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Preface

The main purpose of this thesis is to present the theory of fixed point of nonlinear map-
pings in nonlinear functional analysis in a systematic way. In particular, we prove strong
convergence theorems for fixed points problems of nonlinear mappings of nonexpansive type
in Banach spaces.

Nonlinear functional analysis is an area of mathematics which has grown up greatly over
the past few decades. It is significantly influenced by nonlinear problems posed in physics,
sciences, engineering, and economics. Many problems in nonlinear functional analysis are
related to finding fixed points of nonexpansive mappings. The theory of maximal monotone
operators has emerged as an effective and powerful tool for studying a wide class of prob-
lems arising in various many fields. For example, many problems in convex programming,
minimization problems and variational inequalities, can be formulated as finding zeros of
maximal monotone operators. In 1976, Rockafellar [66] has set up a fundamental conver-
gence analysis of an algorithm for finding a zero of a maximal monotone operator in a Hilbert
space. The algorithm is called a proximal point algorithm. In this method, resolvents of the
maximal monotone operator play a crucial role for finding a zero of a maximal monotone
operator. A resolvent of a maximal monotone operator is a nonexpansive mapping which
is an obvious generalization of a contraction mapping. Therefore finding zeros of maximal
monotone operators is reduced to a fixed point problem for nonexpansive mappings, that is,
the problem finding fixed points of nonexpansive mappings. The subdifferential of a proper,
convex and lower semicontinuous functional is maximal monotone and the resolvents of a
maximal monotone operator are everywhere defined nonexpansive mappings. Nonexpansive
mappings also appear in applications as the transition operators for initial value problems
of differential inclusions associated with accretive operators. Nonexpansive mappings are
intimately connected with the monotonicity methods developed since the early 1960’s, and
constitute one of the first classes of nonlinear mappings for which fixed point theorems were
obtained by using the fine geometric properties of the underlying Banach spaces instead of
compactness properties. As a result of these, the study of fixed point theory for nonexpan-
sive mappings has attracted the interest of numerous scientists and has become a flourishing
area of research.

In fixed point theory, it is important to construct fixed points. Rockafellar [66] has posed
an open question whether (or not) the proximal point method always converges strongly.
This question was resolved in the negative later on. Naturally, the question arises whether
the proximal point method can be modified, preferably in a simple way, so that strong
convergence is guaranteed. Solodov and Svaiter [68] have proposed a new proximal type
algorithm, which converges strongly, by combining proximal point iterations with certain
computationally simple projection steps. This algorithm is called a hybrid method. Moti-



vated by [68], Nakajo and Takahashi [51] have proved a strong convergence theorem for a
nonexpansive mapping in a Hilbert space by using the hybrid method. Moreover, Takahashi,
Takeuchi and Kubota [74] have introduced a new hybrid iterative scheme called a shrinking
projection method for a nonexpansive mapping in a Hilbert space. It is an advantage of the
hybrid method and the shrinking projection method that strong convergence of iterative
sequences is guaranteed without any compact assumptions. These are now powerful meth-
ods, which play an important role in finding fixed points of nonlinear mappings in Banach
spaces. From this background, many authors have studied iterative methods for finding a
fixed point of nonlinear mappings of nonexpansive type in Banach spaces with tolerance
requirements which are less restrictive and more constructive than in the classical setting.
It is expected that the iterative methods for nonlinear mappings of nonexpansive type can
be applied to finding a zero of maximal monotone operators in Banach spaces.

The aim of this thesis is to give new iterative methods for constructing fixed points of
nonlinear mappings of nonexpansive type. With this in mind we have divided the thesis
into three chapters. In Chapter 1, we explain certain notation, terminologies and basic
results used throughout the thesis. In Chapter 2, we prove strong convergence theorems
for finding a common element of the set of solutions for a generalized equilibrium problem
and the set of common fixed points for countably infinite family of relatively nonexpansive
(see Section 2.2) mappings by using the hybrid method in Banach spaces: In contrast to
the case of Hilbert spaces, the resolvent of a maximal monotone operator is not generally
a nonexpansive mapping in the case of Banach spaces. Recently, Matsushita and Taka-
hashi [46] have introduced the class of relatively nonexpansive mappings in Banach spaces.
The class includes all of resolvents of maximal monotone operators with zero points on a
uniformly convex and uniformly smooth Banach space and all of nonexpansive mappings
with fixed points in a Hilbert space. On the other hand, recent developments in fixed point
theory reflect that algorithmic constructions for the approximation of fixed point problems
are vigorously purpose and analyzed for various classes of mappings in different spaces. In
the recent years, there are many researches concerning the problem of approximating a com-
mon fixed point of nonlinear mappings in various classes, by using W-mappings and convex
combinations (see Section 2.2). Motivated by these concepts, we investigate the strong con-
vergence theorems for finding a common element of a countably infinite family of relatively
nonexpansive mappings and a generalized equilibrium problem by using W-mappings and
convex combinations, respectively. It is expected that these results can be applied to gen-
eralized equilibrium problems with countably infinite constraints. In Section 2.2, we recall
some basic notions and give the definition of W-mappings and convex combinations of map-
pings. We present and prove our main results which are strong convergence theorems of
W-mappings and convex combinations in Section 2.3 and Section 2.4, respectively. In Chap-
ter 3, we prove strong convergence theorems by using the shrinking projection method with
respect to Bregman distances. In 1967, Bregman [12] has discovered an elegant and effective
technique for the using of the so-called Bregman distance function (see Section 3.2) in the
process of designing and analyzing feasibility and optimization algorithms. Many authors
have studied iterative methods for approximating fixed points of nonexpansive mappings
with respect to the Bregman distance. However, as far as we know, the cases where non-
linear mappings are not Lipschitz continuous with respect to the Bregman distance have
not been studied yet. From this background, we introduce new classes of nonlinear map-



pings which are extensions of asymptotically quasi-nonexpansive mappings with respect to
the Bregman distance in the intermediate sense (see Section 3.4). Motivated by the above
results, we design new hybrid iterative schemes for finding fixed points of these mappings
in reflexive Banach spaces. Our results are generalization of results by [74]. In Section 3.2,
we present several preliminary definitions and results. In Section 3.3, we recall the notion
of Mosco convergence and two kinds of projection with respect to the Bregman distance.
One is the generalization of generalized projection and the other the sunny generalized
nonexpansive retraction. In Section 3.4, we introduce new classes of mappings which are
extensions of asymptotically quasi-nonexpansive mappings in the intermediate sense. We
study the properties of the set of fixed points of these mappings. In Section 3.5, we prove
new strong convergence theorems of the shrinking projection method for these mappings.

Finally, the author wishes to express her gratitude to Professor Yoshikazu Kobayashi,
Professor Wataru Takahashi and Professor Naoki Tanaka for helpful comments and would
like to thank all Professors of Department of Mathematics and fellow graduate students for
helping me on whenever needed to finish this dissertation.



Chapter 1

Preliminaries

In this chapter we explain certain notation, terminologies and elementary results used in
this thesis.

Throughout this thesis, we denote by N and R the sets of all nonnegative integers and
real numbers, respectively. Moreover, we assume that E is a real Banach space with the
norm ||-||, E* is the dual space of E and (-,-) is the pairing between E and E*. We denote
the strong convergence of a sequence {z,} to x by z, — x and the weak convergence by
Tp — T.

1.1 Lipschitzian and nonexpansive mappings

Let C' be a nonempty subset of F, T" a mapping of C' into E' and k € R. The mapping T is
said to be k-Lipschitz continuous if

[Tw = Tyl < klle =yl

for all x,y € C. If 0 < k < 1, the mapping T is called contraction. If k = 1, the
mapping 7' is said to be nonexpansive. The mapping T is said to be locally Lipschitz
continuous if, for any x € C, there exist a neighbourhood U, of z and a constant k£ such
that [Ty — Tz|| < klly — z| for all y,z € U,.

A point p € C is called a fized point of T if Tp = p. We denote by F(T') the set of fixed
points of T.

1.2 Monotone operators

A set-valued operator A C E x E* is said to be monotone if (z — y,2* — y*) > 0 for all
(x,2%), (y,y*) € A. A monotone operator A C E x E* is said to be mazimal monotone if
A = B for any monotone operator B C E x E* such that A C B. Let a > 0. An operator
A of C into E* is said to be a-inverse strongly monotone if

(v —y, Az — Ay) > of| Az — Ay

for all z;y € C. If A is an a-inverse strongly monotone operator, then A is obviously
1/a-Lipschitzian.



1.3 Topological spaces

Let d: E x E — [0,00) be a function. Recall that d is called a metric on E if the following
properties hold:
(i) identity of indiscernibles: d(x,y) = 0 if and only if z = y for some z,y € F;
(i) symmetry: d(x,y) = d(y, x) for all z,y € F;
(iii) triangle inequality: d(x,y) < d(z,z) + d(y, z) for all z,y,z € E.
A value of metric d at (z,y) is called the distance between x and y.

Let C be a subset of E. An element x € C' is said to be an interior point of C' if there
exists > 0 such that {y € F : d(z,y) <r} C E. The subset C is said to be open if every
point of C'is an interior point of C'. The subset C' is said to be closed if E'\ C'is open. The
subset C'is said to be conver if tx + (1 —t)y € C for all z,y € C and t € [0,1]. The subset
C is said to be bounded if its diameter sup{d(z,y) : x,y € C'} is finite.

1.4 Convex functions and subdifferentials

Let f: F — (—00,+00] be a function. The effective domain of f is defined by
domf:={zr e E: f(x) < +oo}.

The function f is said to be proper if dom f is nonempty. We denote by int dom f the interior
of the effective domain of f. We denote by ranf the range of f.

The function f is said to be bounded if there exists L > 0 such that |f(x)| < L < 400
for all z € E. The function f is said to be locally bounded if for each x € E, there exist
L > 0 and a neighborhood B, of x such that |f(y)| < L < +oo for all y € B,. The function
f is said to be convexr on F if it satisfies

fOz+ (1 =Ny) <Af(z)+(1=XN)f(y)

for all z,y € E and A € [0,1]. The function f is said to be lower semicontinuous on E if
lim inf f(y) 2 f(z)
for all x € E. The function f is said to be continuous at © € E if for every net {x,} in E,
To — x implies  f(z,) — f(z).
The function f is said to be continuous on E if it is continuous at each point of E.

Proposition 1.4.1 ([6], Proposition 1.2, p. 6). Let f : E — (—o00, +00] be a proper, convex
and lower semicontinuous function on E. Then f is continuous on intdomf.

Proof. Let xy € intdomf. Without loss of generality, we assume that =y = 0 and that f(0) =
0. Since the set {x € E : f(x) > —¢} is open it suffices to show that {z € E: f(z) <e}isa
neighborhood of the origin. Weset C' = {zx € E: f(z) <e}n{z € E: f(—z) < e}. Clearly,
C' is a closed balanced set of E, that is, ax € C for |a] < 1 and z € C. Moreover, C' is
absorbing, that is, for every x € E there exists o > 0 such that ax € C, since the function
t — f(tx) is convex and finite in a neighborhood of the origin and therefore continuous.
Since E is a Banach space, the preceding properties of C' imply that it is a neighborhood
of the origin, as claimed. O



Proposition 1.4.2 ([11], Theorem 1.7, p. 66). Let f : E — (—00,400] be a proper, con-
ver and lower semicontinuous function on E. Then f is locally Lipschitz continuous on
intdomf.

Proof. Assume that « € intdomf. Define E,, := {z € E: f(z) <n}foralln € N. Then E,
are closed subsets of E since f is lower semicontinuous. Moreover, intdomf C (J~, E,. By
the Baire category theorem, there exists N € N such that intdomf Nint Ex # (). Assume
that y € intdomf and 6 > 0 such that B(y,d) C intdomf Nint Ey, where B(y,d) := {z €
intdomf : ||z — y|| < d}. Put @ > 0 small enough and z = (14+a)z—ay € intdomf. Since f
is convex and intdomf is a convex set, we have [z, B(y,d)] C intdomf, where [z, B(y, d)] is
a convex hull of {z}U B(y, ). For any u € [z, B(y, )], there exist A € [0, 1] and v € B(y, J)
such that u = Az + (1 — A)v. Then

f(u) <Af(2) + (1= A)f(v) < max{f(z),n}.

This implies that f is bounded above on [z, B(y,d)]. Hence B(z,ad/(1+ «)) C [z, B(y,d)].

Since f is locally bounded, there exist L, > 0 and 6 > 0 such that |f| < L, on
B(z,26) C intdomf. Put y,z € B(z,d). Set d := ||y — z|| and u = 2+ §(z — y)/d. We have
u € B(z,20) since

lu — x| =

)
z—x—i—a(z—y)H <|lz =[]+ < 20.

Since z = (0y + du)/(d + 9) and f is convex, we have

This implies

f(z>_f(y)§m

Interchanging y and z, we obtain

F)~ 1) < 2y 2l

Therefore | f(z) — f(y)| < Llly — z|| for all y, z € B(z,4), where L = 2k=. O

The Fenchel conjugate function of f is the convex function f* : E* — (—o0, +00] defined
by
fr(&) ==sup{{¢,z) — f(z) : 2 € E}.

Proposition 1.4.3 ([6], Proposition 1.3, p. 6). Let f : E — (—o0,400] be a proper,
convex and lower semicontinuous function on E. Then f* is also proper, convex and lower
semicontinuous on E*.

Proof. As supremum of a set of affine functions, f* is convex and lower semicontinuous.
Moreover, by Proposition 1.4.1, we see that f* # oo. O

7



The function f is said to be strongly coercive (cf. [83]) if

M = +00
e oo |||

We know that f is strongly coercive if and only if f* is bounded on bounded sets (see [§],
Theorem 3.3, p. 10). The function f is said to be cofinite if domf* = E*. We know that
a strongly coercive function f is cofinite. Moreover, if E is finite-dimensional, then f is
cofinite if and only if it is strongly coercive (see [8], Theorem 3.4, p. 10).

Given a proper and convex function f : E — (—o00,400], the subdifferential of f is a
mapping 0f : E — 2F" defined by

Of(x) ={a" € E": f(y) = f(z) + («",y —x), Vy € £}

for all z € E. In general, 0f is a multivalued operator from F into E* not always defined
everywhere. If f is proper, convex and lower semicontinuous on F, then df is a maximal
monotone operator from E into E* (see [7], Theorem 2.43, p. 88).

Proposition 1.4.4 ([7], Proposition 2.47, p. 91). Let f : E — (—o00,+0o0] be a proper,
convex and lower semicontinuous function. Then the following conditions are equivalent to
each other:

(i) randf = E* and 0f* = (0f)~! is bounded on bounded subsets of E*.

(ii) f is strongly coercive.

Proof. (i)=(ii): Since f is bounded from below by an affine function, no loss of generality
results in assuming that f > 0 on E. Let r > 0. Then, for every z € E* with ||z]| < r, there
exist v € domdf and R > 0 such that z € 9f(v) and ||v]| < R. Since f(u)—f(v) > (z,u—wv)
for all u € E, we have

(z,u) < fu) = f(v) + (z,0) < f(u) + Rr
for all w € domf and z € E* with ||z|| < r. Hence
f(u) + Rr = rlu]

or

for all w € E. This implies that f is strongly coercive.
(ii)=(i): Let g € domOf. By the definition of df, we have (0f (), z—x¢) > f(x)— f(x0)
for all x € domdf. Then Of is coercive, that is, for any y € df(x),

o= o)

[|]|— o0 IE4] Tzl =0 Izl

Since df is maximal monotone and coercive, we have randf = E* (see [7], Corolally 1.143,
p. 55). Moreover, it is readily seen that the operator (9f)~! is bounded on every bounded
subsets of E*. 0



Let f: E — (—o0,+0o0] be a proper and convex function. Let D be a nonempty open
convex subset of E. If z € D, then, for each y € E, the right-hand directional derivative

(. y) = lim fla+ty) - flx)

tlo+ t

exists and defines a sublinear functinal on E. (see [53], Lemma 1.2, p. 2).

If f is finite at x, then the difference quotient ¢ — ¢! (f(m+ty) — f(a:)) is monotonically
increasing on (0,00) for every y € E. Let x € intdomf. For any y € E, we define the
directional derivative of f at x in the direction y by

(1.4.1)

The function f is said to be Gdteauz differentiable at x if the limit (1.4.1) exists for each
y € E. It is immediate from this definition (requiring the existence of a two-sided limit)
that f is Gateaux differentiable at x if and only if —f°(z, —y) = f°(x,y) for each y € E.
Since a sublinear functional ¢ is linear if and only if g(—x) = —g(z) for all x, this shows
that f is Gateaux differentiable at x if and only if y — f°(z,y) is linear in y. In particular,
if this is true, then f’(z,-) is a linear functional on E. In this case, we denote the gradient
of fat x by Vf(z): E — (—00,400) defined by (Vf(x),y) = f°(x,y) for every y € E.
The function f is said to be Gateaux differentiable if it is Gateaux differentiable at each
x € intdomf. The function f is said to be Fréchet differentiable at z if the limit (1.4.1) is
attained uniformly in ||y|| = 1. The function f is said to be uniformly Fréchet differentiable
on a subset C' of E if the limit (1.4.1) is attained uniformly for x € C and ||y|| = 1.

Proposition 1.4.5 ([4], Corollary 10, p. 150). Let f be a continuously Fréchet differentiable
and convex functional on E. If Vf is 1/a-Lipschitz continuous, then V[ is a-inverse
strongly monotone.

Proposition 1.4.6 ([53], Corollary 1.7, p. 5). If a convex function f : E — R is continuous

at xg € domf, then the right-hand derivative of f at xq is a continuous sublinear functional
on E.

Proof. Given zy € domf, there exist a neighborfood B of zy and M > 0 such that, if z € F,
then f(zg + tx) — f(zo) < Mt||z|| provided t > 0 is sufficiently small that xy + tx € B.
Thus, for any z € F,

 flwo + ta) — f(w)
° =1 < .
J*(@o, ) = lim ; < Mjz|
This implies that f°(zo,-) is continuous. O

Proposition 1.4.7 ([60], Proposition 2.1, p. 474). If a convex function f : E — R is
uniformly Fréchet differentiable and bounded on bounded subsets of E, then V f is uniformly

continuous on bounded subsets of E from the strong topology of E to the strong topology of
E*.



Proof. If this result is not true, there exist a positive number ¢ and bounded sequences
{Zn}nen and {yn }nen such that ||z, — y,|| = 0 as n — oo and

(Vf(@n) = V(yn), wn) > 2¢, (1.4.2)

where {w, }nen 18 a sequence in E with ||w,| = 1 for n € N. Since f is unformly Fréchet
differentiable, there exists a positive number § such that

f(Wn +twn) = f(yn) — LAV f(Yn), wn) < et (1.4.3)

for all 0 <t < 9 and n € N. Since f is convex, we have

<Vf(xn)7 Y + tw, — xn> < f(yn + twn) - f(xn)

for all n € N. This implies

LV f(@n), wn) < fyn + twn) + (Vf(@n), 20 = yn) = f(an)- (1.4.4)

By (1.4.2), (1.4.3) and (1.4.4), we have

2et <V f(zn) — VI (yn), wn)
< f(yn + twn) = f(yn) = LUV f(Yn)s wn) + (VI (@0), T0 — yn) + f(yn) — f(@0)
<et +(Vf(xn), Tn = Yn) + f(yn) — f(20).

Since V f is bounded on bounded subsets of E (see [15], Proposition 1.1.11, p. 17), (V f(x,,), x,—
Yn) — 0 as n — oo, while f(y,) — f(z,) — 0 as n — oo since f is uniformly continuous
on bounded subsets of E (see [3], Theorem 1.8, p. 13). Therefore 2¢t < et, which is a
contradiction. O]

A convex function f : £ — R is said to be uniformly convezr if the function d; :
[0, +00) — [0, +00] defined by

b7(t) 1= inf{1f<a:> 55w — (55 sy —all =1, 2y e domf}

2
is positive whenever ¢ > 0. The function ¢ is called the modulus of convezity of f.

Proposition 1.4.8 ([83], Proposition 3.6.4). Let f : E — R be a convex function which is
bounded on bounded subsets of . Then the following assertion are equivalent to each other:
(i) f is strongly coercive and uniformly convex on bounded subsets of F;

(ii) f* is Fréchet differentiable and ¥V f* is uniformly norm-to-norm continuous on
bounded subsets of domf* = E*.

1.5 Geometry of Banach spaces

Let X be a nonempty set and Y a set. A mapping 7' : X — Y is said to be surjective (or
onto) if for every y € Y, there exists © € X such that T'(z) = y.

10



A Banach space FE is said to be reflexive if the natural mapping E — E** is surjective.
A Banach space E is said to have the Kadec-Klee property if, for every sequence {z,} C FE,
z, — x and ||z,|| — [|z|| together imply ||z, — x|| — 0. It is known that a uniformly convex
Banach space has the Kadec-Klee property.

Let E be a Banach space. Let S(E) = {x € E : ||z|| = 1} denote the unit sphere of
E. The Banach space E is said to be strictly conver if ||z +y|/2 < 1 for all z,y € S(E)
with = # y. The Banach space E is said to be uniformly convez if, for each e € (0, 2], there
exists § > 0 such that, for any =,y € S(F),

|z —y| > e implies HxT“/Hg—a.

It is well known that each uniformly convex Banach space is reflexive and strictly convex
(see [72], Theorems 4.1.2 and 4.1.6, pp. 93-97).
A Banach space F is said to be smooth if there exists

ety ]
t—0 t

(1.5.1)

for all z,y € S(E). It is also said to be uniformly smooth if the limit (1.5.1) is attained
uniformly for all z,y € S(F). It is well known that every uniformly smooth Banach space
is reflexive with uniformly Gateaux differentiable norm (see [72], Theorems 4.1.6 and 4.3.7,
pp. 97 and 111).

A mapping J of E into 2% defined by

J(z) = {a* € E* : (z,2") = |jal* = ||l2"|*}

for x € F is called the normalized duality mapping. By the Hahn-Banach theorem, J(z) # ()
for each x € E. If E is strictly convex, then J is one-to-one and (x — y,z* — y*) > 0 holds
for all (z,2*), (y,y*) € J with  # y (see [72], Theorems 4.2.2 and 4.2.4 pp. 100-102).
Moreover, the normalized duality mapping J has the following properties (see [72]).

Proposition 1.5.1 ([72], Theorem 4.2.2, p. 100). If E is reflexive Banach space, then the
normalized duality mapping J of E is surjective.

Proof. For each f € E*, by the Hahn-Banach theorem, there exists u € E** such that

(f,uy = | f]| and [lul| = 1. Putting & = || f|lu, we have (f,z) = (f, || fllu) = |fII* = |=]*.
Since E = E**, we have f € J(x). This implies that J is a mapping of E onto E*. O

Proposition 1.5.2 ([72]|, Theorem 4.2.2, p. 100). If E* is strictly convex Banach space,
then the normalized duality mapping J of E is single-valued.

Proof. We know that J(0) = {0}. Let 2 # 0 and f,g € J(z). We have (z, f) = ||f|
2 2 2

l2]I” = llglI” = (z,g) and hence 2||z||" = (z, f+g) < [lz[[|[f + gll. Thus |[f[|+]lg] = 2[l=]| <

||f + gl|. This implies ||f + gl = ||f|| + llg||. Since E* is strictly convex, we have g = af for

some a € R. We have (z, f) = (x,9) = (z,af) = a(z, f). This implies @ = 1 and hence

f=g. O

Al
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Proposition 1.5.3 ([72], Theorems 4.3.1 and 4.3.2, p. 107). E is a smooth Banach space
if and only if the normalized duality mapping J of E is single-valued.

Proof. First we show the necessity. Since J(0) = {0}, we assume = # 0. Let ||z|| = 1. For
feJx),ye S(E)and XA > 0, we have

w.f) _ e ) =l elllle + il = el _ fle + il — [l

E. All] N All] A

Similarly, if A < 0, we have (y, f)/||z] > (||]x + Ay|| — ||z]|)/A. By the smoothness of E,

e+ Ayl = ||z
(o) = i I 201 U

exists and (y, f) = ||z||7(x,y). Then J(z) is single-valued. If  # 0, then J(z) =
|lz||J(z/||z|]). Therefore J(z) is single-valued for all x # 0.

Next we show that the sufficiency. Since J is single-valued, J is norm-to-weak* contin-
uous (see [72], Lemma 4.3.3, p. 108). For z,y € S(F) and A > 0,

{y, J(z)) _ Iz + Ayl — [l«]
[/ — A
|z + Ayll* = (=, J (= + \y))
- Allz + Ayl
_ (x 4+ Ny, J(x + Ay)) — (x, J(x + \y))
Allz + Ayl
Ay, J(z+A\y)) (v, J(z +\y))

Mz +xll lle+ 2]

Similarly, if A < 0, then

(. J(@)) o Nz + Myl = fl=fl o (g, I (@ + Ay))
el A e+ Ayl

Therefore, we have
el = el )
A0 A |||

This implies that E is smooth. [

Proposition 1.5.4 ([72], Theorem 4.3.4, p. 109). If E* is uniformly convez, then the nor-
malized duality mapping J of E is uniformly norm-to-norm continuous on each bounded
subset of E.

Proof. Since E* is uniformly convex, E* is strictly convex. By Proposition 1.5.2, J is
sigle-valued. Suppose that J is not uniformly continuous on some bounded set B of E.
Then there exist ¢ > 0 and sequences {z,},{yn} in B such that ||z, —y,| < 1/n and
|J(xn) — J(yn)|| > €. Suppose z,, — 0 as n — oo. Then y, — 0 as n — oco. By ||z, =
|J(z,)| and [|y.|| = ||/ (yn)||, we have J(x,) — 0 and J(y,) — 0 as n — oo. This
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contradicts ||J(z,,) — J(yn)|| > €. Now let x,, /4 0 as n — o0o. Then there exist a > 0 and
a subsequence {z,,} of {x,} such that ||z,,| > «a. Since ||z,| — [|yn]] < |20 —ynll < 1/n,
we can assume ||y, || > «/2. Thus, without loss of generality, we assume that there exists
B > 0 such that ||z,| > 5 and ||ly,|| > B. Putting u,, = x,/||x,| and v, = y,/||y.||, we have
[un]| = Jlvnll = 1 and

all ~ Tl FeallTyall
1
< galwell = ol + a2~ i)
1
< o ([l = lzall ol + il = il ) = 0

as n — oo. Further, since

(Un, J(un) + J(v,)) = HunH2 + (Un — U, J(0n)) + anHQ
> 2 — [Jup — va[[|[J(vp) || = 2 — [|tn, — v,

we have 5 ; .
H i) £ IO > L ) + T = 1 — L=l
2 2 2
and hence 7
i || 20 @)}
n—00 2

On the other hand, since

lim sup HMH < hmsup(§ + —) =1,

n—00 n—00 2
we have
lim ‘ ) T Twn)))
n—00 2
Since ||J(un)|| = ||J(vn)|| = 1 and E* is uniformly convex, we have ||J(u,) — J(v,)|| = 0 as

n — 0o0. We have

J(@n) = J(yn) = l2nll(J(un) = J(vn)) + (2]l = yall) S (vn).

This implies ||J(x,) — J(yn)|| — 0 as n — oo, which contradicts ||J(z,) — J(y,)|| > ¢ >
0. L

Proposition 1.5.5 ([72], Theorem 4.3.7, p. 111). Let E be a Banach space. Then, E is
uniformly smooth if and only if E* is uniformly convex.

Proof. First we show the necessity. Let f,g € S(E*) and ||f —g|| > € > 0. Since the
norm of £ is uniformly Fréchet differentiable, for any € > 0, there exists o > 0 such that
0 < |t| < ¢ implies
[l + tyll — =]
t

{y, J(x))| <

13



for all z,y € S(E). Fix ¢t with 0 <t < §. Then we have

1
|z + ty|| < gts +t{y, J(z)) +1

and )
I = tyll < gtz =y, J (@) + 1.
Hence

1
|z +ty|| + ||z —ty]| < 2+ Zte

for all z,y € S(E). By ||f — g]| > € > 0, there exists yo € S(F) such that (f —g)(yo) > /2.
Thus

1+ gl =sup{(f +g)(z) -z € S(E)}
= sup{f(z +tyo) + g(z — tyo) — (f — 9)(tyo) : ® € S(E)}

1
< sup{||z + tyo|| + ||x — tyo|l — §t5 cx € S(F)}

<2+1t5—1t5:2—1t5.
- 4 2 4
This implies that £E* is uniformly convex.
Next we show that the sufficiency. Let z,y € S(E). As in the proof of Proposition 1.5.3,
if A > 0, then
(y, J(2)) _ e+ Myl =[]l _ (o, (2 + \y))
el A T e+

and if A < 0, then

 J(@)) o N2+ yll = ll=fl o (g, I (@ + Ay))
el A e+

By Proposition 1.5.4, F has a uniformly Fréchet differentiable norm. [

A function ¢g : R — R is said to be strictly increasing if g(x1) < g(x2) for all x1, 2z, € R
with 21 < z3. Let G = {g : [0,00) — [0,00) : g(0) = 0, g is continuous, strictly increasing
and convex on [0,00)}.

Proposition 1.5.6 ([81], Theorem 2, p. 1133). A Banach space E is uniformly convex if
and only if, for every bounded subset B of E, there exists gg € G such that

Az + (1= Nyl < Al + (1= Nyl = A = Nga(llz = yl)
forallz,y e B and 0 <\ < 1.

Proposition 1.5.7 ([81], Theorem 2, p. 1133). Let s > 0. A Banach space E is uniformly
convex if and only if there exists g € G such that

e+ yll* = [l ” +2(y. 5) + g (llyl)

forallz,ye{z€ E:|z|| <s} and j € Jux.
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Chapter 2

Strong Convergence Theorems for
Generalized Equilibrium Problems
and Relatively Nonexpansive
Mappings

2.1 Introduction

Let E be a real Banach space with the norm ||-|] and C be a nonempty closed convex subset
of E. Let f: C x C — R be a bifunction and A a nonlinear operator of C' into E*. A
generalized equilibrium problem is finding v € C such that

flu,y) + (Au,y —u) 20 (2.1.1)
for all y € C. The set of solutions of (2.1.1) is denoted by EP, that is,
EP={ueC: f(u,y)+ (Au,y —u) >0, Vy € C}.

If A =0, then the problem (2.1.1) is equivalent to that of finding a point u € C' such that

flu,y) >0 (2.1.2)

for all y € C, which is called an equilibrium problem. The set of solutions of (2.1.2) is
denoted by EP(f). If f = 0, then the problem (2.1.1) is equivalent to that of finding a
point u € C such that

(Au,y —u) >0 (2.1.3)

for all y € C' which is called a variational inequality. The set of solutions of (2.1.3) is denoted
by VI(C, A). The problem (2.1.1) is very general in the sense that it includes optimization
problems, variational inequalities, minimax problems and numerous problems in physics,
economics and others. Some methods have been proposed for solving the generalized equi-
librium problem, the equilibrium problem and the variational inequality in Hilbert spaces
(see [69, 70]) and in Banach spaces (see [46, 76]).
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In 2008, Takahashi and Takahashi [70] have proved a strong convergence theorem for
finding an element of F'(S)N EP in a Hilbert space H, where S is a nonexpansive mapping
of a nonempty closed convex subset C' C H into itself and A is an inverse strongly monotone
operator of C' into H. Recently, Chang, Lee and Chan [19] have considered iterative methods
for finding an element of F'(S)NF(T)NEP in a certain Banach space E, where S and T are
two relatively nonexpansive (see Section 2.2) mappings of a nonempty closed convex subset
C C FE into itself and A is an inverse strongly monotone operator of C' into E*. On the
other hand, Matsushita, Nakajo and Takahashi [44] have introduced iterative methods for
finding an element of (2, F(S;), where S; is a relatively nonexpansive mapping of C' into
itself for each 7 > 0.

In this chapter, motivated by Chang et al. [19] and Matsushita et al. [44], we introduce
new iterative methods for finding an element of (2, F'(S;) N EP, where S; is a relatively
nonexpansive mapping of C' into itself for each ¢ > 0 and A is an inverse-strongly monotone
operator of C' into E*.

2.2 Preliminaries

Throughout this chapter, we assume that G = {g : [0,00) — [0,00) : ¢g(0) = 0, ¢ is
continuous, strictly increasing and convex on [0, 00)}.
Let E be a smooth, strictly convex and reflexive Banach space and C' a nonempty,

closed and convex subset of E/. Throughout this paper, we denote by ¢ Lyapunov functional
¢: E x E— RT defined by

o(x,y) = [l — 2z, Jy) + ||yl

for all z,y € E (see [1, 30, 59]). It is obvious that the following conditions:
(¢1) ¢(x,y) =0 if and only if z = y;
(62) (=l = llylD? < ¢z, y) < (=]l + lyl})* for all z,y € E.

Proposition 2.2.1 ([30], Proposition 2, p. 940). Let E be a smooth and uniformly convex
Banach space and {x,},{yn} two sequences of E. If ¢(xn,yn) — 0 as n — oo and either
{zn} or {yn} is bounded, then ||z, — y,|| — 0 as n — oco.

Proof. 1t follows from ¢(z,,y,) — 0 as n — oo that {¢(x,,y,)} is bounded. Then if one
of the sequences {x,} and {y,} is bounded, so is the other because of (¢»). By Proposition
1.5.7, there exists a function g € G such that

2 2
9U1zn = ynll) < Nyn + @0 = ) I” = lall” = 2(@n = Yn, Jyn)
2 2 2
= [|zn|l” = [lynll” = 2(zn, Jyn) + 2[[yall

It follows from ¢(x,,y,) — 0 that g(||x, —yn||) — 0. Therefore the properties of ¢ yield
that x, — ¥, — 0 as n — oo. ]

Let {z,} and {y,} be two bounded sequences in a smooth Banach space. It is obvious
from the definition of ¢ that ¢(x,,y,) — 0 whenever ||z, —y,|| — 0. By this fact and
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Proposition 2.2.1, we see that if {z,} and {y,} are two bounded sequences in a uniformly
smooth and uniformly convex Banach space, then

Proposition 2.2.2 ([30], Proposition 3, p. 940). Let E be a smooth, strictly conver and
reflexive Banach space, C' a nonempty, closed and convex subset of E and ©x € E. Then
there ezists a unique element xy € C' such that ¢(xg,x) = mingec ¢(y, x).

Proof. Note that F is reflexive and that |y,| — oo as n — oo implies ¢(y,,z) — oo as
n — oo. We see that there exists zy € C such that ¢(zg,x) = inf{o(y,z) : y € C}.
Since F is strictly convex, the function ||-||* is strictly convex, that is, [[Az1 4+ (1 — X)z|* <
M|z ||” 4+ (1 = A)||z|? for all 1,z € E with 21 # x5 and X € (0,1). Then the function
o(+,y) is also strictly convex. Therefore zg € C' is unique. O

Let E be a smooth, strictly convex and reflexive Banach space and C' a nonempty, closed
and convex subset of F. Following Alber [1], the generalized projection 1o of E onto C'is
defined by

llox = arg min ¢(y, x)
yeC

for z € E. We have the following results for generalized projections.

Proposition 2.2.3 ([30], Proposition 4, p. 941). Let E be a smooth Banach space, C a
nonempty and conver subset of £, x € E and xo € C. Then xqg = llgx if and only if
(y — xg, Jxg — Jx) > 0 for ally € C.

Proof. Suppose that zo = gz, Let y € C' and A € (0.1). It follows from ¢(zg,x) <
o((1 — N)xo + Ay, z) that
0 < [I(1 = Ao + Ayll* — 2((1 = Nzo + Ay, Jz) + ||z[|* — [[zoll* + 2(wo, Jz) — [l]*
= [[(1 = Mo + Ay[|* = [lzol|* — 2X(y — 2o, Jz)
< 2My — xo, J((1 — Naxo + \y)) — 2A\{y — xo, J)
=2My — z0, J((1 = Nzo + \y) — Jx).

Letting A | 0, we obtain (y — g, Jxg — Jx) > 0 since J is norm-to-weak* continuous.
Suppose that (y — xg, Jxg — Jx) > 0 for all y € C. For any y € C, we have

By, x) — d(xo, x) = |lyllI* — 2{y, Jo) + |x]|* = [|zol|* + 2(wo, Jz) — ||||”
= llyll* = llzoll* — 2{y — o, Jux)
> 2(y — o, Jxo) — 2(y — w0, JT)
=2(y — xg, Jxg — Jx) > 0.

This implies xg = arg min ¢(y, ). O
yel

Proposition 2.2.4 ([30], Proposition 5, p. 941). Let E be a smooth, strictly convexr and
reflexive Banach space, C a nonempty, closed and convexr subset of E and x € E. Then

(b(y? ch) =+ ¢(ch7 ill') S (b(ya .CC)
forally e C.
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Proof. By Proposition 2.2.3, we have

¢y, x) — o(Ilow, x) — @y, lex)

= [lylI* — 2{y, Ja) + |z|* — ez || + 2(Hew, Jz) — ||z|”
= llyll* + 2y, M) — o]

= —2(y, Jz) + 2(Ilcx, Jz) + 2(y, JTcz) — 2| ez’

=2(y — oz, Jllgx — Jx) > 0

for ally € C. m

A point p € C' is called an asymptotic fized point of T (cf. [58]) if there exists a sequence
{z,} C C such that z, — p and ||z, — Tx,| — 0. We denote by F(T) the set of all
asymptotic fixed points of T. A mapping T is said to be relatively nonexpansive (cf. [45, 46])
if F(T) = F(T) # 0 and ¢(u, Tz) < ¢(u, x) for all u € F(T) and z € C.

Proposition 2.2.5 ([46], Proposition 2.4, p. 260). Let E be a smooth and strictly convex
Banach space, C' a nonempty, closed and conver subset of E and T a relatively nonexpansive
mapping of C' into itself. Then F(T) is closed and conver.

Proof. First we show that F(T) is closed. Let {x,} be a sequence of F(T) such that
z, — & € C. By the definition of T, ¢(x,,T%) < ¢(z,, ) for each n € N. This implies

o(z,T2) = lim ¢(x,, T2) < lim (z,,2) = ¢(z,2) = 0.

n—oo n—oo

This implies & = T'Z. Hence & € F(T).
Next we show that F(T') is convex. For z,y € F(T) and t € (0,1), put z = tx+ (1 —1t)y.
It is sufficient to show that Tz = z. Indeed, we have

0(2,T2) = ||2|* = 2(z, JT2) + | T=||”
= ||2||* = 2t(x, JTz) — 2(1 — t){y, JT=) + || T2||?
= ||2II* + t(x, T2) + (1 = t)(y, ) — tl|||* = (1 = t)|y]|”
< 20”4+ to(w, 2) + (1= 1)p(y, 2) — tla]* = (1 = 1)[ly]*
= |l21I* = 2(tz + (1 — t)y, JT2) + |||
= 121> = 2(z, JT2) + ||=|* = 0.

This implies z = T'z. O

Let E be a smooth, strictly convex and reflexive Banach space, C' a nonempty, closed
and convex subset of E, {5;}°, a family of mappings of C' into inself and {f,; : 0 < i <
n}ee, C [0, 1] a sequence of real numbers. For any n > 0, let us define a mapping W,, of C'
into itself as follows:

Un,n+1 = ]7
Un,n = HCJ_l (ﬁn,nJ(SnUn,n—l—l) + (1 - Bn,n)J)a
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Un,nfl - chil (ﬂn,nflt](snflUn,n) + (1 - Bn,nfl)'])a
Upi = Hod (B (SiUnyit1) + (1 = Bui)J), (2.2.1)

Upp =1cJ ™! (5n,1J(51Un,2) + (1 - 5n,1)J)’
W, =U,o=J" (5n,0J(SoUn,1) + (1 — 5n,0)J)7

where [ is the identity mapping on C. Such a mapping W, is called a W-mapping generated
by {S:}i-, and {5, }7,- We have the following result for the W-mappings.

Proposition 2.2.6 ([44], Proposition 2.5, p. 1468). Let E be a uniformly smooth and strictly
conver Banach space, C' a nonempty, closed and convex subset of E and {S;}"_, a family
of relatively nonexpansive mappings of C' into itself such that (., F(S;) # 0. Let {8}
be a sequence of real numbers such that 0 < 8,0 <1 and 0 < 3,,; <1 for every 1 <i <n.
Let {U,;}!"5 be a sequence defined by (2.2.1) and W, the W-mapping generated by {S;}7_,
and {B,.i}". Then the following hold:

() F(W) = My F(S);

(ii) for every 0 <i<n, x € C and z € F(W,), ¢(z,U,x) < ¢(z, )

and ¢(z, SiUn,i+17) < ¢(z, ).

Proof. (i): It is obvious that (_, F(S;) C F(W,). Suppose that v € (., F(S;) and
z € F(W,). By Propositions 1.5.6 and 2.2.4, we have

¢(u, z) = d(u, Wy2)
= ¢(u, J N (Bro (SoUni2) + (1 — Bno)J2))
= [Jul|® = 2(t, Bno T (SoUp12) + (1 = Bno)J2) 4 |Bn0d (SoUn12) + (1 — Buo)J 2|
< ull® = 28n.0(u, J(SoUn12)) — 2(1 = Bno){t, J2) + B0l SoUna2||*
+ (1= Bz = Buo(1 = Bro)g(I1J (SoUn12) — Jz])
= Bn09(u, SoUp,12) + (1 = Bno)d(u, 2) — Bao(l = Bro)g([|J(SoUna2) — Jz||)
< Bnod(u, Un12) + (1 = Bro)d(u, 2) — Buo(l — Buo)g(|J (SoUn,2) — J2I))
< Brod(u, JH(Bna I (S1Un22) + (1 = Bn1)J2)) + (1 — Bno)p(u, 2)
= Bno(1 = Br0)g(IJ(SoUn12) — J2]|)
< BnolBuad(u, Unpz) + (1 = Bu1)o(u, 2) — Bui(1 = Br1)g(| J(S1Unpz) — J2[|)}
+ (1 = Bn0)o(u, 2) = Bro(l = Bro)g([[(SoUni2) — Jz|)
P(u, 2) = Bro(l = Bro)g([[J (SoUn,12) — Jz|))
- Bn,Oﬁn,l(l - 5n,1)9(||J(SlUn,2Z) —Jz||) = -
= BroBnt - Bl = Ban) 9|/ (SnUnnsr2) — J2||)

for some g € G. This implies

<
<

gl (S1Una2z) = Jzl])) = --- = g([|J(Snz) — J2||) = 0.
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Hence Syz = z and U,z = z for k = 1,2,...,n. If 3,0 < 1, then Syz = z since
| J(SoUn1z) — Jz|| = 0. On the other hand, if 8,0 = 1, then Spz = z since z = W,z =
SoUn,12z. Therefore z € (i_; F(S;), that is, F'(W,) C (i, F(S;).

(ii): Suppose that k =0,1,...,n, z € C and z € F(W,). As in the proof of (i),

&(z, Up ) < Brid(z, SkUnkr12) + (1 — Bri)d(z, )
< B2, Upjr1) + (1 — Boi)p(z, )
< Bl Brp+18(2, Unprow) + (1 = Brgs1)d(z,2) } + (1 — B)d(z, )
<o <oz, ).

This implies ¢(z, SkUnp1127) < ¢(2, Uy p117) < ¢(z, ) for every k =0,1,...,n. m

Let E be a smooth and uniformly convex, C' a nonempty, closed and convex subset of
E, {S;}2, a family of relatively nonexpansive mappings of C' into itself and {A,;: 0 <i <
n}ee, C [0, 1] a sequence of real numbers. For any n > 0, let V}, be a mapping of C' into E
defined by

Vo=J") AnidSi (2.2.2)
=0

We have the following result for convex combinations of relatively nonexpansive mappings.

Proposition 2.2.7 ([44], Proposition 2.6, p. 1469). Let E be a smooth and uniformly convex
Banach space, C' a nonempty, closed and convez subset of E and {S;}2, a family of relatively
nonezxpansive mappings of C into itself such that (.o F(S;) # 0. Let {\,;}1—y C [0,1] such
that Z?:o Mni =1 for alln > 0 and lim,, oo \p; > 0 for each ¢ > 0. Let V,, be a mapping
of C into E defined by (2.2.2). Then the following hold:

(1) Moo F'(Va) = M2y F(50);
(ii) for everyn >0, z € C and z € (2, F(Si), ¢(z, Vo) < ¢(z, ).

Proof. (i): Tt is obvious that (;2, F(S;) C o~y F(V;,.). Suppose that v € (o, F'(S;) and
z € ()o—y F(Vy). For large enough n € N and 1 <1 < m < n, by Proposition 1.5.6, we have

o(u, 2)
= o(u, Vy2)

= lul* - 2<u, ZAn,iJ<Sixn>> +
=0

= jul* - 2<u, ZAn,iJ<Sixn>>
=0

/\n,lJ(SlZ) + )\n,mJ(SmZ)
)\n,l + )\n,m

n 2

Z )\nﬂJ(SlZ)

=0

> i=0,1,m AniJ (5i2) 2

i£l,m
0= Ot A 25—

2

+ <)\n,l + )\n,m)

/\n,lJ<SlZ> + )\n,mJ(SmZ>
)\n,l + )\n,m

=0
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Zi:o,l ,,,,, n)\n,iJ(SiiUn) 2

+ (1 - ()‘n,l + )‘n,m)) #ll — Ay

n An
< lul? = 2<u, > An,ij(siz)> + (Ang + Amm){—)\ +’; 17(S;2)|)?
i=0 n,m

n,l

An 2 An A
[ A — J _ ) . s J S . J Sm
" )\nl‘i‘)\an ( )H )\n,l+>\n,m >\n,l‘|—)\n,7ng(H ( 12) ( Z)”)}
+ 2 Ml
i=0,1,...,n
1#l

= 30 hellul® =20, 7(5:)) + 1S} = 151 (532) = (S

i=1

n Anm
= Z)\mgzb u, S;z) — :_/\nm g(|J(Siz) = J(Sm2)|)

n )\nm
< anab u, z) ljrA g([[7(Siz) = J(Sm2)I)

)\n,l)\n,m

B gb(u, Z) a /\n,l + )\n,m

g9(17(S12) = J(Sm2)]])

for some g € G. We have ¢(||J(S12) — J(Sn2)||) = 0 since A1, Apsm > 0 for large enough
n € N. This implies J(S;z) = J(Sn2), that is, S;z = S,z for every {,m € N with | # m.
Therefore z € (2, F'(5;).

(ii): Suppose that n € N, z € C and z € ;2 F(S;). As in the proof of (i), we have

o(z, Vyx) = ||2||* = 2<z, i/\nﬂ-J(Sﬂ)> +
i=1

< Nel? =2 Analz, J(Sia)) + Y Auall J(Si) |

i=1 =1

=1

n,i

]

Let E be a smooth, strictly convex and reflexive Banach space and C' a nonempty, closed
and convex subset of E. For solving the equilibrium problem, let us assume that a bifunction
f:C x C — R satisfies the following conditions:

(A1) f(x,z) =0 for all z € C;

(As) f is monotone, that is, f(z,y) + f(y,z) <0 for all z,y € C;

(As) f is upper-hemicontinuous, that is, limsup,, f(z +t(z — 2),y) < f(z,y)
for all x,y, z € C,

(A4) the function y — f(z,y) is convex and lower semicontinuous for all z € C.
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Proposition 2.2.8 ([10]). Let E be a smooth, strictly convex and reflexive Banach space
and C a nonempty, closed and convex subset of E. Let f : C x C' — R be a bifunction
satisfying conditions (A1)—(A4). Let v > 0 and x € E. Then there ezists u € C' such that

1
f(u,y) +;<y—u, Ju— Jzx) >0

forally e C.

Proposition 2.2.9 ([76], Lemma 2.8, p. 47). Let E be a uniformly smooth and strictly
convex Banach space, C' a nonempty, closed and convex subset of E and f:C xC — R a
bifunction satisfying (A1)—(Ay). Forr >0 and xz € E, define a mapping T, of E into C as
follows:

T.(x)={ueC: f(uy) + %(y —u, Ju—Jxy >0, Vy € C} (2.2.3)

for all x € E. Then the following hold:
(i) T; is single-valued;
(ii) T, is a firmly nonexpansive-type mapping (cf. [37)), that is,

(Thx — Ty, JTx — JTy) < (Thx — Ty, Jo — Jy)
forallz,y € E;

(111) F(Tr) = F(Tr> = EP(f);
(iv) EP(f) is a closed and convex subset of C.

Proof. (i): For x € E and r > 0, let 21, 29 € T,x. Then
1
f(z1,22) + ;<2’2 —z,Jz —Jx) >0

and )
f(ZQ,Zl) + ;(Zl — 29, JZQ — JZL') 2 0.

Adding the two inequalities above, we have
1
f(Zl,Zz) + f(ZQ,Zl) + ;<22 — 21, JZl — J22> Z 0.
By (As) and r > 0, we have (25 — 21, Jz; — Jz9) > 0. Since E is strictly convex, we have
Z1 = Z9.

(ii): For x,y € E, we have

1
f(T,x, Ty) + ;(Try — Tz, JT,x — Jx) >0

and )
f(Ly, Thx) + —(Trx — Ty, JT,y — Jy) > 0.
r

Adding the two inequalities above, we have
1
f(Tox, Ty) + f(Tyy, Tox) + —(Ty — Trx, JT,x — JTy — Jx + Jy) > 0.
r
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By (Az) and r > 0, we have
(T.y — Trx, JT,x — JT,y — Jo + Jy) > 0.
Therefore, for any z,y € FE,
(Tox — Ty, JT,x — JTy) < (To — Ty, Jr — Jy).
(iii): We have the following:
we F(T,) e u="Tu

1
(:)f(u,y)+;(y—u,Ju—Ju> >0, YyeC

< f(u,y) >0, Yyedl
& ue EP(f).

Next we show that F(T,) = EP(f). Let p € F(T.). Thus there exists z, € E such that
z, = pand z, — T,z, — 0 as n — oco. Moreover, we have T,z, — p. Hence p € C. Since J
is uniformly continuous on bounded sets, we have

1
lim —||Jz, — JT,2,]| = 0.
n—oo T
By the definition of 7)., we have
1
f(Tery) + _<y - Trzm JTrzn - JZn> > 0.
r

Since ]
_<y - Trzm JTan - J2n> Z _f(Tana y) 2 f(y7 TTZTL)
r
and f is lower semicontinuous and convex in the second variable, we have
0 > liminf f(y, Tr2,) > f(y,p).
n—oo

Hence f(y,p) <0forally € C. Let y € C and set 2y = ty + (1 —¢)p for ¢t € (0, 1]. Thus we
have

0= f(ry, ) <tf(we,y) + (1 =1)f(2e,p) < tf (21, 9).

Dividing by ¢, we obtain f(x;,y) > 0. Letting ¢t | 0, by (As), we have f(p,y) > 0 for all
y € C. Therefore p € EP(f).
(iv): By (ii), we have

(Thx — Ty, JT,x — JTy) < (T,a — Ty, Jx — Jy) (2.2.4)
for all x,y € E. Moreover, we obtain

¢(Trx7 TTy) + ¢(TTy7 TT"E)
=2||T,z||* — 2(Tox, JT,y) — 2(T,y, JT,2) + 2||T,y|*
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2T, JT,x — JTy) + 2(Ty, JT,y — JT,x)
2Tx — Ty, JT,x — JT,y) (2.2.5)

and
o(Tx,y) + o(Try, x) — o(Tra, x) — o(Try, y)
= | Toa|® = 2T, Jy) + |yl* + 1Tyl = 2(Try, Jo) + |||
— | T |)* + 2T, Jx) — |||* = | Toyll* + 2(Try, Jy) = |ly])®
= 2Tz, Jx — Jy) — 2(Ty, Jx — Jy)
=2T,x — Ty, Jo — Jy). (2.2.6)

By (2.2.4), (2.2.5) and (2.2.6), we have
¢(TT*T7 TTy) + ¢(T7"y7 TTx) < (b(TTJZ, y) + ¢(Try7 ‘7:) - (b(TTJJ, LE) - ¢(T7"yu y)
< ¢(Trz,y) + o(Try, x) (2.2.7)

for all x,y € C C E. Taking y = p € F(T,), we obtain ¢(p, T,z) < ¢(p,x). By (iii), T, is
relatively nonexpansive on C. By Proposition 2.2.5, EP(f) = F(T,) is a closed and convex
subset of C. [l

Proposition 2.2.10 ([76], Lemma 2.9, p. 50). Let E be a smooth, strictly convex and
reflexive Banach space, C' a nonempty, closed and convex subset of E, f : C x C — R a
bifunction satisfying (A1)—(A4) and r > 0. Let T, be the mapping defined by (2.2.3). Then

o(p, Trx) + o(Trx, ) < ¢(p, x)
forallp € F(T,) and x € E.
Proof. By (2.2.7), we have

gb(Trxa Try> + ¢(Trya Trm> S QS(TTZL‘a y) + ¢(Try7 {L‘) - QZS(TT:L‘? JZ) - ¢(Trya y)
for all z,y € E. Letting y = q € F(T,), we have ¢(q, T,x) + ¢(T,z,x) < ¢(q, x). O

For solving the generalized equilibrium problem, let us assume that a nonlinear operator
A of C'into E* is an a-inverse strongly monotone and a bifunction f : C'x C' — R satisfies
the conditions (A1)—(Ay).

Proposition 2.2.11 ([19], Lemma 2.5, p. 2262). Let E be a smooth, strictly convex and
reflexive Banach space, C' a nonempty, closed and convex subset of E and A an a-inverse
strongly monotone operator of C into E*. Let f : C' x C" — R be a bifunction satisfying
(A1)(Ay) and g : C x C' = R a bifunction defined by

9(@,y) = f(z,y) + (Az,y — x)

for all x,y € C. Letr > 0 and x € E. Then g satisfies (A1)—(Ay) and there exists u € C
such that

o,9) + +y —w, Ju— Ja) > 0
forally e C.
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Proof. By the definition of g, (A;) is satisfied. Since f satisfies (A3) and A : C — E* is
a-inverse strongly monotone, we have

g(z,y) + 9y, x) = f(o,y) + f(y, ) + (Av,y — ) + (Ay,x — y)
<0+ (Ax — Ay, y — x)
< —allAz — Ay|]* <0.

This implies that g satisfies (Ay). Since A is a-inverse strongly monotone, it is easy to see
that A is 1/a-Lipschitzian continuous. Again, since f satisfies (A3), we have

limsup g(z + t(z — x),y)
£10

= timsup{f(r+ £z = a),) + (A + £z = a))y = o+ 1(z )}

< f(x,y) + 1}g1{<A(x +t(z =),y — (x+t(z—2)))}
= f(z,y) + (A(x),y — z) = g(z,y).

This implies that g satisfies (A3). By assumption, the function y — f(x,y) is convex and
lower semicontinuous. Since the function y — (Ay — x) is convex and continuous, the
function y — g(z,y) is convex and lower semicontinuous, that is, g satisfies (A4). By
Proposition 2.2.8, the conclusion of Proposition 2.2.11 is obtained. [

Proposition 2.2.12 ([19], Lemma 2.6, p. 2263). Let E be a uniformly smooth and strictly
convex Banach space, C' a nonempty, closed and convex subset of E, A an a-inverse strongly
monotone operator of C' into E* and f : C' x C' — R a bifunction satisfying (A1)—(A4). For
any r >0 and x € E, define a mapping K, of E into C' as follows:

Kr(x):{UGC’:f(u,y)—l—(Au,y—u)—l—%(y—u,Ju—Jx) >0, Yy e C}

for all x € E. Then the following hold:
(i) K, is single-valued;
(ii) K, is a firmly nonexpansive-type mapping, that is,

(K,x — Ky, JK,x — JK,y) < (K,x — Ky, Jx — Jy)

forallz,y € E;
(iii) F(K,) = F(K,) = EP;
(iv) EP is a closed and convex subset of C';
(v) bp. Kot) + 0K, 2) < d(p,) for all p € F(K,).
Moreover, the mapping K, is relatively nonexpansive.

Proof. Putting g(z,y) = f(x,y) + (Az,y — x) for all z,y € C. By Proposition 2.2.11,
the function g : C' x C' — R satisfies the conditions (A;)—(A4). We rewrite the mapping
K,:E— C as
1
K. (z)={ueC:gluy)+ ;(y —u, Ju—Jxr) >0, Vy € C}.
By Propositions 2.2.9 and 2.2.10, the conclusion of Proposition 2.2.12 is obtained. O]
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2.3 Strong convergence theorems of IV-mappings

In this section, we prove strong convergence theorems of W-mappings for finding a common
element of the set of solutions for a generalized equilibrium problem and the set of common
fixed points of infinite relatively nonexpansive mappings in a Banach space.

Theorem 2.3.1 ([77], Theorem 3.1, p. 287). Let E be a uniformly smooth and uniformly
convex Banach space and C' a nonempty, closed and convex subset of EI. Let f : CxC — R
be a bifunction satisfying (A1)—(As) and {S;}52, an infinite family of relatively nonexpansive
mappings of C' into itself such that F := (o, F'(S;) NEP(f) # 0. Let {B:}y C (0,1) be
a sequence of real numbers such that Uiminf, . B,,(1 — B,:) > 0 and W,, the W-mapping
generated by {S;}1, and {fni}7. Let {x,} be a sequence generated by

(2 € C,

Yn = Wiy,

u, € Ty, yn, that is, f(un,y)+ %(y — Up, Jup — Jyn) >0 for all y € C,
C,=1{2€C:¢(z,u,) < o(z,2,)};

Qn={2€C:{(xr,— 2z Jrg— Jx,) > 0};

(Ln+1 = chanfFO

(2.3.1)

for n > 0, where g, ng, is the generalized projection of E onto C, N Q, and {v,} C
[r,00) for some r > 0. Then {x,} converges strongly to Ilpxqy, where llg is the generalized
projection of E onto F.

Proof. We divide the proof into six steps.

Step 1. We prove that C,, N Q,, C C is closed and convex for all n > 0. In fact, it is
obvious that C,, is closed and @, is closed and convex for all n > 0. It follows that C, is
convex for all n > 0 since ¢(z,u,) < ¢(z,z,) is equivalent to

2 2
2z, Jan = Jup) < lza|” = lJua]™

Thus C,, N Q,, is closed and convex for all n > 0.

Step 2. We prove that F' C C,, N @, for all n > 0. Let u,, = T, y, for all n > 0 and
u € F. By Proposition 2.2.6 (i), we have u € F(W,,) for all n > 0. By Proposition 2.2.9, we
obtain T’,, is relatively nonexpansive. Since .S; is also relatively nonexpansive for all n > 0,
by Proposition 2.2.6 (ii), we have

O(u, un) = o(u, Ty, yn) < Gt yn) = ¢(u, Wnan)
_ ¢<u, T (Buo T (SolUaan) + (1 — 5,170)an)>
= [Jul|* = 2(u, Bro T (SoUp1n) 4 (1 — Buo)J2)
+ (180,07 (SoUn,120) + (1 = Bro) Jza)?
< ull? = 280, J(SoUp1n)) — 2(1 = Bro)(u, Jz,)
+ ﬁn,OHSOUH,lxnuz +(1- ﬁn,O)Hxn‘F
= Bnod(u, SoUpn12,) + (1 — Bno)o(u, 2,)
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< Brop(u, ) + (1 = Buo)o(u, x,) = d(u, ). (2.3.2)

This implies u € C,, and so F' C C, for all n > 0. By induction, now we prove that
FcC,n@, for all n > 0. In fact, since Qo = C, we have F' C Cy N Qy. Suppose that
F C Cy N Qg for some k > 0. Then there exists x+1 € C, N Qy such that x4 = e, g, To-
By the definition of x;,1, we have

(Xpy1 — 2, Jrg — JTps1) >0 (2.3.3)

for all z € Cx N Qg. Since F C Cy N Qg, we obtain (2.3.3) for all z € F. This implies
2 € Qrs1, and so F' C Qg11. Therefore F C C, N Q,, for all n > 0.

Step 3. We prove that {x,} is bounded. By the definition of @),, and Proposition 2.2.3,
we have z,, = Ilg, x for all n > 0. Hence, by Proposition 2.2.4,

(2, T0) = d(Ilg, 0, 20) < P(u, z0) — ¢(u, g, 7o) < d(u, 20)

for all u € F C @, and n > 0. This implies that {¢(z,,x¢)} is bounded, and so {z,} and
{u,} are bounded in C.

Step 4. We prove that ||z, —u,|| — 0 and ||Jz,, — Ju,|| — 0. Since z,, = Iy, xo
and z,41 = le,ng, %o, we have ¢(z,,0) < ¢(xp41,20) for all n > 0. This implies that
{é(zn, x0)} is nondecreasing, and so there exists the limit lim,,_,o, ¢(x,, o). By Proposition
2.2.4, we have

¢(95n+1, flfn) = ¢(i€n+1, Hano) < ¢(5L’n+1,9€0) - ¢(HQH$O>$O)
= ¢(Tnt1,70) — O(Tn, o)
for all n > 0. This implies
lim ¢(zp41,2,) = 0. (2.3.4)

n—o0

Since 41 = l¢,ng, %o € Cy, by the definition of C,,, we obtain

Qb(l'n_;,_l, Un) S ¢<$n+17 xn) (235)

Since E is smooth and uniformly convex, by (2.3.4), (2.3.5) and Proposition 2.2.1, we have

im [|zn41 — upl| = lim [|zn00 — 2] =0
n—o0 n—o0
and
lim ||z, — u,|| = 0. (2.3.6)
n—oo

Since J is uniformly continuous on any bounded subset of E, we obtain
lim ||Jx, — Ju,| = 0. (2.3.7)
n—oo

Step 5. We prove that w({z,}) C F, where w({x,}) is the set consisting all of the weak
limits points of {z,}. In fact, for any p € w({z,}), there exists a subsequence {z,, } C {z,}
such that z,, — p. We shall prove that p € ()2, F(S;). We have

o(u,x0) = (u,un) = llzall® = lluall® + 2(u, Jup — Jz,)
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< llaall = el Clall + Neall) + 2l [ Jr — T2
< lzn = unl|(lznll + llunl]) + 2flwl[ll Jun = J2n]] (2.3.8)

for all n > 0. By (2.3.6) and (2.3.7), we obtain

lim (¢(u, z,) — ¢(u, u,)) = 0. (2.3.9)

n—oo

By Proposition 2.2.6 (ii), we have

¢(U, Un,zxn) S ¢(U, xn) and qb(u, SiUn,i-i-lxn) S ¢(U, Un,i—}—lxn) S ¢(U, :Un)

for each 0 < i < n. Thus {S;U, 112 }n>i and {U,, 2z, },>; are bounded sequences in C' for
all i > 0. By Propositions 1.5.6, 2.2.4 and 2.2.6 (ii), we have

6w, Unia) < (T (B (SiUni12a) + (1= Bi)T2n))
= 0(Unitns T (Bus (SiUnisaza) + (1 = Bui) J2n) )
= ||UH2 — 2(u, By i J (SiUniv1%n) + (1 — Bni)Jxn)
+ 18ni T (SiUnyis1%n) + (1 = Bog) Jz ||
- ¢<Un,ﬂm I (Bri I (SiUnir12n) + (1 — 5n,i)J5Un)>
= Jlull® = 2(u, BT (SiUnit12n) + (1 = Boi)Jn)

+ Bl SiUn is12all* + (1 = Bus) |zl
- Bﬂ,i(l - ﬁnﬂ)g(HJ(SlUn,l+1xn> - an”)

- ¢(Un,ixna Jfl (6n,1J(SZUn,z+1xn) + (1 - ﬁn,l)an)>

= 6n,i¢(u7 SiUn,i—i-lIn) + (1 - ﬁn,z)(é(ua xn)
= Bna(L = Bui)g(1J (SiUnis17n) — Jnl|)

- ¢<Un,i$n> ']_1 (Bn,zJ(SzUn,H-lxn) + (1 - ﬁn,z)t]xn>>

S 5n,i¢(u7 Un,i+1xn) + (1 - 6n,z)¢(u7 xn)
- Bn,i(]- - Bn,z)g(||J<SzUn,z+1xn) - an”)

- ¢<Un,ixn7 J_l (ﬁn,zJ(SzUn,H—lxn) + (]- - Bn,z)an>>
for some g € G and for all 1 <4 <n. This implies

O(u; un) < O(u, yn) = du, Wizy) = d(u, Upon)

= ||ul|® - 2650, J(SoUn120)) — 2(1 — Bro)(u, Jx,)
+ [|Bn0 T (SoUn1n) + (1 = Buo) 2|

< Bro@(, Up1wn) + (1 = Bro)d(u, zn)
= Bno(1 = Bno)g(1 I (SoUnin) — Jnl|)

S Bn,O{Bn,lqb(ua Un,2xn) + (1 - 5n,1)¢(u7 xn)
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= Bna(1 = Bnn)g (|7 (S1Un220) — Jizal)
- ¢<Un,1xm Jil (ﬁn,lJ(SlUann) + (1 - 571,1)an)> }
+ (1 = Buo)o(u, xn) = Buo(l = Buo)g(| I (SoUnzn) — Jn|)

<

< (U, v0) = Bro(1 = Buo)g(IJ (SoUnn) — Jn||)

= BnoPna (1 = Bn)g ([T (S1Un p22n) — J2nl]) — -

- Bn,OBn,l T ﬁn,n(l - Bn,n)g(||J(SnUn,n+1xn) - an”)

- Bn,0¢ <Un,1xn7 J_l (ﬂn,lJ(SlUn,an) + (1 - ﬁn,l)t]l‘n)> -
- Bn,OBn,l e 5n,n—1
x QS(U,Wxn, T (B (SuUn ) + (1 — ﬁn,n)an)> (2.3.10)

for all n > 0. By (2.3.9), (2.3.10) and the definition of 3, ;, we obtain
7~}l—>n<>lo g (SiUniv1zn) — Jzn|[) = 0,

lim ¢(Un,i+1xn7 J (ﬁn,iﬂJ(Sz’HUn,iJrzxn) + (1 - 5n,i+1)Jﬂin)> =0

n—o0

for all # > 0. By the definition of g and Proposition 2.2.1, we have

n—oo
7}1_{20 HUn,zurlxn - J! (ﬁn,z‘+1J(S¢+1Un,z‘+2fEn) + (1 — 5n,z’+1)<]$n) H =0. (2.3.12)

By (2.3.11), we obtain
= 1im B[ T(SiUn 120) = Ja]| = 0. (2.3.13)

Since J! is also norm-to-norm continuous on bounded sets, by (2.3.11) and (2.3.13), we
have

le ||SiUn,i+1$n - l‘nH = 0, (2314)
lim | T (Baid (SiUnisrn) + (1 = Boi)Jwn) — || = 0 (2.3.15)

for all i > 0. By (2.3.12) and (2.3.15), we obtain

lim U, 4120 — 2] =0 (2.3.16)
n—oo
for all ¢ > 0. Since z,,, — p, we have U, ;+12,, — p for all i > 0. By (2.3.14) and (2.3.16),
we obtain

lim ||S;Upiy 120 — Unjiv12n|| =0
n—oo

29



for each ¢ > 0. Since Uy, ;+12,, — p and S; is relatively nonexpansive, we have p € a (Si) =
F(S;) for all ¢ > 0. Hence p € (2, F'(S;). Now we shall prove that p € EP(f). By (2.3.2),
(2.3.9) and Proposition 2.2.10, we have

O (tn, Yn) = ATy, Yns Yn) < O(, yn) — d(u, Ty, yn)
< o(u, ) — d(u, u,) — 0

as n — 0o. By Proposition 2.2.1, we obtain

Tim {fup — yn| = 0. (2.3.17)

Since ,,, — p, by (2.3.6) and (2.3.17), we have u,, — p and y,, — p. Since J is uniformly
continuous on any bounded set of E, by (2.3.17), we have ||Ju,, — Jy,| — 0 as n — co. By
the assumption that v, > r, we have

1
lim —||Ju, — Jy,|| = 0. (2.3.18)
n—oo ’y,n
Since u,, = T, y,, we obtain
1
fun,y) + —(y — up, Ju, — Jyn) >0 (2.3.19)

for all y € C. Replacing n by ng in (2.3.19), by (As), we have

1
n

for all y € C. Since y — f(z,y) is convex and lower semicontinuous, it is also weakly lower
semicontinuous. Letting ny — oo in (2.3.20), by (2.3.18) and (A4), we have f(y,p) < 0 for
ally € C. For t € (0,1] and y € C, letting y; = ty + (1 — t)p, then y, € C and f(y;,p) < 0.
By (A;) and (A4), we obtain

0= fye,ye) <tf(yny) + (1 =) f(ye,p) <tf (YY)

Dividing by ¢, we have f(y,y) > 0 for all y € C. Letting ¢t | 0, by (As), we obtain
f(p,y) > 0. Therefore p € EP(f), and so p € F. This implies w({x,}) C F.

Step 6. We prove that w({x,}) is a singleton and x, — Ilpz,. Let w = Ipxy. Since
weF CC,NQ,and 2,41 = g, ng, o, we have ¢(x,41, 20) < ¢(w, zg) for all n > 0. Since
the norm is weakly lower semicontinuous, this implies

O(p,0) = Il = 24p, o) + o]
< T i (2, | = 2(n, T20) + o]

= liminf ¢(x,, , z)
k—ro0

< limsup ¢(zp, , o) < d(w, xp). (2.3.21)

k—o0
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By the definition of w and (2.3.21), we have p = w. This implies that w({x,}) is a singleton
and ¢(zy,, o) = ¢(w,xy). Hence

0 = lim (6(zu, 70) — 6w, 20))
= Tim (12 = ol = 2, — 0, Jo))

. 2 2
= Tim [, 2 = [l
(o]

that is,
. 2 2
Sl |7 = [l (2.3.22)
—00

Since E' is uniformly convex, it has the Kadec-Klee property. By (2.3.22) and x,, — w, we
have x,, — w = llpzy. Since w(z,) is a singleton, we have z,, = [Ipx. O

The following theorems can be obtained by Theorem 2.3.1.

Theorem 2.3.2 ([77], Theorem 3.3, p. 293). Let E be a uniformly smooth and uniformly
convex Banach space and C' a nonempty, closed and convexr subset of E. Let A be an «-
inverse strongly monotone operator of C into E*, f : C x C — R a bifunction satisfying
(A1)—(Ay) and {S;}32, an infinite family of relatively nonexpansive mappings of C' into itself
such that F := (2 F(S;) N EP # 0. Let {5,;}1-y be a sequence of real numbers such that
liminf, . 8,:(1 — Bn;) > 0 and W,, the W-mapping generated by {S;}7—y and {Bni}iy-
Let {x,} be a sequence generated by

(
l’oec,

Yn = Wiy,
Un € Ky, Y, that is,
f(un,y) + (Aup, y — uy,) + %(y — Up, JUy — Jyp) >0 for ally € C, (2.3.23)
Co={2€C:¢(z,uy) < ¢(z,20)};
Qn=1{2€C:{x,— 2z Jrg— Jr,) > 0};

( Tnt+1 = 1_[(Janﬂ?o

for n >0, where g, ng, is the generalized projection of E onto C, N Q, and {v,} C
[r,00) for some r > 0. Then {x,} converges strongly to Ilpxqy, where llg is the generalized
projection of E onto F.

Proof. Let g(un,y) = f(un,y) + (Aun,, y — uy,). By Propositions 2.2.11 and 2.2.12, (2.3.23)
is equivalent to (2.3.1) in Theorem 2.3.1. Therefore the conclusion of Theorem 2.3.2 can be
deduced from Theorem 2.3.1. O

Corollary 2.3.3 ([76], Theorem 3.1, p. 50). Let E be a uniformly smooth and uniformly
convex Banach space and C' a nonempty, closed and convex subset of E. Let f : CxC — R
a bifunction satisfying (A1)—(A4) and S a relatively nonexpansive mapping from C into itself
such that F := F(S)NEP(f) # 0. Let {a,} C [0,1] be a sequence of real numbers such
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that lim,, o oy (1 — o) > 0. Let {x,} be a sequence generated by

(

xg € C,

Yp = J HanJ Sz, + (1 — ) Jy),

u, € C such that f(u,,y) + %(y — Up, JUuy, — Jyn) >0 for ally € C,
Cr={2 € C:d(z,un) < P(z,70) };

Qn={2€C:(x,— 2 Jag— Jz,) > 0};

L Zn+1 = e, ng. %o

(2.3.24)

for n >0, where ¢, ng, is the generalized projection of E onto C, N Q, and {v,} C

[r,00) for somer > 0. Then {x,} converges strongly to Ilpxqy, where Il is the generalized
projection of E onto F.

Proof. Let S, = S, Bno = a, and {Bn:}, = {0} for all n > 0 in Theorem 2.3.1. This
shows that (2.3.1) is equivalent to (2.3.24). Therefore the conclusion of Theorem 2.3.3 can
be deduced from Theorem 2.3.1. [l

2.4 Strong convergence theorems of convex combina-
tions

In this section, we prove strong convergence theorems of convex combinations for finding a
common element of the set of solutions for a generalized equilibrium problem and the set of
common fixed points of infinite relatively nonexpansive mappings in a Banach space.

Theorem 2.4.1 ([77], Theorem 4.1, p. 294). Let E be a uniformly smooth and uniformly
convex Banach space and C' a nonempty, closed and convex subset of E. Let f : CxC — R
be a bifunction satisfying (Ay)—(As) and {S;}32, an infinite family of relatively nonexpansive
mappings of C' into itself such that F = (\;2q F(S;) N EP(f) # 0. Let {\,;}}-, C [0,1) be
a sequence of real numbers such that Z?:o Ani =1 for allmn > 0 and lim,_,oc A\y; > 0 for
each i > 0, and V,, the mapping defined by (2.2.2). Let {x,} be a sequence generated by

(20 € C,

Yn = Valn,

Up € Ty, that is, f(un,y)+ %(y — Up, Juy, — Jyn) >0 for ally € C,
Cn={2€C:8(z,un) < ¢(2,7,)};

Qn=1{z€C:(x,— 2z Jxg— Jz,) >0}

Tnt1 = chanxo

(2.4.1)

for n >0, where ¢, ng, is the generalized projection of E onto C, N Q, and {v,} C
[r,00) for some r > 0. Then {x,} converges strongly to I1pxqy, where llg is the generalized
projection of E onto F.

Proof. We divide the proof into six steps.
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Step 1. We prove that C,, N Q, C C is closed and convex for all n > 0. In fact, it is
obvious that C, is closed and @, is closed and convex for all n > 0. It follows that C,, is
convex for all n > 0 since ¢(z,u,) < ¢(z,x,) is equivalent to

2<Z> Jn — Juy) < “an2 - HUNH2

Thus C,, N Q,, is closed and convex for all n > 0.

Step 2. We prove that F' C C,, N @, for all n > 0. Let w, = T, y, for all n > 0 and
uw € F. By Propositions 2.2.7 (i) and 2.2.9 (iii), we have u € (_, F(V,) N F(T,,). By
Proposition 2.2.9, we obtain T}, is relatively nonexpansive. By Proposition 2.2.7 (ii), we
have

¢(u7 un) = ¢<U7T’Ynyn) < ¢<u7 yn) = ¢(u7 ann) < gb(u,ﬂfn) (242)

This implies v € C,, and so F' C C,, for all n > 0. By induction, now we prove that
FcC,nQ@, for all n > 0. In fact, since Qg = C, we have I’ C Cy N Qy. Suppose that
F C CyNQy for some k > 0. Then there exists x41 € Cp N Q) such that x4 = e, g, To-
By the definition of x;,1, we have

(g1 — 2z, Jxg — Jxpyq) >0 (2.4.3)

for all z € CyNQy. Since FF C CxNQy, we have (2.4.3) for all z € F. This implies z € Qg1
and so F' C Qgy1. Therefore FF C C, N Q,, for all n > 0.

Step 3. We prove that {z,} is bounded. By the definition of @, we have z,, = Ilg, zo
for all n > 0. Hence, by Proposition 2.2.4,

(2, 0) = ¢(lg, w0, 20) < P(u, x0) — P(u, g, o) < G(u, )

for all u € F C @, and n > 0. This implies that {¢(z,,x¢)} is bounded, and so {z,} and
{u,} are bounded in C. Since z,+1 = Il ng, 20 and x, = g, x¢, we have ¢(z,, o) <
O(Tpy1, o) for all n > 0. This implies that {¢(x,,, x¢)} is nondecreasing. Hence there exists
the limit lim, o ¢(2,, o). By Proposition 2.2.4, we have

A(Xns1, Tn) = O(Tns1, o, 20) < G(Tni1,z0) — ¢(Ilg, x0, 20)
= ¢(xn+17 Z'0) - ¢<xn7 .I'o)
for all n > 0. This implies
lim ¢(xp41,2,) =0. (2.4.4)

n—o0

Since zp41 = le,ng, 2o € Cy, by the definition of C,,, we have

¢($n+17 un) S ¢<£L'n+1, xn) (245)

Since FE is smooth and uniformly convex, by (2.4.4), (2.4.5) and Proposition 2.2.1, we obtain

im |zp41 — |l = lim [[2,41 — 2] = 0
n—o00 n—o0
and
lim ||z, — u,|| = 0. (2.4.6)
n—oo
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Since J is uniformly norm-to-norm continuous on bounded subsets, we have
lim ||Jz, — Ju,| = 0. (2.4.7)
n—oo

Step 4. We prove that ||S;x,, — z,|| — 0 for all [ > 0. By the definition of A, ;, we have
1 — Xt =D i=01,..n An. For large enough n > 0 and 0 <[ < n, Proposition 1.5.6 implies
i#l
O, up) < d(u, yn) = P(u, Vazn)

n 2

J_l Z )\nﬂ,J(SlfL'n)

=0

= [lull® =2 Anilu, J(Sia)) +

=0

= ||u||2 —2 Z Ani(u, J(Sixy))

=0

S ic0,1,m Anid (Sizn) ||

+ )\n’lJ(Sll’n) -+ (1 — )\n,l) i#ll Y ;

< Jull® =2 Auilu, J(Siwn)) + Angl| S

=0
S iz0,1,n Anid (Sizn) ||
1— A, s
N ( J) 1- /\n,l
> i=0,1,... Anid (Sin)
— )\n l(l - )\nl)g J(Slxn) - sl
’ ' 1— /\n,l

= [Jull® =2 Ailu, J(Siwn)) + > Al Sial?
=0 =0

Zi:O,l ..... n /\n,zJ<Szxn) >

- )‘n,l(l - )‘n,l)g< J(Sirn) — Z.7611 — Ani

= ¢(u, Sixn) — Ag(1 = An)g | | (Sizn) — z’;ézl —

Zi:ogl,l...,n )\n,iJ(Sﬂn)
< o(u, p) — Ana(1 — )‘n,l)g< J(Sizn) — 27&1 — A\l

for some g € G. Thus

> i=0,1,... Anid (Sin)
Ana(1 — An,l)g< J(Sz,) — — M7 )

1 — Ay
S Cb(U, $n) - ¢(ua un)
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2 2
= [lnll” = lunl” + 2(u, Jun = Jzn)
< 2ffull - N[ Jun = Tzl + (all + [lunl)lzn = unll

This implies, together with (2.4.6) and (2.4.7),
Zi:o,l ,,,,, n )\n,ij(siﬂfn)

lim || J(Sz,) — i =0 (2.4.8)
n—oo 1 — )\n,l

for all [ > 0. By (2.4.2), (2.4.6), (2.4.7) and Proposition 2.2.10, we have

gb(una yn) = ¢< nYns yn)

< ¢(u yﬂ) - (uvTvnyn)
< o(u, Tn) — du, uy)
< |lzn = un||([Zall + lynll) + 2[Julll| Jun, — J2,|| — 0.

This implies
lim ||, — ynl = 0. (2.4.9)
n—oo

By (2.4.6) and (2.4.9), we obtain
lim [z, = yn| < Tim {[lzn — wnll + [lun — ynll} = 0.
n—oo n—oo
Since J is uniformly norm-to-norm continuous on bounded subsets, we have
lim || Jz, — Jy,|| = 0. (2.4.10)
n—oo
Since

[z = J(Sizn)|| < |2 — J(Vaza)|| + ([T (Sizn) = I (Vaza) |

n

= [Tz = Jyall + |[T(Sizn) = > Anid (Sin)
1=0
= Han - JynH
Zi:(}zl ..... n )\mJ(Sﬂn)
+ (1= M) |[J(Si) — iZl

1 — A
for large enough n > 0, by (2.4.8) and (2.4.10), we obtain ||Jz, — J(Six,)|| = 0 as n — oo.
Since J~! is also uniformly norm-to-norm continuous on bounded subsets, we have

lim ||z, — Siz,|| =0 (2.4.11)
n—oo

forall I > 0.

Step 5. We prove that w({z,}) C F, where w({x,}) is the set consisting all of the weak
limits points of {z,}. In fact, for any p € w({z,}), there exists a subsequence {z,, } C {z,}
such that x,, — p. Since S; is relatively nonexpansive, (2.4.11) implies p € (.2, F(S;) =
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MNieo F'(S;). Now we prove that p € EP(f). Since z,, — p, by (2.4.6) and (2.4.9), we have
Up, — p and y,, — p. Since J is uniformly continuous on any bounded set of E, by (2.4.9),
we have ||Ju, — Jy,| — 0. By the assumption that ~, > r, we have

1
lim —||Ju,, — Jy,|| = 0. (2.4.12)
n—oo ’}/,n
Since u, = T, y», we obtain
1
fun,y) + —(y — up, Ju, — Jyp) >0 (2.4.13)

for all y € C. Replacing n by ny in (2.4.13), by (Az), we have

1
7_<y — Up,, ']unk - Jynk> > _f(unkvy) > f(ya unk) (2414)
ng
for all y € C. Since y — f(z,y) is convex and lower semicontinuous, it is also weakly lower
semicontinuous. Letting ny — oo in (2.4.14), by (2.4.12) and (A4), we obtain f(y,p) < 0
for all y € C. For t € (0,1] and y € C, let y; = ty + (1 — t)p. Thus we have y;, € C' and
f(yt,p) <0. By (A1) and (Ay), we have

0= f(ye,y) <tf(yy) + (1 =) f(ye,p) <tf(y1,y)-

Dividing by ¢, we obtain f(y;,y) > 0 for all y € C. Letting ¢t | 0, by (A3), we have
f(p,y) >0 for all y € C. Therefore p € EP(f), and so p € F. This implies w({z,}) C F.

Step 6. We prove that w({z,}) is a singleton and x,, — lrzy. Let w = IIpxy. Since
weF CC,NQ,and 2,41 = e, ng,To, we have ¢(x,,41,20) < ¢(w, ) for all n > 0. Since
the norm is weakly lower semicontinuous, this implies

O(p,0) = Il = 24p, o) + [
< T (2, | = 2(n, T20) + o]

= liminf ¢(x,, , zo)
k—ro0

< limsup ¢(zy, , o) < d(w, xp). (2.4.15)

k—o0

By the definition of w and (2.4.15), we have p = w. This implies that w({z,}) is a singleton
and ¢(zy,, o) = ¢(w,x). Therefore

0 = Jim (6(zu, 70) — 6w, 70))
= Tim (12 = lo? = 2, — 0, Jo))

. 2 2
= lim [, 2 = [l
(o]

that is,
i 2 2
Sl |7 = [l (2.4.16)

Since E is uniformly convex, it has the Kadec-Klee property. By (2.4.16) and x,, — w, we
have z,,, — w = Ilpx,. Since w(x,) is a singleton, we have x,, — Ilpz,. O
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The following theorem can be obtained by Theorem 2.4.1.

Theorem 2.4.2 ([77], Theorem 4.2, p. 298). Let E be a uniformly smooth and uniformly
convex Banach space and C' a nonempty closed convexr subset of E. Let A be an a-inverse
strongly monotone operator of C into E*, f : C' x C'— R a bifunction satisfying (Ay)—(As)
and {S;}32, an infinite family of relatively nonexpansive mappings of C' into itself such that
F=NZgF(S;))NEP # 0. Let {\,;}"y C [0,1) be a sequence of real numbers such that
Z?:o Ani =1 foralln >0 and lim,,_,oc A\p; > 0 for each i > 0, and V,, the mapping defined
by (2.2.2). Let {x,} be a sequence generated by

(:co e,
Yn = Vnln,
Up € Ky, Y, that is,
fun,y) + (Aup, y — uy,) + A/Ln(y — Up,y JUy — Jyp) >0 for ally € C, (2.4.17)
Co={z€C:9(z,un) < (2, 7n) };
Qn=1{2€C:{(x,— 2z Jrg— Jr,) > 0};

( Tnt+1 = 1_[(Janﬂ?o

for n > 0, where ¢, ng, is the generalized projection of E onto C, N Q, and {v,} C
[r,00) for some r > 0. Then {x,} converges strongly to Ilpxqy, where llg is the generalized
projection of E onto F.

Proof. Let g(un,y) = f(un,y) + (Au,, y — u,). By Propositions 2.2.11 and 2.2.12, (2.4.17)
is equivalent to (2.4.1) in Theorem 2.4.1. Therefore the conclusion of Theorem 2.4.2 can be
deduced from Theorem 2.4.1. O
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Chapter 3

Shrinking Projection Methods with
Respect to Bregman Distances

3.1 Introduction

Let E be a smooth, strictly convex and reflexive real Banach space with the norm |||, C
a nonempty, closed and convex subset of F and T a nonlinear mapping from C' into itself.
For an arbitrary point x € E, consider the set {z € C : ||z — z|| = mingec ||z — y|[}. We

know that this set is always a singleton. Let P be a mapping of E onto C' defined by

Pox = arg min ||z — y|.
yeC
Such a mapping Pg is called the metric projection. Takahashi, Takeuchi and Kubota [74]
have introduced a new hybrid iterative scheme called a shrinking projection method for
nonexpansive mappings in Hilbert spaces. They proved that a sequence generated by the
shrinking projection method converges strongly to a fixed point of a nonexpansive mapping.
It is an advantage of projection methods that strong convergence of iterative sequences is
guaranteed without any compact assumptions.
The mapping T is said to be asymptotically nonexpansive (cf. [24]) if there exists a
sequence {k,} in [1,00) with lim,_, k, = 1 such that

T2 = Ty < kallz = yll

for all z,y € C' and n € N. Schu [67] has considered a modified Mann iteration for asymp-
totically nonexpansive mappings. Inchan [29] has introduced a modified Mann iteration for
asymptotically nonexpansive mappings by the shrinking projection method.

The mapping T is said to be asymptotically nonexpansive in the intermediate sense (cf.
[13, 32]) if it is continuous and the following inequality holds:

limsup sup ([|[T"z — T"y|| — ||z — y||) <0. (3.1.1)

n—oo x,yeC

If F(T) # (0 and (3.1.1) holds for all p € F(T) and x € C, that is,

limsup  sup  (|lp—T"z| — [lp—=z||) <0, (3.1.2)
n—00  peF(T)aeC
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then T is said to be asymptotically quasi-nonexpansive in the intermediate sense. It is
worth mentioning that the class of mappings which are asymptotically nonexpansive in the
intermediate sense may not be Lipschitz continuous. Motivated by Takahashi et al. [74]
and Schu [67], many authors have studied iterative methods for approximating fixed points
of asymptotically quasi-nonexpansive mappings in the intermediate sense (see [26, 27, 56]).
However, as far as we know, it has not been studied yet for the cases of asymptotically
quasi-nonexpansive with respect to the Bregman distance in the intermediate sense.

On the other hand, we know two kinds of mappings in Banach spaces which generalized
the metric projections in Hilbert spaces. Let (-,-) be the pairing between E and the dual
space of E and J the normalized duality mapping of E. Let ¢ : E x E — R* be the
Lyapunov functional (cf. [1]) defined by ¢(z,y) = ||z|* — 2(x, Jy) + ||y||* for all z,y € E.
The first kind is the projection introduced by [1]: For an arbitrary point = € E, consider
the set {z € C' : ¢(z,x) = mingec ¢(y,x)}. It is known that this set is always a singleton
(see [1]). Let IIs be a mapping of E onto C' defined by

ez = arg min ¢(y, x).
yeC
Such a mapping Il¢ is called the generalized projection. The other is the projection found
in [28]: The mapping T is said to be generalized nonexpansive (cf. [28]) if F(T) # () and
o(Tx,p) < ¢(z,p) for all x € C and p € F(T). Given two nonempty subsets K C C C F,
an operator R : C' — K is called a retraction of C' onto K if Rx = x for each z € K. A
retraction R : C' — K is said to be sunny (cf. [25, 57]) if R(Rxz +t(z — Rz)) = Ra for each
zr € C'and any t > 0, whenever Rr+t(x—Rz) € C. A nonempty subset C of E is said to be a
sunny generalized nonexpansive retract of E if there exists a sunny generalized nonexpansive
retraction of F onto C'. We know that a sunny generalized nonexpansive retraction R from
E onto C' is uniquely determined (see [28]). We know also that z = Rcx for all z € F if
and only if ¢(z, z) = mingec ¢(x,y) (see [36]). By these facts, R¢ is characterized by
Rex = arg min ¢(z, y)
yelC

for x € E. The projections Il and R¢ are generalization of the metric projection in Hilbert
spaces. In connection with the Bregman distance (see Section 3.2), there exist projections
which are generalizations of the projections Ilo and R¢, respectively (see Section 3.3).
Therefore we can construct hybrid iterative schemes with respect to Bregman distances,
which are generalizations of schemes for the generalized projection and the sunny generalized
nonexpansive retraction.

In this chapter, we introduce new classes of nonlinear mappings, that is, asymptotically
quasi-nonexpansive mappings with respect to the Bregman distance in the intermediate
sense. Motivated by the above results, we design new hybrid iterative schemes using the
shrinking projection method with respect to Bregman distances for finding fixed points of
the mappings in reflexive Banach spaces.

3.2 Preliminaries

Throughout this chapter, we assume that E is a real reflexive Banach space. A function
f: E — (—o0,400] is said to be admissible if f is proper, convex and lower semicontinuous
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on E and Gateaux differentiable on intdomf. Under these conditions we know that Jf is
single-valued and 0f = Vf (see [15], Proposition 1.1.10, p. 13). An admissible function
[ E — (—o0,+00] is called Legendre (cf. [8]) if it satisfies additionally the following two
conditions:

(L1) intdomf # () and Of is single-valued on its domain;

(L) intdom f* # () and subdifferential 9 f* is single-valued on its domain.
Let f be a Legendre function on E. Since E is reflexive, we always have Vf = (V f*)~L.
When this fact is combined with conditions (L) and (L), we obtain the following equalities:

ranVf =domV f* =intdomf* and ranVf* =domV f = intdomf.
It follows that f is Legendre if and only if f* is Legendre (see [8], Corollary 5.5, p. 634).

Example 3.2.1. The following functions are Legendre on £ = R": Let x € R™.
(i) Halved energy: f(z) = ||z|*/2 = 52y T

" (x;ln(x;) —x; > 0;
(il) Boltzmann-Shannon entropy: f(z) = 2= (@i () = 2), w2 0;

+00, otherwise.
—> 0 In(z; > 0;
(iii) Burg entropy: f(x) = 2= In(zy), w ;
+00, otherwise.

Note that intdomf = R™ in (i), whereas intdomf ={z € R" : 2; >0, j=1,...,n} in (ii)
and (iii).

Let f: E — (—o00,+00] be a convex function on E which is Gateaux differentiable on
intdomf. A bifunction Dy : domf x intdomf — [0, +00) given by

Dily,x) == f(y) = f(x) = (V[(2),y — x)

is called a Bregman distance with respect to f (cf. [12, 18]). In general, the Bregman distance
is not a metric since it is not symmetric and does not satisfy the triangle inequality. However,
it has the following important property, which is called the three point identity (cf. [20]):
for any x € domf and y, z € intdomf,

Dy(z,y) + Dy(y, z) = Dy(x,2) = (V(2) = Vf(y),z = y). (3.2.1)

Example 3.2.2. The Bregman distances corresponding to the Legendre functions of Ex-
ample 3.2.1 are as follows: Let x,y € R™.
(i) Euclidean distance: Dj(y, x) = ||y — z||>/2.
(ii) Kullback-Leibler divergence: Dy(y,z) = > 7_, (y; In(y;/z;) — y; + ;).
(ii) Itakura-Saito divergence: Df(y,z) = > 7, (In(z;/y;) +y;/x; — 1).

For a Legendre function f : E — (—o00, +00|, we associate a bifunction W7 : domf* x
domf — [0, 400) defined by

Wi(E, x) = fx) — (&) + ()
for (&, z) € domf* x domf.
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Proposition 3.2.3 ([42], Proposition 1, p. 1047). Let f : E — (—00,400] be a Legendre
function. Then the following hold:

(i) The function WY (-, z) is convex for all x € domf;

(ii) W/ (Vf(x),y) = Ds(y,x) for all z € intdomf and y € domf.

Proof. (i) By Proposition 1.4.3, f* is convex. Therefore W/ (-, z) is convex.
(ii)For z € intdomf and y € domf, we have f(z)+ f*(Vf(x)) = (Vf(x),x). Therefore

WV f(x),y) = fly) = (V (), y) + [ (Vf(x))
—f@)(V(@ y) +(Vf(x),2) — f(z)
fy) = f(@) = (Vf(z),y —z)
= Df(y,l’)

]

Proposition 3.2.4 ([42], Proposition 10, p. 1052). Let f : E — (—o00, +00| be a Legendre
function such that V f* is bounded on bounded subsets of domf* = E*. Let x € domf. If
the sequence {D¢(x, Tn)tnen is bounded, then the sequence {y,}tnen is also bounded.

Proof. Since {Dy(x, x,)}nen is bounded, there exists M > 0 such that Dy(x,x,) < M for
all n € N. By the definition of Wy, we have

f@) =V f(zn),x) + [ (Vf(@n)) = WV f(2n),2) = Dy(w,2a) < M.

This implies that the sequence {V f(z,,) }nen is contained in the sub-level set {y € ranV f =
domV f* = intdomf* : ¢(y) < M — f(x)} of the function ¢» = f* — (-, z). By Proposition
1.4.3, the function f* is proper and lower semicontinuous. By the Moreau-Rockafellar
theorem ([65], Theorem 7A (a), p. 60), the function ¢ is coercive, that is, limz|—eo ¥(z) =
+o00. Consequently, all sub-level sets of 1 are bounded. Hence {V f(z,)},en is bounded.
By our hypothesis, V f* is bounded on bounded subsets of E*. Therefore the sequence

{Zntnen ={Vf*(Vf(z,))}nen is bounded. O

Let f: E — (—00,+00] be a convex function on E which is Gateaux differentiable on
intdomf. A modulus of total convexity of f at v € domf is a function v¢(z,-) : [0, 4+00) —
[0, +00] defined by

vp(x,t) == inf{Dy(y,x) : y € domf, ||y —z| = t}.

The function f is said to be totally convexr at = € intdomf (cf. [14]) if ve(x,t) is positive
for all ¢ > 0. The function f is said to be totally convexr when it is totally convex at every
point of intdomf. A modulus of total convexity of f on nonempty bounded subset B C E
is a function vy(B,-) : [0, 4+00) — [0, +00] defined by

vr(B,t) ;== inf{vs(x,t) : x € BNintdomf}

for t € (0,00). The function f is said to be totally conver on bounded sets if, for any
nonempty bounded set B C E, vy(B,t) is positive for all ¢t > 0.
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Proposition 3.2.5 ([14], Proposition 2.4, p. 26). Let f : E — (—o0, +00| be an admissible
function and x € intdomf.

(i) If c € [1,00) and t > 0, then vs(z,ct) > cvs(z,t).

(ii) The function vs(x,-) is nondecreasing. It is strictly increasing if and only if f is
totally convex at x.

Proof. (i) If c=1,¢t =0 or vs(x,ct) = +o00, then the result is obvious. Otherwise, let £ be
a positive real number. By the definition of V}, there exists a point u € domf such that
|lu — z|| = ¢t and

ve(x,ct) +e > Dy(u,x) = f(u) — f(z) = (Vf(z),u —z). (3.2.2)
For every o € (0,1), denote u, = au + (1 — a)z. Let f = 1/c. Then we have ||ug — x| =
B|lu — z|| = t. Note that, for any « € (0,1),

Euﬂ + (1 - E)x = E(ﬂu +(1—-08)z)+ (1 — B)x = Ug. (3.2.3)

The function ¢t — (f(x + t(u — x)) — f(z))/t from R\ {0} into (—o0, 00| is nondecreasing
on (0,1). By (3.2.2), we have

<Vf(x),u - :U>

ofact) 2 > flu) — f(z) - LEF AN 2T

for all @ € (0,1). By (3.2.3), we have

ve(x,ct) + € > é{af(u) +(1—a)f(z) — f(a:+a(u—x))}
{

0% 0%

{5+ (1=5) @) = 1 (Gus+ (1-5)0) }

The first term of the last sum is nonnegative since f is convex. Thus

1
vp(x,ct) +e > a{%f(Uﬁ) + (1 — %)f(x) — f(%Ug + (1 — %)x)}
1
— {7 - 1@ = £ (1 (o + Sua - ) - 1) }
Letting o« — 0, we have vg(x,ct) + ¢ > cDy(ug,x) > cvg(x,t). Since € is an arbitrary
positive real number, this proves (i).
(ii) Suppose that 0 < s < t. By (i), we have

vz, t) > évf(x,s) > vg(x, s). (3.2.4)
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Thus the function vy(x, -) is nondecreasing. If f is totally convex, then the last inequality in
(3.2.4) is strict. This implies that vg(x,-) is strictly increasing on [0, 7¢(z)), where 74(z) €
(0, 4+00]. The converse is obvious. O

We remark in passing that f : £ — (—o0, +00] is totally convex on bounded sets if and
only if f is uniformly convex on bounded sets (see [16, 17]).

Proposition 3.2.6 ([16], Proposition 4.2, p. 16). Let f : E — (—o0,+00| be a proper
and convex function whose domain contains at least two different points. If f is lower
semicontinuous, then f is totally convex on bounded sets if and only if f is uniformly convex
on bounded sets.

Proof. Suppose that f is uniformly convex on bounded sets. Take B a bounded set such
that B N domf # (. Denote by C the closed convex hull of B and K := {z € F :
d(z,C) < 1}, where d(z,C) := inf{||Jr —y|| : y € C} for x € E and C C E. Obvi-
ously, K is closed, convex and bounded and C'is a subset of the interior of K. Let tx be
the indicator function of K and define g = f + tx. The function ¢ is uniformly convex
since f is uniformly convex on bounded sets. Consider F := {¢ : [0,400) — [0, +00] :
1 is convex and lower semicontinuous, intdomey) # (), ¢(0) = 0 and ¢ (t) > 0 for t > 0}.
Hence there exists a function ¢ € F such that

9(y) —g9(x) = g°(2,y — 2) + Y([ly — z[])
for all z,y € domg (see [82], Theorem 2.2, p. 353). This implies
fy) = f(2) = g°(2,y — 2) + P(lly — =)

for all z € CNdomf and y € KNdom f. By definition of g, we have ¢°(z,y—x) = f°(z,y—x)
whenever x € C'Ndomf and € K Ndomf. Thus

fly) = f(x) > fo(x,y — ) +¥(|ly — =)
If |y — z|| = ¢ € (0,1], then
fly) = f(x) = fo(z,y —x) + (1),

Thus ve(B,t) > ve(C,t) > (t) > 0 for all t € (0,1]. Since v¢(B,-) is nondecreasing,
ve(B,t) > 0 for all t > 0, that is, f is totally convex on bounded sets.
Conversely, assume that f is totally convex on bounded sets. Then

f(y)_f(x) > fo(x,y—:c)+vf(C’,t)
for all z € CNdomf and € K Ndomf with ||y — z|| = ¢. Thus
h(y) = h(z) 2 1°(z,y — x) + vp(C, ly — =l]) = h°(z,y — x) +cour(C, ly — ),

whenever z,y € domh, where ¢ovy is the closed convex hull of v;. The functional cof(C, -)
is convex, lower semicontinuous and positive on (0 + oo) (see [82], Proposition A.5, p. 372).
This implies that A is uniformly convex (see [82], Theorem 2.2, p. 353), that is, us(E,t) > 0
for all £ > 0. Therefore pp(B,t) > pup(C,t) > pup(E,t) > 0 for all t > 0. O
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Proposition 3.2.7 ([61], Lemma 3.1, p. 31). Let f : E — R be a totally convex function
and x € intdomf. If the sequence {Df(xy, ) }nen is bounded, then the sequence {,}nen
15 also bounded.

Proof. Since {Dy¢(xy, z)}nen is bounded, there exists M > 0 such that Dy(x,,z) < M for
all n € N. By the definition of the modulus of totally convexity at =, we have

0 <vf(z, ||z, —x|) < Dy(xn, z) < M. (3.2.5)

By Proposition 3.2.5 (ii), the function vs(x,-) is strictly increasing on (0,00). This im-
plies vs(z,1) > 0. Suppose by way of contradiction that {z,},en is not bounded. Then
there exists a subsequence {n(k)}ren of positive real numbers such that Hxn(k)H — 400
as k — oo. Consequently, ||a:n(k) —x” — 400 as k — oo. This shows that the se-
quence {vs(z, ||z, — x||) }nen is not bounded. Indeed, there exists some ko > 0 such that
Hxn(k) — xH > 1 for all k > kq. By Proposition 3.2.5 (i), we have

klggo v, || 2w — =) = ]}LI{:O e — z||vp(z, 1) = 400

since vg(z,1) > 0. This contradicts (3.2.5). Therefore {z,},en is bounded. O
A function f: E — (—o00, +00] is said to be sequentially consistent (cf. [17]) if
lim D¢(yn,z,) =0 implies lim |y, —z,|| =0
n—00 n—00
for any two sequences {x, }nen and {y, fnen in intdomf and domf, respectively, such that
the first one is bounded.

Proposition 3.2.8 ([15], Lemma 2.1.2, p. 67). A function f : E — (—o0,+00] is totally
convex on bounded subsets of E if and only if it is sequentially consistent.

Proof. Assume that f is totally convex. Suppose by way of contradiction that there exist two
sequences {Z, }nen and {y, tnen contained in intdomf and domf, respectively, such that
the first one is bounded, D(yy, x,) — 0 as n — oo and {||yn — 2,/ }nen does not converge
to zero. This implies that there exist a positive number M and subsequences {x,x)}ren
and {Yn) trken of {2 }nen and {yn }nen, respectively, such that M < ||yn(k) — zzzn(k)H for all
k € N. The set B of all x,, is bounded. Thus, for all k € N, we have

D¢ (Ynr), Tnky) = v (Tnr), Hyn(k) - l’n(k)H) > (), M) > ;Igg v(z, M).

This implies inf,epv(x, M) = 0, which contradicts our assumption.

Assume that f is sequentially consistent. Suppose by way of contradiction that there
exists a nonempty bounded subset B C intdomf such that inf,cpvs(x,t) = 0 for some
positive real number ¢. Then there exists a sequence {x, },en contained in B such that, for
each positive integer n,

1 .
- > vf(Ty,t) = nf{Ds(y,x,) 1 y € domf, ||y — z,| =t}

Then there exists a sequence {y,}nen € B such that, for each positive integer n, one has
|Yn — n|| = t and D¢ (yn, x,) < 1/n. The sequence {x, }en is bounded since it is contained
in B. Moreover, we have D¢(y,,x,) — 0 as n — oco. Therefore

0<t= lim ||y, —z,| =0,
n—oo

which contradicts our assumption. O]
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3.3 Bregman projections

The concept of Bregman projection was first used by Bregman [12], while the terminology
is due to Censor and Lent [18]. It has been shown that this generalized projection is a good
replacement for the metric projection in optimization methods and in algorithms for solving
convex feasibility problems. Let f : F — (—o0, +00] be an admissible function.

3.3.1 The left Bregman projection

Given nonempty, closed and convex subset C' of domf, the left Bregman projection projé
with respect to f (cf. [12, 18]) from intdom f onto C' is defined by

projfy(x) := arg min Dy(y,z) = {2 € C: Dy(z,2) < Dy(y,x), Yy € C}
yel

for x € intdomf. If a Banach space E is reflexive and a function f is admissible, strongly
coercive and totally convex, then there exists a unique minimizer of the function Dy (-, x) in
C' (see [2, 15]).

Proposition 3.3.1 ([2], Corollary 2.1, p. 38). Let f : E — R is a strongly coercive
and strictly conver function and C' a nonempty, closed and convexr subset of domf. Then
projé(x) exists uniquely for all x € intdomf.

Proof. Denote D¢(C,z) := inf{D(y,x) : y € C'}. By Proposition 1.4.1, the function f is
continuous on intdomf. By Proposition 1.4.6, f°(z,-) is continuous for each x € intdomf.
Consequently, for each x € intdomf, the function D;(-,x) is also continuous. Clearly,
D¢(C, x) is finite and there exists a sequence {z, },en in C such that

lim D¢(z,,x) = Ds(C, z).

n—oo

Since f is strongly coercive, the sequence {z, },en is bounded. Suppose by way of contra-
diction that {z,},en is unbounded. This implies that there exists a subsequence {y, ) }ren

such that
i 4 (Tn(r))
koo |2 |

= +400. (3.3.1)
Observe that

Dy(xnmy, ) = f(znmy) — f(2) = (Vf(2), Tngry — 2)
= f(l‘n(k ) — [z, 20my) — (f(2) = f2(2, 7))
> f(@nw) = ||zam |17 ), = (f (@) — f(z, z))

= HMH( Hir:k))\\) — |/, -)H*) — (f(z) = f°(x,2)).

By (3.3.1), we have
Dy(C,z) = lim Dy(nu), ) = 400,

k—o00

which is a contradiction.
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Since FE is reflexive, the bounded sequence {x, },en has a weakly convergent subsequence
{Zn@) tken. Let 2 be the weak limit of {z,u)}tren. Since C is closed and convex, it
is weakly closed. Hence z* € (. The epigraph of the convex and lower semicontinuous
function Dy (-, x) is closed and convex in E' x R. Thus it is also weakly closed in E x R.
By consequence, the weak limit of the sequence {(@nw), Df(Znk), ))}ren belongs to the
epigraph of Dy(-,z), that is, Dy(2*,z) < D;(C,x). Since 2* € C, the proof is complete.

O

The left Bregman projection with respect to totally convex functions has the following
variational characterization.

Proposition 3.3.2 ([17], Corollary 4.4, p. 23). Let f : E — (—00,400] be a totally convex
function. Let C be a nonempty, closed and convexr subset of intdomf and x € intdomf. If
T € C, then the following statements are equivalent:

(i) The vector & is the left Bregman projection of x onto C with respect to f;

(ii) The vector & is the unique solution of the variational inequality;

(Vf(x) =V f(z),z—y) >0 foral yeC; (3.3.2)
(iii) The vector & is the unique solution of the inequality
D¢(y,z) + Ds(z,x) < Dg(y,z) forall yeC.

Proof. Suppose that (i) holds. Then D(z,z) < Ds(w, ) for all w € C. In particular, this
holds for w = (1 —t)z + ty for all y € C and ¢ € [0, 1]. Hence we obtain

0> Dy¢(z,2) — Dp(w, x)
= [(&) = f(w) = (V[(z),w - 1))
> (Vf(w) = Vf(z), & —w))
= (VA =1)z +1ty)) = VI(2), 4 —y))

Letting here ¢t — 07, we have (3.3.2).
Suppose that (ii) holds. Then, for any y € C, we have

Dy(y,x) = Dy(#,2) = fy) = [(2) = (VI (2),y = &) = (V[(2) = V[(2),& —y) > 0.
This implies that & minimizes D;(-, ) over C, that is, & = projL(z).
To show that (ii) and (iii) are equivalent, it is sufficient to observe that
Dy(y,2) + Dy(&,2) = Dy(y,z) = (Vf(z) = V[(2),y — 2)
for all y € C. O

Remark. Let f(z) = ||z|*/2 for z € E.
(i) If £ is a Hilbert space, then the left Bregman projection projé is reduced to the
metric projection Fg.
(ii) If F is a smooth, strictly convex and reflexive Banach space, then the left Bregman
projection projgj is reduced to the generalized projection Ilg.

46



Let {C, }nen be a sequence of subsets of E. We denote by s-Li,, C,, the set of limit points
of {C,}, that is, x € s-Li, C,, if and only if there exists {x,} C E such that x,, € C,, for each
n € N and z,, = = as n — oo. Similarly, we denote by w-Ls, (), the set of weak cluster
points of {C,}; y € w-Ls,C,, if and only if there exists {y,,} C F such that y,, € C,, for
each + € N and y,, = y as « — oo. Using these definitions, we define Mosco convergence
(cf. [48]) of {C,,}. If Cy satisfies

s-LiC,, = Cy = w-LsC),,,
then we say that {C,} is a Mosco convergent sequence to Cy. In this case, we denote it by
Co = M-1lim C,,.

Proposition 3.3.3 ([64], Theorem 4.5, p. 12). Let f : E — (—o0,+0o0| be a totally con-
vex function which is Fréchet differentiable on intdomf. Let {C,},en be a sequence of
nonempty, closed and convex subsets of intdomf and Cy a nonempty, closed and convex
subset of intdomf. Then the following statements are equivalent:

(i) The sequence {C,,} converges in the sense of Mosco to Cy;

(i) lim, oo projén (x) = projé0 (x) for all x € intdomf.

Proof. (1)=(ii): Fix z € intdomf and denote zq := projé(w) and x, = projén (x). Let u €
Co and u,, € C,, such that u,, — uasn — oco. Then, for any n € N, Dy(uy, z,,)+Dy(z,,x) <
D¢(up, ). Since the sequence {Dy(uy,, z) }nen converges to Dy(u, x), it is bounded and the
sequence {D(zy,, )} nen is also bounded. Note that Df(z,,z) > ve(x, ||z, — z||) for all
n € N. By the strict monotonicity of v¢(x,-), this yields the boundedness of the sequence
{Zn}nen. Hence there exists some subsequence {z,;}jen which converges weakly to some
y € E. By the definition of w-Ls,C,,, we have y € Cj. Since f is convex and lower
semicontinuous, it is weakly lower semicontinuous. By consequence,

D¢(y,x) < liminf Ds(z,,z) < lim Ds(u,,z) = Ds(u,x).
j—00 j—o0

Since w is arbitrarily chosen in Cjy, we have y = projé(:v). As this weak cluster point is
unique, we obtain that the entire sequence {x, },en converges weakly to zo. Hence

D¢(xo,z) <liminf Dy(z,,x) < limsup D¢(x,, x) < Ds(u, )
n—oo

n—o0

for all u € Cy. In particular, this holds for zy. Therefore the following limit exists and
D¢(xy,,x) — Dy(xg,x) as n — oco. Note that

Df(xmx) - Df(x(hx) - Df(!L‘n,ZL‘()) = <Vf(l’) - Vf(xo),xo - xn>

Letting n — oo, we obtain Dy(z,,x) — 0 as n — oo. By Proposition 3.2.8, we have
T, — Tg as n — 00.

(ii)=(): Clearly, z € s-Li,C,: if v € Cp, there exists {projén(a:)}neN such that
projén(:c) € C, for all n € N, and projén(:c) — projéo(:c) = x as n — oo. It remains
to prove y € w-Ls,C,. Let {z;},en with z; € C; such that it converges weakly to some
x€eE. Ifyy:= projé0 (x) and y; := projéi(x), then the hypothesis yields y; — yo as i — oo.
By Proposition 3.3.2, we have (V f(y;) — Vf(x),z; — y;) > 0. Letting ¢ — 0o, we obtain
(Vf(yo) = Vf(x),x —yo) > 0. Since f is strictly convex and consequently V f is strictly
monotone, we have x = yq € C. O
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3.3.2 The right Bregman projection

(E\_@en a nonempty, closed and convex subset C' of intdomf, the right Bregman projection
projé with respect to f (cf. [9, 43]) from intdomf onto C' is defined by

IT(n)é(x) = arg min D¢(z,y) = {2 € C: Dy(x,2) < D¢(z,y), Vy € C}
yeC

for x € intdomf. Since Dy is not convex in the second variable, it is not clear a priori that
the right Bregman projection is well defined. However, Bauschke, Wang, Ye and Yuan [9]
and Martin-Mérquez, Reich and Sabach [43] have proved

— " L
projl, = Vf*o pl"OJéf(C) oV f (3.3.3)

—
and established several other properties of proj é The right Bregman projection with respect
to totally convex functions has the following variational characterization.

Proposition 3.3.4 ([43], Proposition 4.11, p. 5459). Let f : E — R be a function such
that f* 1s admissble and totally convex. Let C' be a nonempty subset of intdomf such that
Vf(C) is closed and convex. Let x € intdomf. If & € C, then the following conditions are
equivalent to each other:

(i) The vector & is the right Bregman projection of x onto C with respect to f;

(ii) The vector & is the unique solution z of the variational inequality

(Vi) = Vi)o—2) >0 forall yeC;
(iii) The vector & is the unique solution z of the inequality
D¢(z,y) + Ds(z,2) < Dy(x,y) forall yeC.

Proof. Since Vf(C) is closed and convex, the left Bregman projection onto V f(C) with
respect to the totally convex function f* is well defined and characterized in Proposition
3.3.2. It is clear from (3.3.3) that (i) is equivalent to the fact that the vector V f(z) is the
left Bregman projection of V f(x) onto V f(C') with respect to f*. By Proposition 3.3.2 (ii),
(i) is equivalent to & being the unique solution z of the inequality

(VII(Vf(2) =V(Vf(),Vf(z) =€ =20

for all £ € Vf(C). This is equivalent to (Vf(z) — Vf(y),z —z) > 0 for all y € C. Using
the three point identity (3.2.1), we can also prove that (ii) is equivalent to (iii). O

Remark. Let f(z) = ||z|°/2 for z € E.

(i) If £ is a Hilbert space, then the right Bregman projection prOJé is reduced to the
metric projection Pc.

(i) If E is a smooth, strictly convex and relative Banach space, then the right Bregman
projection projé is reduced to the sunny generalized nonexpansive retraction R¢.
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3.4 Bregman asymptotically quasi-nonexpansive in the
intermediate sense

In this section, we introduce and consider the new nonlinear mappings with respect to Breg-
man distances based on asymptotically quasi-nonexpansive mappings in the intermediate
sense. Let f: B — (—o00,400] be an admissible function.

3.4.1 Left Bregman nonexpansive mappings

Let C be a nonempty, closed and convex subset of intdomf and 7" a mapping from C' into
intdomf. The mapping T is said to be left Bregman quasi-nonexpansive with respect to

F(T) (cf. [62]) if F(T) # () and
D¢(p,Tx) < Ds(p,x) forall pe F(T), xeC.

The mapping T is said to be left Bregman asymptotically quasi-nonexpansive (cf. [80]) if
F(T) # 0 and there exists a sequence {k,} C [1,00) with lim,,_,, k, = 1 such that for every
n € N,
D¢(p, T"z) < k,D¢(p,xz) forall pe F(T), zeC.

Every Bregman quasi-nonexpansive mapping is Bregman asymptotically quasi-nonexpansive
with k,, = 1.

We introduce a new class of mappings: the mapping 7' is said to be left Bregman asymp-
totically quasi-nonexpansive in the intermediate sense if F(T) # () and

limsup  sup (Df(p, T"x) — D¢(p, 3:)) <0. (3.4.1)

n—oo  peF(T), zeC

fnzmaX{()’ sup (Df(paTn:E) —Df<p,.%'))}-

peF(T), zeC

The inequality (3.4.1) implies lim, &, = 0. Then (3.4.1) is reduced to the following
inequality

Dy(p,T"x) < Dy(p.) + & (3.4.2)
for all p € F(T) and = € C, where {¢,} is a sequence such that &, — 0 as n — oo. Left
Bregman asymptotically quasi-nonexpansive mappings in the intermediate sense are not
Lipschitz continuous in general.

Example 3.4.1. Assume that £ =R, C' =[1/2,3/2] and T': C' — C defined by

{1, z € [3,1],
Tr = (3.4.3)

1—/5%, ze(1,i]

Note that F(T) = {1} and 7"z = 1 for all x € C and n > 2. If f : R — (—00,+0o0]
is a Legendre function, then T is left Bregman asymptotically quasi-nonexpansive in the
intermediate sense since

lim sup sup(Df(l,T”x) — Df(l,a:)) <limsupsup D¢(1,T"z) = 0.

n—oo xeC n—oo xzeC
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However, T' is not Lipschitzian with respect to Bregman distances in Example 3.2.2. Indeed,
suppose that there exists L > 0 such that Dy(Ty,Tx) < LD¢(y,z) for all z,y € C. By
Taylor’s theorem, there exists ¢ € (0,1) such that

Dy 7) = F(0) ~ (&) ~ (VI @),y —a) = SV F (e tly o)y — o). (344)

(i) Let f(z) = ||z]|*/2 on domf = R and D;(y,z) = ||y — z||*/2 for all 2,y € R. Put
y=1land x =1+1/2(L +1). Since Tx =1—1/2v/L + 1, we have

L

1 2 L 2

ST 2lavEr

L+1
This implies L + 1 < L, which is a contradiction.

(ii) Let f(z) = zln(x) —x on domf = [0, +o0) and D(y,x) = yIn(y/z) —y + = for all
z € (0,+00) and y € [0, +00). Note that V*f(x) = 1/x. Put x = 1. By (3.4.4), we have

_ (y-1) (y—1)
Dy(y, 1) = 21+ t(y — 1)) < 5 for y > 1
and
Dy(y,1) = -1 W1 ¢ oy, <t
Ty ) T 2 re

Ify=1+1/2(L+ 1), we have

1 1 1\ L 1 2 L
8(L+1) (Nﬁ) (Ty’l)SLDf@’l)S5(2(L+1)) T 8(L+1)2

This implies L + 1 < L, which is a contradiction.
(ili) Let f(x) = —In(z) on domf = (0,+00) and D¢(y,z) = In(z/y) + y/z — 1 for all
z,y € (0,400). Note that V2f(z) = 1/2% Put y = 1. By (3.4.4), we have

and
(1—a)? (1 - )
datl—n))2 =~ 2

Ifx=1+1/2(L+ 1), we have

Ds(1,2) = for0 <z <1.

1 1/ 1\ L{ -1 \° L
e~ alzm) =200 <5 (o) ~sEe

This implies L + 1 < L, which is a contradiction.

Remark. Let f(z) = ||z||*/2 for z € E.
(i) If E' is a Hilbert space, then left Bregman asymptotically quasi-nonexpansive
mappings in the intermediate sense is reduced to asymptotically quasi-nonexpansive
mappings in the intermediate sense (3.1.2).
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(i) If £ is a smooth, strictly convex and relatively Banach space, then left Bregman
asymptotically quasi-nonexpansive mappings in the intermediate sense is reduced to

asymptotically quasi-¢-nonexpansive mappings in the intermediate sense (cf. [55]),
that is, F'(T) # 0 and

lim sup sup ((,b(p, T"z) — ¢(p, 35)) <0.
n—oo  peF(T), zeC

Theorem 3.4.2. Let [ : E — (—o00,4+00] be a Legendre function which is totally convex
on bounded subsets of E. Suppose that V f* is bounded on bounded subsets of domf* = E*.
Let C' be a nonempty, closed and convex subset of intdomf. Let T : C' — C be a closed and
left Bregman asymptotically quasi-nonerpansive mappings in the intermediate sense. Then
F(T) is closed and conver.

Proof. Since T is closed, we can easily conclude that F/(7T) is closed. Now we show the
convexness of F(T). Let py,ps € F(T) and p = tp; + (1 — t)ps, where t € (0,1). We prove
that p € F(T'). By (3.4.2), we have

for i = 1,2. By the three point identity (3.2.1), we know that
for x € domf and y, 2z € intdomf. This implies

Dy(pi, T"p) = Dy(pi,p) + Dy(p, T"p) +(V f(p) = Vf(T"p),pi — p) (3.4.6)
for i = 1,2. Combining (3.4.5) and (3.4.6) yields that
Dy(p, T"p) = Ds(ps, T"p) — Dy(pi,p) — (V.f(p) = Vf(T"p), pi — p)
<& —(Vf(p) = VI(T"p),pi —p) (3.4.7)

for i = 1,2. Multiplying ¢t and 1 — ¢ on the both sides of (3.4.7) with ¢ = 1 and i = 2,
respectively, yields that

lim Dg(p, T"p) < lim (&, — (Vf(p) = VS(T"p), tpr + (1 = t)p2 = p)) = 0.

This implies that {D(p, T"p) }nen is bounded. By Propositions 3.2.4 and 3.2.8, we see that
the sequence {T"p},en is bounded and ||p — T"p|| — 0 as n — oo. By the closedness of T,
we have

n—oo n—oo

p= lim T""p = T( lim T”p> =Tp
and hence p € F(T). Therefore F(T) is convex. O

Theorem 3.4.3. Let f : E — (—o0, +o0] be a Legendre and strongly coercive function which
is totally convexr on bounded subsets of E. Let C' be a nonempty, closed and convexr subset
of intdomf and T : C — C' a closed and left Bregman asymptotically quasi-nonexpansive
mappings in the intermediate sense. Then there exists a unique left Bregman projection
from intdomf onto F(T).
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Proof. By Proposition 1.4.4, Vf* is bounded on bounded subsets of intdomf* since f is
Legendre and strongly coercive. By Proposition 3.3.1 and Theorem 3.4.2, there exists a
unique minimizer of Dy(-,z) in F(T). O

Theorem 3.4.2 can be reduced to the following results.

Corollary 3.4.4 ([80], Lemma 1, p. 3). Let f : E — (—o0,+00] be a Legendre function
which is totally convex on bounded subsets of EI. Let C' be a nonempty, closed and convex sub-
set ofintdomf and T : C'— C' a closed and left Bergman asymptotically quasi-nonexpansive
mapping with the sequence {ky,}nen C [1,400) such that k, — 1 as n — oco. Then F(T) is
closed and convex.

Corollary 3.4.5 ([63], Lemma 15.5, p. 307). Let f : E — (—o0, +00] be a Legendre function.
Let C be a nonempty, closed and convex subset of intdomf and T : C'— C a left Bregman
quasi-nonexpansive mapping. Then F(T) is closed and convex.

3.4.2 Right Bregman nonexpansive mappings

Let C' be a nonempty subset of dom f and 7" a mapping from C into intdom f. The mapping
T is said to be right Bregman quasi-nonexpansive with respect to F(T) (cf. [43]) if F(T) # 0
and

D¢(Tz,p) < Dy(z,p) forall pe F(T), xeC.

Recall that the mapping T is said to be right Bregman firmly quasi-nonexpansive with
respect to F(T') (cf. [43]) if F(T) # () and

(Vf(p)—Vf(Tx), Tz —x)>0
for all p € F(T) and x € C, or equivalently,
Dy(Tx,p) + Dy(x,Tx) < De(x,p) forall pe F(T), e C. (3.4.8)

Given two nonempty subsets K C C C intdomf, the subset K is said to be a sunny
right Bregman quasi-nonexpansive retract of C'if there exists a sunny right Bregman quasi-
nonexpansive retraction of C' onto K.

Proposition 3.4.6 ([43], Propotition 4.1, p. 5456). Let f : E — (—o0,+00] be a totally
convex function and K C C C intdomf two nonempty subsets. If C' is conver and R is a
retraction of C' onto K, then R is sunny and right Bregman quasi-nonexpansive if and only
if it is right Bregman firmly quasi-nonexrpansive.

Proof. First we assume that R is sunny right Bregman quasi-nonexpansive. Let x € C' and
p € K = F(R). Denote x; = Rx + t(x — Rx) for each ¢t € [0,1]. Since R is a retraction
and right Bregman quasi-nonexpansive, we have D¢(Rx,p) = Ds(Rxy,p) < Dys(z4,p). Thus
Rz = projf;’Rz] (p), where [z, Rx] := {tx + (1 —t)Rx : t € [0,1]}. Using Proposition 3.3.2,
we have

(Vf(p) = VI(Rz), Rx — ) > 0
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for each t € [0, 1]. Setting t = 1, we have (V f(p) — Vf(Rx), Rt —z) > 0 for all z € C' and
p € F(R), that is, R is right Bregman firmly quasi-nonexpansive.

Conversely, suppose that R is right Bregman firmly quasi-nonexpansive. By the three
point identity (3.2.1), we have

Dy(x,p) = Dy(x, Rx) + Dy(Rz,p) + (Vf(Rz) = Vf(p),z — Rx)
> Dy¢(x, Rx) + Ds(Rx,p) > D¢(Rx,p).

for all z € C and p € K = F(R). This means that R is right Bregman quasi-nonexpansive.
Now we prove that R is sunny. To this end, for any z € C' and t > 0, set x; = Rx+t(z— Rx).
By (3.4.8), we have

(Vf(Rx) — Vf(Rx:), Ry —x) >0 (3.4.9)

and (Vf(Rxz;) — Vf(Rz), Rt — ) > 0. Since z; — Rx = t(x — Rx), we have
0 <t(Vf(Rzx)—Vf(Rxy),r — Rzx) = (Vf(Rx) — Vf(Rx,),x, — Rx). (3.4.10)

Combining (3.4.9) and (3.4.10), we have (V f(Rx) — V f(Rx), Rr; — Rz) > 0. This implies
(Vf(Rx) — Vf(Rxy), Rry — Rx) = 0. Since f is totally convex, it is strictly convex, and
hence V f is strictly monotone. Therefore Rx; = Rz, that is, R is sunny, as claimed. [

Proposition 3.4.7 ([43], Corollary 4.2, p. 5457). Let f : E — (—o0,+00] be a totally
convex function and K C C C intdomf two nonempty subsets. If K is a sunny right
Bregman quasi-nonexpansive retract of C', then the sunny right Bregman quasi-nonexpansive
retraction of C' onto K is uniquely defined.

Proof. Assuming that there exist two sunny right Bregman quasi-nonexpansive retractions
R and S of C onto K, we know by Proposition 3.4.6 that both these operators are right

Bregman firmly quasi-nonexpansive. Hence, for any x € C, we have (V f(Rx)—V f(Sx),x —
Rz) > 0 and (Vf(Sx) — Vf(Rz),z — Sz) > 0 since Rx,Sx € K. Thus (Vf(Sz) —
Vf(Rx),Sx — Rx) < 0. This implies Sx = Rx since V f is strictly monotone. O

Proposition 3.4.8 ([43], Proposition 4.4, p. 5457). Let f : E — R be a Legendre function.

Assume that f and f* are totally convex. Let K* be a nonempty, closed and conver subset of
intdom f*. Then the operator R defined by R =V f* Opl"OJK* oV f is a sunny right Bregman
quasi-nonexpansive retraction of intdomf onto V f*(K*).

Proof. For any = € Vf*(K*), we have projl.(Vf(z)) since V f(x) € K*. This implies

Rz = (Vf* o projlc. o V) (x) = V*(Vf(z)) =

for all z € V f*(K*). Thus R is onto V f*(K*) and Rz = z for all z € V f*(K*), that is, R
is a retraction of intdomf onto V f*(K*). This implies F(R) = V f*(K*). By Proposition
3.3.2, we have

Dy-(&, projie. (n)) + Dy=(projfe. (n),n) < Dg=(€,n)
for all n € intdomf* and £ € K*. Thus

D+ (V f(y), projic-(V f(2))) + Dy (projie- (V f(2)), V f(x)) < Dp-(Vf(y), Vf(x)) (3.4.11)
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for all x € intdomf and y € Vf*(K*). Since (Vf)™' = Vf* it is easy to check that
Di(Vf(y),Vf(x)) = Ds(x,y). Hence, by (3.4.11), we have

D(Vf* o projie. (Vf(x)).y) + Dy (2, V o proji. (Vf(x))) < Dy(.y).

This implies D¢(Rx,y) + Dy(x, Rx) < Dy(z,y) for all z € intdomf and y € Vf*(K*). In
other words, R is right Bregman firmly quasi-nonexpansive. By Proposition 3.4.6, R is a
sunny right Bregman quasi-nonexpansive retraction of intdomf onto V f*(C*). m

We also know that the unique sunny right Bregman quasi-nonexpansive retraction of £
onto C' is given by the right Bregman projection defined by (3.3.3):

Proposition 3.4.9 ([43], Corollary 4.6, p. 5458). Let f : E'— R be a Legendre, cofinite and
totally convex function, and assume that f* is totally convex. Let C be a nonempty subset
of intdomf. If Vf(C) is closed and convex, then the right Bregman projection (3.3.3) is the
unique sunny right Bregman quasi-nonexpansive retraction of intdomf onto C.

Proof. Since f is Legendre, we have ranV f = intdom f*. By Proposition 3.4.8, R =V f*o
projfv*f(c) o Vf is a sunny right Bregman quasi-nonexpansive retraction of intdomf onto
C =V f*(Vf(C)). Thus C is a sunny right Bregman quasi-nonexpansive retract of int domf.
By Proposition 3.4.7, the unique sunny right Bregman quasi-nonexpansive retraction of
int domf onto C' is given by the conjugate operator V f* o projgf(c) oV f, which is the right
Bregman projection by (3.3.3). O

Let C' be a nonempty subset of domf and T a mapping from C' into intdomjf. We
introduce a new class of mappings: the mapping 7" is said to be right Bregman asymptotically
quasi-nonexpansive in the intermediate sense if F(T) # () and

limsup sup (Dy(T"z,p) — Dy(z,p)) <O0. (3.4.12)

n—soo peF(T), zeC

Put

T = Mmax {0, sup  (Dy(T"z,p) — Df(%p))}'
peF(T), zeC

The inequality (3.4.12) implies lim, o 7, = 0. Then (3.4.12) is reduced to the following:
Dy(T"x,p) < Dy(x,p) + (3.4.13)

for all p € F(T) and = € C, where {n,} is a sequence such that 1, — 0 as n — oo. Right
Bregman asymptotically quasi-nonexpansive mappings in the intermediate sense are not
Lipschitz continuous in general.

Example 3.4.10. Assume that £ = R, C' = [1/2,3/2] and T : C' — C defined by (3.4.3).
If f:R — (—o0,+00] is a Legendre function, then T is right Bregman asymptotically
quasi-nonexpansive in the intermediate sense since

lim sup sup(Df(T"x, 1) — Dy(x, 1)) <limsupsup D(T"z,1) = 0.

n—oo xeC n—oo xeC

By Example 3.4.1, we know that 7" is not Lipschitzian with respect to Bregman distances
in Example 3.2.2.
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Remark. Let f(z) = ||z]|*/2 for z € E. If E is a Hilbert space, then right Bregman asymp-
totically quasi-nonexpansive mappings in the intermediate sense is reduced to asymptotically
quasi-nonexpansive mappings in the intermediate sense (3.1.2).

Theorem 3.4.11. Let f : E — (—o0,+0o0] be a Legendre and strongly coercive function
which is totally convex on bounded subsets of E. Let T : intdomf — intdomf be a closed

and right Bregman asymptotically quasi-nonexpansive mapping in the intermediate sense.
Then V f (F(T)) is closed and convex subset of E*.

Proof. First we show that V f(F(T)) is convex. Let py, po € F(T) and p = Vf*(¢tV f(p1) +
(1 =)V f(p2)), where ¢ € (0,1). We prove that p € F(T). By the definition of Bregman
distance, we have

Dy(T"p,p) = f(T"p) — f(p) — (V[ (p), T"p — p)
=t{f(T"p) — f(p1) — (Vf(p1), T"p — p1)}
+ (L =){f(T"p) — f(p2) = (Vf(p2), T"p — p2)}
— f(p) +tf(p1) + (1L = 1) f(p2)
+{(Vf(p)p) —t{Vf(p1),p1) — (L = t)(Vf(p2), p2)
=tDy(T"p,p1) + (1 = t)Ds(T"p, p2) — f(p) + (Vf(p),p)
+1(f(p1) = (Vf(p1):p1)) + (L = )(f(p2) — (V[(p2). p2)). (3.4.14)

It is known that f(z) + f*(Vf(z)) = (Vf(z),z) for all z € E. By (3.4.14), we have

D¢(T"p,p) = tDs(T"p, p1) + (1 — t) Dp(T"p, p2)
+ (V) —tf (Vi) — A=t (VIp). (3.4.15)

By (3.4.13), we have Dy (p;, T"p) < Dy(p;,p) + ny, for i = 1,2. By (3.4.15), we have

D(T"p,p) < tDg(p,p1) + (1 =) Ds(p, p2) + 1
+ (Vi) —tf (VEPp) - 1 =1)f (Vi)
= f(p) = (Vf(®).p) + £ (VI(P)) + 00 =1
This implies
2 DR 0) = i e =0
By Proposition 3.2.8, we have ||T"p — p|| — 0 as n — oo. By the closedness of T', we have

p=lim T"p=T hm T'p="Tp

n—oo

and hence p € F(T).

Next we prove that V f(F(T)) is closed. Let {z,}n,en be a sequence in F(T') such that
Vf(x,) = x* € E* as n — oo. Since f is strongly coercive, we have ranV f = E*. Hence
there exists € E such that 2* = V f(z). It is sufficient to prove that x € F(T'). Since
{z,} € F(T) and T is right Bregman asymptotically quasi-nonexpansive in the intermediate
sense, we have

Dy(T"w,x) < Dy(x,20) + 10 = f(2) + [ (Vf(22)) = (Vf(20),2) + 70
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By assumption, f* is continuous and V f(x,) — V f(z) as n — oco. Hence

lim Dy(T"x,2,) < f(x) + lim (f*(Vf(@a)) = (V/(@0),2) +na) = 0.

n—oo

On the other hand,

Dy(T"2,x) = D(T"a,2,) + f(2) + (V[ (2). T — 2,) — f(2) = (Vf(2), T"x - )
= DT, 20) — FH(V (@) + (V@) + (V) = V (), T").

Hence Dy(T"x,x) — 0 as n — oo. By Proposition 3.2.8, we have ||[T"z — z|| — 0 as n — oo.
By the closedness of T, we have = T'z and hence z € F(T). O

Theorem 3.4.12. Let f : E — (—o0,+00] be a Legendre and strongly coercive func-
tion which is totally convexr on bounded subsets of E such that f* is totally convex. If
T :intdomf — intdomf is a closed and right Bregman asymptotically quasi-nonexpansive
mapping in the intermediate sense, then there exists a unique sunny right Bregman quasi-
nonezxpansive retraction of intdomf onto F(T'), which is the right Bregman projection onto

F(T).

Proof. By the assumption of f and 7T, it follows from Theorem 3.4.11 that Vf (F (T ))
is__glosed and convex in E*. Proposition 3.4.9 ensures that the right Bregman projection
projﬂ(T) is the unique sunny right Bregman quasi-nonexpansive retraction of intdomf onto
F(T). O

When a mapping 7' is right Bregman quasi-nonexpansive, Theorems 3.4.11 and 3.4.12
can be reduced to the following results.

Corollary 3.4.13 ([43], Proposition 3.3, p. 5454). Let f : E — (—00,+00] be a Legendre
and cofinite function and T : intdomf — intdomf a right Bregman quasi-nonexrpansive
mapping. Then Vf(F(T)) 1s closed and convex subset of E*.

Corollary 3.4.14 ([43], Proposition 3.4, p. 5454). Let f : E — (—00,+00] be a Legendre
function and C' a nonempty subset of intdomf such that V f(C) is closed and convex. If
T :C — intdomf a right Bregman quasi-nonexpansive mapping, then V f (F(T)) 15 closed
and convexr subset of E*.

Corollary 3.4.15 ([43], Corollary 4.7, p. 5458). Let f : E — R be a Legendre and cofinite
and totally convex function. Assume that f* is totally convex. If T : intdomf — int dom f
is a right Bregman quasi-nonexpansive mapping, then there exists a unique sunny R-BOQNE
retraction of intdomf onto F(T'), which is the right Bregman projection onto F(T).

3.5 Strong convergence theorems of Bregman projec-
tions

In this section, we prove strong convergence theorems for finding a fixed point of a Bregman
asymptotically quasi-nonexpansive mappings in the intermediate sense by the shirinking
projection method.
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Let C' be a nonempty, closed and convex subset of £ and T" a mapping from C' into itself.
The mapping 7T is said to be asymptotically reqular if, for any x € C,
lim HT”+1m — T”xH = 0.

n—o0

3.5.1 The Shrinking projection method with left Bregman pro-
jections

Theorem 3.5.1. Let [ : E — (—o00, +00| be a Legendre function which is bounded, strongly
coercive, uniformly Fréchet differentiable and totally convexr on bounded subsets on E. Let
C be a nonempty, closed and convexr subset of intdomf. Let T : C' — C be a closed and left
Bregman asymptotically quasi-nonexpansive mapping in the intermediate sense. Suppose
that T is asymptotically reqular on C and F(T) is bounded. Let {x,}n,en be a sequence
generated by

-~

xo € intdomf, chosen arbitrarily,

C,=C,

1 = projf, o,

Yo =V f* (Ozan(SBn) + (1 - QN)Vf(Tn$n))7
Crny1 =1{2 € Cn 1 Dp(2,yn) < Dy(2,2n) + &n},
(Tnt1 = projénﬂxg, n €N,

where projén 1s the left Bregman projection from intdomf onto C,,

&, := max {0, sup (Df(p, T"x) — D¢(p, 9:))}

peF(T), zeC
and 0 < a, <a<1 foralln e N. Then {z,}n,en converges strongly to projé(T)xo, where
projg(T) is the left Bregman projection from intdomf onto F(T).

Proof. We divide the proof into six steps.

Step 1. We show that (), is closed and convex for all n € N. It is obvious that C, = C
is closed and convex. Suppose that (), is closed and convex for some m € N. We see that,
for z € Cp,, Dy(2,ym) < Dy(z, 2) + & 1s equivalent to

(VIi@m) =V Um),2) < fm) = f(@m) = (VI (Ym), Ym) + (Vf(@m), Tm) + . (3.5.1)

Now we prove that C,, 1 is closed. Let z; € Cy,41 such that z; — z as i — oco. By (3.5.1),
we have

(VIi(@m) = VIYm), zi) < f(ym) = [(@m) = (VFUm), Ym) + (VI (@m), Tm) + Em-

This implies
(V (@) = V), 2) = Ton (9 f (2) = T (gm), )
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< fym) = F(@m) = (VI Wm)s Ym) + (V(@m), Tm) + &

and hence z € C),41. Thus C, is closed for all n € N. Next we prove that C,.; is convex.
Let 2,y € Cpyq and 2z =t + (1 — t)y, where t € (0,1). By (3.5.1), we have

(Vf(@m) = VI(ym), 2)

= iV f(@m) = V(ym), ) + (1 =)V f(2m) = V. (Ym), y)

S+ =) m) = f(@m) = (VI (Ym), Ym) + (V[ (2m), Tm) + &m)
= f(Wm) = f(@m) = (VFWm)s Ym) + (Vf(@m), Tm) + Em

and hence z € C),11. Thus C), is convex for all n € N. Therefore C), is closed and convex,
and this shows that projén:co is well-defined for all n € N.

Step 2. We show that F'(T) C C, for all n € N. Lat p € F(T'). It is obvious that
F(T) c Cy = C. Suppose that F(T') C C,, for some m € N. By Proposition 3.2.3, we have

Di(p.ym) = Dy (p. V£ (amV f () + (1 = an) VFH(T™2)) )
= Wf(oszf(xm) +(1— Oém)Vf(Tml’m),p)
< amWf(Vf(ZBm),p) +(1— am)Wf(vf(mem)7p)
= apDy(p, ) + (1 — ) Dy(p, T" w1
< anDy(p,wm) + (L = an)(Dy(p, Tm) + &n)
< D¢(p, Tm) + Em- (3.5.2)

This implies p € Cy,41. Therefore F(T') C C, for all n € N. Since F(T) is nonempty, C,, is
nonempty, closed and convex subset of intdomf.

Step 3. Put Cy =(,—, C,,. We show that {z,},en converges to projéo(x) as n — 0o.
By the construction of C,,, the sequence {C), },en is nonincreasing of nonempty, closed and
convex subsets of E. It follows that

0 # F(T) C M-limC, = (] C, = C.

n=1

By Proposition 3.3.3, {x, }nen = {projén(ato)}neN converges strongly to projéo(xo) as n —
o . f f
oo. To complete the proof, it is sufficient to show that projg, = PIO] ()

Step 4. We show that {x, },en and {y, }nen are bounded. Let p € F(T). By Proposi-
tion 3.3.2 (iii), we have

Dy (p, xa) = Dy(p, proj¢, wo) < Dy(p, o) = Dy(projg, o, wo) < Dy(p, o).

This implies that {D(p, z,)}nen is bounded. By Proposition 1.4.4, V f* is bounded on
bounded subsets of intdom f* since f is Legendre and strongly coercive. By Proposition
3.2.4, the sequence {z,}nen is bounded. Moreover, by (3.5.2) and Proposition 3.2.4, the
sequences {D(p, Yn) }nen and {y, }nen are also bounded.

Step 5. We show that projéo(xo) € F(T). Since x, = projénxo € C, and x,41 =
projén+1xg € Chy1 C Cp, we have Dy(xy,,x0) < Dy(xp41,%0) for all n € N. This implies
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that {Dy(xn, o) }nen is nondecreasing and the limit of Dy(xz,,z0) as n — oo exists. By
Proposition 3.3.2 (iii), we have

Dy(xn41,0) = Dy(2ns1, projl, w0) < Dy(@nsr, 20) — Dy(projl, zo, x0) < Dy(Tps1, o)

for all n € N. This implies

lim D¢(xp41,2,) = 0. (3.5.3)
n—o0
By Proposition 3.2.8, we have
lim ||z,41 — x| = 0. (3.5.4)
n—oo
By Proposition 1.4.7, we have
Tim [V f(@ni1) = V()] = 0. (3.5.5)

Since xp41 € Chpr, we have Dy(2pi1,yn) < Dy(Tni1,Tn) + &, for all n € N. By (3.5.3),
we have D¢(xp41,9n) — 0 as n — oo. By Proposition 3.2.8, we have ||z,+1 — y,|| — 0 as
n — oo. By Proposition 1.4.7, we have

Tim [V (za11) — V£ )| =0 (3.5.6)

By the definition of y,,, we have

1 Ap

IVf(@ni1) =V (ya)ll +

V(T 2n) =V f(2ng1)]] < IV f(&ni1) =V f ()]

1—a, 1—aq,

By (3.5.5), (3.5.6) and the definition of a,, we have ||V f(T"x,) — V f(zp41)]] — 0 as n —
00. By Propositions 1.4.8 and 3.2.6, V f* is uniformly continuous on bounded subsets of E*
and hence | 7"z, — T,4+1|| = 0 as n — oo. This implies T"z,, — projéo(xo) as n — oo. We

have
. n+1 -f I T n+1 n n - f —
nh_}rgo T 1w, — projg, (zo) || = nh_{IOlO(HT Ty —T an + ‘ 1", — projg, (7o) ) = 0.

This implies TT"x,, — projéo(xo) — 0 as n — oo. By the closedness of T, we have
T(projéo(xo)) = projé0 (x9). Therefore projé0 (o) € F(T).
Step 6. We show that projéo(xo) — projé(T)(:ro) as n — 0o. Put zy = projﬁ(T)(xg).

Since zy € F(T) C C, and z,, = projén(xo), we have Dy(x,,, x9) < Dy(20,20) for all n € N.
We have

Dy(projéy (x0), o) = f(projl, (zo)) — f(we) — (V f (o), projéy, (o) — o)
= lim (f(an) = f(20) = (V[f(20), 20 — 20))

= hm Df($n,$0) S Df(Zo,[L’()).
n—00

Therefore zg = plrojéO (o) and hence {z,} converges strongly to zo. O

If f(x) = ||z||?/2 for = € E, then Theorem 3.5.1 is reduced to the following theorems.
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Corollary 3.5.2 ([26], Theorem 2.1, p. 6). Let E be a reflaxive, strictly convex and smooth
Banach space such that both of E and E* have the Kadec-Klee property. Let C be a
nonempty, closed and convex subset of E. Let T : C — C be an asymptotically quasi-
¢-nonexpansive mapping in the intermediate sense. Assume that T is asymptotically reqular
on C and closed, and F(T) # (0 is bounded. Let {x,} be a sequence generated by

(z0 € E, chosen arbitrarily,

C,=0C,

x1 = Mg, o,

Un = J HanJr, + (1 — ) JJT"x,,),

Chy1 = {Z €Cy: (b(z?yn) < (b(Z,l‘n) + fn}y
(Tnt1 = ¢, 71, n €N,

(3.5.7)

where

& = max {0, sup  (¢(p, T"z) — ¢(p, v)) }
peF(T), zeC

[, s the generalized projection from E onto C,, and 0 < a,, < a <1 for alln € N. Then

{Zn}nen converges strongly to Mperyxy, where Ilpepy is the generalized projection from C

onto F(T).

Proof. Using the technique used in the proof of Theorem 3.5.1 with f(z) = ||z||*/2 for z € E,
we have the sequence {z,} generated by (3.5.7) which converges strongly to gz, O

Corollary 3.5.3 ([54], Theorem 2.1, p. 854). Let E be a uniformly smooth and strictly
convexr Banach space with the Kadec-Klee property and C' a nonempty, closed and convex
subset of E. Let T : C'— C' be a closed and asymptotically quasi-p-nonexpansive mapping
with the sequence {k,} C [1,00) such that lim,,_ .. k, = 1. Assume that T is asymptotically
regular on C' and F(T) # 0 is bounded. Let {x,} be a sequence generated by

(

xo € E, chosen arbitrarily,

C,=0C,

=1I
et (3.5.8)

Yn = J HanJr, + (1 —ayp)JT z,),
Cn+1 = {Z S Cn : ¢(Z7yn) S ¢<2,$n) + (kn - 1)Mn}7
( Ln+1 = ch+1x07 n € N,

where My, = Sup,cp(r) o(p,zn), Lo, is the genmeralized projection from E onto C, and

0<a,<a<]lforalneN. Then {x,}nen converges strongly to Uperyzo, where g
is the generalized projection from E onto F(T).

Proof. By the definition of T', we obtain ¢(p, T"x) — ¢(p,z) < (k, — 1)¢(p, ). Hence

&n < sup (k, — Do(p,xn) = (kn — 1) M,

peF(T)

Therefore the iteration (3.5.1) is reduced to (3.5.8). O
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Corollary 3.5.4 ([74], Theorem 4.1, p. 283). Let H be a Hilbert space and C a nonempty,
closed and convex subset of H. Let T be a nonexpansive mapping of C' into itself such that
F(T)#0 and o € H. Let {x,}nen be a sequence generated by

(1o € H, chosen arbitrarily,

Ci=0C,

T :PC&an (359)
Yn = QpTy + (1 - O‘n)T‘rnv o
Cot1={2 € Cn: lyn — 2|l < [lzn — 2|1},

\ Ln+1 = PCnJrl:L‘O) ne N7

where Pe, is the metric projection from H onto C,, and 0 < a,, < a < 1 for all n € N.

Then {,}nen converges strongly to Ppiryxo, where Ppry is the metric projection from H
onto F(T).

Proof. By the definition of 7', we obtain ||p — T[] — [p — z||* < 0 and hence &, = 0.
Therefore the iteration (3.5.1) is reduced to (3.5.9). O

3.5.2 The Shrinking projection method with right Bregman pro-
jections

Theorem 3.5.5. Let f : E — (—o0, +00] be a Legendre and strongly coersive function which
15 totally convex on bounded subsets on E. Assume that f* is admissible, totally convex and
Fréchet differentiable on intdomf*. Let C be a nonempty subset of intdomf such that
Vf(C) is closed and convex. Let T : C'— C be a closed and right Bregman asymptotically
quasi-nonexpansive mapping in the intermediate sense. Suppose that T is asymptotically
regular on C' and F(T) is bounded. Let {x,}n,en be a sequence in C' generated by

xg € intdomf, chosen arbitrarily,

Ch =C,

T = projél'rOy

Yn = QpTp + (1 - &n)Tnxna

Cny1 = {2 € Cn: Dy(yn, 2) < Dy(an, 2) + 0n},
H‘f

( Tnt1 = Projg, , %o, 7 € N,

(3.5.10)

—
where projén is the right Bregman projection from intdomf onto C,,

peEF(T), zeC

7, = max {O, sup (Df(T”a:,p) — Df(a:,p))}

—
and 0 < o, < a <1 for alln € N. Then {x,}n,en converges strongly to projg(T)xo, where
projﬁ(T) is the right Bregman projection from intdomf onto F(T).
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Proof. We divide the proof into six steps.

Step 1. We show that V f(C,) is closed and convex for all n € N. It is obvious that
Vf(Cy) = Vf(C) is closed and convex. Suppose that Vf(Cy) is closed and convex for
k € N. We see that, for z € Cy, Ds(yx, 2) < Dy(zg, 2) + 0y is equivalent to

(VF(2), 26 —yr) < flaw) = fyr) + me- (3.5.11)

First we prove that V f(Cki1) is closed. Let {z;}ien C Cry1 with Vf(z;) — 2* as i — oc.
Since f is strongly coercive, we have ranV f = E*. Hence there exists z € E such that
2* =V f(z). It is sufficient to prove that z € Ci41. By (3.5.11), we have

(V) on —y) = 1£I§O<Vf(zz)7$k =) < flan) — f(yr) + e

and hence z € Cyy1. Thus Vf(C,,) is closed for all n € N. Next we prove that V f(Cly1) is
convex. Let x,y € Cyyq and t € (0,1). Define z = Vf*(tVf(z) + (1 —t)Vf(y)). We prove
that z € Cyyq1. By (3.5.11), we have

(VI(z),xx —yr) = ¢V (@) + (1 =)V [(y), 26 — yx)
=tV f(x),vx —yr) + (1 =t)(Vf(y), zr — yr)
< floe) = fyr) +

and hence z € Cyy1. Thus V f(C,,) is convex for all n € N. Therefore V f(C,,) is closed and
convex. By Proposition 3.4.9, there exists a unique sunny right Bregman quasi-nonexpansive
retraction of £ onto C,, which is projéﬂ. Hence {z,} is well-defined.

Step 2. We show that F'(T) C C, for all n € N. It is obvious that F(T) c C, = C.
Suppose that F(T') C Cj, for k € N. Since f is convex, the function D(-, z) is also convex
for all x € intdomf. For any p € F(T'), we have

D¢(yk,p) = Dy(agzy + (1 — ap)T "z, p)
< agDe(xg,p) + (1 — ) Dy(T"x, p)
< agDy(xp, p) + (L — an) (D (g, p) + )
= Dy¢(k,p) + M (3.5.12)
This implies p € Cyy1. Therefore F(T) C C, for all n € N. Since F(T) is nonempty, C,, is
nonempty, closed and convex subset of int domf.
Step 3. Put C5 = (2, Vf(C,). We show that {x,} converges to Vf*(projéin( )) as

n — oo. Since {V f(C,)} is a nonincreasing sequence with respect to inclusion of nonempty;,
closed and convex subsets of E*, we have

0 # VI(F(T)) C M- lim Vf(C ﬂw

By Proposition 3.3.3, {projgf(cn)Vf(x)} converges strongly to z* = projé} Vf(z)asn — oo.
Since E* has a Fréchet differential norm, (Vf)~! = Vf* is continuous. We have
— * ([, *
T = projg, () = V" o projg 0 V.f(x) = V7 (2%)
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—
as n — oo. To complete the proof, it is sufficient to show that V f*(z*) = projg(T).

Step 4. We show that {x, },en and {y, }nen are bounded. Let p € F(T). By Proposi-
tion 3.3.4 (iii), we have

-y -
Dy(wn,p) = Dy(projl, (o), p) < Dy(x0,p) — Dy (0, projf,, (x0)) < Dy(xo, p).

This implies that {Dy(xy, p) }nen is bounded. By Proposition 3.2.7, the sequence {x, }nen
is bounded. Moreover, by (3.5.12) and Proposition 3.2.7, the sequences {D¢(y,, p) }nen and
{Yn}nen are also bounded.
ol % . 0 f 0 f
Step 5. We show that V f*(z*) € F/(T). Since z,, = projg, (o) and @41 = projg, (7o) €

Cni1 C Cy, we have Dy(xo, ) < D¢(x0, Tnt1). This implies that {D¢(xg, ) }nen 1s non-
decreasing and the limit of Dy(zg,z,) as n — oo exists. By Proposition 3.3.4 (iii), we
have

—
Di(n, Tnt1) = Df(PI"OJén(iUO), Try1)

—
< Dy¢(zg, xpy1) — Dy(xo, PYOJén (o))
< D¢(20; Tny1)

for all n € N. This implies

lim Dy (zy, pt1) = 0. (3.5.13)
n—oo

By Proposition 3.2.8, we have
lim ||z, — Zp41|| = 0. (3.5.14)
n—oo

Since x,41 € Cpy1, by (3.5.13), we have

lim D¢ (Yn, Tpi1) < li_)m (D¢(zn, Tpt1) +0n) = 0.

n—o0

By Proposition 3.2.8, we have
lim ||yn, — py1]] = 0. (3.5.15)
n—oo

By the definition of y,,, we have

Qn

HTnxn — Tny1| < 1

“1l1-a,

[Zn41 — yull + [Znt1 — 2al.
By (3.5.14), (3.5.15) and the definition of a,, we have || T"z,, — x,11]| — 0 as n — oco. This
implies

lim 7"z, = Vf*(z*) =V f o projé} o V f(xo).

n—oo

We have

lim HT"Hxn -V f*(z")

n—o0

= lim (|7 — T | 4 [T, — V@)]) =0

n—oo

This implies TT"x,—V f*(z*) — 0 asn — oco. By the closedness of T, we have T'(V f*(z*)) =
Vf*(z*). Therefore V f*(z*) € F(T).
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Step 6. We show that I;c;]k{,(T) (xg) = Vf*(x*) as n — oo. Put 2§ = EO_E{;(T)(%). Since
25 € F(T) C C, and z,, = Efggén(xo), we have Dy(zo,z,) < Dy(xg, 25) for all n € N. We
have
Do, Vf* (")) = f(xo) = f(VF(2")) = (27,20 — V[*(27))
= lim (f(fo) - f(mn) - <Vf($n),$0 - xn))

n—o0
= lim D¢(xo,x,) < Df(x0o, 25).

n—oo
Therefore z§ = V f*(«*) and hence {x,} converges strongly to z. O
If f(z) = ||z||*/2 for z € E, then Theorem 3.5.5 is reduced to the following theorem.

Corollary 3.5.6 ([75], Theorem 5.1, p. 973). Let E be a uniformly convex Banach space
which has a Fréchet differential norm. Let T : E — E be a generalized nonexpansive
mapping. Let {x,}n,en be a sequence generated by:

(xl =z € I chosen arbitrarily,

Cl - E7
Yn = Ty + (1 — )Ty, (3.5.16)
Cn+1 = {Z € Cn : (b(yna Z) S ¢($n,2)},

(Zn+1 = Re, @, n €N,

where Re, ., is sunny generalized nonexpansive retraction of E onto Cpyq and 0 < «,, <
a <1 for alln € N. Then {x,}nen converges strongly to Rpryx, where Rpry is the sunny

generalized nonexpansive retraction of E onto F(T).

Proof. By the definition of T', we obtain ¢(T"x, p)—¢(x, p) < 0 and hence 1, = 0. Therefore
the iteration (3.5.10) is reduced to (3.5.16). O
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Afterword

The author is aiming to apply the research results in the body of this thesis to various
fields. It is important to study some problems concerning nonlinear functional analysis and
convex analysis by using fixed point theory. For example, fixed point theorems and strongly
convergence theorems are used for the study of existence and approximation of solutions to
evolution equations. In connection with these, we provide the following research result on
evolution equations.

We introduce a class of nonlinear evolution operators and give a characterization of
continuous infinitesimal generators of such evolution operators by applying the results on
semigroups of Lipschitz operators. The following content provides a characterization of the
continuous infinitesimal generator such that the solution operator to the initial valued prob-
lem associated with the generator becomes an evolution operator whose solutions depend
continuously on the initial data.

Let X be a real Banach space with the norm |[|-||. Let 2 be a closed subset of [0, 00) x X
such that Q(t) = {x € X : (t,x) € Q} # 0 for t € [0,00). Let A be a continuous mapping
from 2 into X. Given (7, ) € Q, we consider the following initial value problem:

W(t) = A(t,u(t)) for 7<t< o0,
u(r) = x.

(IVP; 7, 2) {

Set A = {(t,7) : 0 < 7 <t < oco}. Suppose that the problem (IVP;7,z) has a unique
(continuously differentiable) solution u(-) on [r,00). Defining by U(t,7)x = u(t), we have
the following properties:

(E1) U(r,7)x =2 and U(t,s)U(s,7)x = U(t, )z for (1,2) € Q and t,s € [0, 00) such that
t>s>T.

(E2) For any (1,z) € Q, U(s, 7)x converges to U(t,7)x in X as s — t in |1, 00).

By a (nonlinear) evolution operator on €2, we mean a family {U(t,7)} - ea of operators
U(t,7) : Q1) — Q(t) satisfying (E1) and (E2). We consider the following additional
condition on such a family {U(t,7)}¢-ea which ensures the continuous dependence of
solutions u(-) on the initial data (7,x) € Q:

(E3) For any T > 0, there exists My € (0,00) such that
IU(r +t,7)x = Ulo +t,0)yl| < Mz (|7 — 0| + ||z —y])

for (7,2),(0,y) € Qand t € [0,7].
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Theorem A ([78]). There exists an evolution operator {U(t, )} .rea on €2 such that (E3)
is satisfied and that u(t) = U(t,7)z is a unique solution to (IVP;7,x) on [1,00) for any
(1,2) € Q if and only if the mapping A on  satisfies the following conditions (21) and
(Q2):

(Q1) For any (7,x) € Q,
lihrn inf d(z + hA(7, x), (1t + h))/h =0,

—+0

where d(z,S) = inf cg || — y|| for z € X and S C X.

(Q2) There exist a number w € [0,00) and V : (R x X) x (R x X) — [0, 00), which satisfies
conditions (V1) and (V2) below, such that

DV ((r, ), (0,9))(A(7, 2), Ao, y)) < wV((7,2), (0, y)) (3.5.17)
for (7,x), (0,y) € Q, where

DV ((r,2), (0,9))(&n)

= hhn—1>—1&—1(1)f(v<(7— + h7 T+ hg)v (O + h’ Y+ ]“7)) - V((Tv J]), (0-7 y)))/h

for (1,2),(0,y) € R x X and (&§,7n) € X x X.
(V1) There exists L € (0,00) such that
V(7 2), (0,y)) = V((7, %), (6,9))|
<Lt =7l +lo—ol+lz =]+ ly - 9ll)
for (7,2), (0,y),(7,%),(6,7) € R x X.
(V2) There exists M € [1,00) such that
7 — ol + llz = yll < V((7,2), (0,9)) < M7 — o] + |l — y])
for (7,2), (o,y) € Q.
Moreover, in this case, we have
V((r+t, U+t 7)), (0 +t,Ulc+t0)y) <e'V((r,2),(0,y))
and
U +t,m)e = Ulo +t,0)y| < Me“ (|7 — o] + ||« — yl|)
for (1,z), (0,y) € Q and t € [0, c0).

Remark. The kinds of conditions (21) and (222) were found by Nagumo [50] and Okamura
[52], respectively. Our class of evolution operators is rather narrow but closely related to
the ones discussed in Murakami [49], Martin [40], Lakshmikantham, Mitchell and Mitchell
[39] and Kato [31].

Theorem A is proved by the use of the results for the autonomous case by Kobayashi
and Tanaka [34]. Our proof of Theorem A is suggested by Evans and Massey [23].
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