a1(X − α0) + a2(X −

α0)(X − α1) + · · ·+ an(X − α0) · · · (X − αn−1) and bi the coefficients of X i of f(X)

for each i = 0, 1, . . . , n. Then all ai belong to the set of algebraic integers O if and

only if all bi belong to the set of algebraic integers O.

Proof. Assume that b0, . . . , bn belong to O. Dividing f(X) by X − α0 we have

f(X) = {a1 + a2(X − α1) + a3(X − α1)(X − α2) + · · ·

· · ·+ an(X − α1) · · · (X − αn−1)}(X − α0) + a0.

Thus a0 is represented by bi’s and αi’s , so a0 is in O. Moreover the quotient a1 +

a2(X −α1) + a3(X −α1)(X −α2) + · · ·+ an(X −α1) · · · (X −αn−1) belongs to O[X].
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Continuing such process, we can easily prove that ai ∈ O. Conversely if all bi are O

then all ai are O clearly.

Now we briefly review Newton’s interpolation formula. For details, one can refer

to B. L. van der Waerden [19]. Given n + 1 distinct elements α0, . . . , αn and n + 1

elements β0, . . . , βn belonging to some field, we can construct the unique polynomial

f of degree at most n such that f(αi) = βi for i = 0, . . . , n. Let f(X) = a0 + a1(X −

α0)+ a2(X −α0)(X −α1)+ · · ·+ an(X −α0) · · · (X −αn−1). We set f1(X0) = f(X0).

For each k > 0, we define a polynomial fk+1(Xk, . . . , X0) inductively by

fk+1(Xk, . . . , X0) :=
fk(Xk, . . . , X1)− fk−1(Xk−1, . . . , X0)

Xk −X0

.

Then a0, . . . , an are determined by

ak = fk+1(αk, . . . , α0)

for k = 0, . . . , n. We call the right side of the above equation the k-th difference quo-

tient. Note that the k-th difference quotient is independent of the order of α0, . . . , αk.

The following lemma plays an important role to prove Proposition 15.

Lemma 13. Let n + 1 distinct elements ξ0, ξ1, . . . , ξn ∈ O and A(X) be a polynomial

of degree n with the form: A(X) = a0 + a1(X − ξ0) + a2(X − ξ0)(X − ξ1) + · · · +

an(X − ξ0) · · · (X − ξn−1). If there exists G1(X) ∈ O[X] such that G1(ξi) = A(ξi) for

all i = 0, 1, . . . , n, then the k-th difference quotient Ak+1(ξk, ξk−1, . . . , ξ0)(= ak) ∈ O

for all i = 0, 1, . . . , n.

Proof. We are going to give a proof by induction on i = 1, 2, . . . , n. By Newton’s

interpolation formula, We have

A2(ξi, ξi−1) =
A(ξi)− A(ξi−1)

ξi − ξi−1

=
G1(ξi)−G1(ξi−1)

ξi − ξi−1
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for i = 1, · · · , n. Replacing ξj with ξj−1, the numerator of A2(ξj, ξj−1) equals to 0.

Thus G1(ξj)−G1(ξj−1) has the factor ξj − ξj−1 for all j = 1, 2, . . . , n, so we can write

A2(ξj, ξj−1) as a polynomial in ξj and ξj−1 for all j = 1, 2, . . . , n. It is that for all j =

1, 2, . . . , n, there exists a polynomial G2(X1, X0) such that G2(ξj, ξj−1) = A2(ξj, ξj−1).

In particular, the first difference quotient A2(ξ1, ξ0) ∈ O. Suppose that we have veri-

fied our claim for k− 1, that is, we suppose there exists Gk(Xk−1, Xk−2, . . . , X0) such

that Gk(ξk+j−1, ξk+j−2, . . . , ξj) = Ak(ξk+j−1, ξk+j−2, . . . , ξj) for all j = 0, 1, . . . , n−k+

1. By Newton’s interpolation formula, we obtain

Ak+1(ξk+i+1, ξk+i, . . . , ξi)

=
Ak(ξk+i, ξk+i−1, . . . , ξi+1)− Ak(ξk+i−1, ξk+i−2, . . . , ξi)

ξk+i − ξi

=
Gk(ξk+i, ξk+i−1, . . . , ξi+1)−Gk(ξk+i−1, ξk+i−2, . . . , ξi)

ξk+i − ξi

for i = 0, 1, . . . , n−k. Replacing ξk+j−1 with ξj−1, the numerator of Ak+1(ξk+j−1, ξk+j−2,

. . . , ξj−1) equals to 0. Thus

Gk(ξk+j−1, ξk+j−2, . . . , ξj)−Gk(ξk+j−2, ξk+j−3, . . . , ξj−1)

has the factor ξk+j−1−ξj−1 for all j = 1, 2, . . . , n−k+1, so we can write Ak+1(ξk+j−1,

ξk+j−2, . . . , ξj−1) as a polynomial in ξk+j−1, . . . , ξj and ξj−1 for all j = 1, 2, . . . , n −

k + 1. We easily see that for all j = 1, 2, . . . , n − k + 1 there exists a polynomial

Gk+1(Xk, Xk−1, . . . , X0) such that Gk+1(ξk+j, ξk+j−1, . . . , ξj) = Ak+1(ξk+j, ξk+j−1, . . .

, ξj). In particular the k-th difference quotient Ak+1(ξk, ξk−1, . . . , ξ0) ∈ O, which

completes the proof.

Lemma 14. Let f(X) and g(X) be polynomials with coefficients in Q. We denote

by d(X) the greatest common divisor of f(X) and g(X). By the extended Euclidian
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algorithm, there exist polynomials A(X) and B(X) such that d(X) = A(X)f(X) +

B(X)g(X). Then we have the following inequalities

deg A(X) < deg g(X)− deg d(X),

deg B(X) < deg f(X)− deg d(X).

Proof. Since the proof is straightforward, we omit it.

Let n be a positive integer, n = pe1
1 pe2

2 · · · per
r with distinct primes p1, p2, . . . , pr

and positive integers e1, e2, . . . , er, and ni =
n

pi

for each i = 1, 2, . . . , r. Set Fi(X) =

Xn − 1

Xni − 1
for each i = 1, 2, . . . , r. In the last section, we know that for all n, the

cyclotomic polynomial Φn(X) is a Q[X]-linear combination of Fi(X)’s.

Proposition 15. Notations are as above. For each n, the cyclotomic polynomial

Φn(X) is a Z[X]-linear combination of Fi(X)’s.

Proof. Let ζn be a primitive n-th root of unity. For simplicity, we denote ζn by ζ.

Then we can write down Fi(X) =

∏
a∈Z/nZ(X − ζa)∏

b∈Z/niZ(X − ζpib)
for each i = 1, 2, . . . , n. We

denote by Fk!(X) the greatest common divisor of F1(X), . . . , Fk−1(X) and Fk(X),

that is, (F1(X), F2(X), . . . , Fk(X))

= Fk!(X). If k = r, then Fr!(X) is equal to Φn(X).

We are going to give a proof by induction on k. If k = 2, we have that F2!(X) =

(Xn − 1)(Xn12 − 1)

(Xn1 − 1)(Xn2 − 1)
, where we set n12 =

n

p1p2

. By the extended Euclidian algorithm

and Lemma 14, there exist A2(X) and B2(X) belonging to Q[X] such that

A2(X)F1(X) + B2(X)F2(X) = F2!(X), (A.1)

deg A2(X) < deg F2(X) − deg F2!(X) = n1 − n12 and deg B2(X) < deg F1(X) −

deg F2!(X). Note that A2(X) belongs to Z[X] if and only if B2(X) belongs to Z[X],
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and so to give a proof we have only to verify just that the coefficients of A2(X) are

in Z. We substitute ζp1b to X of (A.1), where b is in Z/n1Z and it is coprime to p2

and so the number of b’s is n1 − n12. Then we have

A2(ζ
p1b) =

ζp1bn12 − 1

ζp1bn2 − 1
.

We denote the primitive pi-th root of unity by ζpi
, that is ζpi

= ζni . Then we have

A2(ζ
p1b) =

ζb
p2
− 1

ζp1b
p2 − 1

=
ζ

p′1p1b
p2 − 1

ζp1b
p2 − 1

= ζp1bn2(p′1−1) + ζp1bn2(p′1−2) + · · ·+ 1 ∈ O,

since there exists p′1 such that p′1p1 ≡ 1 mod p2. We recall that the number of

A2(ζ
p2b)’s is greater than the degree of A2(X). Therefore by Newton’s interpolation

formula, we uniquely determine the coefficients of A2(X). Since all A2(ζ
p1b) are

polynomials in ζp1b respectively we prove that the coefficients of A2(X) are in O by

Lemma 13. Next suppose that we have verified our claim for every i ≤ k− 1. By the

extended Euclidian algorithm, there exist Ak(X) and Bk(X) belonging to Q[X] such

that

Ak(X)Fk(X) + Bk(X)F(k−1)!(X) = Fk!(X), (A.2)

deg Ak(X) < deg F(k−1)!(X)− deg Fk!(X)

= φ(pe1
1 · · · pek−1

k−1 )pek−1
k p

ek+1

k+1 · · · per
r

and deg Bk(X) < deg Fk(X) − deg Fk!(X), where φ is the Euler function. Note that

Ak(X) belongs to Z[X] if and only if Bk(X) belongs to Z[X], and so to give a proof

we have only to verify just that the coefficients of Ak(X) are in Z. We substitute ζpkb
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to X of (A.2), where b is in Z/nkZ and it is coprime to p1 · · · pk−1 and so the number

of b’s is φ(pe1
1 · · · pek−1

k−1 )pek−1
k p

ek+1

k+1 · · · per
r . Then we have the following equation

Ak(ζ
bpk)pk = Fk!(ζ

bpk).

We set ni1i2···is =
n

pi1pi2 · · · pis

. Since we describe

Fk!(X) =(Xn − 1)
∏

i=1,··· ,k
(Xni − 1)−1

∏
i<j

(Xnij − 1) · · ·

· · ·
∏

i1<···<ik−1

(Xni1···ik−1 − 1)(−1)k−1

(Xn1···k − 1)(−1)k

,

we consider the values of
Xn − 1

Xnk − 1
,

Xni1···is − 1

Xni1···isk − 1
and

Xni1···itk − 1

Xni1···it − 1
, where s is even

and t is odd. Since Fk(X) =
Xn − 1

Xnk − 1
= Xnk(pk−1) + Xnk(pk−2) + · · ·+ 1, for

Xn − 1

Xnk − 1

we get Fk(ζ
bpk) = pk. The values of

Xni1···is − 1

Xni1···isk − 1
and

Xni1···itk − 1

Xni1···it − 1
substituting ζbpk

to X are represented by the polynomials on ζbpk respectively as follows

(ζbpk)ni1···is − 1

(ζbpk)ni1···isk − 1
=

(ζbpk)pkni1···isk − 1

(ζbpk)ni1···isk − 1

= (ζbpk)ni1···isk(pk−1) + (ζbpk)ni1···isk(pk−2) + · · ·+ 1

and
(ζbpk)ni1···itk − 1

(ζbpk)ni1···it − 1
=

ζb
pi1
···pit

− 1

ζbpk
pi1
···pit

− 1

=
ζ

bpkp′k
pi1
···pit

− 1

ζbpk
pi1
···pit

− 1

= (ζbpk)ni1···it (p
′
k−1) + (ζbpk)ni1···it (p

′
k−2) + · · ·+ 1

since there exists p′k such that pkp
′
k ≡ 1 mod pi1 · · · pit . Thus we obtain Ak(ζ

bpk)

represented by the polynomial of ζbpk and so it is in O. Therefore we can verify that

the coefficients of Ak(X) belong to Z by Lemma 13, which completes the proof.
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A.2 Defining equations of some subgroup scheme

of Gm
m,B ×Gm

m,B

In this section, we give the explicit defining equations of the subgroup scheme Ker ψ ⊂

Gm
m,B × Gm

m,B. We recall that ψ : Gm
m,B × Gm

m,B → Gm
m,B × Gm

m,B ; (u, v) 7→

(uβv−α, uβ′v−α′) (see Section 5.3).

Since α, β, α′ and β′ are in Z[ζ], we set

α = α(ζ) := am−1ζ
m−1 + am−2ζ

m−2 + · · ·+ a1ζ + a0

β = β(ζ) := bm−1ζ
m−1 + bm−2ζ

m−2 + · · ·+ b1ζ + b0

and α′, β′ replacing aj’s, bj’s for a′j’s, b′j’s respectively. Let Φn(X) = Xm+pm−1X
m−1+

· · ·+p1X+p0 be the cyclotomic polynomial, satisfied by ζ. The matrix I representing

of ζ forms 


0 · · · 0 −pm−1

1
. . .

... −pm−2

. . . 0
...

1 −p0




with respect to the standard Z-basis of Zm. (See Section 3.) For k ∈ Z, we denote

by ik the last column of Ik ∈ GLm(Z) and for j = 1, 2, . . . , m, by ijk the j-th entry

of ik. We know that ij1 = −pm−j for each j = 0, . . . , m− 1 and i1 =




−pm−1

−pm−2

...

−p0




. We
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set ej =




0

...

1

...

0




of which the j-th entry is one but the others are zero. Then we have

I = (e2 e3 · · · em i1). By straightforward calculating Ik = Ik−1I, we have

ijk =





k−1∑

l=1

ijl · ik−1−l
1 m− k + 1 ≤ j ≤ m− 1

ij+k−1
1 +

k−1∑

l=1

ijl · ik−1−l
1 1 ≤ j ≤ m− k.

Or by straightforward calculating Ik = IIk−1, we have

ijk =





im−1
1 · i0k−1 j = m− 1

ij+1
k−1 + ij1 · i0k−1 1 ≤ j ≤ m− 2.

Note that these recurrent formulas are equal to each others. Thus we have Ik =

(ek+1 ek+2 · · · em i1 i2 · · · ik) for each k = 1, . . . , m − 1. So we obtain the matrix

α(I) corresponding to α(ζ) as follows,

α(I) =

(
m−1∑

l=0

alel+1 am−1i1 +
m∑

l=2

al−2el · · ·
m−1∑

l=1

alil + a0em

)

in which the k-th column is
∑k−1

l=1 am−k+lil +
∑m

l=k al−kel for k = 2, . . . , m. We see
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that the first column and the k-th column are respectively




a0

a1

...

am−1




and




∑k−1
l=1 am−l · im−1

k−l

...

∑k−1
l=1 am−l · im−k+1

k−l

∑k−1
l=1 am−l · im−k

k−l + a0

...

∑k−1
l=1 am−l · i0k−l + am−k




.

And we obtain the matrices corresponding the others by substituting aj’s for the

coefficients of them. Fix any (u, v) ∈ (Ker ψ)(R) for A-algebra R. We have





vα(I) = uβ(I),

vα′(I) = uβ′(I).

We set u = (u1, u2, . . . , um) and v = (v1, v2, . . . , vm). Comparing the two sides of
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vα(I) = uβ(I), we have the equations





m∏
j=1

v
aj−1

j =
m∏

j=1

u
bj−1

j

v
am−1im−1

1
1

m∏
j=2

v
am−1im−j

1 +aj−2

j = u
bm−1im−1

1
1

m∏
j=2

u
bm−1im−j

1 +bj−2

j

...

k−1∏
j=1

v
Pk−1

l=1 am−li
m−j
k−l

j

m∏

j=k

v
Pk−1

l=1 am−li
m−j
k−l +aj−k

j

=
k−1∏
j=1

u
Pk−1

l=1 bm−li
m−j
k−l

j

m∏

j=k

u
Pk−1

l=1 bm−li
m−j
k−l +bj−k

j

...
(

m−1∏
j=1

v
Pm−1

l=1 am−li
m−j
m−1

j

)
v
Pm−1

l=1 am−li
0
m−l+a0

m

=

(
m−1∏
j=1

u
Pm−1

l=1 bm−li
m−j
m−1

j

)
u
Pm−1

l=1 bm−li
0
m−l+b0

m .

Similarly, from vα′(I) = uβ′(I) we have the equations of uj’s and vj’s by substituting

aj’s and bj’s for a′j’s and b′j’s respectively. We set

f1(X1, . . . , Xm, Y1, . . . , Ym) =
m∏

j=1

Y
aj−1

j −
m∏

j=1

X
bj−1

j ,

and

fk(X1, . . . , Xm, Y1, . . . , Ym) =
k−1∏
j=1

Y
Pk−1

l=1 am−li
m−j
k−l

j

m∏

j=k

Y
Pk−1

l=1 am−li
m−j
k−l +aj−k

j

−
k−1∏
j=1

X
Pk−1

l=1 bm−li
m−j
k−l

j

m∏

j=k

X
Pk−1

l=1 bm−li
m−j
k−l +bj−k

j

for each k = 2, . . . , m, and substituting aj’s and bj’s for a′j’s and b′j’s respectively

gives the definitions of f ′1(X1, . . . , Xm, Y1, . . . , Ym) and f ′k(X1, . . . , Xm, Y1, . . . , Ym) for
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each k = 2, . . . , m. Then we have the equalities

(Ker ψ)(R) =
{

(u, v) ∈ Gm
m,B(R)×Gm

m,B(R)| vα = uβ, vα′ = uβ′
}

=
{
(u, v) ∈ Gm

m,B(R)×Gm
m,B(R)| 0 = fj(u, v) = f ′j(u, v) ∀j}

∼= HomB-alg

(
B

[
X1, . . . , Xm, Y1, . . . , Ym,

1∏m
j=1 XjYj

]
/F , R

)
,

where the ideal F is generated by fj(X1, . . . , Xm, Y1, . . . , Ym) and f ′j(X1, . . . , Xm, Y1,

. . . , Ym) for j = 1, 2, . . . , m. Thus the defining equations of Ker ψ are f1(X1, . . . , Xm,

Y1, . . . , Ym), fk(X1, . . . , Xm, Y1, . . . , Ym)’s, f ′1(X1, . . . , Xm, Y1, . . . , Ym) and f ′k(X1, . . .

, Xm, Y1, . . . , Ym)’s, namely,

Ker ψ = Spec

(
B

[
X1, . . . , Xm, Y1, . . . , Ym,

1∏m
j=1 Xj

,
1∏m

j=1 Yj

]
/F

)
,

where F is the ideal generated by f1(X1, . . . , Xm, Y1, . . . , Ym), fk(X1, . . . , Xm, Y1, . . . ,

Ym)’s, f ′1(X1, . . . , Xm, Y1, . . . , Ym) and f ′k(X1, . . . , Xm, Y1, . . . , Ym)’s.
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