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Chapter 1

Introduction

Our aim in this thesis is to compute the torsors for some types of finite group

schemes. A group scheme is a group object in the category of schemes, which is

a generalization of an algebraic group. Computing its torsor can be regarded as

solving the inverse Galois problem for group schemes.

Classically, one of the solutions for computing torsors is given by Kummer in

the following way:

Let n be an integer greater than one, let k be a field with ch k̸ |n, and suppose

that k contains a primitive n-th root of unity. Under the flat topology, the short

exact sequence

1 → µµn,k → Gm,k
θn−→ Gm,k → 1,

induces the long exact sequence

1 → H0 (X,µµn,k) → H0 (X,Gm,k)
θn−→ H0(X,Gm,k)

∂−→ H1(X,µµn,k) → H1 (X,Gm,k)
θn−→ H1(X,Gm,k)

∂−→ · · ·

for a k-scheme X, where θn is the n-th power map. Note that µµn,k ≃ (Z/nZ)k by
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assumption for k, and H1(X,µµn,k) is the set of isomorphism classes of (Z/nZ)-

torsors of X. If B is a local k-algebra and X = SpecB, then we have

H1 (X,Gm,k) = 0.

Thus, there exists an isomorphism of groups

H1(X,µµn,k) ≃ Coker
[
θn : H0 (X,Gm,k) → H0(X,Gm,k)

]
,

which determines any cyclic extension of degree n over k under the condition that

ch k̸ |n and that k contains a primitive root of unity.

By the classification theorem by Oort and Tate [8], any group scheme of prime

order is isomorphic to a group scheme Ga,b under a suitable choice of a and b.

Roberts [9] gave the torsors for this kind of group scheme Ga,b in case where the

base ring is a ring of integers of a local number field. Andreatta and Gasbarri [1]

gave the torsors in case where the base ring is a complete discrete valuation ring

whose residue field has positive characteristic, and that the base ring contains

(p− 1)-st root of b.

We compute torsors for Ga,b in a completely different way and under different

assumptions, by using the concept of the cyclotomic twisted torus introduced by

Koide and Sekiguchi [5]. Mazur, Rubin, and Silverberg [6] treated the cyclotomic

twisted torus in a quite general form. Koide and Sekiguchi defined the cyclotomic

twisted torus in the following way:

Let n be a positive integer, m the value of the Euler function of n, and

ζ a primitive n-th root of unity. Let G be a cyclic group of order n with a

generator σ0, and let SpecB/SpecA be a G-torsor. Suppose that B is a free

A-module. If I is the representation matrix of the action of ζ on Z[ζ] with re-

spect to the Z-basis {1, ζ, ζ2, . . . , ζm−1}, we define the action of G on Gmm,B =

SpecB[x1, x2, . . . , xm, 1/(x1x2 · · ·xm)] by (x1, x2, . . . , xm)σ0 = (x1, x2, . . . , xm)I .

By this G-action, we obtain a Galois descent of Gmm,B over A, which we call the
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cyclotomic twisted torus of degree n, and denote it by G(n)A.

Koide and Sekiguchi gave an explicit isomorphism from the twisted torus

G(n)A to the group scheme T (n)A given by the intersection of kernels of all

norm maps (cf. Thm. 2.6). The isomorphism in a quite general form was given

by Mazur, Rubin, and Silverberg in [6].

Here, we extend the isomorphism G(n)A ≃ T (n)A to a resolution, which we

call a cyclotomic resolution, consisting of Weil restrictions of one-dimensional

algebraic tori and several norm maps.

Theorem 1 (cf. Thm. 3.4). Let n be a positive integer and let n = pe11 p
e2
2 · · · perr

be its prime decomposition. For integers 1 ≤ i0 < i1 < · · · < is ≤ r, we set

ni0i1···is = n/pi0pi1 · · · pis , Gi0i1···is = ⟨σni0i1···is
0 ⟩, and Bi0i1···is = BGi0i1···is .

Under this notation, there exists an exact sequence of group schemes over SpecA,

1 → G(n)A
ε−→ ResB/AGm,B

∂0

−→
∏

1≤i≤r

(
ResBi/AGm,Bi

)
∂1

−→
∏

1≤i<j≤r

(
ResBij/AGm,Bij

)
∂2

−→ · · ·

∂r−1

−−−→ ResB12···r/AGm,B12···r → 1,

where ResB/A denotes the Weil restriction from B to A.

We have some results on the cyclotomic twisted tori.

Theorem 2 (cf. Thm. 3.5). There exists a canonical isomorphism of rings

End (G(n)A) ≃ Z[ζ].

Theorem 3 (cf. Prop. 3.6). For a non-zero homomorphism φ ∈ End(G(n)A), we

have

detφ = Nmφ = ord (Kerφ) .
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By using these results, we compute torsors for Ga,b in the following way:

Suppose that A is a local ring. Under the flat topology, the short exact

sequence

1 → G(n)A
ε−→ ResB/AGm,B

∂0

−→ Ker ∂1 → 1,

which is obtained by the cyclotomic resolution, induces the long exact sequence

1 → H0(X,G(n)A)
H0(X,ε)−−−−−→ H0

(
X,ResB/AGm,B

) H0(X,∂0)−−−−−−→ H0(X,Ker ∂1)

∂−→ H1(X,G(n)A)
H1(X,ε)−−−−−→ H1

(
X,ResB/AGm,B

) H1(X,∂0)−−−−−−→ H1(X,Ker ∂1)

∂−→ · · · .

Note that H1
(
X,ResB/AGm,B

)
= 0 by assumption for A. Therefore, we have

the canonical isomorphism of groups

H1(X,G(n)A) ≃ CokerH0(X, ∂0).

Let p be the principal prime ideal generated by θ ∈ Z[ζ], which splits completely

over Q(ζ) with p∩Z = (p). We assume that n = p− 1. From the exact sequence

1 → µµp,B
ι−→ Gmm,B

θ−→ Gmm,B → 1,

the Galois descent theory gives the exact sequence

1 → (µµp,B)
G ι−→ G(n)A

θ−→ G(n)A → 1.

Here, we have (µµp,B)
G ≃ Ga,b under some conditions (cf. §4.1). The above short

exact sequence induces the long exact sequence

1 → H0(X,Ga,b)
H0(X,ι)−−−−−→ H0(X,G(n)A)

H0(X,θ)−−−−−→ H0(X,G(n)A)

∂−→ H1(X,Ga,b)
H1(X,ι)−−−−−→ H1(X,G(n)A)

H1(X,θ)−−−−−→ H1(X,G(n)A)

∂−→ · · · .

Thus, we have the short exact sequence

1 → CokerH0(X, θ)
∂−→ H1(X,Ga,b)

H1(X,ι)−−−−−→ KerH1(X, θ) → 1.
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Therefore, the elements of H1(X,Ga,b) are described by the elements of

Coker
[
H0(X, θ) : H0(X,G(n)A) → H0(X,G(n)A)

]
and

Ker
[
H1(X, θ) : H1(X,G(n)A) → H1(X,G(n)A)

]
.

In Chapter 2, we give a brief survey on the classification theorem by Oort and

Tate [8], and the cyclotomic twisted torus introduced by Koide and Sekiguchi

[5]. In Chapter 3.1, we give one of our main results, namely, the resolution for

cyclotomic twisted tori. In Chapter 3.2, we give results on cyclotomic twisted

tori. Combining these results, we give the torsors for Ga,b in Chapter 4.1. In

Chapter 4.2, we will give some examples. In Chapter 4.3, we generalize the above

method.
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Chapter 2

Preliminaries

In this chapter, we give a brief survey on the classification theorem by Oort and

Tate [8], and the cyclotomic twisted torus introduced by Koide and Sekiguchi [5].

2.1 Classification Theorem of Group Schemes of

Prime Order

Let p be a prime number, Zp the ring of p-adic integers, and χ : Fp → Zp the

unique multiplicative section of the natural surjection Zp → Fp. Let A be a

Λp-algebra, where

Λp = Z
[
χ(Fp),

1

p(p− 1)

]
∩ Zp.

Example 2.1. For each prime number p = 2, 3, 5, 7, we have

Λ2 = Z, Λ3 = Z
[
1

2

]
, Λ5 = Z

[
ζ4,

1

2(2 + ζ4)

]
, Λ7 = Z

[
ζ6,

1

6(2 + ζ6)

]
,

where ζ4 = χ(2) is a primitive fourth root of unity with ζ4 ≡ 2 (mod 5), and

ζ6 = χ(3) is a primitive sixth root of unity with ζ6 ≡ 3 (mod 7).

6



Theorem 2.2 (Oort-Tate [8, Thm. 2]). An arbitrary finite group A-scheme of

order p is isomorphic to a group scheme of the type

Ga,b = Spec (A[x]/(xp − ax))

with group scheme structure

m∗(x) = x⊗ 1 + 1⊗ x− b

p− 1

p−1∑
i=1

xi

ωi
⊗ xp−i

ωp−i
,

where a, b, ωi ∈ A with ab = ωp = pωp−1 and ωi ≡ i! (mod p).

Example 2.3. If p = 5, then

ω1 = 1, ω2 = −ζ(2 + ζ), ω3 = (2 + ζ)2, ω4 = −(2 + ζ)2, ω5 = −5(2 + ζ)2.

These elements are uniquely determined.

If A is a local ring, then Ga,b ≃ Ga′,b′ if and only if there exists u ∈ A×

such that a′ = up−1a and b′ = u1−pb, where A× is a multiplicative group of the

invertible elements of A. If the characteristic of A is p, then

G0,0 ≃ ααp,A, G1,0 ≃ (Z/pZ)A , and G0,1 ≃ µµp,A.

2.2 Cyclotomic Twisted Torus

Let n be a positive integer greater than one, m the value of the Euler function of

n, and ζ a primitive n-th root of unity. Let G be a cyclic group of order n with

a generator σ0, and SpecB/SpecA be a G-torsor. Let

Φn(x) =
∏

k∈(Z/nZ)×
(x− ζk) = xm + a1x

m−1 + · · ·+ am
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be the cyclotomic polynomial, and I the representation matrix of the action of ζ

on Z[ζ] with respect to the Z-basis {1, ζ, ζ2, . . . , ζm−1}:

I =



0 0 · · · 0 −am

1 0 · · · 0 −am−1

0 1 · · · 0 −am−2

...
...

. . .
...

...

0 0 · · · 1 −a1


.

For a vector x = (x1, x2, . . . , xm) and a matrix M = (mij) ∈ Mm×l(Z), we define

the matrix power xM by

xM =

 m∏
j=1

x
mj1

j ,

m∏
j=1

x
mj2

j , . . . ,

m∏
j=1

x
mjl

j

 .

Then, we define the action of G on the algebraic torus

Gmm,B = SpecB

[
x1, x2, . . . , xm, 1/

m∏
i=1

xi

]

by

xσ0 = (xσ0
1 , xσ0

2 , . . . , xσ0
m ) = xI .

Example 2.4. If n = 6, then we have Φ6(x) = x2 − x+ 1 and

I =

0 −1

1 1

 .

Then, the above G-action on G2
m,B = SpecB[x1, x2, 1/x1x2] is written as

(x1, x2)
σ0 = (x1, x2)

I = (x2, x
−1
1 x2).

By this G-action, we obtain a Galois descent of Gmm,B over A, which we call

the cyclotomic twisted torus of degree n, and denote it by G(n)A. The coordinate

ring of the cyclotomic twisted torus is given explicitly as follows.
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Theorem 2.5 (Koide-Sekiguchi [5, Thm. 3.2.1]). The cyclotomic twisted torus

is written as

G(n)A = SpecA[ξ1, ξ2, . . . , ξn]/A,

where ξ1, ξ2, . . . , ξn are G-invariant parameters, and A is an ideal given explicitly.

Theorem 2.6 (Koide-Sekiguchi [5, Thm. 3.4.1], Mazur-Rubin-Silverberg [6, Thm.

5.8]). For each positive integer l dividing n, we set Gl = ⟨σn/l0 ⟩ ⊂ G and Bl =

BGl ⊂ B. Then, the cyclotomic twisted torus is canonically isomorphic to the

subgroup scheme of the Weil restriction ResB/AGm,B,

T (n)A =
∩
l|n

Ker
[
Nml : ResB/AGm,B → ResBl/AGm,Bl

]
,

where Nml is the norm map from B to Bl.

Example 2.7. If p = 5 and A = F5, then computation in MAGMA shows that

G(4)F5 = SpecF5[ξ1, ξ2, ξ3, ξ4]/A,

where the ideal A is generated by 2ξ21 + 3ξ2ξ4 + ξ23 + 3,

4ξ1ξ3 + 3ξ22 + 4ξ24

 .

Example 2.8. If p = 7 and A = F7, then

G(6)F7 = SpecF7[ξ1, ξ2, ξ3, ξ4, ξ5, ξ6]/A,
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where the ideal A is generated by

4ξ1ξ6 + 6ξ2ξ5 + 4ξ3ξ4 + 4ξ6,

6ξ1ξ5 + ξ2ξ4 + 3ξ23 + 6ξ26 ,

3ξ21 + 5ξ2ξ6 + 2ξ3ξ5 + 6ξ24 + 4,

4ξ1ξ3 + 3ξ22 + 3ξ3 + 6ξ4ξ6 + ξ25 ,

6ξ1ξ3 + 4ξ22 + 5ξ4ξ6 + ξ25 ,

6ξ21 + 6ξ1 + 5ξ2ξ6 + 5ξ3ξ5 + 2ξ24 ,

2ξ1ξ5 + 2ξ2ξ4 + 5ξ23 + 5ξ5 + 4ξ26 ,

5ξ1ξ4 + ξ2ξ3 + ξ4 + 5ξ5ξ6,

2ξ1ξ2 + 2ξ2 + ξ3ξ6 + 3ξ4ξ5



.

10



Chapter 3

Results on Cyclotomic

Twisted Torus

3.1 Cyclotomic Resolution

Here, we note the surjectivity of norm maps that will be essential in the following

argument.

Lemma 3.1. Let q be a power of a prime number. The norm map

Nm : Fqn → Fq

is surjective.

Proof. Let α be a primitive element of Fqn . Then, we have

Nmα = α1+q+q2+···+ql−1

= α(qn−1)/(q−1).

This is an element of Fq of order q − 1, that is to say, a primitive element of

Fq.
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In the rest of this chapter, we denote k = Fq and K = Fqn . Let n be a

positive integer and let n = pe11 p
e2
2 · · · perr be its prime decomposition. For integers

1 ≤ i0 < i1 < · · · < is ≤ r, we set

ni0i1···is =
n

pi0pi1 · · · pis
and Mi0i1···is = Fqni0i1···is .

We define the homomorphism

∂0 : K× →
r∏
i=1

M×
i

by

∂0x =
(
NmK×/M×

1
x,NmK×/M×

2
x, . . . ,NmK×/M×

r
x
)
,

and

∂s :
∏

1≤i0<···<is−1≤r

M×
i0i1···is−1

→
∏

1≤i0<···<is≤r

M×
i0i1···is

by

(∂sx)i0i1···is =

s∏
j=0

(
NmM×

i0i1···îj ···is
/M×

i0i1···is
xi0i1···îj ···is

)(−1)j

.

Example 3.2. If n = p1 · p2 · p3 = 2 · 3 · 5 = 30, then we have

K = Fq30

ppp
ppp

ppp
pp

NNN
NNN

NNN
NN

M1 = Fq15

NNN
NNN

NNN
NN

M2 = Fq10

ppp
ppp

ppp
pp

NNN
NNN

NNN
NN

M3 = Fq6

ppp
ppp

ppp
pp

M12 = Fq5

NNN
NNN

NNN
NN

M13 = Fq3 M23 = Fq2

ppp
ppp

ppp
pp

M123 = Fq

The homomorphism

∂0 : K× →M×
1 ×M×

2 ×M×
3 ,

is defined by

∂0(x) =
(
NmK×/M×

1
x,NmK×/M×

2
x,NmK×/M×

3
x
)
,
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and the homomorphism

∂1 :M×
1 ×M×

2 ×M×
3 →M×

12 ×M×
13 ×M×

23,

is defined by

∂1(y1, y2, y3) =

(
NmM×

2 /M
×
12
y2

NmM×
1 /M

×
12
y1
,
NmM×

3 /M
×
13
y3

NmM×
1 /M

×
13
y1
,
NmM×

3 /M
×
23
y3

NmM×
2 /M

×
23
y2

)
.

The homomorphism

∂2 :M×
12 ×M×

13 ×M×
23 →M×

123

is defined by

∂2(z12, z13, z23) =
NmM×

23/M
×
123
z23 ·NmM×

12/M
×
123
z12

NmM×
13/M

×
123
z13

.

In general, we have the following result:

Theorem 3.3. The following sequence is exact, which we call the cyclotomic

resolution:

1 → G(n)k(k)
ε−→ K× ∂0

−→
r∏
i=1

M×
i

∂1

−→
∏

1≤i<j≤r

M×
ij

∂2

−→ · · ·

∂r−2

−−−→
r∏
i=1

M×
12···̂i···r

∂r−1

−−−→M×
12···r → 1.

Proof. It is obvious that ∂s+1 ◦ ∂s = 1. It suffices to show that Ker ∂s+1 ⊂ Im ∂s

since Ker ∂0 = Im ε by Theorem 2.6, and ∂r−1 is surjective by Lemma 3.1. We

use induction on the number r of the prime factors of n.

Firstly, we check the case of r = 2, that is to say, n = pe11 p
e2
2 . In this case, the

required resolution is as follows:

1 → G(n)k(k)
ε−→ K× ∂0

−→M×
1 ×M×

2
∂1

−→M×
12 → 1.

13



It suffices to show that Ker ∂1 ⊂ Im ∂0. Let

x = (x1, x2) ∈ Ker ∂1 for x ∈M×
1 ×M×

2 .

By Lemma 3.1, there exists z1 ∈ K× such that

x1 = NmK×/M×
1
z1.

Then, we have

x

∂0z1
∈ Ker ∂1 and

(
x

∂0z1

)
1

= 1.

Therefore, we may assume without loss of generality that x = (1, x2) ∈ Ker ∂1,

by replacing x with (∂0z1)
−1x. Thus, we have

NmM×
1 /M

×
12
x2 = 1.

Now, we take an element z2 ∈ K× satisfying

x2 = NmK×/M×
2
z2.

Set

F (X) =
Xn − 1

X − 1
and Fi0i1···is(X) =

Xn − 1

Xni0i1···is − 1
.

Then,

NmM×
i0i1···îj ···is

/M×
i0i1···is

z

can be written as

z
Fi0i1···îj ···is(σ0)/Fi0i1···is(σ0) .

One can easily see that(
F12(X)

F1(X)
,
F12(X)

F2(X)

)
=

(
Xn1 − 1

Xn12 − 1
,
Xn2 − 1

Xn12 − 1

)
= 1.

Therefore, there exist polynomials f1(X), f2(X) ∈ Z[X] such that

f1(X)
F12(X)

F1(X)
+ f2(X)

F12(X)

F2(X)
= 1

14



(cf. [5, Lem. 10, Prop. 15]). Now we set

γ = z
f1(σ0)F12(σ0)/F1(σ0)
2 .

Then, we have

NK×/M×
1
γ = NK×/M×

1
z
f1(σ0)F12(σ0)/F1(σ0)
2

= z
f1(σ0)F12(σ0)
2

=
(
z
F12(σ0)
2

)f1(σ0)

= 1,

and

NK×/M×
2
γ = NK×/M×

2
z
f1(σ0)F12(σ0)/F1(σ0)
2

= NK×/M×
2
z
1−f2(σ0)F12(σ0)/F2(σ0)
2

= x2 · zf2(σ0)F12(σ0)
2

= x2

(
z
F12(σ0)
2

)f2(σ0)

= x2.

That is to say,

∂0γ = x.

Hence, we have Ker ∂1 ⊂ Im ∂0.

Secondly, we check that Ker ∂1 ⊂ Im ∂0 in the general number r of the prime

factors of n. Take

x = (x1, x2, . . . , xr) ∈ Ker ∂1 for x ∈
r∏
i=1

M×
i ,

and set

n′ = pe11 p
e2
2 · · · per−1

r−1 , q′ = qp
er
r , x′ = (x1, x2, . . . , xr−1),
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and consider a sequence

1 → G(n′)k(k)
ε−→ K× (∂′)0−−−→

r−1∏
i=1

M×
i

(∂′)1−−−→
∏

1≤i<j≤r−1

M×
ij

(∂′)2−−−→ · · ·

(∂′)r−3

−−−−−→
r−1∏
i=1

M×
12···̂i···r−1

(∂′)r−2

−−−−−→M×
12···r−1 → 1,

where the morphisms ∂′ are induced naturally by ∂. Then, we have x′ ∈ Ker (∂′)1.

By the induction hypothesis, there exists an element z′ ∈ K× such that

(∂′)0z′ = x′.

Then, we have

x

∂0z′
∈ Ker ∂1, and

( x

∂0z′

)
i
= 1 for 1 ≤ i ≤ r − 1.

Therefore, we may assume without loss of generality that x = (1, . . . , 1, xr) ∈

Ker ∂1, by replacing x with (∂0z′)−1x. By the same argument, there exists z ∈

K× such that ( x

∂0z

)
i
= 1 for 2 ≤ i ≤ r,

and polynomials f1(X), fr(X) ∈ Z[X] such that

f1(X)
F1r(X)

F1(X)
+ fr(X)

F1r(X)

Fr(X)
= 1.

By setting

γ = zf1(σ0)F14(σ0)/F1(σ0),

we have

∂0γ = x.

Hence, we have Ker ∂1 ⊂ Im ∂0.
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Thirdly, we verify that Ker ∂s+1 ⊂ Im ∂s, where s ̸= 0 and s+ 1 ̸= r − 1. For

simplicity, we always assume that 1 ≤ i0 < i1 < · · · < is. Take

x = (xi0i1···is)is≤r ∈ Ker ∂s+1 for x ∈
∏
is≤r

M×
i0i1···is ,

and set

n′ = pe11 p
e2
2 · · · per−1

r−1 , q′ = qp
er
r , x′ = (xi0i1···is)is≤r−1.

Consider the sequence

1 → G(n′)k(k)
ε−→ K× (∂′)0−−−→

r−1∏
i=1

M×
i

(∂′)1−−−→
∏

1≤i<j≤r−1

M×
ij

(∂′)2−−−→ · · ·

(∂′)r−3

−−−−−→
r−1∏
i=1

M×
12···̂i···r−1

(∂′)r−2

−−−−−→M×
12···r−1 → 1,

where the morphisms ∂′ are induced naturally by ∂. Then, we have x′ ∈ Ker (∂′)s+1.

By the induction hypothesis, there exists an element u′ = (ui0i1···is−1)is−1≤r−1

such that

(∂′)su′ = x′.

We set

ui0i1···is−2r = 1 and u =
(
ui0i1···is−1

)
is−1≤r

.

Then, we have

x

∂su
∈ Ker ∂s+1, and

( x

∂su

)
i0i1···is

= 1 for is ≤ r − 1.

Therefore, we may assume without loss of generality that x = (xi0i1···is)is≤r ∈

Ker ∂s+1 with xi0i1···is = 1 for is ≤ r − 1, by replacing x with (∂su)−1x. Next

17



we set

yi0i1···is−1
= xi0i1···is−1r,

y =
(
yi0i1···is−1

)
is−1≤r−1

,

n′ = pe11 p
e2
2 · · · per−1

r−1 ,

q′ = qp
er−1
r ,

K ′ =Mr = F(q′)n′ ,

M ′
i0i1···is =Mi0i1···isr,

and consider the sequence

1 → G(n′)k(k)
ε′−→ (K ′)×

(∂′)0−−−→
r−1∏
i=1

(M ′
i)

×

(∂′)1−−−→
∏

1≤i<j≤r−1

(M ′
ij)

×

(∂′)2−−−→ · · ·

(∂′)r−3

−−−−−→
r−1∏
i=1

(M ′
12···̂i···r−1

)×
(∂′)r−2

−−−−−→ (M ′
12···r−1)

× → 1,

where the morphisms ∂′ are induced naturally by ∂. Then, we have

((∂′)sy)i0i1···is =
(
∂s+1x

)
i0i1···isr

= 1.

Hence, there exists v′ = (v′i0i1···is−2
)is−2≤r−1 such that

(
(∂′)s−1v′)

i0i1···is−1
= yi0i1···is−1 = xi0i1···is−1r.

Set

vi0i1···is−1 =

 1 for is−1 ≤ r − 1,

v′i0i1···is−2
for is−1 = r,

and

v =
(
vi0i1···is−1

)
is−1≤r

.
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Then, we have

(∂sv)i0i1···is =

 1 for is ≤ r − 1,

xi0i1···is−1r for is = r.

That is to say,

∂sv = x.

Hence, we see that Ker ∂s+1 ⊂ Im ∂s.

Lastly, we check that Ker ∂r−1 ⊂ Im ∂r−2. We set

î = (1, . . . , î, . . . , r) and îj = (1, . . . , î, . . . , ĵ, . . . , r).

Fix

x = (x1̂, x2̂, . . . , xr̂) ∈ Ker ∂r−1 for xî ∈M×
î
.

We choose elements z2, z3, . . . , zr ∈ K× satisfying

xî = NmK×/M×
î

zi for i = 2, 3, . . . , r.

Now we set

n′ = pe11 p
e2
2 , q′ = qp

e3−1
3 ···per−1

r , K ′ =M1̂2 = F(q′)n′ ,

and

x′ =

x1̂, r∏
j=2

(
NmK×/M×

2̂

zj

)(−1)j
 ∈ (M ′

2)
× × (M ′

1)
× =M×

1̂
×M×

2̂
,

and consider the sequence

1 → G(n′)k(k)
ε′−→ (K ′)×

(∂′)0−−−→ (M ′
1)

× × (M ′
2)

× (∂′)1−−−→ (M ′
12)

× → 1.

Then, we have

(∂′)1x′ = ∂r−1x = 1.

By the induction hypothesis, there exists u1̂2 ∈ (K ′)× =M×
1̂2

such that

(∂′)0u1̂2 = x′.

19



By setting

uîj = 1 for îj ̸= 1̂2, and u = (uîj)1≤i<j≤r,

we have ( x

∂r−2u

)
1̂
= 1 and

x

∂r−2u
∈ Ker ∂r−1.

Therefore, we may assume that x = (1, x2̂, . . . , xr̂) ∈ Ker ∂r−1. Assume without

loss of generality that x = (x1̂, . . . , xr̂−1
, 1). Next we set

n′′ = pe11 · · · per−1

r−1 ,

q′′ = qp
er−1
r ,

K ′′ =Mr = F(q′′)n′′ ,

M ′′
i0···is =Mi0···isr,

x′′ = (x1̂, . . . , xr̂−1
),

and consider the sequence

1 → G(n′′)k(k)
ε′′−→ (K ′′)×

(∂′′)0−−−→
r−1∏
i=1

(M ′′
i )

×

(∂′′)1−−−→ · · ·

(∂′′)r−3

−−−−−→
r−1∏
i=1

(M ′′
î
)×

(∂′′)r−2

−−−−−→ (M ′′
12···r−1)

× → 1.

Then, we have

(∂′′)r−2x′′ = ∂r−1x = 1.

Again by the induction hypothesis, there exists v′ = (vîj)1≤i<j≤r−1 such that

(∂′′)r−3v′
îj
= x′′.

By setting

vîr = 1 and v = (vîj)1≤i<j≤r,
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we have

(∂r−2v)̂i =

 xî for 1 ≤ i ≤ r − 1,

1 for i = r.

That is to say,

∂r−2v = x.

Hence, we see that Ker ∂r−1 ⊂ Im ∂r−2.

The essential point of the proof of Theorem 3.3 is the surjectivity of the norm

map

Nm : Fqn → Fq.

We easily see the surjectivity of the norm map of sheaves on the flat site (SpecA)flat;

Nm : ResB/AGm,B → Gm,A,

where the notation is as in the previous chapter. In fact, for any A-algebra R and

any element a ∈ Gm,A(R) = R×, set S = R[T ]/(Tn − a). Then, the morphism

SpecS → SpecR is surjective and flat, and we get the following commutative

diagram:

(
ResB/AGm,B

)
(R) = (R⊗A B)×

Nm(R) //

rest

��

Gm,A(R) = R×

rest

��(
ResB/AGm,B

)
(S) = (S ⊗A B)×

Nm(S) // Gm,A(S) = S×.

Thus, we see that Nm(S)(T ⊗ 1) = rest(a). Therefore, by the same argument as

in the proof of Theorem 3.3, we have the following:
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Theorem 3.4. The following sequence of group schemes over SpecA is exact:

1 → G(n)A
ε−→ ResB/AGm,B

∂0

−→
r∏
i=1

(
ResBi/AGm,Bi

)
∂1

−→
∏

1≤i<j≤r

(
ResBij/AGm,Bij

)
∂2

−→ · · ·

∂r−1

−−−→ ResB12···r/AGm,B12···r → 1,

where Bi0i1···is = BGi0i1···is and Gi0i1···is = ⟨σni0i1···is
0 ⟩.

3.2 Endomorphism Ring of Cyclotomic Twisted

Torus

Under the notation in the previous section, we determine the endomorphism ring

of group A-scheme G(n)A as follows:

Theorem 3.5. There exists a canonical isomorphism of rings

End (G(n)A) ≃ Z[ζ].

Proof. Suppose that φ is a G-equivariant endomorphism of Gmm,B . Then, the

morphism φ is represented by some matrix M = (bij) ∈ Mm(Z) satisfying the

equality MI = IM . By calculating IMI−1, we have the relations bij = bi−1,j−1 − am−i+1bm,j−1 for i, j ≥ 2,

b1j = −bm,j−1 for j ≥ 2.

Set ci = bi1 for i = 1, 2, · · · ,m. Our assertion is that

M =
m∑
k=1

ckI
k−1.

In fact, we have

b1k =
k−1∑
l=1

αlcm−k+1+l
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by the above relations, where

α1 = −1, and αk = −
k−1∑
i=1

αiak−i for k ≥ 2.

Then, we have

bij = ci−j+1 +

m∑
k=m−j+2

(
ck

i∑
l=1

am−l+1αk−m+j−i−1+l

)
,

where αl = cl = 0 for l ≤ 0. On the other hand, since the (i,m)-entry of the

matrix Ik is given by
k∑

l=k−i+1

αlam−l+k−i+1,

and the (i, j)-entry of the matrix

m∑
k=1

ckI
k−1

is given by

ci−j+1 +
m∑

k=m−j+2

(
ck

i∑
l=1

αk−1+j−m−i+lam−l+1

)
.

This proves the theorem.

By Theorem 3.5, we have the following proposition.

Proposition 3.6. For non-zero homomorphism φ ∈ End(G(n)A), we have

detφ = Nmφ = ord(Kerφ),

where detφ is the determinant of the representing matrix M , and Nmφ means

the norm of φ regarded as an element of Z[ζ].

Proof. Let

M =

m∑
i=1

ciI
i−1

be the representing matrix of non-zero homomorphism φ ∈ End(G(n)A). Set

f(x) =
m∑
i=1

cix
i−1.
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Then, the eigenvalues of M = f(I) are given by { f(ζk) | k ∈ (Z/nZ)× } by

Frobenius’ theorem. Therefore, we have

detM =
∏

k∈(Z/nZ)×
f(ζk) = Nm f(ζ).

Note that detM > 0 since

NmQ(ζ)/Q(ζ+ζ−1) φ = φφ = |φ|2 > 0.

Hence, there exist J, J ′ ∈ GLm(Z) such that

JMJ ′ =



d1

d2

. . .

dm


,

where d1, d2, . . . , dm are positive integers such that d1|d2| · · · |dm, and detM =

d1d2 · · · dm since detM > 0. Therefore, we see that detM = ord (Kerφ) since

Kerφ ≃ KerφJMJ ′

= SpecB[x1, x2, . . . , xm]/
(
xd11 − 1, xd22 − 1, . . . , xdmm − 1

)
= µµd1 ×SpecB µµd2 ×SpecB · · · ×SpecB µµdm .
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Chapter 4

Computations on Torsors

4.1 Torsors for Ga,b

As in previous chapter, let G be a cyclic group of order n and B/A be a G-torsor.

We denote X = SpecA and Y = SpecB. We assume that the base scheme lies

over SpecΛp, where

Λp = Z
[
ζ,

1

p(p− 1)

]
∩ Zp,

where ζ is a primitive (p−1)-st root of unity in the ring of p-adic integers Zp. Since

the morphism Y → X is étale, and ResB/AGm,B is a smooth X-group scheme,

we have

Hq
(
Xét,ResB/AGm,B

)
= Hq

(
Xfl,ResB/AGm,B

)
for q ≥ 0. In general, we have

Hq
(
Xét,ResB/AGm,B

)
=

∨
Hq
(
Xét,ResB/AGm,B

)
.
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For any étale open covering {Uλ → X}λ∈Λ, we have an étale open covering

{Uλ ∩ Y → X}λ∈Λ. Then, we have

Cq
(
{Uλ}λ∈Λ,ResB/AGm,B

)
=

∏
λ0,λ1,...,λq∈Λ

Γ
(
Uλ0λ1···λq ,ResB/AGm,B

)
=

∏
λ0,λ1,...,λq∈Λ

Γ
(
Uλ0λ1···λq ∩ Y,Gm,B

)
= Cq ({Uλ ∩ Y }λ∈Λ,Gm,B) .

We obtain

∨
Hq
(
{Uλ}λ∈Λ,ResB/AGm,B

)
=

∨
Hq ({Uλ ∩ Y }λ∈Λ,Gm,B) .

Therefore, we have the following equalities:

H1
(
Xfl,ResB/AGm,B

)
= H1

(
Xét,ResB/AGm,B

)
= H1 (Yét,Gm,B)

= H1 (YZar,Gm,B)

= H1 (Yfl,Gm,B) ,

since

∨
Hq
(
Xét,ResB/AGm,B

)
=

∨
Hq (Yét,Gm,B) = Hq (Yét,Gm,B) .

In particular if A is local, then B is semi-local and

H1 (YZar,Gm,B) = PicY = 0.

Consider the exact sequence

1 → G(n)A
ε−→ ResB/AGm,B

∂0

−→ Ker ∂1 → 1,

which is obtained by the cyclotomic resolution

1 → G(n)A
ε−→ ResB/AGm,B

∂0

−→
r∏
i=1

(
ResBi/AGm,Bi

) ∂1

−→ · · · .
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Under the flat topology, we have an exact sequence

1 → H0(X,G(n)A)
H0(X,ε)−−−−−→ H0

(
X,ResB/AGm,B

) H0(X,∂0)−−−−−−→ H0(X,Ker ∂1)

∂−→ H1(X,G(n)A)
H1(X,ε)−−−−−→ H1

(
X,ResB/AGm,B

) H1(X,∂0)−−−−−−→ H1(X,Ker ∂1)

∂−→ · · · .

Here, we have H1(X,ResB/AGm,B) = 0 by assumption for A and B. Thus, we

have the canonical isomorphism of groups

∂ : CokerH0(X, ∂0)
∼−→ H1(X,G(n)A),

and the explicit correspondence is given as follows:

For f ∈ CokerH0(X, ∂0) that is represented by f ∈ H0(X,Ker ∂1), we have

the diagram

∂f = f∗
(
ResB/AGm,B

)
//

��
□

X

f

��
1 // G(n)A

ε // ResB/AGm,B
∂0

// Ker ∂1 // 1

by taking pull-back, i.e., fiber product (cf. Appendix).

Let p be a principal prime ideal with a generator θ ∈ Z[ζ], which splits com-

pletely over Q(ζ) with p∩Z = (p). In fact, p splits completely if and only if p ≡ 1

(mod n) (cf. [15, Prop. 2.14]). We assume that n = p−1. Then, we have an exact

sequence

1 → µµp,B
ι−→ Gmm,B

θ−→ Gmm,B → 1,

where we regard θ as an element of End(G(n)A). Then, the Galois descent theory

gives an exact sequence

1 → (µµp,B)
G ι−→ G(n)A

θ−→ G(n)A → 1.

We describe the torsors for (µµp,B)
G in the following way:
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By Oort-Tate’s classification theorem, we have

µµp,B ≃ SpecB[z]/(zp − ωpz)

with group scheme structure

m∗(z) = z ⊗ 1 + 1⊗ z − 1

p− 1

p−1∑
i=1

zi

ωi
⊗ zp−i

ωp−i
,

where ωp is the product of p and of an invertible element of Λp, and ωk for

1 ≤ k ≤ p − 1 is an invertible element of A satisfying ωk ≡ k! (mod p) (cf. [8,

§2, Prop.]). The Galois group G = ⟨σ0⟩ acts on µµp,B = SpecB[x]/(xp − 1) by

xσ0 = xl with some integer l, and on SpecB[z]/(zp − ωpz) by z
σ0 = ζlz, where ζ

is a primitive n-th root of unity (cf. [8, §2, Prop.]). Now we assume that xn − b

is irreducible in A[x], ab = ωp ∈ A, and B = A[u], where u is an n-th root of b.

Then, Ga,b is isomorphic to the Galois descent of µµp,B . In fact, we may assume

without loss of generality that uσ0 = ζlu since

Fu/A(X) = Xn − b = (X − u)(X − ζu) · · · (X − ζl−1u).

Hence, u−1z is G-invariant, and we have

zp − ωpz = up
(( z

u

)p
− a

( z
u

))
,

and

m∗
( z
u

)
=
( z
u

)
⊗ 1 + 1⊗

( z
u

)
− b

p− 1

p−1∑
i=1

(z/u)i

ωi
⊗ (z/u)p−i

ωp−i
.

Thus, the Galois descent of µµp,B is isomorphic to Ga,b, i.e., we obtain the exact

sequence

1 → Ga,b
ι−→ G(n)A

θ−→ G(n)A → 1.

From this sequence, we obtain a long exact sequence

1 → H0(X,Ga,b)
H0(X,ι)−−−−−→ H0(X,G(n)A)

H0(X,θ)−−−−−→ H0(X,G(n)A)

∂−→ H1(X,Ga,b)
H1(X,ι)−−−−−→ H1(X,G(n)A)

H1(X,θ)−−−−−→ H1(X,G(n)A)

∂−→ · · · ,
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then, we have the exact sequence

1 → CokerH0(X, θ)
∂−→ H1(X,Ga,b)

H1(X,ι)−−−−−→ KerH1(X, θ) → 1.

Therefore, the elements of H1(X,Ga,b) are described by the elements of

Coker

[
H0(X,G(n)A)

H0(X,θ)−−−−−→ H0(X,G(n)A)

]
and

Ker

[
H1(X,G(n)A)

H1(X,θ)−−−−−→ H1(X,G(n)A)

]
.

In fact, for g ∈ CokerH0(X, θ) and f∗(ResB/AGm,B) ∈ KerH1(X, θ), we obtain

an element of H1(X,Ga,b) as follows:

We have the diagram

Ga,b ↷

ι

��

θ̃−1({1} ×X) //

��

X

G(n)A ↷

θ

��

f∗
(
ResB/AGm,B

)
//

θ̃

��

X

G(n)A ↷ θ∗f
∗ (ResB/AGm,B) //

≃

X

G(n)A ×X

,

where the morphism θ̃ is defined by θ, and we have

ι∗(θ̃
−1({1} ×X)) ≃ f∗(ResB/AGm,B)

(cf. Appendix). Therefore, we have

∂ g + θ̃−1({1} ×X) ∈ H1(X,Ga,b),

where the operation “+” is the group law of H1(X,Ga,b).

Note that we only considered the case where prime ideals lying over p are

principal. The non-principal case is treated by Koide [4].
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4.2 Examples

Let A be a local Fp-algebra, and b ∈ Fp be a primitive element of Fp. Set B = A[u],

where u is an n-th root of b, and n = p − 1. Then, the ideal (p, b − ζ) of Z[ζ] is

one of the prime ideals lying over p (cf. [15, Prop. 2.14]). We consider the case

where (p, b − ζ) is principal. Computation in MAGMA for p < 100 shows that

(p, b− ζ) is principal if p is one of the numbers

5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 61, 67, 71.

In fact, we have the equalities

5 = Nm(2 + ζ4), 31 = Nm(1 + ζ30 − ζ230),

7 = Nm(2 + ζ6), 37 = Nm(1 + ζ36 − ζ336),

11 = Nm(2− ζ10), 41 = Nm(1 + ζ40 − ζ440),

13 = Nm(2 + ζ12), 43 = Nm(1− ζ42 + ζ342),

17 = Nm(1 + ζ16 + ζ316), 61 = Nm(1 + ζ260 + ζ560),

19 = Nm(1 + ζ18 − ζ218), 67 = Nm(1 + ζ66 − ζ366),

23 = Nm(1− ζ22 + ζ322), 71 = Nm(1− ζ270 − ζ570),

29 = Nm(1 + ζ28 + ζ428),

where ζn is a primitive n-th root of unity. Let θ ∈ Z[ζ] denote a generator of the

ideal (p, b− ζ). Then, we have an exact sequence

1 → µµp,B
ι−→ Gmm,B

θ−→ Gmm,B → 1.

By the same argument as in the previous section, the Galois descent theory gives

an exact sequence

1 → G0,b
ι−→ G(n)A

θ−→ G(n)A → 1,
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and one can compute the torsors for G0,b. In particular, if A = Fp, then

H0(X,G0,b) = 0. Hence, we have H1(X,G0,b) = 0 since

H0(X, θ) : H0(X,G(n)A) → H0(X,G(n)A)

is an isomorphism of groups.

4.3 Torsors for Galois Descent of µµpl,B

In this section, let p be an odd prime number. Let n be a positive integer greater

than one, m the value of the Euler function of n, and ζ a primitive n-th root of

unity. LetG be the multiplicative group (Z/plZ)×, and SpecB/SpecA aG-torsor.

We assume that the base scheme lies over SpecΛp, where

Λp = Z
[
ζ,

1

p(p− 1)

]
∩ Zp,

and Zp is the ring of p-adic integers. Here we obtain an exact sequence

1 → µµpl,B → Gmm,B
pl

−→ Gmm,B → 1,

where p is a prime ideal lying over p with p ∩ Z = (p). We now study the group

scheme

µµpl,B = SpecB[z]/(zp
l

− 1)

by extending the method of Oort-Tate. For simplicity, we assume that the ideal p

is principal. However, this argument can be generalized to non-principal case by

using the concept of the homomorphisms defined by ideals, which is introduced

by Koide [4].

We fix elements α, β ∈ (Z/plZ)×, whose orders are pl−1 and p−1 respectively.

Indeed, we have the isomorphism

(
Z/plZ

)× ≃ Z/pl−1Z× Z/(p− 1)Z
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since we assume p is an odd prime number. Using α and β, we define the actions

of ⟨1⟩ ∈ Z/pl−1Z and [1] ∈ Z/(p− 1)Z on µµpl,B by

⟨1⟩z = zα and [1]z = zβ .

The augmentation ideal J of B[z]/(zp
l − 1) is given by

J = (z − 1)B[z]/(zp
l

− 1),

and has a B-basis { 1− zk | 1 ≤ k ≤ pl − 1 }. For j ∈ Z, we set

ej =
1

p− 1

p−1∑
k=1

ζ−(k−1)j [k − 1] ∈ B
[
Z/(p− 1)Z

]
,

and Jj = ejJ . Clealy ej and Jj depend only on j (mod p− 1).

Lemma 4.1. We have

J =

p−1∑
j=1

Jj and Jj =
{
f ∈ B[z]/(zp

l

− 1) | [k]f = ζkjf
}
,

thus JiJj ⊂ Ji+j.

Proof. In fact, we have the equalities

eiej =

(
1

p− 1

)2 ∑
1≤s,t≤p−1

ζ−(s−1)i−(t−1)j [(s+ t− 1)− 1]

=

(
1

p− 1

)2 ∑
1≤s,k≤p−1

ζ−(s−1)i−(k−l)j [k − 1]

=

(
1

p− 1

)2 p−1∑
k=1

ζ−kj+i

(
p−1∑
s=1

ζ−(i−j)s

)
[k − 1]

=


1

p− 1

p−1∑
k=1

ζ−(k−1)j [k − 1] if i = j,

0 if i ̸= j,

and
p−1∑
j=1

ej =
1

p− 1

p−1∑
k=1

p−1∑
j=1

ζ−(k−1)j

 [k − 1] = 1.
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Furthermore, we see that

[k]ej =
1

p− 1

p−1∑
s=1

ζ−(s−1)j [k + s− 1] = ζkjej .

Hence, J is the direct sum of Jj for 1 ≤ j ≤ p− 1, and Jj consists of f ∈ J such

that [k]f = ζkjf for k ∈ Z/(p − 1)Z. Thus, we see that JiJj ⊂ Ji+j for f ∈ Ji

and g ∈ Jj , since

[k](fg) = ([k]f)([k]g) = ζkifζkjg = ζk(i+j)(fg).

Set

q =
pl − 1

p− 1
=

l∑
k=1

pl−k,

pi =


1 if 1 ≤ i ≤ pl−1,

pj if

j∑
k=1

pl−k + 1 ≤ i ≤
j+1∑
k=1

pl−k,

and

yi,j = (p− 1) ej (1− ⟨i− 1⟩zpi)

for i, j ∈ Z, where i = i (mod q). Note that yi,j depends only on i (mod q) and

j (mod p− 1). By the definition of yi,j , we have the equality

yi,j =


(p− 1)−

p−1∑
k=1

zai,k if j ≡ 0 (mod p− 1),

−
p−1∑
k=1

ζ−(k−1)jzai,k otherwise,

where ai,k = piα
i−1βk−1. Therefore, we have

1− zai,k =
1

p− 1

p−1∑
j=1

ζ(k−1)j yi,j

for k ∈ Z, therefore we have

J =

q∑
i=1

p−1∑
j=1

Byi,j and Jj =

q∑
i=1

Byi,j
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for j ∈ Z. Note that ⟨1⟩ ∈ Z/pl−1Z acts on yi,j ’s by

y
⟨1⟩
1,j = y2,j , y

⟨1⟩
2,j = y3,j , . . . , y

⟨1⟩
pl−1,j

= y1,j ,

y
⟨1⟩
pl−1+1,j

= ypl−1+2,j , y
⟨1⟩
pl−1+2,j

= ypl−1+3,j , . . . , y
⟨1⟩
pl−1+pl−2,j

= ypl−1+1,j ,

and so on. Thus, yq,j is invariant for the action of Z/pl−1Z for j ∈ Z. Furthermore,

we have

m∗(yi,j)− yi,j ⊗ 1− 1⊗ yi,j

= −
p−1∑
k=1

ζ−(k−1)j
(
(1− zai,k)⊗ (1− zai,k)

)
= − 1

(p− 1)2

p−1∑
k=1

ζ−(k−1)j

p−1∑
s=1

p−1∑
t=1

ζ(k−1)sζ(k−1)tyi,s ⊗ yi,t

= − 1

p− 1

∑
s+t≡j

(mod p−1)

yi,s ⊗ yi,t,

thus

m∗(yi,j) = yi,j ⊗ 1 + 1⊗ yi,j −
1

p− 1

p−1∑
k=1

yi,k ⊗ yi,j−k.

By setting yi = yi,1, we have especially that

m∗(yi) = yi ⊗ 1 + 1⊗ yi −
1

p− 1

p−1∑
k=1

yi,k ⊗ yi,p−k.

We define elements ωi,j,k ∈ B by

yki =

q∑
j=1

ωi,j,kyj,k,

that is to say, we have the equality

yk1

yk2
...

ykq


=



ω1,1,k ω1,2,k · · · ω1,q,k

ω2,1,k ω2,2,k · · · ω2,q,k

...
...

. . .
...

ωq,1,k ωq,2,k · · · ωq,q,k





y1,k

y2,k
...

yq,k


.

Setting Mpl,k = (ωi,j,k)1≤i,j≤q, we have the following:
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Lemma 4.2. The matrix Mpl,k is formed of

Mpl,k =



Mpl,k,1 ∗

Mpl,k,2

. . .

O Mpl,k,n


,

where Mpl,k,j is a matrix of size pl−j, satisfying Mpl,k,j = Mpl−1,k,j−1 for 2 ≤

j ≤ l, and each matrix Mpl,k,j is formed of

Mpl,k,j =



m1 m2 m3 · · · mpl−j

mpl−j m1 m2 · · · mpl−j−1

mpl−j−1 mpl−j m1 · · · mpl−j−2

...
...

...
. . .

...

m2 m3 m4 · · · m1


.

Proof. Set

Mpl,k,j = (ωr+i,r+j,k)1≤i,j≤pl−j and Mpl−1,k,j−1 = (ω′
r′+i,r′+j,k)1≤i,j≤pl−j ,

where

r =

j−1∑
k=1

pl−k and r′ =


0 if j = 2,
j−1∑
k=2

pl−k otherwise.

Let z′, e′j and y
′
i be the z, ej and yi in the case of replacing l by l−1, respectively.

For 1 ≤ i ≤ pl−j , we have the equalities

ykr+i =

q∑
s=1

ωr+i,s,kys,k

=

pl−j∑
s=1

ωr+i,r+s,kyr+s,k +
(
terms of zp

j

, z2p
j

, . . .
)
, (4.1)

(y′r′+i)
k =

q∑
s=1

ω′
r′+i,s,ky

′
s,k

=

ps−j∑
s=1

ω′
r′+i,r′+s,ky

′
r′+s,k +

(
terms of (z′)p

j−1

, (z′)2p
j−1

, . . .
)
,
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yr+i,k = (p− 1)ej

(
1− ⟨i− 1⟩zp

j−1
)
,

and

y′r′+i,k = (p− 1)ej

(
1− ⟨i− 1⟩(z′)p

j−2
)
,

where zp
l

= 1, (z′)p
l−1

= 1. Setting Z = zp, we have Zp
l−1

= 1. Therefore, we

identify

yr+i,k = (p− 1)ej

(
1− ⟨i− 1⟩Zp

j−2
)

as y′r′+i,j , thus

ωr+i,r+j,k = ω′
r′+i,r′+j,k for 1 ≤ i, j ≤ pl−j .

Furthermore, by the relation (4.1), we have

ωr+i,r+j,k = −
(
the coefficient of zα

r+j−1

of ykr+i

)
= −

∑
0≤e1,e2,...,ek≤p−2

αr+j−1≡αr+i−1(βe1+βe2+···+βek ) (mod pl)

ζ−(e1+···+ek)

= −
∑

0≤e1,e2,...,ek≤p−2

αr+j≡αr+i(βe1+βe2+···+βek ) (mod pl)

ζ−(e1+···+ek)

= −
(
the coefficient of zα

r+j

of ykr+i+1

)
= ωr+i+1,r+j+1,k.

Lemma 4.3. For a prime number p and a positive integer l, the determinant of

the matrix

M =



m1 m2 m3 · · · mpl

mpl m1 m2 · · · mpl−1

mpl−1 mpl m1 · · · mpl−2

...
...

...
. . .

...

m2 m3 m4 · · · m1


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is given by

detM ≡
pl∑
i=1

mi (mod p).

Proof. Let ω be a primitive pl-th root of unity. Setting Ω =
(
ω(i−1)(j−1)

)
1≤i,j≤pl ,

we see that

MΩ = Ω



pl∑
i=1

mi

pl∑
i=1

ωi−1mi

. . .

pl∑
i=1

ω(pl−1)(i−1)mi


.

Since

detΩ =
∑

1≤i<j≤pl

(
ωi − ωj

)
̸= 0,

we obtain

detM =

pl∑
j=1

pl∑
i=1

ω(i−1)(j−1)mi ≡
pl∑
i=1

mi (mod p).

Proposition 4.4. We have detMpl,k,j ≡ k! (mod p), thus detMpl,k ≡ (k!)l

(mod p), and Mpl,k is invertible for 1 ≤ k ≤ p− 1.

Proof. By Lemma 4.2, it suffices to show that Mpl,k,1 ≡ k! (mod p). By setting

Z = zp
l−1

, we have

yq =

p−1∑
k=1

ζ−(k−1)
(
1− Zβ

k−1
)

with Zp = 1. Hence, it can be reduced to the Oort-Tate case, thus ωq,q,k ≡ k!
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(mod p). On the other hand,

ωq,q,k = −
(
the coefficient of Z of ykq

)
= −

∑
0≤n1,n2,...,nk≤p−2

1≡βn1+βn2+···+βnk (mod p)

ζ−(n1+n2+···+nk)

= −
pl−1∑
j=1

∑
0≤n1,n2,...,nk≤p−2

αj−1≡βn1+βn2+···+βnk (mod pl)

ζ−(n1+n2+···+nk)

= −
pl−1∑
j=1

(
the coefficient of zα

j−1

of ykq

)

=

pl−1∑
j=1

ω1,j,k.

Therefore, we have

detMpl,k,j ≡
pl−1∑
j=1

ω1,j,k = ωq,q,k ≡ k! (mod p).

For i, j ∈ Z, we define elements ci,j,k ∈ B by

yiyj =

q∑
k=1

ci,j,ky
2
k.

Setting

Fij = yiyj −
q∑

k=1

ci,j,ky
2
k, Fi = ypi −

q∑
j=1

ωi,j,pyj

and M−1
k = (di,j,k)1≤i,j≤q, we have

B[z]/(zp
l

− 1) = B[y1, y2, . . . , yq]/A

with the co-multiplication

m∗(yi) = yi ⊗ 1 + 1⊗ yi −
1

p− 1

p−1∑
k=1

(
q∑
s=1

di,s,ky
k
s ⊗

q∑
t=1

di,t,p−ky
p−k
t

)
,

where the ideal A is given by

A =
(
{Fij | 1 ≤ i < j ≤ q }, {Fi | 1 ≤ i ≤ q }

)
.
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The group Z/(p − 1)Z acts on SpecB[y1, y2, . . . , yq]/A by yσ0
i = ζyi under

the suitable choice of β. Now we assume that xl − b is irreducible in A[x], and

ab = ωp ∈ A. Set B1 = A[u], where u is n-th root of b. We may assume without

loss of generality that uσ0 = ζu. Hence, u−1yi is G-invariant. By the equalities

Fij
u2

=
(yi
u

)(yj
u

)
−

q∑
k=1

ci,j,k

(yk
u

)2
,

Fi
up

=
(yi
u

)p
− 1

b

q∑
j=1

ωi,j,p

(yj
u

)
,

and

m∗
((yi

u

))
=
(yi
u

)
⊗ 1 + 1⊗

(yi
u

)
− b

p− 1

p−1∑
k=1

(
q∑
s=1

di,s,k

(ys
u

)k
⊗

q∑
t=1

di,t,p−k

(yt
u

)p−k)
,

we obtain the Galois descent of µµpl,B1
by the action of Z/(p− 1)Z.

In the rest of this section, we assume that l = 2 for simplicity, i.e., consider

the group scheme µµp2,B . In this case, we have q = p + 1. Let ζp be a primitive

p-th root of unity. Set λ = ζp − 1 and A = Z(p)[λ]. Now we consider the group

scheme

G(λ) = SpecA

[
X,

1

λX + 1

]
,

with group scheme structure

m∗(X) = X ⊗ 1 + 1⊗X + λX ⊗X.

The group scheme G(λ) gives the deformation of the additive group Ga to the

multiplicative group Gm, and it is introduced by Sekiguchi, Oort and Suwa [10],

and also by Waterhouse [16] independently.

Define a group scheme homomorphism

α(λ) : G(λ) → Gm,A by α(λ)(x) = λx+ 1.

39



Consider the diagram

G(λ) α(λ)
//

ψ

��

Gm,A

p

��
G(λp) α(λp)

// Gm,A

.

We define the group scheme homomorphism ψ which makes the above diagram

commutative, that is to say,

ψ(x) =
1

λp
{(λx+ 1)p − 1} .

Then, we have

ψ(x) =
1

λp

{
(λx)p + p(λx)p−1 +

(
p

2

)
(λx)p−2 + · · ·+

(
p

p− 2

)
(λx)2 + pλx

}
= xp + c1x

p−1 + c2x
p−2 + · · ·+ cp−2x

2 +
p

λp−1
x (ordλ(ci) ≥ 1)

≡ xp − x (mod λ).

Thus, we obtain an exact sequence

1 → Z/pZ → G(λ) ψ−→ G(λp) → 1.

For an A-scheme X, under the flat topology, we have a long exact sequence

1 → H0 (X, (Z/pZ)X) → H0
(
X,G(λ)

)
H0(X,ψ)−−−−−−→ H0

(
X,G(λp)

)
∂−→ H1 (X, (Z/pZ)X) → H1

(
X,G(λ)

)
H1(X,ψ)−−−−−−→ H1

(
X,G(λp)

)
∂−→ · · · ,

where

H0
(
X,G(λ)

)
=
{
f ∈ OX(X) | λf + 1 ∈ OX(X)×

}
,

H0
(
X,G(λp)

)
=
{
g ∈ OX(X) | λpg + 1 ∈ OX(X)×

}
,

H1 (X, (Z/pZ)X) = { the isomorphism class of (Z/pZ)-torsors over X } .
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If X = SpecA with a local ring A, then we have H1(X,G(λ)) = 0, and the

isomorphism of groups

∂ : CokerH0 (X,ψ)
∼−→ H1 (X, (Z/pZ)X) ,

where the explicit correspondence is given as follows:

For g ∈ CokerH0 (X,ψ), which is represented by g ∈ H0(X,G(λp)), we have

the diagram

∂g = g∗
(
G(λ)

)
//

��
□

X

g

��
0 // Z/pZ // G(λ) ψ // G(λp) // 0

by taking fiber product. Thus, we have

∂g = SpecA⊗A[X, 1
λX+1 ]

A

[
X,

1

λX + 1

]
= SpecA[X]/

(
1

λp
{(λx+ 1)p − 1} − g

)
.

Let ω denote the solution for

1

λp
{(λx+ 1)p − 1} = g.

Set B2 = A[ω]. The group Z/pZ acts on B1 by ⟨1⟩ω = ζpω + 1. We define

ỹ1, ỹ2, . . . , ỹp by

ỹ1

ỹ2

ỹ3
...

ỹp


=



1 1 1 · · · 1

ω ⟨1⟩ω ⟨2⟩ω · · · ⟨p− 1⟩ω

ω2 ⟨1⟩ω2 ⟨2⟩ω2 · · · ⟨p− 1⟩ω2

...
...

...
. . .

...

ωp−1 ⟨1⟩ωp−1 ⟨2⟩ωp−1 · · · ⟨p− 1⟩ωp−1





y1

y2

y3
...

yp


.

Since the matrix (⟨j − 1⟩ωi−1)1≤i,j≤p is invertible, the above equation is solved

in yi’s. Thus, we obtain the Galois descent of µµp2,B2
by the action of Z/pZ.
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Now, we assume that B = A[u, ω], i.e.,

B = A[u, ω]

B1 = A[u]

ooooooooooo
B2 = A[ω]

OOOOOOOOOOO

A

p−1

OOOOOOOOOOOOO
p

ooooooooooooo

,

Z/(p− 1)Z× Z/pZ

Z/(p− 1)Z

lllllllllllll
Z/pZ

PPPPPPPPPPPP

{1}

RRRRRRRRRRRRRRR

nnnnnnnnnnnnn

.

We obtain the Galois descent of µµp2,B by the action of G, and the exact sequence

1 →
(
µµp2,B

)G → G(n)A
p2

−→ G(n)A → 1,

where p is a prime ideal of Z[ζ] lying over p. Therefore, using the same argument

as in the previous section, one can compute the torsors for (µµp2,B)
G.

One can compute the (µµpl,B)
G-torsors for general l ∈ Z, by considering the

Kummer-Artin-Schreier-Witt exact sequence

1 → Z/pl−1Z → Wl−1 → Vl−1 → 1,

which is given by Sekiguchi and Suwa [11].

4.4 Examples

Example 4.5 (In case pl = 32). Let the notation be as in the previous section,

and consider the group scheme

µµ32,B = SpecB[z]/(z3
2

− 1).

42



In this case, we have (Z/32Z)× ∼= Z/3Z × Z/2Z. In the multiplicative group

(Z/32Z)×, 4 is of order 3, and 8 is of order 2. Then, we define the action of

⟨1⟩ ∈ Z/3Z and [1] ∈ Z/2Z by

⟨1⟩z = z4 and [1]z = z8.

The values of q and pi are given by q = 8/2 = 4, p1 = p2 = p3 = 1, and p4 = 3,

thus we have

y1,1 = −z + z8, y1,2 = −z − z8 + 2,

y2,1 = −z4 + z5, y2,2 = −z4 − z5 + 2,

y3,1 = −z7 + z2, y3,2 = −z7 − z2 + 2,

and

y4,1 = −z3 + z6, y4,2 = −z3 − z6 + 2,

and we decompose the augmentation ideal J of B[z]/(z3
2 − 1) into eigenspaces

J1 and J2 by the action of Z/2Z, where J1 is generated by y1,1, y2,1, y3,1, y4,1

over B with eigenvalue −1, and J2 is generated by y1,2, y2,2, y3,2, y4,2 over B with

eigenvalue 1. Matrices M32,2 and M32,3 are given by

y21

y22

y23

y24


=



0 0 −1 0

−1 0 0 0

0 −1 0 0

0 0 0 −1





y1,2

y2,2

y3,2

y4,2


,

and 

y31

y32

y33

y34


=



−3 0 0 1

0 −3 0 1

0 0 −3 1

0 0 0 −3





y1

y2

y3

y4


,
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respectively. Note that M32,1 is the identity matrix. Thus, we have

µµ32,B = SpecB[y1, y2, y3, y4],

with relations

y1y2 = y23 − y24 , y1y4 = y23 − y21 , y31 = −3y1 + y4, y34 = −3y4, (4.2)

and

y2y3 = y21 − y24 , y2y4 = y21 − y22 , y32 = −3y2 + y4,

y3y1 = y22 − y24 , y3y4 = y22 − y23 , y33 = −3y3 + y4,
(4.3)

with group scheme structure

m∗(y1) = y1 ⊗ 1 + 1⊗ y1 +
1

2

(
y1 ⊗ y22 + y22 ⊗ y1

)
,

m∗(y2) = y2 ⊗ 1 + 1⊗ y2 +
1

2

(
y2 ⊗ y23 + y23 ⊗ y2

)
,

m∗(y3) = y3 ⊗ 1 + 1⊗ y3 +
1

2

(
y3 ⊗ y21 + y21 ⊗ y3

)
,

m∗(y4) = y4 ⊗ 1 + 1⊗ y4 +
1

2

(
y4 ⊗ y24 + y24 ⊗ y4

)
.

Note that the latter six relations (4.3) are obtained by the first four relations

(4.2) by action of Z/3Z. For example, the relation y2y3 = y21 − y24 is obtained

by y
⟨1⟩
1 y

⟨1⟩
2 = (y23)

⟨1⟩ − (y24)
⟨1⟩. Thus, the first four relations (4.2) are essential.

Formulas for m∗(y2) and m
∗(y3) are also obtained by m∗(y1).

Example 4.6 (In case pl = 33). Consider the group scheme

µµ33,B = SpecB[z]/(z3
3

− 1).

In this case, we have (Z/33Z)× ∼= Z/32Z × Z/2Z. In the multiplicative group

(Z/33Z)×, 4 is of order 32, and 26 is of order 2. Then, we define the action of

⟨1⟩ ∈ Z/32Z and [1] ∈ Z/2Z by

⟨1⟩z = z4 and [1]z = z26.
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The values of q and pi are given by q = 26/2 = 13, p1 = p2 = · · · = p9 = 1,

p10 = p11 = p12 = 3, and p13 = 9. Then, yi,j ’s are given by

y1,1 = −z + z26, y1,2 = −z − z26 + 2,

y2,1 = −z4 + z23, y2,2 = −z4 − z23 + 2,

y3,1 = −z16 + z11, y3,2 = −z16 − z11 + 2,

y4,1 = −z10 + z17, y4,2 = −z10 − z17 + 2,

y5,1 = −z13 + z14, y5,2 = −z13 − z14 + 2,

y6,1 = −z25 + z2, y6,2 = −z25 − z2 + 2,

y7,1 = −z19 + z8, y7,2 = −z19 − z8 + 2,

y8,1 = −z22 + z5, y8,2 = −z22 − z5 + 2,

y9,1 = −z7 + z20, y9,2 = −z7 − z20 + 2,

and

y10,1 = −z3 + z24, y10,2 = −z3 − z24 + 2,

y11,1 = −z12 + z15, y11,2 = −z12 − z15 + 2,

y12,1 = −z21 + z6, y12,2 = −z21 − z6 + 2,

and

y13,1 = −z9 + z18, y13,2 = −z9 − z18 + 2,

and we decompose J into eigenspaces J1 and J2 by the action of Z/2Z, where J1

is generated by y1,1, y2,1, . . . , y13,1 over B with eigenvalue −1, and J2 is generated

by y1,2, y2,2, . . . , y13,2 over B with eigenvalue 1. Matrices M33,2 and M33,3 are
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given by

0 0 0 0 0 −1 0 0 0 0 0 0 0

0 0 0 0 0 0 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 −1 0 0 0 0

−1 0 0 0 0 0 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0 0 0 0 0 0

0 0 0 0 −1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −1


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and 

−3 0 0 0 0 0 0 0 0 1 0 0 0

0 −3 0 0 0 0 0 0 0 0 1 0 0

0 0 −3 0 0 0 0 0 0 0 0 1 0

0 0 0 −3 0 0 0 0 0 1 0 0 0

0 0 0 0 −3 0 0 0 0 0 1 0 0

0 0 0 0 0 −3 0 0 0 0 0 1 0

0 0 0 0 0 0 −3 0 0 1 0 0 0

0 0 0 0 0 0 0 −3 0 0 1 0 0

0 0 0 0 0 0 0 0 −3 0 0 1 0

0 0 0 0 0 0 0 0 0 −3 0 0 1

0 0 0 0 0 0 0 0 0 0 −3 0 1

0 0 0 0 0 0 0 0 0 0 0 −3 1

0 0 0 0 0 0 0 0 0 0 0 0 −3



,

respectively. Thus, we have

µµ33,B = SpecB[y1, y2, . . . , y13],

with relations

y1y2 = y23 − y211, y2y3 = y24 − y212, . . . , y9y1 = y22 − y210,

y1y3 = y28 − y212, y2y4 = y29 − y210, . . . , y9y2 = y27 − y211,

y1y4 = y27 − y213, y2y5 = y28 − y213, . . . , y9y3 = y26 − y213,

y1y5 = y29 − y212, y2y6 = y21 − y210, . . . , y9y4 = y28 − y211,

y1y10 = y26 − y21 , y2y11 = y27 − y22 , . . . , y9y12 = y25 − y29 ,

y1y11 = y29 − y27 , y2y12 = y21 − y28 , . . . , y9y10 = y22 − y26 ,

y1y12 = y23 − y24 , y2y10 = y24 − y25 , . . . , y9y11 = y22 − y23 ,
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y1y13 = y28 − y22 , y2y13 = y29 − y23 , . . . , y9y13 = y27 − y21 ,

y10y11 = y212 − y213, y11y12 = y210 − y213, y12y10 = y211 − y213,

y10y13 = y212 − y210, y11y13 = y210 − y211, y12y13 = y211 − y212,

y31 = −3y1 + y10, y32 = −3y2 + y11, . . . , y39 = −3y9 + y12,

y310 = −3y10 + y13, y311 = −3y11 + y13, . . . , y312 = −3y12 + y13,

y313 = −3y13,

with group scheme structure

m∗(y1) = y1 ⊗ 1 + 1⊗ y1 +
1

2

(
y1 ⊗ y25 + y25 ⊗ y1

)
,

m∗(y2) = y2 ⊗ 1 + 1⊗ y2 +
1

2

(
y2 ⊗ y26 + y26 ⊗ y2

)
,

...

m∗(y1) = y9 ⊗ 1 + 1⊗ y9 +
1

2

(
y9 ⊗ y24 + y24 ⊗ y9

)
,

m∗(y10) = y3 ⊗ 1 + 1⊗ y3 +
1

2

(
y10 ⊗ y211 + y211 ⊗ y10

)
,

m∗(y11) = y3 ⊗ 1 + 1⊗ y3 +
1

2

(
y11 ⊗ y212 + y212 ⊗ y11

)
,

m∗(y12) = y3 ⊗ 1 + 1⊗ y3 +
1

2

(
y12 ⊗ y210 + y210 ⊗ y12

)
,

m∗(y13) = y13 ⊗ 1 + 1⊗ y13 +
1

2

(
y13 ⊗ y213 + y213 ⊗ y13

)
.

Example 4.7 (In case pl = 52). Consider the group scheme

µµ52,B = SpecB[z]/(z5
2

− 1).

In this case, we have (Z/52Z)× ∼= Z/5Z × Z/4Z. In the multiplicative group

(Z/52Z)×, 6 is of order 5, and 7 is of order 4. Then, we define the action of

⟨1⟩ ∈ Z/5Z and [1] ∈ Z/4Z by

⟨1⟩z = z6 and [1]z = z7.
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The values of q and pi are given by q = 24/4 = 6, p1 = p2 = p3 = p4 = p5 = 1,

and p6 = 5. Then, yi,j ’s are given by

y1,1 = −z + ζz7 + z24 − ζz18, y1,2 = −z + z7 − z24 + z18,

y1,3 = −z − ζz7 + z24 + ζz18, y1,4 = −z − z7 − z24 − z18 + 4,

y2,1 = −z6 + ζz17 + z19 − ζz8, y2,2 = −z6 − z19 + z17 + z8,

y2,3 = −z6 − ζz17 + z19 + ζz8, y2,4 = −z6 − z17 − z19 − z8 + 4,

y3,1 = −z11 + ζz2 + z14 − ζz23, y3,2 = −z11 + z2 − z14 + z23,

y3,3 = −z11 − ζz2 + z14 + ζz23, y3,4 = −z11 − z2 − z14 − z23 + 4,

y4,1 = −z16 + ζz12 + z9 − ζz13, y4,2 = −z16 + z12 − z9 + z13,

y4,3 = −z16 − ζz12 + z9 + ζz13, y4,4 = −z16 − z13 − z12 − z9 + 4,

y5,1 = −z21 + ζz22 + z4 − ζz3, y5,2 = −z21 + z22 − z4 + z3,

y5,3 = −z21 − ζz22 + z4 + ζz3, y5,4 = −z21 − z22 − z4 − z3 + 4,

and

y6,1 = −z5 + ζz10 + z20 − ζz15, y6,2 = −z5 + z10 − z20 + z15,

y6,3 = −z5 − ζz10 + z20 + ζz15, y6,4 = −z5 − z10 − z20 − z15 + 4.

where ζ is a primitive fourth root of unity. We decompose J into eigenspaces

J1, J2, J3, J4 by the action of Z/4Z, where Jk is generated by yi,k’s for 1 ≤ i ≤ 6

over B, with eigenvalue ζk. Matrices M52,2,M52,3,M52,4,M52,5 are given by

M52,2 =



0 −2ζ 1 0 0 0

0 0 −2ζ 1 0 0

0 0 0 −2ζ 1 0

1 0 0 0 −2ζ 0

−2ζ 1 0 0 0 0

0 0 0 0 0 −2ζ + 1


,

49



M52,3 =



3 0 0 3ζ ζ −3ζ

ζ 3 0 0 3ζ −3ζ

3ζ ζ 3 0 0 −3ζ

0 3ζ ζ 3 0 −3ζ

0 0 3ζ ζ 3 −3ζ

0 0 0 0 0 4ζ + 3


,

M52,4 =



0 0 −8 6 −4ζ − 1 4ζ

−4ζ − 1 0 0 −8 6 4ζ

6 −4ζ − 1 0 0 −8 4ζ

−8 6 −4ζ − 1 0 0 4ζ

0 −8 6 −4ζ − 1 0 4ζ

0 0 0 0 0 −4ζ − 3


,

M52,5 =



−20 −10ζ −5ζ + 10 10ζ −15ζ − 5 −10ζ + 1

−15ζ − 5 −20 −10ζ −5ζ + 10 10ζ −10ζ + 1

10ζ −15ζ − 5 −20 −10ζ −5ζ + 10 −10ζ + 1

−5ζ + 10 10ζ −15ζ − 5 −20 −10ζ −10ζ + 1

−10ζ −5ζ + 10 10ζ −15ζ − 5 −20 −10ζ + 1

0 0 0 0 0 −20ζ − 15


,

respectively. One can give explicit relations among yi,j ’s and group scheme struc-

ture.
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Appendix

In this appendix, we give an outline of a proof which we apply the push-down

and the pull-back theory to the torsors of schemes.

Push-Down of Torsors

Let G be a commutative group scheme over X, and Y/X a G-torsor. For a group

homomorphism φ : G→ G′, we obtain the G′-torsor on X as follows, by the same

argument with the push-down in extensions of groups: Consider the diagram

G ↷

φ

��

Y
π //

φ̃

��

X

G′ ↷ φ∗Y
π̃ // X

,

where we assume that there exists the quotient

φ∗Y = G′ × Y/ { (φg,−g) | g ∈ G }

as a scheme, and the morphisms φ̃ and π̃ are defined by

φ̃(y) = (0, y) and π̃
(
(g′, y)

)
= π(y)

for any local sections y ∈ Y , g′ ∈ G′, and G′ acts on φ∗Y by

g′
(
(g′′, y)

)
= (g′ + g′′, y).
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Then, one can check that π̃ is well defined and the diagram is commutative, i.e.,

φ̃(gy) = φg(φ̃y) and π̃ ◦ φ̃ = π.

Moreover, we have

(π̃)−1(πy) = (G′, Gy) = (φ(G) +G′, y) = (G′, y) ≃ G′.

Therefore, we see that φ∗Y is a G′-torsor on X.

Pull-Back of Torsors

Let G be a group, and Y/X a G-torsor. For a morphism f : X ′ → X, we

obtain the G-torsor on X ′ as follows, as in the same argument as the pull-back

in extensions of groups: Consider the diagram

G ↷ f∗Y
p2 //

p1

��
□

X ′

f

��
G ↷ Y

π // X

,

where f∗Y = Y ×X X ′, the morphisms p1 and p2 are projections, and G acts on

f∗Y by

g(y, x′) = (gy, x′).

Then, we see that the action of G commutes with the projection p1, and f
∗Y is

a G-torsor on X ′.
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[14] J.-P. Serre, Groupes Algébriques et Corps de Classes, Hermann, Parris, 1959.

[15] L. C. Washington, Introduction to Cyclotomic Fields, Graduate Texts in

Mathematics 83, Springer-Verlag, New York, 1982.

[16] W.Waterhouse, A unified Kummer-Artin-Schreier sequence, Math. Ann. 277

(1987), 447–451.

54


