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Chapter 1

Introduction

Our aim in this thesis is to compute the torsors for some types of finite group
schemes. A group scheme is a group object in the category of schemes, which is
a generalization of an algebraic group. Computing its torsor can be regarded as
solving the inverse Galois problem for group schemes.

Classically, one of the solutions for computing torsors is given by Kummer in
the following way:

Let n be an integer greater than one, let k be a field with ch k fn, and suppose
that k contains a primitive n-th root of unity. Under the flat topology, the short
exact sequence

1— Mok — Gm’}c h Gm,k — 1,
induces the long exact sequence
1= H (X, o) = HO (X, Gpoie) 2 HO(X, Goi)

L HY(X, ) = H (X, Gi) 25 HY(X, Gyoi)

0

for a k-scheme X, where 6, is the n-th power map. Note that pu,  ~ (Z/nZ), by



assumption for k, and H' (X, p, ) is the set of isomorphism classes of (Z/nZ)-

torsors of X. If B is a local k-algebra and X = Spec B, then we have
H'(X,Gpp) = 0.
Thus, there exists an isomorphism of groups
HY(X, pn1) ~ Coker [0, : H* (X,Gpp;) = HY(X,Gpi) |,

which determines any cyclic extension of degree n over k under the condition that
chk}n and that k contains a primitive root of unity.

By the classification theorem by Oort and Tate [8], any group scheme of prime
order is isomorphic to a group scheme G, under a suitable choice of a and b.
Roberts [9] gave the torsors for this kind of group scheme G, in case where the
base ring is a ring of integers of a local number field. Andreatta and Gasbarri [1]
gave the torsors in case where the base ring is a complete discrete valuation ring
whose residue field has positive characteristic, and that the base ring contains
(p — 1)-st root of b.

We compute torsors for G 5 in a completely different way and under different
assumptions, by using the concept of the cyclotomic twisted torus introduced by
Koide and Sekiguchi [5]. Mazur, Rubin, and Silverberg [6] treated the cyclotomic
twisted torus in a quite general form. Koide and Sekiguchi defined the cyclotomic
twisted torus in the following way:

Let n be a positive integer, m the value of the Euler function of n, and
¢ a primitive n-th root of unity. Let G be a cyclic group of order n with a
generator g, and let Spec B/Spec A be a G-torsor. Suppose that B is a free
A-module. If T is the representation matrix of the action of ¢ on Z[(] with re-
spect to the Z-basis {1,(,¢%...,¢™ '}, we define the action of G on G} 5 =
Spec Blz1, 2o, ..., Tm, 1/ (2129 - 2)] by (21,72, ..., 2:,)7° = (T1,22,...,7m).

By this G-action, we obtain a Galois descent of G 5 over A, which we call the



cyclotomic twisted torus of degree n, and denote it by G(n) 4.

Koide and Sekiguchi gave an explicit isomorphism from the twisted torus
G(n)a to the group scheme T (n)4 given by the intersection of kernels of all
norm maps (cf. Thm. 2.6). The isomorphism in a quite general form was given
by Mazur, Rubin, and Silverberg in [6].

Here, we extend the isomorphism G(n)4 ~ T (n)a to a resolution, which we
call a cyclotomic resolution, consisting of Weil restrictions of one-dimensional

algebraic tori and several norm maps.

Theorem 1 (cf. Thm. 3.4). Let n be a positive integer and let n = p*ps? - - - p&r
be its prime decomposition. For integers 1 < ig < i3 < -+ < iy < r, we set
Nigivin = N/DigPiy * Piss Gigiyeis = (0000 ), and Biysy..q, = BSioinis.
Under this notation, there exists an exact sequence of group schemes over Spec A,

1—)G(n)Ai>ReSB/AGm7B i H (ReSBi/AGm,Bi)

1<i<r

1
o, H (Resp,; aGm,B,;)

1<i<j<r

82

—

ar—l

—_— ReSBlg...T/AGm,Bm.A.,. — 1,
where Resp,4 denotes the Weil restriction from B to A.

We have some results on the cyclotomic twisted tori.

Theorem 2 (cf. Thm. 3.5). There exists a canonical isomorphism of rings
End (G(n)a) ~ Z[¢].

Theorem 3 (cf. Prop. 3.6). For a non-zero homomorphism ¢ € End(G(n)a), we
have

det ¢ = Nm ¢ = ord (Ker ).



By using these results, we compute torsors for G, ; in the following way:
Suppose that A is a local ring. Under the flat topology, the short exact
sequence

0
1 — G(n)a = Resp/aGum,p 2, Kerd' — 1,

which is obtained by the cyclotomic resolution, induces the long exact sequence

H°(X,0°)
_—

0
1 H(X,G(n)a) X2 HO (X, Resp/aGum.5) HO(X, Ker 8%

H'(X,e)
—_—

. 171 1 H'(X,0%) .1 1
— H (X,G(n)a) H' (X,Resp/aGm,p) ——— H'(X,Kerd")

17}

Note that H! (X, ResB/AGm,B) = 0 by assumption for A. Therefore, we have

the canonical isomorphism of groups
H'(X,G(n)4) ~ Coker H°(X, ).

Let p be the principal prime ideal generated by 6 € Z[(], which splits completely

over Q(¢) with pNZ = (p). We assume that n = p — 1. From the exact sequence
1= ppp 5 G g HGT -1,
the Galois descent theory gives the exact sequence
15 (pp.5)° 5 Gn)a L Gn)s — 1.

Here, we have (p, )¢ ~ G, 5 under some conditions (cf. §4.1). The above short
exact sequence induces the long exact sequence

X,0)

1= H(X, Gap) 5% HO(X,G(n)4) 250 HO(X,G(n) )

o HI(X,G) Hl(

9 HY(X, Gap) XY HY(X,G(n)4) X,G(n)4)

o

Thus, we have the short exact sequence

1
1 — Coker HO(X,8) & HY (X, Guy) -5 Ker HY(X,0) — 1.



Therefore, the elements of H'(X, G, ) are described by the elements of
Coker [H°(X,0) : H'(X,G(n)a) = H°(X,G(n) )]

and

Ker [H'(X,0): H'(X,G(n)a) - H'(X,G(n))] .

In Chapter 2, we give a brief survey on the classification theorem by Oort and
Tate [8], and the cyclotomic twisted torus introduced by Koide and Sekiguchi
[5]. In Chapter 3.1, we give one of our main results, namely, the resolution for
cyclotomic twisted tori. In Chapter 3.2, we give results on cyclotomic twisted
tori. Combining these results, we give the torsors for G, in Chapter 4.1. In
Chapter 4.2, we will give some examples. In Chapter 4.3, we generalize the above

method.



Chapter 2

Preliminaries

In this chapter, we give a brief survey on the classification theorem by Oort and

Tate [8], and the cyclotomic twisted torus introduced by Koide and Sekiguchi [5].

2.1 Classification Theorem of Group Schemes of
Prime Order

Let p be a prime number, Z, the ring of p-adic integers, and x : F, — Z, the
unique multiplicative section of the natural surjection Z, — F,. Let A be a
A,-algebra, where

A, =7 {X(FP) 1)] NZp.

"pp—1

Example 2.1. For each prime number p = 2,3,5,7, we have

1 1 1
Ao =17, A3:Z|:2:|a A5:Z[C472(2+C4)}7 A7:Z{C6’6(2—|—<6)]’

where {4 = x(2) is a primitive fourth root of unity with {4 = 2 (mod 5), and

C6 = X(3) is a primitive sixzth oot of unity with (¢ =3 (mod 7).



Theorem 2.2 (Oort-Tate [8, Thm. 2]). An arbitrary finite group A-scheme of

order p is isomorphic to a group scheme of the type
Gap = Spec (Alz]/ (2P — az))

with group scheme structure

A
() = 141 _ L
m'(z)=21+1®cx pflgcw@wp_i’

where a,b,w; € A with ab = w, = pwp_1 and w; = 4! (mod p).
Example 2.3. Ifp =5, then

wi=1, wy=—C24(), ws= 2+ wi=—-(2+¢)? ws=-5(2+¢)>
These elements are uniquely determined.

If Ais a local ring, then Gop ~ Gq v if and only if there exists u € A*
such that ' = u?~'a and ¥ = u'~Pb, where A* is a multiplicative group of the

invertible elements of A. If the characteristic of A is p, then

Goo > @pa, Gio~(Z/pZ),, and Go1 ~ pp A.

2.2 Cyclotomic Twisted Torus

Let n be a positive integer greater than one, m the value of the Euler function of
n, and ¢ a primitive n-th root of unity. Let G be a cyclic group of order n with
a generator g, and Spec B/Spec A be a G-torsor. Let

@)= [ @-¢H=a"+aam "+ tan
ke(Z/nZ)%



be the cyclotomic polynomial, and I the representation matrix of the action of ¢

on Z[¢] with respect to the Z-basis {1,¢,¢?,..., (™ 1}

00 -+ 0 —am
1 0 --- 0 —Am—1
I=|0 1 - 0 —amo
o0 --- 1 —ay
For a vector = (21,2, ...,%y) and a matrix M = (m;;) € M, x;(Z), we define

the matrix power ™ by

m m m
M __ mgi m;2 mji
r = ij vH%‘ H%
Jj=1 Jj=1 J=1

Then, we define the action of G on the algebraic torus
m
m.B = Spec B |x1,T,. .. ,x,ml/Hxi
i=1

by

1

o0) = x'.

oo __ g0 ao
x70 = (2]°,23°, ..., 270

Example 2.4. If n = 6, then we have ®¢(x) = 22 —x + 1 and

Then, the above G-action on (G?n,B = Spec Blx1, x2,1/x122] is written as
(21,22)7° = (21, 22)" = (20, 27 '22).

By this G-action, we obtain a Galois descent of G p over A, which we call
the cyclotomic twisted torus of degree n, and denote it by G(n) 4. The coordinate

ring of the cyclotomic twisted torus is given explicitly as follows.



Theorem 2.5 (Koide-Sekiguchi [5, Thm. 3.2.1)). The cyclotomic twisted torus

is written as

G('I’L)A = SPGCA[ghf% cee 7£TL]/Q[’

where &1, &a, ..., &, are G-invariant parameters, and 2 is an ideal given explicitly.

Theorem 2.6 (Koide-Sekiguchi [5, Thm. 3.4.1], Mazur-Rubin-Silverberg [6, Thm.
5.8]). For each positive integer | dividing n, we set G| = <Jg/l> C G and B =
B% C B. Then, the cyclotomic twisted torus is canonically isomorphic to the

subgroup scheme of the Weil restriction Resp/aGm, B,

T(Tl)A = ﬂKer [le : ReSB/AvaB — ReSBl/AGm,BJ s

ln

where Nmy; is the norm map from B to B;.

Example 2.7. If p =5 and A = F5, then computation in MAGMA shows that
G(4)F5 = Spec ]F5 [617 £27 533 64]/2[7

where the ideal A is generated by

262 + 366, + €2 + 3,

48185 + 363 + 487

Example 2.8. Ifp =7 and A =Fy, then

G(G)F7 = Spec ]F7 [517 627 537 643 557 56]/Ql7



where the ideal 2L is generated by

48186 + 68285 + 48384 + 486,
66185 + E264 + 365 + 6EF,
3E7 + 58286 + 26385 + 667 + 4,
46163 + 363 + 36 + 66486 + &2,
6&1&3 + 463 + 58a&6 + €3,
6€7 + 681 + 58286 + 5E3&s + 267,
26185 + 26284 + 5E3 + 585 + 463,
58184 + £283 + &4 + 58586,
26182 + 282 + €386 + 38485

10




Chapter 3

Results on Cyclotomic

Twisted Torus

3.1 Cyclotomic Resolution

Here, we note the surjectivity of norm maps that will be essential in the following

argument.

Lemma 3.1. Let q be a power of a prime number. The norm map
Nm: Fgn = F,

18 surjective.

Proof. Let a be a primitive element of Fy». Then, we have

Lhgtg?++a' ™ _ (¢"=1)/(a=1)

Nmao=a«

This is an element of Iy, of order ¢ — 1, that is to say, a primitive element of

F,. O

q

11



In the rest of this chapter, we denote k = F; and K = [Fg». Let n be a
positive integer and let n = p{'p5? - - - p&r be its prime decomposition. For integers
1<t <ty <+ <ig <r, weset

n

Nigiq-ig — — and ]\41011 =F Migigeis .
PioPiy - Pig 1
We define the homomorphism
T
9 K — [ M
i=1
by
0,._
0 x = (NmKX/Mlxx,NmKX/MQXx, .. .,NmKX/MTxx) ,
and
s . X X
9% H MY o = H M
1<ip<--<is_1<r 1<ip<---<is<r
by

s (—1)7
s _ -
‘ i

Example 3.2. Ifn=p; -p2-p3s =2-3-5= 30, then we have

K == ]Fq30

/ \

= F 0 M =
M12 = M13 = M23 -
M123 = ]Fq

The homomorphism

OV KX — M x My x My,
is defined by
0.\ —
d°(x) = (NmKX/M1X $7NmK></M2>< x,NmKX/M3x ac) ,

12



and the homomorphism
OF M x My x My — My x My x Mg,

1s defined by

81(y17y2u yS) - (

Nm MM Y2 Nm MM Y3 Nm MM Y3 >

Ny Ny npcyn " Ny o
The homomorphism

9%+ M7 x M5 x My — M,
is defined by

123

Nm, ,x X 2923 Nm, ,x x 212
2 M23/M123 M12/M
07 (212, 213, 223) = :

Nm z
]\/Il><3 /M1X23 13

In general, we have the following result:

Theorem 3.3. The following sequence is exact, which we call the cyclotomic

resolution:

1= Gn)(k) S K 25 T My
=1

ot %

— || Mij
1<i<j<r

82

—

i
- 87‘71
x x
R | | M12-~~i~~-r — M., — 1.
=1

Proof. Tt is obvious that 9°T! 0 9* = 1. It suffices to show that Ker 9**! C Im 9*
since Ker 9° = Ime by Theorem 2.6, and 0"~ is surjective by Lemma 3.1. We
use induction on the number r of the prime factors of n.

Firstly, we check the case of r = 2, that is to say, n = p{*p3*. In this case, the

required resolution is as follows:
5 « 8° X x o' X
1= Gn)pk) = K* — M{ x M3 — M7, — 1.

13



It suffices to show that Ker 9! € Im 0. Let
x = (71,72) € Kerd' for x € M x My,
By Lemma 3.1, there exists z; € K™ such that
T = NmKX/Mlx 21.
Then, we have

T x
—_— A d — ) =1
52, € Ker an (5‘021 ) 1

Therefore, we may assume without loss of generality that = (1,23) € Kerd?,

by replacing @ with (8°z;)~*x. Thus, we have
le\/flx/Mf;'rQ =1.
Now, we take an element zo € K* satisfying

To = NmKX/MZX 29.

Set
X" -1 X1
F(X)= -1 d Fipiroi.(X) = ——
Then,
Nm,, x M P
1011{]15 igi1 i

can be written as

ZFim'l-~~i"j~-~i5(a0)/Fioi1“'is(ao)

One can easily see that

@12(%)’ ?j&?) = (?:_11 ;((_11) 1

Therefore, there exist polynomials f1(X), f2(X) € Z[X] such that

F12<X)
Fi(X)

Flg(X)
Fy(X)

f1(X) + f2(X) =1

14



(cf. [5, Lem. 10, Prop. 15]). Now we set

y = Zgl(UO)F12(U'O)/F1(UD).

Then, we have

NKX/MIX’Y = NKX/Mlx Z2fl(UO)F12(O'0)/F1(O-O)

_ 251(00)1’12(00)
_ (221:12(0.0)>f1(0'0)

and

oo)F12(00)/Fi(o
NKX/M;'V:NKX/M;Z;I( 0)Fi2(00)/Fi(o0)

= NKX/MQX Z;*fz(UO)Fm(o’O)/FQ(UO)

=2y ZQfQ(Uo)Flz(UO)

=9 (2512(00))f2("0)

= T2.
That is to say,
Oy =z

Hence, we have Ker ' € Im 8°.
Secondly, we check that Ker ' C Im 8 in the general number r of the prime

factors of n. Take

-
x = (21,22,...,7,) € Kerd' for x ¢ I_IMZ-X7
i=1

and set

/I __ ,e1,.€e2 €r—1 I Dy r
n =Py Py " Pr_1> q =4q ) €T —($1,$2,...,"ET,1),

15



and consider a sequence
(8’)0 r—1
1= G(n)i(k) > K* —— [ M
=1

%HMz?

1<i<j<r—1

/\2
@y, ..

8/ r—2
) M. g — 1,

CON e x
H M12-»-%--~r—1
i=1

where the morphisms @’ are induced naturally by 9. Then, we have 2’ € Ker (9)!.

By the induction hypothesis, there exists an element 2’ € K* such that
(0 ==

Then, we have

T 1 T .
505 € Kerd*, and (802')i:1 for 1<i<r-—1.
Therefore, we may assume without loss of generality that « = (1,...,1,2,) €

Ker 8!, by replacing & with (9°2’)~'z. By the same argument, there exists z €
K> such that

X
(@)i=1 for 2<i<r,

and polynomials f1(X), f-(X) € Z[X] such that

Fi(X) Fi(X)
X (X =1.
"OE ) MR
By setting
N = 2/1(00) Fia(o0)/ Fi(0)
we have
'y = .

Hence, we have Ker 8" € Im 9°.

16



Thirdly, we verify that Ker 95! C Im 9%, where s # 0 and s + 1 # r — 1. For

simplicity, we always assume that 1 <15 <13 < --- < 15. Take

T = (Tigiyi,)io<r € Ker0°™' for x € H M

1081+ ls?
15 <1
and set
/ er— / er /
n =pi'ps?-p T, =4, = (Tigiyi, )in<r—1-
Consider the sequence
(3/)0 r—1
1= G(n')k(k) = K* == [[ M/
i=1
(COR x
— ]I M
1<i<j<r—1
(9")?
I
r—1
(8/)7‘—3 % (6/)7‘—2 %
H M12.~.%m7-—1 Mi.p1 = 1,
=1

where the morphisms @’ are induced naturally by 0. Then, we have &’ € Ker (9")5**.
By the induction hypothesis, there exists an element w' = (Uiyiy-iy y )is s <r—1
such that

(a/)su/ — w/.
We set

Uiy ig_or — 1 and u= (uiﬂil'”isfl)is,lgr .

Then, we have

T
0%u

€ Kerd*t!, and ( ) =1 for iy<r-—1
1021 ls

o*u
Therefore, we may assume without loss of generality that * = (@iyi;...i,); <, €

Ker 9! with ;,;,..,, = 1 for iy < 7 — 1, by replacing = with (9°u)~'z. Next

17



we set

Yigir-is—1 = Ligiy-is_17>
Y= (yioiy»-is,l)ileT,l )
n' =pipst P
q =",
K' = M, =Fg,

M

to%1- s

== Migilu-isTa

and consider the sequence

’

1= G)(k) S (k7)< 22 ﬁ(M;)X

("*
I H (Mi/j)x

1<i<j<r—1

where the morphisms &’ are induced naturally by 0. Then, we have

(@Y igsy.a, = @), 0 =1

/

. ' '
Hence, there exists v’ = (vj ; .; ,)i._,<r—1 such that

/Ns—1_./ oy . _ L. .
((8 ) v )ioil...i571 = Yigiy-is—1 = Ligig--is_1r-
Set
1 for is_1 <r—1,
Vigiyig_y —
/ ; —_
Vigiyin_, 1OT G5 1 =T,
and

v = (vioil'”ib'*l)is_lgr'

18



Then, we have
1 for s <r-—1,
Tigiy-ia_1r fOT 15 =T.
That is to say,
0°v = .

Hence, we see that Ker 9**t! C Im 0°.

Lastly, we check that Ker 9"~! C Im9"~2. We set

i=(1,...,%...,r) and g =(1,...,0 ... 0,...,7).

Fix
x = (v;,75,...,7) € Ker 0""' for x;EM%X.
We choose elements 29, 23, ..., 2z, € K* satisfying
x%:NmKX/M?xzi for i=2,3,...,n

Now we set

I — peipez P T K — M =F

n =pypy, q =4q ) = M3 = L)'

and

i (-1
' = | x5, H (NmKX/M;zj) € (M3)™ x (M7)* = M x M,
j=2

and consider the sequence

’

1 G(n)(k) = (k)< L5 (u)* x ()< 2

—— (M) — 1.

Then, we have

V' =0t =1.
By the induction hypothesis, there exists u; € (K')* = MIAX2 such that
() um =2

19



By setting

uz =1 for ij #12, and u= (u[j)lgi<j§r7

we have

xr xr r—1
(m)i:]. and m EKera .

Therefore, we may assume that * = (1,2s,...,2:) € Ker 0"~ !. Assume without

loss of generality that © = (z7,...,2-—,1). Next we set

€r—1

" __ el
n _pl ...pT_17
er—1
"o p."
g =qg"
1"
K = Mr == ]F(q//)n”,

" _ . .
M ;. = Mig.ior,

and consider the sequence

o 1
L G")ulk) S (K< 5 T (g

=1
a// 1
(a//)r—S r—1 (a/f)r—z
AR | [0V N VA S §
1=1

Then, we have

(6//)7"7238// — arflm - 1.

Again by the induction hypothesis, there exists v’ = (Ua)1§i<j§r71 such that

(8//)r73vlfj _ :l?”.

By setting

v; =1 and v=(v5)iicj<r

20



we have
) z; for 1<i<r—1,
(0" v); =
1 for i=r.
That is to say,

0" v ==.
Hence, we see that Ker 9"~ € Im 9" 2. O
The essential point of the proof of Theorem 3.3 is the surjectivity of the norm

map

Nm : Fgn — Fy.

We easily see the surjectivity of the norm map of sheaves on the flat site (Spec A)gat;
Nm : RGSB/AGm,B — Gm,Av

where the notation is as in the previous chapter. In fact, for any A-algebra R and
any element a € G, a(R) = R*, set S = R[T]/(T™ — a). Then, the morphism
SpecS — Spec R is surjective and flat, and we get the following commutative
diagram:

Nm(R
(Resp/aGn.) (R) = (R®4 B)* — 0~ G, a(R) = R*

l rest \L rest

Nm(S
(Res/aGrn, ) (S) = (S @4 B) — o Gy a(S) = 57

Thus, we see that Nm(S)(T ® 1) = rest(a). Therefore, by the same argument as

in the proof of Theorem 3.3, we have the following:

21



Theorem 3.4. The following sequence of group schemes over Spec A is exact:

o T
1— G(n)A i) ReSB/AGm,B a—> H (ReSBi/AGm,Bi)
=1

i H (ReSBij/AG’m,Bij)

1<i<j<r

62
H...

67‘71
—— Resp,. ., /AGm By, — 1,

— RGiyiq.--i _ Migig--ig
where By, ..., = B%oivis and Gigiy.i, = (09 07",

3.2 Endomorphism Ring of Cyclotomic Twisted
Torus

Under the notation in the previous section, we determine the endomorphism ring

of group A-scheme G(n)4 as follows:

Theorem 3.5. There exists a canonical isomorphism of rings
End (G(n)a) ~ Z[¢].

Proof. Suppose that ¢ is a G-equivariant endomorphism of G 5. Then, the
morphism ¢ is represented by some matrix M = (b;;) € M,,(Z) satisfying the

equality MI = IM. By calculating IMI~!, we have the relations
bij =bi—1-1 — Gm—it1bm j—1 for 1,5 >2,
blj = *bm,j—l for _] Z 2.

Set ¢; = b;y for i =1,2,--- ,m. Our assertion is that

M = i N Lty
k=1

In fact, we have
k—1

by = E QCrm— k141
=1

22



by the above relations, where

k—1
ap=-—1, and af = —Zaiak,i for k> 2.
i=1

Then, we have

m 7
bij = ci—jy1+ E <Ck E am—l+1ak—m+j—i—1+l> ;

k=m—j+2 =1
where oy = ¢; = 0 for [ < 0. On the other hand, since the (i, m)-entry of the

matrix I* is given by

k
E A0y —4-k—i+1;

I=k—i+1
and the (1, j)-entry of the matrix

m
§ Ck]k71
k=1

is given by

m 3
Ci—j+1+ E CkE Ok—14j—m—i+lOm—1+1 | -

k=m—j+2 =1

This proves the theorem. O
By Theorem 3.5, we have the following proposition.

Proposition 3.6. For non-zero homomorphism ¢ € End(G(n)4), we have
det ¢ = Nm ¢ = ord(Ker ¢),

where det ¢ is the determinant of the representing matrix M, and Nm ¢ means

the norm of ¢ regarded as an element of Z[(].

Proof. Let
m
M = Z It
i=1

be the representing matrix of non-zero homomorphism ¢ € End(G(n)4). Set
m .
flz) = Zcix%l.
i=1
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Then, the eigenvalues of M = f(I) are given by { f(¢¥) | k € (Z/nZ)* } by

Frobenius’ theorem. Therefore, we have

det M= [ £(¢"=Nm¢().

ke(z/nZ)>

Note that det M > 0 since

Nmg(¢)/0(c+¢-1) ¢ = 92 = |¢|* > 0.

Hence, there exist J, J' € GL,,(Z) such that

dm

where di,ds,...,d,, are positive integers such that di|ds|- - |d,,, and det M =

dydsy - - - d,y, since det M > 0. Therefore, we see that det M = ord (Ker ¢) since

Kerp ~ Ker sy
= SpecB[xl,zg,...,xm]/(:r‘fl - 1,x§2 —1,... 0 — 1)

= ftd, XSpec B fbdy XSpec B *** XSpec B fid,, -
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Chapter 4
Computations on Torsors

4.1 Torsors for G,

As in previous chapter, let G be a cyclic group of order n and B/A be a G-torsor.
We denote X = Spec A and Y = Spec B. We assume that the base scheme lies
over Spec A, where

Ay =2 {Q p(pl— 1)] N2
where ( is a primitive (p—1)-st root of unity in the ring of p-adic integers Z,,. Since
the morphism YV — X is étale, and Resp;4Gm p is a smooth X-group scheme,
we have

H (X, Resp/aGm,p) = H (Xa,Resp/aGm,B)

for ¢ > 0. In general, we have

H? (Xst,Resp/aGum,p) = He (Xet, Resp/aGm,B) -
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For any étale open covering {Uy — X}ieca, we have an étale open covering
{UxNY — X}rca. Then, we have

C? ({Ux}renResp aG 5) = H L (Uxpr,--2gs Resp/aGom, )
A0,AL, - AgEA

= H I (U)\(])\l"'/\q ﬂY7 Gm,B)
A0,AL, - AgEA

CT{UnxNY}ren,Gm,B) -
We obtain

H ({Ua}ren, Resp aGu,i) = HY ({Ux NY }rer, G ) -
Therefore, we have the following equalities:

H' (Xqg,Resp/aGpp) = H' (Xet, Resp/aGom )
= H' (Yo, Gn.)
= H' (Yzar, G B)
=H"'(Ya,Gp.p),
since
H? (Xe,Resp/aGum,p) = H? (Yer, Gy ) = H (Yer, G 13) -
In particular if A is local, then B is semi-local and
H" (Yzar, Gy ) = PicY = 0.
Consider the exact sequence
1—G(n)a 5 Resp/aGm,B 8—0> Kerd! — 1,
which is obtained by the cyclotomic resolution
1

r
0
1— G(H)A i> ReSB/AGmJg 8—) H (ResBi/AGm,Bi) 6_> el
=1
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Under the flat topology, we have an exact sequence

H°(X,8°%)
_—

0
1— HY(X,G(n)a) 5 HO (X, Resp aGum.5) HO(X, Ker 8')

1 1 0
2 HY(X,G(n)a) 5 B (X, Resp aGm p) —2) HY(X, KerdY)

17}

Here, we have H!(X, Resp/aGm,B) = 0 by assumption for A and B. Thus, we

have the canonical isomorphism of groups
d : Coker H(X,0°) = HY(X,G(n)a),

and the explicit correspondence is given as follows:
For f € Coker HO(X,3°) that is represented by f € H°(X,Kerd'), we have

the diagram

of = f~ (RGSB/AGm,B)

e

1—> G(n)s ——=> Resp/aGm

by taking pull-back, i.e., fiber product (cf. Appendix).

Let p be a principal prime ideal with a generator 6 € Z[(], which splits com-
pletely over Q(¢) with pNZ = (p). In fact, p splits completely if and only if p = 1
(mod n) (cf. [15, Prop. 2.14]). We assume that n = p—1. Then, we have an exact
sequence

0
1= ppp =G g —=Ghpg—1,

where we regard 6 as an element of End(G(n)4). Then, the Galois descent theory

gives an exact sequence
1= (pp.5)° 5 Gn)a S Gn)s — 1.

We describe the torsors for (p, 5)¢ in the following way:
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By Oort-Tate’s classification theorem, we have
Hp B ~ Spec Bz]/ (2P — wp2)

with group scheme structure

1 Bl i
m*(z) =2®@1+1®z p*liélwz@)wp—/

where wy, is the product of p and of an invertible element of A,, and wy for
1 <k <p-—1is an invertible element of A satisfying wy = k! (mod p) (cf. [8,
§2, Prop.]). The Galois group G = (0p) acts on p, p = Spec Blx]/(aP — 1) by
290 = z! with some integer [, and on Spec B[z]/(2P — wpz) by 27° = ¢!z, where ¢
is a primitive n-th root of unity (cf. [8, §2, Prop.]). Now we assume that 2™ — b
is irreducible in Afz], ab = w, € A, and B = Afu], where u is an n-th root of b.
Then, G, is isomorphic to the Galois descent of g, p. In fact, we may assume

without loss of generality that u“° = ¢'u since
Fua(X) = X" —b= (X —u)(X — Cu) -~ (X = (")

Hence, v~ 'z is G-invariant, and we have

R (ORI O

(@)= G)ernre ()5 B e

=1

and

Thus, the Galois descent of g, p is isomorphic to G, i.e., we obtain the exact
sequence

15 Gap 2 G(n)s L Gn)s — 1.

From this sequence, we obtain a long exact sequence

HO(X 1)
e

0 0 HY(X,0) .0
1— H'(X,Gap) H°(X,G(n)a) ———= H°(X,G(n)4)

9 HY(X, Gap) XY HY(X,G(n)4) 0 HY(X, G(n) a)

o
=,
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then, we have the exact sequence
0 o 1 Hl(X,L) 1
1 — Coker H*(X,0) = H (X,Gqp) —— Ker H (X, 60) — 1.
Therefore, the elements of H'(X, G, ) are described by the elements of
0
Coker [HO(X, G(n)4) X0 go(x, G(n)A)]

and

H'(X,0)

Ker [Hl(X,G(n) A) HY(X,G(n) A)} :

In fact, for g € Coker H(X,0) and f*(Resp/aGp,p) € Ker H'(X,6), we obtain
an element of H'(X, G,) as follows:

We have the diagram

Gop ~ O0'({1}xX)—X,

| |

G(’ﬂ)A ~ f* (RESB/AGmJ;) — X

| I

G(n)a ~ 0.f* (Resp/aGm,p) —= X

12
G(H)A x X

where the morphism 6 is defined by 6, and we have
L (071 ({1} x X)) ~ f*(Resp/aGm.B)
(cf. Appendix). Therefore, we have
0g+071({1} x X) € H'(X,Gayp),

where the operation “+” is the group law of H' (X, Gy ).
Note that we only considered the case where prime ideals lying over p are

principal. The non-principal case is treated by Koide [4].
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4.2 Examples

Let A be alocal Fj-algebra, and b € F, be a primitive element of F,,. Set B = A[u],
where u is an n-th root of b, and n = p — 1. Then, the ideal (p,b — () of Z[(] is
one of the prime ideals lying over p (cf. [15, Prop. 2.14]). We consider the case
where (p,b — () is principal. Computation in MAGMA for p < 100 shows that

(p,b— () is principal if p is one of the numbers
5,7,11,13,17,19, 23,29, 31,37,41,43,61,67, 71.

In fact, we have the equalities

5=Nm(2 + (), 31 = Nm(1 + (30 — (),

7 =Nm(2 + (), 37 = Nm(1 + Gz6 — (36),
11 = Nm(2 — 1), 41 = Nm(1 + a0 — Clo),
13 = Nm(2 + (12), 43 = Nm(1 — Ca2 + (3o),
17 = Nm(1 + Gig + C3), 61 = Nm(1+ (&, + o),
19 = Nm(1 + (15 — %), 67 = Nm(1 + (g6 — C35),
23 = Nm(1 — Coz + ), 71 =Nm(1 - (3 — (%),

29 = Nm(1 + Cas + (25),

where (,, is a primitive n-th root of unity. Let 6 € Z[(] denote a generator of the

ideal (p,b — ¢). Then, we have an exact sequence
1— Wy, B L% Gm,B i> G:Z,B — 1.

By the same argument as in the previous section, the Galois descent theory gives
an exact sequence

15 Gop 5 Gn)a L Gn)a — 1,
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and one can compute the torsors for Go,. In particular, if A = F,, then

H°(X,Gop) = 0. Hence, we have H'(X,Gpy) = 0 since
HO(Xa 9) : HO(XvG(n)A) - HO(X’G(n)A)

is an isomorphism of groups.

4.3 Torsors for Galois Descent of p, 5

In this section, let p be an odd prime number. Let n be a positive integer greater
than one, m the value of the Euler function of n, and { a primitive n-th root of
unity. Let G be the multiplicative group (Z/p'Z)*, and Spec B/Spec A a G-torsor.

We assume that the base scheme lies over Spec A,,, where

AP:Z{QP N L,

=

and Z, is the ring of p-adic integers. Here we obtain an exact sequence
pl
m m
L= Myt B = Gm,B ’ Gm,B —1,

where p is a prime ideal lying over p with p NZ = (p). We now study the group
scheme

Myt g = SpecB[z]/(zpl -1

by extending the method of Oort-Tate. For simplicity, we assume that the ideal p
is principal. However, this argument can be generalized to non-principal case by
using the concept of the homomorphisms defined by ideals, which is introduced
by Koide [4].

1

We fix elements o, 3 € (Z/p'Z)*, whose orders are p'~! and p— 1 respectively.

Indeed, we have the isomorphism
(Z/p'2)" ~ 2/ 2 x Z/(p — 1)Z
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since we assume p is an odd prime number. Using « and 3, we define the actions
of (1) € Z/p'~'Z and [1] € Z/(p — 1)Z on p, g by
(I)z=2% and [1]z =27,
The augmentation ideal J of B[z]/ (sz — 1) is given by
l

J=(z-1)B[z]/(z" - 1),

and has a B-basis {1 —2¥ |1 <k <p! —1}. For j € Z, we set

1S
i= =2 V-1 e B[z/(p-1)Z],
p—1
k=1
and J; = e;J. Clealy e; and J; depend only on j (mod p — 1).

Lemma 4.1. We have
p—1 .
J=YJ; and J;={feBl/ —1) | Kf=c"f},
=1
thus JZJ] - Ji+j.

Proof. In fact, we have the equalities

2
ejej = <pi1> Z ¢EVI=EI[(5 4 ¢ — 1) — 1]

1<s,t<p—1

1 \2
= <> Z C*(sfl)if(kfl)j[k —1]

p-1 1<s,k<p—1
2p 1
C kj+i C (i—j7)s E—1
() T (S |
Z “h=DiR—1]) if i=7,

if i#7,
and
p—1 p—1 [p—1
—(k—1) o _
Zej p—1 ZC k=1 =1
j=1 k=1 \j=1



Furthermore, we see that
1 =
Kleg = ——= S ¢+ 5 — 1] = (Ve
s=1
Hence, J is the direct sum of J; for 1 < j < p—1, and J; consists of f € J such
that [k]f = (M f for k € Z/(p — 1)Z. Thus, we see that J;J; C J;4; for f € J;
and g € Jj, since

[K](f9) = ([K1/)([Klg) = ¢*' f¢M g = (") (fg).

O
Set
q= = P
p—1 k=1
1 if 1<i<pt,
pi = j A
Pt Y PP <i<>
k=1 k=1
and

yig=@—1)e (1—(i—1)2")
for i,j € Z, where i = i (mod ¢). Note that y; ; depends only on i (mod ¢) and

j (mod p — 1). By the definition of y; ;, we have the equality

p—1
(p—1) —Zz‘“v’“ if =0 (modp-—1),
k=1

Yijg = p—1
— E ¢~(B=Dizeik otherwise,
k=1

where a; 1, = p;at~1B*=1. Therefore, we have
1 R

1= gtk = —— N "¢y, ;
p—14

for k € Z, therefore we have

q p—1 q
J= Z Z By;; and J; = ZByi,j
i=1 j=1 i=1
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for j € Z. Note that (1) € Z/p'~1Z acts on y; ;’s by

1 1 1
yi; =Y2,5, yé,; =Y3,j5 R y;,lzlhj =Y1,5,

(1) _ (1) _ (1) _
yp171+1,j = Ypt-14255 ypl—1+27j =Ypl-14355 > ypl—1+pl—27j = Ypt-141,55

and so on. Thus, y, ; is invariant for the action of Z/p'~1Z for j € Z. Furthermore,

we have
m*(Yij) = Yi; ®1 = 1@y

p—1
= — Z C*(kfl)j((l — 2% @ (1 — Zai,k))
k=1

1 p—1 polp—l
et OIS D DI S TR Y
k=1 s=1t=1
1
— Z Yi,s @ Yits
p s+t=j
(mod p—1)

thus
1 =
m*(Yij) =Yi; @1+ 1@ yi; — o1 Zyi,k @ Yi,j—k-
k=1
By setting y; = 5,1, we have especially that

1
\ 1S
m*(y;) =y @1+1®y — ﬁ;yi,k@’yi,wk'

We define elements w; j, € B by

q
k —_— .. .
Yi = Wi, j,kY5,k»
i=1

that is to say, we have the equality

k

Y1 Wi,k W12k ccc Wilgk Y1,k
k

Ys W21,k W22k " W24k Y2,k
k w w “ e w

Yq q,1,k 9.2,k q,q;k Yq,k

Setting M, = (Wi j,k)1<i,j<q, We have the following:
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Lemma 4.2. The matriz M, , is formed of

Mpl,k,l *

. . . l_,‘ . . _
where My 1, ; is a matriz of size p'~7, satisfying My  ; = Mpi—1p 1 for 2 <

J <1, and each matriz My ;, ; is formed of

mq mo ms mplf‘]
mpz—; mi mo mpl—j,l
Mpi g = [ mp-i_y my—s ma Myl _2
ma m3 my my

Proof. Set

e . B . e / .
My g j = (Wrtigtjpi<ijepi-i and  Mpi—1 g 51 = (W g k) 1<ij<pl=is

where
-1 0 it j=2,
= =k ! = j—1
r Zp and r Z - .
k=1 p otherwise.
k=2

Let 2/, €/ and y; be the z, e; and y; in the case of replacing I by [ — 1, respectively.
For 1 < i < p!~7, we have the equalities
q
yq]f_t,_i = Zwr+i,s,kys,k
s=1
p'7

= Z Wrtirts,kYr+s,k T (terms of ijaZQ:Dja .. ) ) (4.1)

s=1

q
/ k __ / /
(yr’+i) _E wr’-i—i,s,kys,k:
s=1
p°7

/ / np' 1t n2p? 1!
= E Wyrpirits kYri sk T (terms of " (=N ,...),

s=1
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vrin = (p=Ve; (1= (= 1=""),
and

Vv = (= De; (1= i -1 7),

1

where 2P’ = 1, (z/)P""" = 1. Setting Z = 2P, we have 7ZP'"" = 1. Therefore, we

identify

Yosin = (p—D)e; (1 — (i 1>ij,2)

as Yy j, thus
Wrtirtjk = Wyrgimpipe for 1<4,5 < P
Furthermore, by the relation (4.1), we have

. r4j—1
Wrti,rtje = — (the coefficient of z® of ny)

= — Z C_(el+"'+ek)

0<ei,ez;,...,ex <p—2
ar+]—1zar+z—l(ﬁel+B22+_”+ﬂek) (mod pl)

—— Z <7(61+~--+ek)

) 0<ei,ez,....,ex<p—2
a7‘+]za7‘+1(ﬁel+/Bc:2+'”+ﬁck) (mod pz)
. ot k
= — ( the coefficient of z of Y i1
= Wr i1 eG4,k

O

Lemma 4.3. For a prime number p and a positive integer [, the determinant of

the matriz
ma meo ms mpz
mpz mi mo mpz,l
M= {my_, muy m Myt o
m2 m3z My my
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is given by

det M = Zml (mod p).

Proof. Let w be a primitive p'-th root of unity. Setting Q = (w(i_l)(j_l))

1<4,5<p’
we see that
pl
> mi
i=1
v
Wt
MQ=Q ; '
pl
Zw( -DE=1,y,
i=1
Since
detQ = Z (w' —w?) #0,
1<i<j<pt
we obtain
p P p!
det M = WDy, = Zmi (mod p).
j=11i=1 i=1
O

Proposition 4.4. We have det M} ; = k! (mod p), thus det My, = (k!)

(mod p), and M, y, is invertible for 1 < k <p— 1.

Proof. By Lemma 4.2, it suffices to show that M, , ; = k! (mod p). By setting

Z = 2" we have
ZC (k—1) ( ﬁk 1)

with ZP = 1. Hence, it can be reduced to the Oort-Tate case, thus wg 4 = k!
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(mod p). On the other hand,

Wq,q.k = — (the coefficient of Z of y})

- _ Z C—(n1+"2+‘“+nk)

0<ni,na,..., nk<p—2
1=B"148"2+--+8"k  (mod p)

-1
_pz Z C_(n1+n2+'“+nk)
=

_ 0<n1,n2,...,n <p—2
QI TI=MI4 A2 et BT (mod pl)

1—1

P -
— Z (the coefficient of 2 of y(’;)
j=1

1—1
p

= > Wik
j=1

Therefore, we have

-1
p

det My j, ; = Z Wik = Weqk =kl (mod p).
j=1

For i,j € Z, we define elements c; j , € B by

YilY; = Zcukyi
Setting

=Yy — Z Cw,kylc’ =y} — Z Wi j,pYj

-1
and Mk = (di,j,k)lgi,qua we have

1

Blz]/(2" — 1) = Bly1, 42, - - -, yql /2

with the co-multiplication

p—1
(yz)—yz®1+1®yz_pllz(Zdzskys ®Zdztp kyt k))

k=1 \s=1 t=1

where the ideal 2l is given by
=({Fjl1<i<j<q}{F|1<i<q}).
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The group Z/(p — 1)Z acts on Spec Bly1,y2, . ..,Yq]/2A by y7° = Cy; under
the suitable choice of 3. Now we assume that ! — b is irreducible in A[z], and
ab = w, € A. Set By = Alu], where u is n-th root of b. We may assume without

loss of generality that u°® = (u. Hence, u~ty; is G-invariant. By the equalities

F,

. ) . 4q ] q
= (2)(2)- S (8) B ()3 (%),

and

w((3) =(G)etere (3)
u U u
—1 q q
b S Ys k Yt p—k
Py (Z dion () @2 diens () )
k=1 \s=1 t=1
we obtain the Galois descent of pu,: p, by the action of Z/(p — 1)Z.
In the rest of this section, we assume that [ = 2 for simplicity, i.e., consider
the group scheme p,> g. In this case, we have ¢ = p + 1. Let ¢, be a primitive

p-th root of unity. Set A = ¢, —1 and A = Z,)[A]. Now we consider the group

scheme

1
N — -
g SpecA[X, /\X—l—l]’

with group scheme structure
m(X)=X®1+10X + X ®X.

The group scheme G gives the deformation of the additive group G, to the
multiplicative group G,,, and it is introduced by Sekiguchi, Oort and Suwa [10],
and also by Waterhouse [16] independently.

Define a group scheme homomorphism

NGNS Gpa by aM(x) =z +1.
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Consider the diagram

a™
g 2 G -

a(AP)

G s Gppa
We define the group scheme homomorphism ¢ which makes the above diagram

commutative, that is to say,

P(z) = % {(Az +1)P —1}.

Then, we have

W(w) = % {(Ax)” +pOa)P L + (’2’) A2)P™% 4+ (p i 2) (a)? + p)\x}

=aP + 12?7t a2 4 b poan? (ordx(c;) > 1)

17

=P —z (mod ).
Thus, we obtain an exact sequence
1 Z/pZ — GO % g™ 1.
For an A-scheme X, under the flat topology, we have a long exact sequence
1 HY (X, (2/pZ)x) — HO (X,6) 259, o (5, gon)
% H' (X, (2/p2)x) > H' (X,GV) LGNS (x.997)
where
HO (X,6W) = {f € Ox(X) | Af +1 € Ox(X)*},
H (X,67) = {g € Ox(X) | Mg+ 1€ Ox(X)*},

H' (X,(Z/pZ)x) = { the isomorphism class of (Z/pZ)-torsors over X }.
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If X = SpecA with a local ring A, then we have H'(X,G®™) = 0, and the

isomorphism of groups
d: Coker H (X,v) = H* (X, (Z/pZ)x),

where the explicit correspondence is given as follows:

For § € Coker H® (X, 1)), which is represented by g € H°(X,G*")), we have

the diagram

dg = g* (g()‘)) — X

ek

0——7Z/pZ G i g™ 0

by taking fiber product. Thus, we have

1
99 = Spec A%, 4 4| %37

_ Spec A[X]/ (;p (ODe+1)P —1) — g) .

Let w denote the solution for

%{(Aerl)p—l}:g.

Set By = Alw]. The group Z/pZ acts on By by (1)w = (pw + 1. We define

11]172727---751; by

(1 1 1 1 1 (0
Yo w (Dw 2w - (p-lw Y2
Gl =1 «* (Hw* (2w (p - Hw? Y3
Up Wl (Dwrt (2Pt e (p— Dt \y,

Since the matrix ({(j — 1)w'~!)1<; j<, is invertible, the above equation is solved

in y;’s. Thus, we obtain the Galois descent of pu,2 p, by the action of Z/pZ.
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Now, we assume that B = Alu,w], i.e.,

B = Au,w]

/

By = A[U] By = A[OJ}

Z/(p — V)Z x Z/pL

/

Z/(p-1)Z Z/vZ

\/

{1}

We obtain the Galois descent of 2 p by the action of G, and the exact sequence
G p?
1= (pp2p) — Gn)a — G(n)a — 1,

where p is a prime ideal of Z[(] lying over p. Therefore, using the same argument

as in the previous section, one can compute the torsors for (jupz2, B)°.

One can compute the (g, 5)C-torsors for general | € Z, by considering the

Kummer-Artin-Schreier-Witt exact sequence
1= Z/p 2 Wi = Vi — 1,

which is given by Sekiguchi and Suwa [11].

4.4 Examples

Example 4.5 (In case p! = 32). Let the notation be as in the previous section,

and consider the group scheme
W32 p = SpecB[z]/(,z32 -1).
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In this case, we have (Z/3%Z)* = 7Z/3Z x Z/2Z. In the multiplicative group
(Z/3?Z)*, 4 is of order 3, and 8 is of order 2. Then, we define the action of
(1) € Z/3Z and [1] € Z/2Z by

(1)z=2* and [l]z =25

The values of ¢ and p; are given by ¢ = 8/2 =4, py = ps =p3 =1, and ps = 3,

thus we have

8 8
Y11= —2+2°, Y2=—2—2 +2
4, .5 45
Yo, 1 = —2 + 27, Yoo =—2" —2° +2,
7, .2 72
Y31 = —2' + 2%, Yz = —2' — 2z + 2,
and
3, .6 3.6
Yag = —=2 +Za Yap2 = —2 — 2 +2a

and we decompose the augmentation ideal J of B[z]/(23° — 1) into eigenspaces

J1 and Jp by the action of Z/2Z, where Jy is generated by y11,¥2.1,¥3,1, Y41
over B with eigenvalue —1, and J; is generated by y1.2,¥2,2, ¥3,2, Y4,2 over B with

eigenvalue 1. Matrices M3z 5 and M3z 5 are given by

Y3 o 0 -1 0 Y12
vl |-1 0 0 o0 Y2.
Y3 - 0 -1 0 0 Y3,2 ,
yi 0 0 0 -1/ \yae
and
yi -3 0 0 1 Y1
Y5 0 -3 0 1 Y2
dl o o = 1 ]|w]|
3 0 0 0 -3/ \w



respectively. Note that Ms- ; is the identity matrix. Thus, we have

32 B = SpeCB[yh Y2,Y3, y4]a

with relations

Vive =Y5— Vi, Viva=Y3— Y, Y= -3y1+ys Yi=—3ys,

and
Yoys = Yi — Vi, YeYa = Ui — V3, Y3 = —3y2 + Y,

Ysyr = Y3 — Yl Ysys = Y3 — Y3, Y53 = —3ys+ s,

with group scheme structure

m* )= @1+10y+=- (Y +ys@u),

m* (y2) =2 @1+ 1@y + = (12 QY3 +y3 @ y2)
m*(ys) =ys @1+ 1@ys+ = (3 9 yL +yi @ y3)
m () =y @1+ 1@ys+ = (1 @y + Y3 O va) .

N~ N~ N~ N

Note that the latter six relations (4.3) are obtained by the first four relations

(4.2) by action of Z/3Z. For example, the relation yoy3 = y? — y7 is obtained

by yMyst = (12 — (42)V. Thus, the first four relations (4.2) are essential.

Formulas for m*(y2) and m*(ys) are also obtained by m*(y1).

Example 4.6 (In case p' = 33). Consider the group scheme

mss. g = Spec B[2]/ (2% —1).

In this case, we have (Z/337Z)* = 7/3%7Z x 7/27Z. In the multiplicative group

(Z)33Z)*, 4 is of order 32, and 26 is of order 2. Then, we define the action of

(1) € Z/3?Z and [1] € Z/2Z by
(I)z=2* and [l]z = 2%.
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The values of ¢ and p; are given by ¢ = 26/2 = 13, p; = py =

P10 = p11 = p12 = 3, and pi13 = 9. Then, y; ;’s are given by

26
Y11 =—2+2",
4 23
Yo2,1 = —2 + 277,
16 11
Ys1=—2 +z27,
10 17
Ya1=—2 + 2,
13 14
Ys1=—2 " +z2,
25 2
Y1 = —2 + 27,
19 8
Yyri1 = —= + z )
22 5
Ys,1 = —2° 7+ 27,
7 20
Yg1=—2 +27,
and
3 24
Y101 = —2° + 27,
12 15
Y111 = —2 "+ 277,
21 6
Y12,1 = —2° + 27,
and
9 18
Y13,1 = —2 + 277,

Y12=—2—-2"°+2,

Yoo = —2" =2 42,
Yoo = —216 21 4o,
Yoo = —210 — 21T 4o,
ys2 = —2'% — 21 + 2,
Yoo = —22° — 22 +2,

19 _ .8
Yrp=—2" —2 +2,

2 .5

Ygo = —277 —2° + 2,
7 .20

Yoo = —2' — 27 +2,
3 o4

Y102 = —2° — 27 + 2,
12 15

Y12 =—-2"—2z"+2,
21 .6

Y122 = —2" — 2z +2,
9 18

Y132 = —2" — 2z +2,

i =pg =1,

and we decompose J into eigenspaces J; and Jy by the action of Z/2Z, where .J;

is generated by y1,1,¥2.1, - .,¥13,1 over B with eigenvalue —1, and J; is generated

by y1,2,92,2,...,%13,2 over B with eigenvalue 1. Matrices M3s 5 and Mss 3 are
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given by
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and

0 0 O
-3 0 0
0 -3 O
0o 0 -3
0O 0 O
0O 0 O
0O 0 O
0o 0 O
0O 0 O
0O 0 O
0O 0 O
0O 0 O
0 0 O

respectively. Thus, we have

pss g = Spec Blyi, 2, . ..

with relations

Y1y2 = 3192, - y%la

Y1ys = y§ - yfm
Y1Ys = y? - y%g,
Y1ys = yS - y%m
YiYyio = y% - y%a
Y1y = yg - y?,

Y1Yi2 = y§ - yia

o 0 0 O
o 0 0 O
o 0 0 O
o 0 0 O
-3 0 0 0
0 -3 0 O
0o 0 -3 0
0 0 -3
0o 0 0 O
o 0 0 O
o 0 0 O
0o 0 0 O
o 0 0 O

Y2Yys = yi - y%Qa

Y2Ys = yS - ?me
Y2Ys = yg - y%g,
Y2Ys = y% - y%m
Y2y11 = y$ - y%,
Y2Y12 = yf - 957

YaYi0 = Vi — Yz,
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0 1 0 0
0 0 1 0
0 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1
0 1 0 0
0 0 1 0
-3 0 0 1
0 -3 0 0
0 0 -3 0
0 0 0 -3
0 0 0 0
Y13l

Yoly1 = yg - y%Ov

Yoly2 = Z/? - y%h
Yoys = yg - yf:),,
YoyYs = y§ - y%p
YolYi2 = y? - yS,

YaY10 = Z/g - yg,

Yoyi1 = Ys — Ya,

o o o o o o o o




YIIS = Y3 — Y3, YaMis =Y — V3, .-, YoUis =y — Ui,

YioYi1 = y%z - y%g» Y11Y12 = yfo - y%37 Y12Y10 = y%1 - y%ga

Y1oY13 = Z/%g - y%m Yz = y%o - y%u Y12Y13 = y% - y%%

v =3y +yi0, Y3 =-3ptui, .., Y= —3yo+ 12,
3 _ 3 _ 3 _
Yio = —3y10 t Y13, Y1 = =3y +y13, .., Yiz = —312 + Y13,
yzl))g = —3y13,

with group scheme structure

N 1
m () =m @1+ 1@y +5 (1 @+ ew),

. 1

m (yz)=y2®1+1®y2+§(y2®y§+y§®y2),
* — 1 24 .2

m*(y1) = yo ® 1+ 1@ yo + 5 (yo @ yI + 91 @ yo) ,
. 1

m*(y10) =y3 @1+ 1@ y3 + y10®yfl+yfl®y10),

m*(y12) =3 @1+ 1®@ys +

5
* _ 1 2 2
m*(y11) =ys®1+1®ys+ 5 (y11®y12+y12®3/11)7
1
5 (y12®yf0+yfo®y12),

m*(y13) = y13 @1+ 1®@y13 + = (Y13 ® Yis + ¥is @ y13) -

1

2

Example 4.7 (In case p' = 52). Consider the group scheme
M52, 5 = Spec B[z]/(z52 —1).

In this case, we have (Z/5°Z)* = Z/5Z x Z/AZ. In the multiplicative group
(Z/5°Z)*, 6 is of order 5, and 7 is of order 4. Then, we define the action of
(1y € Z/5Z and [1] € Z/AZ by

(I)z=2% and [l]z=2".
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The values of ¢ and p; are given by ¢ =24/4 =6, py = ps = p3 = ps = ps = 1,

and pg = 5. Then, y; ;’s are given by

Y11 =—z+ (2" + 22 = (218, Yro=—2+2" — 22 4 218

Y13 =—2z— (2" + 22 4+ (218, Yra=—z—2T =22 184y
Yo = =20 + (217 + 210 — (2B, Yoo = —28 — 219 4 217 4 28,

ya3 = —2° — (2" 4+ 2" + (25, Yoa=—25 — 217 — 219 — 28 14
yzq = —2 + (22 + 21— (2%, e

ys3 = —z'1 = (22 4 2 4 (27 ysa = —2" — 22— M B 4
yan = =20+ ¢ 4 20— (2 Yoo = —2'0 4+ 212 — 20 4 213

yag = —2"°0 = (2% + 2% + (2, Ysq = —20 — 213 - 212 2% 4 4
ysa = =22+ 2P 42t - (2P ys,2 = =21 + 222 — 2t + 2P,

ys3 = —2" = (2% + 20+ (2 ysa = =22t — 2% — 2t — 2P + 4,

and

Yo = —2" +¢210 + 2% — (217, Yoo = —2° + 210 — 220 4+ 215,

Yo3 = —2" — (210 + 2% + (217, Yo = —2° — 210 — 220 — 215 1+ 4,

where ( is a primitive fourth root of unity. We decompose J into eigenspaces
J1,J2, Js, Ju by the action of Z/4Z, where Jy, is generated by y; x’s for 1 <i <6

over B, with eigenvalue ¢*. Matrices Ms2 9, M52 3, Ms2 4, Ms2 5 are given by

0 -2 1 0 0 0
0 0 -2 1 0 0
0o o0 0 -2 1 0

M5272 - ,

-2¢ 1 0 0 0 0

0O 0 0 0 0 -2+1



3.0 0 3¢ ¢ -3
¢ 3 0 0 3 -3
3 ¢ 3 0 0 -3¢

Mgz 5 = ;
0 3 ¢ 3 0 =3
0 0 3 ¢ 3 -3
0 0 0 0 0 4C+3
0 0 -8 6 —4C—1 4
—4¢—1 0 0 -8 6 4
Mo s = 6 —4¢—1 0 0 -8 ¢ |
-8 6 —4¢—1 0 0 4
0 -8 6 —4¢ -1 0 AC
0 0 0 0 0 —4¢ -3
—20 ~10¢  =5C+10 10  —15(—5 —10¢+1
~15¢(—5  —20 ~10¢  —5¢+10  10¢ —10¢ +1
Moo = 10¢  —15¢—-5  —20 10 —5C+10 —10(+1
—5¢+10 10 —15(—5  —20 ~10¢  —10¢+1
~10¢ -5¢+10  10¢  —15(—-5 —20  —10C+1
0 0 0 0 0 —20¢ — 15

respectively. One can give explicit relations among ¥; ;’s and group scheme struc-

ture.
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Appendix

In this appendix, we give an outline of a proof which we apply the push-down

and the pull-back theory to the torsors of schemes.

Push-Down of Torsors

Let G be a commutative group scheme over X, and Y/X a G-torsor. For a group
homomorphism ¢ : G — G’, we obtain the G’-torsor on X as follows, by the same

argument with the push-down in extensions of groups: Consider the diagram
G ~ Y—T-X,

b

G ~ pY T sX

where we assume that there exists the quotient

0.Y =G xY/{(vg,—9) | g€ G}

as a scheme, and the morphisms ¢ and 7 are defined by

s) =0y and 7((79)) =)

for any local sections y € Y, ¢’ € G’, and G’ acts on ¢,Y by

g ((g”,y)) =(9'+9"y).
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Then, one can check that 7 is well defined and the diagram is commutative, i.e.,

o(9y) = ¢g(¢y) and 7Top=r.

Moreover, we have

(@) (ry) = (G, Gy) = (p(G) + G',y) = (G',y) ~ G

Therefore, we see that ¢,Y is a G’'-torsor on X.

Pull-Back of Torsors

Let G be a group, and Y/X a G-torsor. For a morphism f : X' — X, we
obtain the G-torsor on X’ as follows, as in the same argument as the pull-back

in extensions of groups: Consider the diagram

G ~ fvY-Z2ox,
o )
G ~ Y—TsX
where f*Y =Y x x X’, the morphisms p; and p, are projections, and G acts on
Y by
gly.2') = (gy.2').
Then, we see that the action of G commutes with the projection p;, and f*Y is

a G-torsor on X'.
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