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Summary

With the more open innovation model seen in the later years, small and medium enterprises have
a growing importance in the industry. These types of companies require robotic equipment that
is highly flexible, but also easy to use. An important approach to simple and flexible use of
robots is through human-robot collaboration. In a human-robot collaboration, one can combine
the strengths of the co-workers, the strength and repeatability of the robot, and the flexibility
and adaptability of the human. However, there are still many challenges in the way before a
high level of safe and productive human-robot collaboration can be fully realized. One of the
most critical challenges is the safety issue. If the human is to work along side a robot, a system
must be able to ensure the human operator’s safety.

However, is it enough to be merely safe? As the human and robot co-workers’ collabora-
tion grow closer, the importance of the human’s aspect of the collaboration grows and a more
advanced robot co-worker is required. Is it a selling point for a human employee that he is safe
to work with? The safety strategy for robots has not changed much in the past decades. Sev-
eral approaches with the basic strategy of moving away if the robot is too close to the human
operator have been proposed. Systems like these are also needed to realize safe human-robot
collaboration, but again, is it enough that the robot is safe? Moreover, even when these safety
systems works properly, it is not avoiding human-robot conflicts, they simply react when a dan-
ger is imminent. These conflicts are disturbing for the human operator and interrupts his/her
concentration. Furthermore, the robot is not even able to complete its task if it is forced to
avoid the human. A new safety strategy for safe and productive human-robot collaboration is
therefore needed. This system should be proactive against dangers and aspire to maintain the
productivity of the system. In this way, the human operator and the robot should be able to
harmonize and improve their work together.

This thesis proposes a novel strategy for safe and productive HRC called Responsible Robots.
A Responsible Robot is a robot sharing the responsibility for the productivity and the safety in
the collaboration. While it has previously been the full responsibility of the human to set proper
safety rules for the robot, this should be a joint venture. The Responsible Robot acts proac-
tively against dangers and it can in this way plan when to execute its different tasks to ensure
the safety of the human operator while being productive. A model for realizing Responsible
Robots is then proposed.

The model to realize Responsible Robots enhances the system’s situation awareness by
adopting a risk perception. The system observes the human operator and learns from his/her
work patterns. The risk perception enables the system to estimate the risk associated with each
of the robot’s tasks. The system can then select the task with the lowest risk and postpone high
risk task in case the risk is reduced later in the operation. This way, the system acts proactively
against dangers and may reduce the number of human robot conflicts. The system can plan its
tasks better and keep up the productivity to a greater extent than a pure reactive safety system.
The reduced number of human-robot conflicts can also have a positive effect on the human
operator, as he/she will not be disturbed as often as before.
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The proposed model was implemented in an experimental setup and tested with several
human test subjects. The experimental setup was realized with a heavy-duty NACHI MR20 7-
axes industrial robot. The experiments demonstrated the system’s ability to make safe proactive
decisions. It clearly reduced the number of human robot conflicts. Further, the experiments
showed that the system was able to maintain its productivity while being safe. Lastly, the effect
the system had on the human operator was tested. The experiments showed that the system
was able to reduce the workload for the human, and there were also indications that the system
reduced the stress level for the human. It was therefore concluded both that the proposed system
fulfills the requirements of a Responsible Robot, and also that a HRC could be improved by
implementing Responsible Robots.
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Preface

This PhD thesis documents a research project carried out at Chuo University. The project has
been carried out in collaboration between the Human-System Laboratory at Chuo University
and PPM AS. The project was initiated in September 2012 and ended in August 2015.

The work is primarily intended for research on human-robot collaboration with industrial
robots. It is my hope that my ideas and findings can be of interest also to other branches of
robotics and that Responsible Robots will inspire a more comprehensive way of thinking about
safety in robotics.

Audun Rønning Sanderud
Trondheim, January 2016
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Chapter 1

Introduction and Problem Formulation

1.1 Introduction

With the more open innovation model seen in the later years [1], Small and Medium Enterprises
(SMEs) have a growing importance in the industry. These types of companies require robotic
equipment that is highly flexible, but also easy to use, both with regards to programming and
operation. The most important approach to simple and flexible use of robots is through Human-
Robot Collaboration (HRC)(Figure 1.1) and redundant robotics [2]. An HRC system must be
designed to fit the level of collaboration, but at any level the system should allow the operator
to focus fully on his or her task, and not be concerned with where the robot is, or its current
task. The robot should autonomously give the best assistance and avoid collisions at all times.
A reliable safety strategy is therefore vital.

The most widespread protection strategy practiced in the industry today is based on isolating
robots from their surrounding environments [3]. While some HRC systems are commercially
available, they have some major limitations.

Rethink Robotics™ have developed the Baxter system1. Baxter is a double seven-axes arm,
with a fully integrated control system. It can be installed in one hour and does not require any
safety installations beyond the built-in safety system. But with only 2.3 kg payload per arm the
work is limited to very light operations.

ABB have introduced the SafeMove system which is designed to bring the operator closer
to the industrial robot [4]. SafeMove operate with zones in which the operator can move safely,
and allows a more efficient use of the robot. The robot will automatically slow down as the
operator approaches, and go to a full stop if the operator is too close.

The SMErobots™ initiative has done extensive research on, and developed systems to sim-
plify both the industrial level programming and safety issues related to industrial robot installa-
tions2.

1Rethink Robotics™, www.rethinkrobotics.com (Accessed 11/10/2015)
2SMErobot ™, The european robot initiative for strengthening the comprehensiveness of SMEs in manufactur-

ing, www.smerobot.org (Accessed 11/10/2015)
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Figure 1.1: A collaboration between a human and a robot on a welding operation.

MRK Systeme have a commercially available safety system for selected low payload robots3.

The system includes a capacitive cover for the robot, ensuring a full stop if the operator comes

in contact with it.

Moreover, the current safety standards allow very limited human-robot collaboration [3].

The systems for HRC available in the industry today are naturally limited by this. Strict reg-

ulations on maximum allowable payload, speed etc makes the aforementioned system that is

possible within today’s standard [5], [6].

A new standard covering collaborative robots is currently under development [7]. The stan-

dard will allow closer human-robot collaboration, given that a set of performance control meth-

ods are implemented. Separation monitoring is one of these performance control methods. This

is a system which at all times ensures that the robot manipulator is at a certain distance from

the human operator to avoid injuries. Such a system will require an advanced sensor system

and algorithms to reconfigure the robot manipulator based on sensor readings. With separation

monitoring in place, a company can do highly complex human-robot collaborative tasks, re-

ducing some of the pressure on programming of the robot prior to the operation. Also larger

enterprises, such as the car manufacturing industry, can benefit from an efficient separation

monitoring system. Just imagine a production line with tens of robots, and an operator walking

among them, supervising and making adjustment while in full operation. The challenge lies in

achieving this without compromising the productivity of the robot.

However, is a separation monitoring system enough to achieve a fruitful collaboration be-

tween a human and a robot? Is it enough that the robot is merely safe? The three laws of robotics

were formulated by Isaac Asimov in his short story "Runaround" from 1942 [8]. Although the

work is purely fictional, the laws are often cited and referred to as a guiding principal in HRC

design. The three laws appear in many alterations by Asimov and other authors, however, the

original laws are:

3MRK-systeme GMBH, www.mrk-systeme.de (Accessed 11/10/2015)
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1. A robot may not injure a human being or, through inaction, allow a human being to come
to harm.

2. A robot must obey the orders given to it by human beings except where such orders would
conflict with the First Law.

3. A robot must protect its own existence as long as such protection does not conflict with
the First or Second Laws.

The laws suggest a robot that actively prevents a human to come to harm, not just passively
obey the safety rules set by the human. The robot should even deny an order given to it by the
human if it might cause a hazard. It is important not to get too caught up in the laws as they are
a work of fiction. However, the active attitude towards safety is an intriguing aspect of HRC.

1.2 Problem Formulation

The common denominator of the majority of the approaches to solve the safety issue in HRC
is the robot’s reactive response to danger. With these approaches, the robot becomes a passive
contributor towards safety as it only react on rules and commands set by the human integrator,
such as keeping a minimum separation, or reduce the speed when in proximity to the human
operator. This passive approach reduces the robot’s ability to plan and make task related deci-
sions, as it has no means of including safety related issues in its decisions. Therefore, the entire
safety responsibility lies with the human integrator and human operator. This responsibility is
an added workload and stress factor for the human operator. A goal for safe HRC should be
robots that actively make decisions not to harm the human being. A robotic system that decides
its action also on the basis of safety, and actively avoids actions that could harm the human,
would take some of the safety related responsibility in the collaboration. The robot would share
the responsibility with the human operator, relieve some of the operator’s pressure, and in this
way allow for more focus on the task.

1.3 Structure of the Report

This thesis is mainly structured around three parts. The first part includes the introductory
Chapter 1 and the related work described in Chapter 2. Chapter 1 introduces the topic and
defines the problem formulation for this research. Related work on this topic is investigated and
compared in Chapter 2.

In the second part of this thesis, the main contributions to this research is presented. Chapter
3 discusses how human beings make decisions, and how this can be used to enhance the robot’s
decision making with respect to safety. A model that uses a risk analysis framework to realize
this enhancement is then presented. Chapter 4 presents and describes the necessary components
in the presented model and how this model can benefit many aspects of robotics.

The third and last main part of the theses consists of the three chapters 5-7. The three chap-
ters present the experimental tests that were conducted. The performance of the components
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related to the likelihood analysis are investigated in Chapter 5. In Chapter 6 the performance
of the system is tested with several test subjects. The effects on the perceived workload for the
operator is investigated in Chapter 7. The three chapters with the experiments are written to be
independent to some extent. Components in the experimental setup that are the same in two or
more of the experiments are described in each of the relevant chapters.

The final chapter discusses the proposed new strategy and novel model to realize this strat-
egy. The results from the experiments are summarized and a conclusion is drawn along with
some suggestions for further work.



Chapter 2

Related Work

2.1 Introduction

For many years, researchers have worked towards humans and robots working alongside each
other as coworkers. Although many levels of collaboration exists, it is generally agreed that a
human-robot collaboration is whenever a human and a robot is working on the same or separate
tasks in the same shared work space. There is still need for more research before a high level of
HRC can be realized. To understand and discover which part of the HRC puzzle is missing, it
is necessary to study the existing approaches in literature on the topic and related topics.

In this research, it is distinguished between approaches that are commercially available, and
approaches in research. Approaches that are commercially available for the industry must com-
ply with ISO 10218 [5], [6] and are thus fairly limited by that. Furthermore, the approaches
presented in research are generally focusing on the task understanding aspect of the robot, or
the safety aspect. Today’s approaches towards safe HRC are predominantly inspired by the up-
coming standard on collaborative robots [7]. The new standard allow closer collaborations as
long as the system holds certain performance criteria. One of which is the separation monitoring
previously mentioned. Separation monitoring is a system that ensures a minimum separation
between the human and the robot at all times. Moreover, this research distinguish between ap-
proaches that are proactive and reactive, both for task and safety based approaches. A reactive
approach acts only when certain input activates it and can be easily associated with a feedback
loop in control theory. Conversely, a proactive system can be associated with a feed-forward
loop and is designed to take action before it reach the critical input. From the human opera-
tor’s perspective, this difference in behavior is more important than how the actual reactive or
proactive behavior is realized in control.

While safe HRC with industrial robots is the focus of this research, many interesting ap-
proaches have also been presented in related research fields. Some of these might have some
relevance and applicability for industrial robots. Therefore, some approaches to HRC with mo-
bile robots will be presented last in this chapter. Firstly, relevant research on other aspects of
HRC is presented. This include research on the effects of working alongside a robot has for
the human operator, and the importance of proper team work models. The section will also

5
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include some research on HRC that is not directly related to improving the robotic system’s
functionality and performance.

At the end of the chapter, the most important findings will be highlighted and a series of
problem statements will be formulated. Some criteria for fulfilling these statements will also be
discussed. These statements will serve as the main guide and road map throughout the thesis.

2.2 Miscellaneous Research on HRC

2.2.1 Introduction

Research and advances in HRC is predominantly related to the performance of the robot. How-
ever, there are many other aspects that should be considered, such as how different levels and
types of collaboration need special care in the design of the collaborative work cell. This section
will present some of the current research on in this field.

2.2.2 Miscellaneous Human-Robot Collaboration Research

As aforementioned there are many levels of collaboration with a robot, much like with a human.
Four degrees of interactions between humans and robots were identified in a study by Helms et
al. [9], [10]: independent, synchronous, simultaneous, and supportive. In independent work, the
human and the robot operate independently on different work pieces. This is the case which is
most similar to today’s industrial robots. The human operator and robot work consecutively on
the same work piece in a synchronous collaboration. In simultaneous work the human operator
and robot work on the same work piece, however physically separated. The closest collabora-
tion occurs when the human operator and robot is collaborating on the same task on the same
work piece. E.g. in a grinding operation the robot could carry the weight of the grinding tool
and follow a rough path, while the human adjusts the path along the way by manipulating the
grinding tool through force control directly in the operation. This is often also referred to as a
human-in-the-loop approach.

How HRC best can be used, and which challenges HRC poses have also been investigated
[11], [12]. Application of HRC in the industry is shown to extend the applicability of industrial
robots to a larger part of industrial production.

A risk assessment for HRC was presented by Marvel et al. [13]. The assessment gives a
thorough description of hazards and severity associated with HRC. By decomposing the task,
the safety can be evaluated based on the subtask and proper risk mitigating actions can be
selected. The assessment was applied in several case studies, both pre and post implementation
of risk abatement. A reoccurring risk that did not have an efficient risk abatement was impacts.
While this risk analysis is also very important, it is only a part of the design of the work cell
and does not improve the performance of the robot during operation.

Marato et al. presented a system for HRC based on asynchronous task patterns. The design
of the workcell allows the human and the robot to alternate who is working in a given sub-
workspace [14]. E.g while the human is retrieving parts to bring to the workspace, the robot is
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collecting products form the assembly area. This was realized through planning, thus rely on
careful investigations prior to execution.

A study about new opportunities presented by HRC and the upcoming standard ISO 15066
[7] has been presented by Eder et al. [15]. Their results emphasizes the importance of safety
and trust. Moreover, it is stated that the robotic co-worker must meet the innate expectations of
the humans it work with. It is also important that it is able to communicate its attention to the
human operator.

There are several examples of research on communication between the human operator
and the robot. One of the approaches investigate use of speech, head poses and gestures as
part of that communication [16]. This multimodal human-robot interaction is important to
convey subtle information that might get lost in other more sterile forms of communication.
An approach attempting to implement emotions in the robotic system has even been presented
[17]. The system was implemented in a collaborative assembly task where the robots emotion
changed on the basis of the task situation. The robots emotion was represented by a screen
image and was implemented on the Baxter robot. Their results showed that a static emotion
produces better assembly performance than that produced for the no emotion condition.

2.2.3 Summary

The importance and the impact HRC will have on the industry is well established. Several
frameworks and categorizations exists for supporting the work with realizing HRC. However,
there are many challenges yet to be solved. The importance of the robotic system being aware
of the humans expectations of it have been shown. Also more complex human robot communi-
cation is needed for a smooth and safe collaboration.

2.3 Human-Robot Teams and Trust in Automation

2.3.1 Introduction

It is easy to mainly focus on the robot and forget the human when developing a system for HRC.
However, it is clear that the both parties’ contribution is equally important in a collaboration.
Several researchers are devoted to investigate how humans and robots best can work is a team
and what effects this nontraditional collaborator have on the human. The importance of this
research grows as the collaboration between the human operator and the robot grows closer and
a higher level of collaboration is reached.

2.3.2 Human Robot Teams

A study have been conducted by Idaho National Laboratory on the effects of sharing task exe-
cution responsibilities with the robot [18], [19]. The experiments investigated a middle ground
between direct human control and full robotic autonomy. The human and a mixed-initiative
mobile robot worked on various search and explore tasks. The experiments showed a positive
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effect from sharing the responsibility for the task, as opposed to each party only being respon-
sible for their own task. Without loss of productivity, the humans felt reduced workload and
fewer instances of confusion.

Keebler et al. with the Team Performance Laboratory at the University of Central Florida
have done extensive research on applying well known human-human team heuristics to HRC
applications [20], [21]. A "Wizard-of-Oz" approach was used to investigate how humans col-
laborate with robots in different team settings. The aim of the research is to develop proper
team heuristics for HRC, from a human psychology perspective. Further, a proper framework
for which heuristics to apply to different types of HRC is investigated. Nikolaidis et al. [22]
have also applied cross training to human robot teams. This is a well known human-human
team tool where every member of the team learn every other team member’s tasks. This is
beneficial for understanding how to improve your own task so that other team members might
benefit from it.

Goodrich et al. propose an approach for a human to manage multiple robots [23]. They
investigate use of two management styles and show their effect in an extensive experiment. It
is shown that the level of autonomy is important to achieve the best team performance, and that
adjusting quality parameters may give a greater advantage than adjusting the robots behavior.

A study of the level of autonomy in the team was conducted by Marble et al. [24], [25].
The study showed a great variation in novice users general ability to trust autonomous robots.
A robot with an adjustable level of autonomy was used in an experiment. The experiment
showed that the most experienced users completed their tasks faster with less autonomy, while
inexperienced users needed more autonomy to complete the task. However, every participant
were able to complete the task satisfactory. A robot that is able to detect and adjust its autonomy
according to the user to achieve best possible task result would therefore be optimal.

2.3.3 Trust in Automation

Trust in automation have been studied by Hoffman et al. [26], [27], and found to be closely
related to interpersonal trust. Interpersonal trust has been defined as a trustor’s willingness to
be vulnerable to a trustee’s actions based on the expectations that the trustee will perform a
particular action that is important to the trustor [28]. Further, research shows that interpersonal
trust depends on several factors including perceived competence, benevolence, understandabil-
ity, and directability. That is how rapidly the trustor can assert control if things go wrong. These
factors are also important to trust in automation, along with some other factors. These include
the technology’s limitations and weaknesses, such as reliability, validity, utility, robustness and
false-alarm rate [29], [30]. There is no doubt about the importance of trust in automation in
HRC.

How interpersonal touch can affect the relationship between two humans is well established.
It has for example been shown that waitresses who touch customers get more tip than waitresses
that do not touch the customers [31]. Fukuda et al. [32] demonstrated the same effect in human-
robot interaction. They suggest that touch can be used as a powerful communication channel
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in human-robot interaction. Although this might not be applicable in a industrial HRC, and
demonstrates how powerful and applicable human-like attributes can be to build trust.

In a study by Short et al. [33] participants played games of "rock-paper-scissor" with a
robot. The study aimed to investigate a humans social engagement while playing with a robot
that was conditioned to cheat. It was shown that the participants playing with the cheating robot
was much more engaged and active in the collaboration. While it would not be recommended
to introduce cheating to industrial robots, the idea of adding human attributes to gain trust and
keep the human focused and interested is an important contribution. Using a robot as a motivator
in physical and mental task was investigated by Fasola and Matarić [34]. Human participants
played a simple game while being motivated to continue by a robot. Their preliminary results
demonstrated a positive effect on the human participants.

Summary

It is apparent that there are many important aspects to consider when designing a HRC work cell.
There is no doubt that the effect the collaboration have on the human is important and should be
considered when proposing new systems for HRC. The importance of trust in automation have
been presented, and one of the factors to again this trust is shown to be the false-alarm rate.
In other words, disturbing the human operator with unnecessary alarms unless they are strictly
needed should be avoided. All in all, there are many examples in the literature that demonstrate
a positive effect by introducing human-like attributes in the robotic system.

2.4 Commercially Available Approaches to HRC

2.4.1 Introduction

The approaches to HRC that are commercially available today are predominantly systems that
are safe by design [35]. This means they are designed to be harmless to humans by being
light weight and have limited movement speed. Some approaches propose some interesting
strategies, however dominated by the limitations in the current safety standards [5], [6].

2.4.2 Commercially available approaches

Rethink Robotics™ have developed the Baxter system1 (Figure 2.1a). Baxter is a double seven-
axes arm, with a fully integrated control system. It can be installed in one hour and does not
require any safety installations beyond the built-in safety system. But with only 2.3 kg payload
per arm the work is limited to very light operations.

ABB’s YuMi2 is similar to Baxter, safe by design (Figure 2.1b). They represent a young
generation of robotics, aimed at the collaborative market. However, as with Baxter, YuMi’s
payload is only 0.5 kg. This limitation inherently limits its possible uses. Further, even though

1Rethink Robotics™, www.rethinkrobotics.com (Accessed 11/10/2015)
2ABB, www.abb.com/robotics/yumi (Accessed 11/10/2015)
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(a) Rethink Robotics’ Baxter. (b) ABB’s YuMi.

Figure 2.1: The Baxter (a) and YuMi (b) lightweight collaborative robots are safe by design.

it is not strong enough to injure its human coworker, it not enough for a fruitful collaboration.
On the other hand, both the Baxter and YuMi allow developers to focus on task execution rather
than safety. Again, the tasks they can execute are limited due to low payload and reach. The
system will allow a more automatic synchronous collaboration.

ABB have introduced the SafeMove system which is designed to bring the operator closer
to the industrial robot [4]. SafeMove operate with zones in which the operator can move safely,
and allows a more efficient use of the robot (Figure 2.2). The robot will automatically slow
down as the operator approaches, and go to a full stop if the operator is too close.

Figure 2.2: The ABB safe move system [4].

The SMErobots™ initiative has done extensive research on, and developed systems to sim-
plify both the industrial level programming and safety issues related to industrial robot instal-
lations3. MRK Systeme have a commercially available safety system for selected low payload

3SMErobot ™, The european robot initiative for strengthening the comprehensiveness of SMEs in manufactur-
ing, www.smerobot.org (Accessed 11/10/2015)
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robots4. The system includes a capacitive cover for the robot, ensuring a full stop if the operator
comes in contact with it.

A hand guiding approach to teaching have been commercially released by NACHI-Fujikoshi5.
The technology behind it is not new, however, limited by safety standards, its been challenging
for companies to commercialize technology from research. Now, with NACHI’s lightweight
robots which is safe by design, this approach can safely be presented commercially to the mar-
ket.

2.4.3 Summary

There is no surprises in the commercially available systems. Although ABB’s safemove and
similar approaches allow some synchronous collaborations, the downtime for the human op-
erator might be high, and the system is highly dependent on careful integration. Robots was
initially designed and sought after for their strength and repeatability. The widely used safety
by design approach is appropriate for many tasks that only require repeatability. However, for
tasks that require the other benefit, strength, these approaches cannot be used. A system that
works independently of the robotic hardware would be favorable.

2.5 Safety Related Approaches to HRC

2.5.1 Introduction

Safety related approaches are system that focuses on not injuring the human operator, a pre-
requisite for any HRC. As already presented, many approaches available in the industry today
focus on safety by design. Therefore, this section will focus on approaches that can be applied
to any robot. These approaches are often categorized as safety through control or safety by
trajectory planning. However, in this research the strategy based on effect gives the categories
and it is separated between reactive and proactive safety systems. It is not important for the hu-
man operator whether the robot continuously re-plans its trajectory or augments its pre-planned
trajectory. It is thought to be of greater importance if the robot acts reactive or proactive against
dangers. This is believed to have a greater impact on the effects of collaborating with a robot as
presented in Section 2.2.

2.5.2 Reactive Approaches

Most contributions towards collision avoidance with redundant robots are based on static or
kinetostatic images. Systems finding a collision-free joint space path [36], and problems that
require maintaining end-effector constraints throughout the path [37]–[39] have been explored.
It is usually distinguished between problems where a single goal is specified [40] and problems
where the entire end-effector path is predetermined [41], [42].

4MRK-systeme GMBH, www.mrk-systeme.de (Accessed 11/10/2015)
5NACHI-Fujikoshi corp. www.nachi-fujikoshi.co.jp/eng/mz04/ (Accessed 11/10/2015)
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The most fundamental strategy when it comes to safe robots is to stop the robot if a collision
is detected. Approaches that measures the torque in the robots joints to detect collisions have
also been presented [43]–[46]. This could also be an important safety barrier, however, these
systems also interrupts the robots production and should only be regarded as a last barrier in a
safety systems. Systems that avoid these collisions in the first place should be implemented in
addition to these.

The second most fundamental strategy is to move away if too close to an obstacle. One of
the first to present a system who’s strategy was to maintain a distance to surrounding obstacles
was Khatib in 1978 [47]–[49]. During the nearly 40 consecutive years there have been proposed
numerous system based on the same strategy. The performance of the systems have naturally
improved with modern computers and control theory. However, the fundamental strategy of
moving away from an object that is too close, has not changed by much.

A virtual impedance control was presented by Tsuji et al. [50], [51]. In general impedance
control, the robot moves based on external forces applied on the robot. The proposed method
use virtual forces applied on the robotic arm based on information about the environment.

Balan and Bone [52] presented an efficient human collision avoidance system. The system
used short term prediction models on both the robot and the human to reduce the effect of
non-instantaneous response time. The systems strategy was is essence a separation monitoring
system, ensuring a minimum distance between the human operator and the robot.

Kulić and Croft [53]–[56] have done extensive research on safe HRC and describe a safety
system based on a danger index. The system uses the danger index in a real-time trajectory
generator to re-plan its path if a danger threshold is exceeded.

Approaches with a high performance systems that avoid collisions by enabling evasive ma-
neuvers if a danger is detected have been presented [57], [58]. Both systems avoided dangers,
such as humans or objects, by moving away from them.

Lacevic et al. [59]–[62] presented an approach using Danger Fields based on kinetostatic
information about the current situation. The Danger Field is a potential field spanned around
the robots kinematic chain based on its velocity. The approach then used information about
the humans position in the Danger Field to continuously minimize the danger in the current
situation.

A concept using what was defined as a risk space was recently presented by Lo et al. [63]. A
virtual impedance control was implemented in a reactive collision avoidance control for HRC.
The system handled multiple possible collisions dynamically and proved to be very responsive.
However, as will be discussed later, the design of the space is not truly based on the risk, rather
a proximity or danger index.

Several more approaches based on the same strategy as these can be found [64]–[71]. Al-
though their control strategy and thus performance vary and there is no doubt that there have
been significant progress since the first proposed systems in the late seventies. Another impor-
tant difference is what triggers avoidance behavior. While most detect the obstacles directly,
some approaches calculations are more elaborate, using also the velocity of the robot or the hu-
man or both. However, they are all reactive obstacle avoidance strategies. The candidate have
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also presented a similar potential field approach as will be discussed later in this thesis [72],
[73] (Figure 2.3).

Figure 2.3: The basic strategy behind a majority of the reactive approaches [73].

2.5.3 Proactive Approaches

During the literature study in this research, no approaches than can be said to act proactively
against dangers was found. Although, it is naturally to imagine that such a system would be
beneficial. Several examples of the importance of trust and human attributes in HRC have been
found, all of which promotes robots to act proactively against dangers. One can argue that some
systems that re-plan the trajectory based on observations can be said to be proactive, however,
the time span in which it is proactive is limited because they only address the current situation
in their plan. It is not likely that the human would even notice this difference. Therefore, these
approaches are not considered proactive in this research.

2.5.4 Summary

There is no doubt that the number of approaches to safe HRC with a strategy to maintain a
minimum separation is plentiful in research. However, proper HRC have yet to be realized.
This raises the question whether this strategy simply is enough. Is it enough to be merely safe?
What is apparently lacking is a system that act proactively against the dangers, and not only
reacts when it is detected that a danger is imminent. The importance of trust and human like
traits in robotics presented in the literature in Section 2.2 supports the use of a proactive safety
strategy as a new level of safety.
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2.6 Task Related Approaches to HRC

2.6.1 Introduction

While discussing the safety of the collaboration, one must not forget the importance of the

robot actually solving a task and serving a purpose. Many approaches focus on these task

related challenges to realize HRC. As with the safety issue it is distinguished between reactive

and proactive execution of actions related to tasks in this research. From the human operators

perspective, this is an important aspect affecting the effect of working alongside the robot. The

researchers in this category most commonly use robots that are safe by design and in that way

avoid the safety issue.

2.6.2 Reactive Approaches

Haptic interactions in human-human collaborations was researched by Madan et al. [74]. The

authors proposed five feature sets, including force, velocity and power related information. By

discovering patterns in the haptic interactions, robots can interact accordingly with the humans

in real time.

A system anticipating human activities, and selecting the correct response from the robot

was presented by Koppula and Saxena [75]. The approach uses and anticipatory temporal con-

ditional random field that models the rich spatial-temporal relations through object affordance

as depicted in Figure 2.4). The most likely future scenario is calculated and an appropriate

response form the robot is selected. A success rate at 85% was achieved.

Figure 2.4: The Object affordances approach presented by Koppula and Saxena [75].

Billard et al. have presented systems for physical interaction between the human operator

and the robot [76]–[79]. The systems are developed for teaching by guiding and in joint tasks

between the human and the robot. This includes tasks where the human operator and the robot

are lifting the same work piece. This is very interesting for operations that require both the
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strength of the robot, and the flexible fine position control of the human, such as assembly of
heavy gearboxes. The approaches include the human in the control loop and use predictive
models to improve the response of the robot. Other research projects have also presented sim-
ilar approaches [80], [81]. Although the approaches control techniques and performance are
different, the systems functionality are similar.

2.6.3 Proactive Approaches

Mainprice and Berenson [82] used workspace occupancy predictions based on an articulated
motion library for the human. On the basis of the anticipated human task, the robot could plan its
trajectory to solve its task. The approach relies on predefined human tasks and proper detection
and selection of these tasks. The proposed system led to an efficient interaction between the
human operator and the robot.

Kwon and Suh [83], [84] have presented a Bayesian network-based proactive human-robot
interaction. The system use temporal and causal information to generate preparative actions to
reduce the waiting time for the operator in a cooperative assembly task. The system demon-
strated a significant reduction in task execution times, however, the approach were never con-
cerned with safety.

A control framework proposed by Sisbot et al. [85]–[87] included a Human Aware Motion
Planner for mobile robots. This component planed a robots path to equalize the cognitive load
for the human and the robot. The system computed a point of transfer in a hand of scenario by
evaluating safety visibility and human arm comfort.

The effects of working with a robot making anticipatory decisions in a HRC was studied by
Hoffman and Breazeal [88]. The study demonstrated the importance of the robots behavior and
reaction to the humans progression.

A study on human-aware motion planning demonstrated a system that planned the robots
path on the basis of predictions about the humans next action [89]–[91]. The human’s perfor-
mance satisfaction and perceived safety were evaluated, and found to be increased using the
proposed system.

Schrempf er al. [92] proposed a system that included uncertainties in the humans intentions
when selecting an appropriate robot task in response. Two modules was used to realize the
consept, an intention recognizer and a planner. When there was a high uncertainty in the humans
intention, the system opted for proactive execution of tasks rather than idling.

2.6.4 Summary

Several well functioning approaches to task execution of different kinds exits in research. Both
reactive and proactive systems are well represented in the literature. The systems are predom-
inantly at a laboratory level, however showing very promising results. Although many of the
approaches to proactive task executions may have a naturally positive effect on the safety issue
when working properly, the system is not directly concerned with safety and would be unable
to be affected by the safety situation if needed. Light weight robots that are safe by design
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are predominantly used in the presented approaches to task related approaches to HRC. Due to
extensive research in this field, there is no direct connection to this in the problem statements.
However, The robot should be able to maintain its productivity to as great extent as possible,
while being safe.

2.7 Approaches Using Mobile Robots

2.7.1 Introduction

The focus in this research is on industrial robots, nevertheless several research projects inves-
tigate related challenges with mobile robots. Some of these approaches might produce insight
and ideas adaptable for industrial robots.

2.7.2 Approaches using Mobile Robots

Meisner et al. [93] proposed an algorithm that utilized biofeedback from the operator to design
human-friendly robot paths for mobile robots. The intention was to reduce stress in HRC by
planning paths with a minimum distance to the operators. The strategy resembles the obstacle
avoidance trajectory planning with industrial robots, however with biofeedback to measure the
effect on the human.

An approach to path planning that computes the maximum velocity profile over a trajectory
for a mobile robot have been presented [94]. The system use environmental information and
robot dynamics to determine the profile. The result is a system where the mobile robot will
e.g. slow down as it is passing a doorway, or plan its path further away from the doorway to
keep a higher speed. This strategy is clearly adaptable to industrial robots in a system where
the industrial robot plans its speed and path on the basis of where it is likely that the human
operator will be.

A study aiming to give mobile robots the ability to find suitable locations for waiting was
presented by Kitade et al. [95]. The system used a library of pedestrian trajectories and dis-
covered suitable locations to wait not to disturb any humans. The ability detect areas with
low human activity could be an interesting contribution in industrial robots as well to avoid
disturbing the human operator.

A similar approach used predictive navigation by understanding human motion patterns
[96]. By analyzing pedestrian trajectories, the system could select an appropriate action if a
human was detected in its path. E.g., depending on where in the world you are located, people
tend to go to either the left or the right when walking towards each other to avoid collision. A
robot should have a similar behavior so that it can meet the humans expectations. Similar inves-
tigations could be conducted for industrial robots, and appropriate reactions could be selected
if the robot have several options to avoid collision with the human.
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2.7.3 Summary

Research on mobile robots have produced numerous interesting results. Even though the sys-
tems themselves might not be directly applicable to industrial robots, some of the basic ideas
and strategies can be adapted. Path planning in close proximity of the human should include
information also on which areas are frequently visited by the human, not only where a human
is detected at this moment. The velocity throughout the path can also be manipulated to achieve
safer operation in areas frequently visited by humans.

2.8 Problem Statements

As shown, there is a great deal of research going on in the HRC field. Many of which have
produced very interesting results, however, there are many challenges yet to be solved. What
is also clear is that no single strategy will realize proper HRC alone, a complex system with
several modules would together make up an eventual HRC system. On the basis of this, a list
of problem statements (PS) have been formulated in no particular order. The statements are
criteria to be considered when developing a new approach to safe and productive HRC. The
goal of this thesis is thus to fulfill the listed statements.

List of problem statements:

PS1: The developed system should act proactive against dangers. Today’s safety systems
moves the robot away if it is in a conflict with the human to avoid a collision. The devel-
oped system should avoid human-robot conflicts, thus acting as a new layer of safety.

PS2: The developed system should be able to solve the necessary tasks to maintain its produc-
tivity. The system should be designed to be independent of task and robotic hardware.
Further, the developed system should have an awareness of what the human operator
expects of it.

PS3: The developed system should be designed to improve the effect the collaboration has on
the human operator. The developed system should reduce the workload for the human
and have a low rate of false alarms. Further, it should inherit some human-like attributes
to build trust.

The statements is a refinement of the problem formulation and will be used throughout this
thesis. The first statement, PS1, is formulated on the basis of the literature review in Section
2.5 on safety related approaches to HRC. It was revealed that the the approach to safety in HRC
have changed very little over the past decades, and a proactive approach was not to be found.
As human being’s behavior toward danger is proactive, we think before we act, it is expected
that the robot also can benefit from this behavior. Secondly, today the safety strategies have
two basic levels. The first level is to stop the robot if in contact with the human operator and
the second level is to move the robot away if in conflict with a human to avoid contact. The
proactive layer would be a third level who’s goal is to avoid human-robot conflicts. Also related
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to Asimov’s first law of robotics where it is stated that a robot cannot let a human come to harm
through inaction. In other words, the robot should actively seek to keep the human safe, not just
passively react if it is about to injure one.

The second PS concerns the productivity of the robot. While not injuring the human has
the highest priority, if the productivity has no priority, it would be the safest to shut down the
robot. Without productivity, the robot is meaningless. Therefore, while being a safety system,
it should keep up the productivity to as great extend as possible. Therefore, as pointed out
in Section 2.2, the robot should be aware of what the human expects of it. This awareness
may allow it to solve the necessary tasks while being safe. Lastly, the proposed system should
be designed independently of robotic hardware or task. The system should be designed in a
way that that makes it applicable both for heavy-duty robots as well as robots that are safe by
design. This way, resulting system may also be applicable to mobile robots, service robots and
other branches of robotics research. The system should also be developed for a specific task or
manufacturing process. Although the system might not be as efficient for all kinds of tasks, the
developments should be carried out with this in mind.

Lastly, PS3 states that the developed system should be designed to improve the effects the
collaboration has on the human operator. This is closely related to the findings in Section 2.3
about trust in automation and human-robot teams. The importance of devoting attention to
this aspect of the collaboration is clear as the human is as great a part of the collaboration
of the robot. If the human operator is not comfortable with working with the robot, it is not
beneficial for the collaboration. There is not one single solution to build trust in automation,
however, it has been shown that the trust is closely related to interpersonal trust and several
studies have shown a positive effect when implementing human-like attributes in the robot. In
the development of the system, it should be investigated whether or not there are some human
behavior that can be adapted to the new approach. In generality, the developed system should
reduce the workload of the human operator. Lastly, the effect of a system that has a high rate
of false alarms is clearly negative. The proactiveness should be exploited to investigate if it can
have a positive effect on the rate of false alarms.

Moreover, in many other approaches the human’s behavior is governed by strict guidance.
The tasks are stylized and broken down into distinct components and are often overly articu-
lated. There is a great uncertainty in how humans solve tasks. This pose a challenge in HRC
which to some extent have been ignored in other task related approaches to HRC. This chal-
lenge can no longer be ignored and the system should in this research be tested without stylizing
the human behavior. Therefore, the human operator should be given very open instructions in
the experiments. The instructions should allow the human to choose how to solve the task, and
even vary how the task is solved throughout operation. Realizing safe and productive HRC
under these conditions poses an immense challenge for the robotic co-worker, while being an
important barrier to breach.



Chapter 3

Situation Awareness and Risk Analysis in
safe HRC

3.1 Introduction

It is evident that the safety of a HRC system is crucial, and that incorrect or inadequate operation
has decidedly negative effects on the human operator’s working capabilities. During the litera-
ture review, it was found that the system should have human-like attributes, in correspondence
with PS3 from Section 2.8. Analyzing today’s reactive approaches to safety as a human attribute
would simply be the reflex of pulling one’s arm away from a collision. What is lacking is the de-
cision not to move the arm into the area where a collision might occur in the first place. In other
words, there is no decision involved in advance. If a robotic system is to be proactive against
dangers and in correspondence with PS1, a decision making element should be implemented.
Therefore, in this chapter the decision making mechanisms of the human will be discussed.
The human being’s risk perception is identified as the most important influence on the decision
maker regarding safety. Current research and approaches to safe HRC will be discussed in light
of the presented decision making model and the risk analysis framework. A novel approach to
safe HRC is then presented and a model based on the decision making mechanisms in human
beings is then proposed to realize the novel approach. How this model corresponds with the
statements from the literature review summary in Section 2.8 is then briefly discussed.

3.2 Dynamic decision making in humans

The robot is in the literature more and more frequently expected to behave like a human to
gain a HRC with equal trust and responsibility. Knowledge and literature about human-human
teams are often applied to human-robot teams. Nikolaidis et al. [22] studied the effects of
human-robot cross training, a human-human team tool where every member of the team learns
the other members’ tasks to better understand their own. The importance of trust in automation
has been established and been revealed to be comparable to a human-human trust relationship
[27]. One important factor in human-human relationships is the ability to predict each other’s
actions. People that behave unexpectedly, and often change their mind in the middle of an action
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may be hard to trust and be comfortable around. This has led to multiple studies to mimic
human behavior in HRC, a strategy to gain the human operator’s trust [20], [33], [97]. The
reactive obstacle avoidance approach to safe HRC may also be described as a human attribute
as we would also retract our arm or automatically move out of the way if necessary to avoid a
collision with another human. What becomes apparent is that no single safety feature or task
related feature will provide a truly autonomous HRC. Humans’ ability to incorporate safety
issues in their planning is vital in combination with the quick responses to sudden dangers.

Studying the available literature and current research on HRC, it becomes clear that safety
strategies and task related strategies are almost exclusively separated. There are approaches that
manipulates the robot with respect to safety, and others with respect to task related decisions.
Lightweight robots are used in most HRC task related strategies, thus avoiding the safety chal-
lenge. Many safety strategies rely on reactive actions to avoid danger and are not concerned
with task related challenges. Purely reactive safety systems will not alone provide the most
optimal actions by the robot with respect to all aspects of the collaboration. The same basic
strategy to safe HRC is applied in most research today, keep a minimum distance between the
human and the robot. However, when studying the human’s decision making mechanisms it be-
comes clear that just being safe at a given moment is not enough to be productive. The human’s
ability to make safe plans, both with regards to themselves but also related to others make them
responsible decision makers, not just safe. A robotic system that shares these abilities to make
responsible plans to keep the human from harms way should be further investigated.

One of the most fundamental attributes of a human being with respect to safety is the ability
to judge risk [98]. Different people accept different levels of risk in their daily routines at work
and at home. All day, in every situation, there exists a risk. Even in a simple activity such
as crossing the road, the frequency and speed of the cars, the width of the road, and so on is
observed. The person that want to cross the road use this data and compare them with his/her
physical attributes, experience and how urgent or important it is to cross the road. The data goes
through numerous psychological and cognitive processes and tells the person whether to cross
the road or not. If the parameters tells the person to decide not cross the road, he/she might walk
along the road to search for a change in some of the parameters. Along the road, authorities
may have implemented measures such as traffic lights or zebra stripes to create safer crossings.
This is all based on a risk analysis and the level of risk that the person is willing to accept.

Experience can tell us many things, maybe we are able to predict how many cars there will
be on the road on the basis of the time of day. We know some roads are more busy during rush
hour, and we go directly to a place where we know there is a zebra crossing, even though it might
be detour. If we get to a road we identify as a highway, we might be more reluctant to cross,
even though we cannot see any cars at the moment. The importance or urgency of crossing the
road will affect the level of risk we are willing to accept. The accepted risk level might be very
low if we are out strolling or walking the dog, we might not even consider crossing without a
zebra crossing. If there is a slightly more urgent situation, such as being late for a meeting, we
are willing to accept a slightly higher risk, and we start looking for a place to cross the road.

This risk perception enables the human to make decisions regarding safety, from a compre-
hensive understanding of the situation and predictions about the future status of the situation.
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The mechanisms behind human’s decision making with respect to safety is remarkable and is
greatly influenced by the human’s situation awareness.

3.2.1 Situation Awareness

In psychology, humans’ comprehensive understanding of a situation is referred to as situation
awareness (SA), and it is often discussed as a key element in dynamic decision making for
humans. Many definitions of SA exist, however, that of Endsley [99] is frequently used. SA is
there defined as: "the perception of elements in the environment within a volume of time and
space, the comprehension of their meaning, and the projection of their status in the near future".
Three levels of SA are then identified and placed in the context of decision making as shown in
Figure 3.1.

Decision
Performance
of Action

Level 1:
Perception of
Elements in

Current Situation

Level 2:
Comprehension of
Current Situation

Level 3:
Projection of
Future Status

Situation Awareness

State of the
Environment

Feedback

Individual Factors

Information Processing
Mechanisms

Long Term
Memory Storage

Automaticity

Operator
Information

Goals &
Objectives

Task/System Factors

• System capabilities

• Interface Design

• Stress & Workload

• Complexity

• Automation

Figure 3.1: Model of situation awareness in dynamic decision making [99].

The model describes several factors affecting the decision making process. The main deci-
sion loop, including the SA element, is seen in the middle. Level 1 SA includes the perception
of elements in a situation. An example with an air traffic controller will be used to better explain
the different levels. An air traffic controller can with Level 1 SA observe multiple planes’ cur-
rent position and velocity. At Level 2 SA, new meaning is interpreted from these observations,
such as the separation of the planes, and whether the planes are where they are expected to be
at this time, etc. The highest level of SA, Level 3, requires some form of predictions about the
status of the system in the future. Such as, where the planes will be at a given time in the future,
will they collide at some point with their current trajectories. This perception, comprehension
and projection highly influence our decision. A faulty outcome of the SA may result in an in-
appropriate decision later. Therefore, a high level of SA is vital in decision making. SA it-self
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is highly temporal and is not acquired instantaneously, but rather gained over time. One has to
observe the changing situation to be able to reach Level 3 SA.

Further, an understanding about goals and objectives is also an essential element that influ-
ences the decision. The goals and objectives includes e.g. descriptions of a desired status of the
system and are compared to the information from our SA. For the air traffic controller, the goals
could be a minimum separation of planes or to avoid collisions. The purpose behind these two
goals might be the same, to avoid planes from colliding, however, the level of SA will affect
the decision and thus the effect of those goals. The effects of decisions made with Level 1 SA,
Level 2 SA or Level 3 SA is shown in Figure 3.2. If the air traffic controller has only reached
Level 2, a decision to take action and alter a plane’s course, will only come when a separation
that is too small is observed. This might result in a sudden change of course for one or both
of the planes. If the goal was to avoid collision, simply comprehending the current situation
might not be enough. This comprehension will only be able to see a collision that is already
occurring. As a collision can be defined as a situation where the separation distance is 0, every
separation above 0 will be regarded as acceptable and collisions become difficult to avoid. If
the air traffic controller has a Level 3 SA, the outcome of the decisions might look different.
The air traffic controller is now able to predict the status of the planes in the future, using their
position, velocity vector, and knowledge about physics. If two planes are far apart now, but
with their current course they will be within the minimum separation distance or collide in the
future, the air traffic controller can earlier have them alter their course. Strictly speaking, both
the cases with Level 2 SA and Level 3 SA are safe. However, it is apparent that the situation
with Level 3 SA information is preferable. Being safe, is simply put, not enough, and the more
responsible paths to the right in Figure 3.2 demonstrates for the pilots and passengers that the
air traffic controller as the decision maker acts responsibly, and is trustworthy.

The event of two planes occupying space with too little separation is often referred to as an
almost-accident, and must also be avoided. However, as illustrated with the air traffic controller,
decisions made based on Level 3 SA result in smoother and safer flights. On the other hand, it
is important to note that the Level 1 and Level 2 information is also vital. If for some reason the
predictions at Level 3 are not correct, or the situation changes, the air traffic controller should
take action if the two planes have too little separation.

Individual Factors will highly influence a human’s ability to achieve a high level of SA. The
human’s attention level, experience and training lay a foundation for one’s understanding and
ability to perceive and comprehend the elements in a situation. Individual memory capabilities
and cognitive functions highly affect the SA. A person who is forgetful will not be able to
provide the same predictions of the future status as one that remembers well. Individuals have
different skills when it comes to finding connections and comprehend different elements. Some
might see a connection where others do not see any connection. All of these individual factors
are highly influential in a person’s ability to achieve SA.

Task/System Factors are factors that influence a human’s ability to achieve SA. A complete
list of these factors has yet to be determined, while some factors are apparent. The system’s
design and interface design are two factors which are relevant in a technological aspect. How
a user interface is designed and how information is presented in that interface influences the
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Figure 3.2: Resulting airplane trajectories with a goal of minimum separation based actions
taken with with Level 1 SA (a) Level 2 SA (b) and Level 3 SA (c) information available.

human’s ability to achieve a high level of SA. A complicated user interface that displays all
available information at all times will not allow the operator to quickly gain a high level of SA,
unlike a system that autonomously selects and presents only the necessary information based
on the current situation.

3.2.2 Risk Analysis

As previously discussed, one of the fundamental attributes of human beings with respect to
safety is risk perception. This has been modeled and adapted to industrial applications, and is
now one of the most important tools when designing a safety system.

The goal of any safety strategy is essentially to reduce the risk. In this research, the definition
of risk formulated by NORSOK [100]. In NORSOK Z-013N, risk is defined as a combination
of the probability of an event and the consequence of the event. Further, a risk analysis is the
process of using available information to identify possible accidents and estimate the risk. This
definition is similar in most related standards. An overview of related components in safety and
risk control is shown in Figure 3.3. A risk analysis is used to process the available information
and estimate the risk via a consequence analysis and a likelihood analysis. The resulting risk
picture is compared to a set of given risk criteria. The result of the evaluation determines
whether or not more risk reducing measures (RRMs) must be implemented. The risk analysis
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is rerun with the updated system definition if more RRMs are implemented. The iterations stop
and the system design is accepted when all risk acceptance criteria are met.

Risk analysis planning

System definition

Hazard identification

Likelihood
analysis

Consequence
analysis

Risk picture

Risk
evaluation

Further risk
reducing measures

Risk
acceptance criteria

Risk
reducing measures

Figure 3.3: Risk estimates, assessment and analysis [100]

Understanding this framework is beneficial to understanding the mechanisms that affect
situations with respect to safety. These mechanisms are important to understand when designing
a proper safety system. The selection of RRMs are crucial to gain the desired effect and not to
expose the system to other consequences. The most relevant components will now be discussed
on the basis of the NORSOK Z-013N standard.

Hazard Identification

Identifying hazards is important to be able to analyzing risk. Hazards are unwanted events that
result in consequences with a negative effect on the situation. Analyzing the road crossing
example, the most apparent hazard is being hit by a car. Another could be tripping while
crossing the road, or dropping what you are carrying.
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Likelihood Analysis

The likelihood analysis involves estimating the probability that an unwanted event occurs. This
will depend on several variables, and when involving humans, it is very challenging to properly
estimate the likelihood.

When crossing the road there is a greater likelihood of being hit if the road is wide and busy,
compared to a quiet narrow street. There might be a higher likelihood to trip if it is dark on a
road full of potholes, compared to a smooth road at daytime. Whether you are stressed and are
running, or calm and walking will also affect this likelihood. The type of shoes you are wearing,
the weather conditions, your concentration level, and many other variables affect the likelihood
of you tripping.

Consequence Analysis

The consequence is a complex entity itself. The consequences of an event can impact several
aspects of a situation. It is often distinguished between personnel, environmental, and asset
consequences. The personnel consequences include injuries, physical or psychological, or fa-
talities. Environmental consequences are negative changes in the environment from emission,
waste, resource depletion and so forth. The consequences related to assets include material
damage, loss of production, devaluation from bad reputation etc. The severity of a consequence
differs greatly, and one is often forced to choose between consequences. Personal injuries and
fatalities are for instance often considered more severe than material damage. Estimating the
severity of each consequence is an important part of the analysis

The consequences are often very complex to analyze, and one consequence often alters the
likelihood for a whole different set of events. If you trip while crossing the road, this would
significantly increase the likelihood of being hit by a car. Similarly if you drop something in
the middle of the road, and are forced to venture out in the road again. Being hit by a car opens
a whole new set of possible consequences, a severe injury might affect your work and living
situation. Therefore, consequences are difficult to quantify and a discrete set of consequence
severities are often used in practical implementations.

Risk evaluation

When the risk picture is ready, it is possible to evaluate it by comparing it to the risk acceptance
criteria. If the risk picture does not comply with the risk acceptance criteria, more RRMs must
be implemented.

It is difficult to quantify both the risk and the acceptance criteria in the road crossing-
example. The acceptance criteria will also differ greatly from person to person. Some might
take their chance and attempt to cross a road with heavy traffic, while others don’t cross even if
they cannot see any cars. However, if the risk is within the acceptance criteria, the activity can
be started.
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What is apparent is that there is always a risk present, it might be ever so low, however,
always there. The likelihood of an unwanted event may have been reduced significantly, while
eliminating it is in most cases practically impossible.

Risk Reducing Measures

Risk reducing measures are the actions taken to reduce the risk. From the definition of risk,
it can be said that an RRM either can be designed to reduce the likelihood of an event, or the
consequence of that event.

The zebra stripes crossing the roads alert drivers that they must be aware of pedestrians
attempting to cross the road. This will effectively reduce the likelihood of the pedestrian being
hit by the car. Modern cars are designed to absorb energy in an impact and to avoid pedestrians
from falling under the car if hit. Some researchers have presented pedestrian airbags and other
pedestrian protection systems [101] [102]. These measures reduce the consequence of being hit,
and the human might not suffer from as severe injuries. Some RRMs affects both the likelihood,
and the consequence. A speed bumb will effectively reduce a car’s speed, reducing the potential
impact force, and increasing the time the driver and the pedestrian has to react. This measure
effectively reduces both the likelihood and the consequence of the collision.

3.3 Risk Reducing Measures in Human-Robot Collaboration

As previously discussed, to reduce the risk, one can implement RRMs. In other words, a safety
strategy involves a number of RRMs. In the context of HRC, four groups of RMMs can be iden-
tified (Table 3.1). These groups are either focused on the human or on the robot, and either on
reducing the likelihood or the consequence of an accident. RRMs aimed at the human include
fences, and light- and sound signals. These actions will remind the human of the danger associ-
ated with approaching a moving robot, thus making it less likely that the human would approach
the robot. This is the most commonly used RRM today [3]. Another common approach is aimed
at the robots. These include designing the robots to be less harmful, e.g., Rethink Robotics™’s
Baxter1 or the KUKA lightweight robot2. The system provided by MRK-systeme3 ensures that
if an accident occurs, it will have very little consequence from a safety perspective. Lightweight
and slow robots will reduce the consequences of an accident. Another RRM is to implement
control algorithms to automatically avoid a human, as in the research of Lacevic et al. [59],
Petric et al. [58] and Kulic et al. [55]. These avoidance algorithms reduce the likelihood of an
accident. The last RRM approach is probably never used in robotics. An RRM focused on the
human to reduce the consequences of an accident would imply equipping the human with a hel-
met, armor, and other protective gear. Although a common approach in many other activities, it
is extremely rare in robotics.

1Rethink Robotics™, www.rethinkrobotics.com (Accessed 11/10/2015)
2KUKA lightweight robot, www.kuka-labs.com (accessed 11/10/2015)
3MRK-systeme GMBH, www.mrk-systeme.de (Accessed 11/10/2015)
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Table 3.1: Risk Reducing Measures for Robotic Systems

Reduce Likelihood Reduce Consequence

Human
Focused

Fences and barriers
Light and sound signals

Protective gear e.g.
Helmet and armor

Robot
Focused

Obstacle avoidance systems
Proximity based emergency stop

Lightweight and slow robots
Contact detection

A safety system will often be a combination of several RRMs. These are normally struc-
tured to be sequential based on which of the aforementioned consequences have the highest
priority. With respect to only productivity and personal injury, it is obvious that preventing
personal injuries has a higher priority. Robot-focused consequence reducing RRMs will effec-
tively prevent personal injury but might cause an all new consequence: reduced productivity.
This RRM should thus only be chosen when the type of production allows it.

More importantly, the RRMs can be seen in the light of the type of information it uses based
on the levels of SA. As discussed in Section 3.2.1, the different levels of SA will influence
the decision maker differently which will results in different types of actions. Level 1 SA
provides information purely as perception of elements. RRMs in HRC that depend only on
directly perceptible elements include emergency stop buttons, contact based emergency stop,
door switches, light curtains and so forth as shown in Table 3.2. This equipment outputs a binary
signal and the system use this signal directly to choose the appropriate action. However, it relies
on a proper set of rules predefined by the human operator. E.g., the level 1 safety systems use
simple rules "if E-stop=true then stop all motors". The consequence of this situation is that the
production is stopped. Personal injury may be avoided, but on the other hand loss of production
even for a few minutes is a dramatic consequence for most companies.

If the system is able to handle Level 2 SA information, new information can be derived from
the perceived elements. The robot and the human operator’s position can be combined to give
a separation distance. A separation monitoring system can be implemented as an impedance
control, using this separation distance information. A situation where a Level 2 SA action
is called for now only augments the robot’s task, or suspends it until the situation improves.
Personal injury is avoided, however, the robot is operating close to the human, and the human
operator’s focus and concentration may have been compromised. The human operator is now
alert and may be worried about the robot’s next movement. This consequence is defined as a
human-robot conflict, because the two are in conflict about whom should work in the given area
at a given time. Similarly to with Level 1 SA, Level 2 SA is dependent on properly defined
rules by the human. Rules such as "if human-robot separation<minimum separation then move
away from human" is needed. A Level 2 SA safety system would not replace the Level 1 SA
system, however be a layer of protection before Level 1 SA safety systems are needed. Without
this level, one would have production stops far more frequent. The Level 2 SA thus reduces the
number of emergency stops needed to provide a safe HRC system.
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Enhancing the system’s SA to level 3 opens up new possibilities to a safe and productive
collaboration. With Level 3 SA comes the possibility to predict the future situation of the
system. Combining this with the robot’s tasks allows the system to plan its tasks from a safety
perspective. The system becomes a proactive safety system because it can respond to a possible
dangerous situation before it happens. Either by selecting tasks based on their safety profile, or
by augmenting its path before it reaches a conflict with the human operator. As opposed to the
importance of properly set rules for the Level 1 and Level 2 SA systems, Level 3 SA system
could rely more on defined goals that are shared with the human operator such as productivity
rates, and safety goals such as risk acceptance criteria. A perfectly functioning Level 3 SA
system would not have any consequences, however, most situations are not perfect. Therefore,
similarly to Level 2 SA, Level 3 SA is another layer of protection before Level 2 SA is needed.
The goal of the Level 3 SA system is to reduce the number of human-robot conflicts. This would
even further reduce the likelihood that an emergency stop is needed. Furthermore, reducing the
number of human robot conflicts may allow the human operator to focus more on his/her task,
rather than what the robot is doing.

Table 3.2 lists the desired priority of some RRMs. A proactive system can maintain the
productivity to a greater extent than a reactive system. While an automatic emergency stop will
reduce productivity, it is an important RRM to ensure safe HRC.

Table 3.2: Priority for Risk Reducing Measures

Level of
SA

Risk Reducing Measure Appropriate action Consequence

Level 3 Proactive safety systems
Task selection,

proactive planning
None

Level 2
Reactive avoidance systems,

separation monitoring.
Augment task, task

Suspension
Human-robot

conflict

Level 1
Contact based emergency stop,
emergency stop-button, door

switch, light curtains
stop the robot Production stop

In a system with all of these levels implemented the lower levels SA actions would overrule
those of the higher level SA. If a task is started since the Level 3 SA system deemed it safe, it
must still stop if it the emergency stop button is pushed.

The behavior of a system utilizing Level 3 SA information would much more resemble that
of a human coworker. A human coworker would plan his/her actions based on your progression
and share the responsibility for your team’s safety with you. This approach would allow the
decision making mechanisms in the robotic system to be influenced by the safety of the human,
as opposed to obeying rules to protect the human’s safety. This novel approach to safe HRC is
introduced as Responsible Robots. This term has, to the candidate’s knowledge, not been used
previously.
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The properties of the described types of RRMs are easily related to the SA levels in the
human decision making model presented in section 3.2.1. By using the risk analysis framework
and the human decision making model, a model that utilizes Level 3 SA in the robot’s decision
making process can now be designed to realize Responsible Robots.

3.4 Risk Analysis Based model for realizing Responsible
Robots

Human’s dependency on a high level of SA in decision making has been discussed. The risk
perception has been identified as the tool human beings use to predict safety related issues in
situations. Combining these to an approach to safe HRC by raising the system’s SA to Level 3
by adapting the risk analysis model is therefore proposed. The novel model is an approach to
realize Responsible Robots, introduced in Section 3.3.

The proposed model is shown in Figure 3.4. Some of the important components from the
risk analysis model can be seen clearly, such as hazard identification and risk estimate. Other
influential components such as risk acceptance criteria can be used directly as an objective
in the Goals & Objectives-component. The risk evaluation will be included as a part of the
decision component. The relevant components will be discussed further. The Risk Estimate
component will enhance the systems SA to Level 3 due to the likelihood analysis as it holds the
necessary predictions of the future status of the system.
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Figure 3.4: Situation Aware Risk Analysis Based Human Robot Collaboration Model
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3.4.1 Decision Loop

The decision loop mainly consists of three components: SA, Decision, and Performance of
Action. While many factors influence the decision, this loop illustrates the importance of SA.
The risk estimate is now the active component at Level 3 SA as shown in Figure 3.4.

Situation Awareness

A safety system will depend on several RRMs which can be related to the different levels of SA
as previously discussed. The systems at the different layers are all important to provide a safe
and productive collaboration. The output of the SA component is thus composed of many types
of information from all the levels of SA, all of which influence the decision making component.

Level 1: Emergency stop Information that is read directly from a sensory input is in-
cluded at Level 1. This is mainly what is implemented in the industry today with sensors and
input devices like emergency stop buttons, light curtains, door switches etc. Any input where
no or very limited computation is needed makes up the safety system at Level 1 SA. This level
of SA allows for very fast reaction time since the input doesn’t need any computation. The
importance of this level of SA must not be underestimated as this is usually the last barrier
RRM in the safety system. The outcome of this level is very easily interpreted for the decision
component such as STOP=TRUE or STOP=FALSE.

Level 2: Human-robot separation RRMs that require some comprehension of the situ-
ation is included at this level. Reactive approaches that augments the robots path based on the
separation to the human is included here. The outcome of the SA at this level would be infor-
mation such as the closest point on the robot to the human, the direction towards the human and
the separation distance. The information needs some computation which puts more pressure on
its design. However, most approaches to this today operate in real-time.

Level 3: Risk Estimate The risk estimate section of the risk analysis model will be im-
plemented at this level of SA. A projection of the future status of the system is required, and
the inclusion of a likelihood analysis in the risk analysis framework provides this. The risk
estimation will consist of a likelihood analysis, a consequence analysis and a risk picture com-
ponent. The risk picture provides information on the risk associated with performing a task,
or occupying or moving in certain areas at this time or any time in the future. This data will
aid the system in making safe decisions later. As this level is depending on predictions, more
computations are needed than the other levels. Therefore, the provided information from this
level will not update as frequently, however, its nature does not require such frequent updates.

Decision

The decision component represents the point in the system where an action is selected. This is
influenced by all levels of SA, the system factors, and the process factors. The influences must
be quantified and weighted in a computerized system.
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Performance of Action

This component is used to evaluate the performance of the selected action. If the action of
starting a task is selected, it would be natural to evaluate if the human and robot were in a
conflict during the execution of the robot’s task. If the system decides to augment the robot’s
path or configuration to maintain a minimum separation to the human, it would be natural to
evaluate whether the minimum separation was maintained. The result of this evaluation can
then be used to adjust parameters in the process factors. The risk threshold to start a task can
be slightly increased if completing the task at that risk level caused a human-robot conflict.
Parameters in the obstacle avoidance approach algorithms can be modified if the minimum
separation is breached.

3.4.2 System Factors

The system factors are influences on the decision determined based on the surrounding system
and task. This include variables and information that is set prior to operation, such as dynamic
data for the robot, and positions of known obstacles in the environment.

Hazard Identification

The hazard identification component is corresponding directly to that of the risk analysis. Every
event that will have a negative effect on the situation is included. In a isolated HRC case, every
event that will harm the human is prioritized. This identification process is closely related to
the tasks the human and the robot will collaborate, or work alongside, on.

System Specifications

Predetermined data about the robot such as the robot type, weight, stiffness, max speed, control
bandwidth, and other data necessary to perform the computations and make the decision is
provided here. This will also include the work cell’s geometry, information about the production
such as the geometry and weight of the parts and necessary tooling, and any other specifications
that the system might need .

Robot Task Library

All the information needed to execute and make a decision about a task is made available here.
What information is required to make a decision can be derived from the identified hazards and
consequence analysis. This will include the robot’s trajectory of each task, information about
the sub-workspace, execution time, trajectory velocity and tool type and any other information
needed for the robot to execute one of its tasks.

3.4.3 Process Factors

The process factor components in this model includes all the parts of the system that dynami-
cally changes during operation.



page 32 of 119 CHAPTER 3. SITUATION AWARENESS AND RISK ANALYSIS

Goals and Objectives

The goals of the robotic system is easily associated with Asimov’s three laws of robotics. The
first law says not to harm humans and can be more or less directly used as a goal. The second
law states that the robot must obey the orders given by the humans. In other words, it must pro-
duce what is ordered by the human. A robotic system is meaningless without any productivity.
Further, a prioritization is given by stating that the second law is not valid if in conflict with the
first law.

With the risk analysis based approach to Level 3 SA, the most apparent objective relates
to the risk evaluation in the risk analysis model in Figure 3.3. An important objective would
thus be not to exceed a certain risk threshold. No action with a higher estimated risk than the
threshold should be decided upon.

Objectives related to productivity would imply counters for the different robot tasks. This
could also be related to observations of the human, the robot would be required to perform tasks
according to the human’s progression.

Memory

Every observation of the environment is stored in the memory. Unlike a human, a computerized
system can keep detailed temporal and spatial data of the human’s movements over a very
long time span. Information about the task progression and other information needed by the
other components are also stored by the memory component. The resulting parameters from
the Computations/Learning component is also stored here and made available for the other
components.

Computation/Learning

All analysis and interpretation of the observed data is processed in this component. How, and to
what it is processed is highly dependent on the design of the other components. Computation of
the currently observed data is required for the Level 2 SA comprehension, while the history of
observed data available in memory is used in the computation required to reach Level 3 SA. The
learning component will also execute the parameter adjustments on the basis of the evaluation
from the performance of action-component. This component would mostly interact by reading
and writing information to the memory component

Operator Information

If multiple operators are working with the robot, it might be useful to be able to distinguish
them. Information that the system has acquired or might need about the operator is made
available for the system in this component. At an enhanced stage, even bio-feedback from
the operators may be stored, and the robot can adjust its behavior accordingly. A number of
stress indicators might be used and the robot can adjust its behavior to reduce the stress of each
individual human operator differently.
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3.5 Discussion

The proposed model has many features that correspond well with the statements from Section
2.8. The robot will be enabled with an awareness of the risk related to its current pose, and
planned path. The risk associated with executing the different tasks in the Robot Task Library
is also possible to calculate. This opens up a series of new opportunities in HRC that is not
depending on the type of robotic hardware (PS2).

Firstly, the system can be used in safe scheduling of the robot’s task. Based on the risk
perception, the system is able to determine when to execute the different tasks, and when to
wait for the situation to improve based on risk acceptance criteria. In this way, the system is
proactive in correspondence with PS1.

Secondly, in some cases the scheduler might not find a time to execute a task that satisfies
the risk acceptance criteria. However, the productivity must be maintained, so at some point
the task must be executed. If the situation is too risky to start the given task, the system can
augment it by e.g. reducing the velocity of the robot. This will reduce the consequence of
an impact, and the risk might be acceptable. If the risk is still too high it can make sound or
light signals, give vibrotacktile feedback or in other ways communicate the risk to the operator
[103]. Vibrotactile feedback is researched to help in teleoperations, and show a promising effect
to deliver important information to the operator [104], [105]. This is in correspondence with
PS3. Furthermore, instead of alerting the human about every single action the robot is taking, it
can now decide when the human needs to be alerted. This allow the human to maintain focus,
and be more alert when a signal is given. This will reduce the "cry wolf" effect of always giving
signals about actions, and the human operator might respect the signal more. By being more
selective of when an alarm is given, the system can correspond to PS3. Be reducing the total
number of alarms given, it is natural to assume the number of false alarms will also be reduced.

Moreover, the estimated risk can be expressed as a vector field and used as a basis for a
potential field or impedance control approach. If used in combination with redundant robots,
the system could continuously search for the pose with the lowest possible risk [106]. This can
be achieved in trajectory planning and real time velocity profiling. This approach would be a
reactive response to proactive data, and can further enhance the safety of the human operator.

Furthermore, the goals and objectives component allows the system to have knowledge
about what the human operator is expecting of it and how much flexibility is available to meet
these expectations. This awareness of the human’s expectations of it is in correspondence with
PS2.

Lastly, the risk analysis could also help in analyzing the effects of other implemented RRMs
[106]. The system could be run before and after implementation of RRMs or other design
changes to the work cell to quantify the effect of them from a safety perspective.

Most importantly, by being proactive, the approach aims to reduce the number of human-
robot conflicts by acquiring knowledge about them at an early stage. The research of Hoffman et
al. [27] show how important trust in automation is, and how trust in machines can be related to
interpersonal trust as stated in PS3. An important feature to maintain trust is to avoid unexpected
behavior by the robot. Avoiding the situations where evasive maneuvers are necessary could
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help enhance this important trust since the model is developed on the basis of human’s decision
making process and risk perception and thus have human-like attributes.

3.6 Summary

The importance of situation awareness in the human’s decision making process has been dis-
cussed in this chapter. Further, the three levels of situation awareness have been presented and
related to current research and available safety systems. It was found that a proper safety system
exploiting Level 3 SA was missing. Responsible Robots was introduced as a term to describe
robotic systems with a Level 3 SA. These robots will make decisions that keep the human safe
while being productive. Risk perception was identified as a means of enhancing the SA to Level
3 as the likelihood analysis give a projection of the future status of the system. The industrial
standard risk framework was then presented and current safety systems was discussed in the
light of the risk framework. A novel model to realize Responsible Robots was then presented.
The model adapts the industrialized risk analysis framework into the human decision making
model, thus enhancing the robotic systems SA to Level 3. The important components in this
model was briefly introduced and discussed. The final section of the chapter then discussed
how the proposed model corresponds to the thesis statements from Section 2.8 and some of the
possibilities that comes with the implemented risk perception.



Chapter 4

Development of Model for Realizing
Responsible Robots

4.1 Introduction

In the previous chapter, Responsible Robots was introduced as robots whose decisions are in-
fluenced by a concern for human safety. A novel model was introduced to realize Responsible
Robots based on human decision making mechanisms as shown in Figure 4.1. In this chapter,
the most important components in this model will be presented. This includes the Hazard Iden-
tification, Perception of Elements and Memory, Computations/Learning, Risk Estimate, Goals
and Objectives, Robot Task Library and the Decision components. The likelihood analysis that
is a part of the Risk Estimate component is the vital part that enhances the systems SA to Level
3. The other part of the Risk Estimate is the consequence analysis. While this part is equally
important to realize an accurate risk estimate, it is far more researched than the likelihood anal-
ysis. While many researchers do not use the term "consequence analysis" directly, their results
are close to directly applicable in the consequence analysis. This will be further discussed in
Section 4.5.1. However, a likelihood analysis with this purpose is lacking in the literature,
while also being the main component in realizing level 3 SA. Therefore, more attention has
been directed at the likelihood analysis and its supporting components than the consequence
analysis.

4.2 Identified Hazards

The Identified Hazards component holds information on all the possible hazards the system
needs to be aware of. Although possible hazards in HRC are numerous, hazards causing per-
sonal injury is most often considered. Further, loss of production is an important situation to
avoid. Other consequences like material damage are not considered part of the HRC problem
in this research, rather general control and cell design. The reputation and other secondary con-
sequences are also disregarded in the HRC safety problem in this research. These non-personal
hazards may present a greater importance at a later stage in the development, however, hazards
leading to personal injuries is the only focus of this research.

35
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Figure 4.1: Situation Aware Risk Analysis Based Human Robot Collaboration Model for real-
izing Responsible Robots

The hazards related to human injury are numerous and depending on different types of colli-
sions, clamping and stabbing, and depending on the tool. Haddadin et al. identified three types
of impacts: unconstrained, partially constrained and constrained impact as shown in Figure 4.2
[107], [108]. Further, clamping and secondary impacts were also identified as possible hazards.
A secondary impact occurs if the operator e.g. loses balance after an impact and falls. The
fall will cause a secondary impact which might be more severe than the human-robot impact.
Hazards related to operating with different types of sharp tools was also investigated [44].

Figure 4.2: The five different contact scenarios [108].

What becomes clear is the vast number of possible hazards in a human robot collaboration.
However, there is one obvious common denominator, the contact between the human and the



4.3. PERCEPTION OF ELEMENTS AND MEMORY page 37 of 119

robot. All hazards can be distilled down to a one simple hazard where the human and the robot
attempts to occupy the same space at the same time.

Therefore, the input to the Identified Hazards-component is given by the human integrator
prior to operation and the output are the unwanted events as seen in Figure 4.3. The design
of other components will highly depend on these unwanted events. In reality these unwanted
events are naturally embedded in the design of the SA-component.

Identified Hazards

Input:

• Information predefined
by human integrator

Output:

• Unwanted events

Figure 4.3: The input and output of the Identified Hazards component.

4.3 Perception of Elements and Memory

The purpose of the Memory component is to serve as a storage unit for all the data needed by
the other components. This includes, but not limited to, the temporal and spatial data of the
human operator, and the resulting parameters of the Computations/Learning component.

The design of the perception of elements component is strongly linked to the identified
hazards. Since the defined hazard is the human and robot attempting to occupying the same
space at the same time, it can be derived that the position of the human and that of the robot
must be observed. The position of the robot is found easily from the joint angles and the
kinematic properties of the robot. The robot’s position is not kept in the memory component, as
this position is determined by the system itself. The human’s position is on the other hand vital
for the predictive capabilities of the system. The human’s articulated position can be acquired
by using a 3D depth sensor. Therefore, a depth camera is used to observe the human operator
and a skeletal tracker provides several points along the skeletal structure of the human body.
Each joint is represented as a point as depicted in Figure 4.4. If more points are needed to
achieve the desired accuracy they can simply be interpolated from the observed points.

Now that the human operator’s articulated position and its time stamp is known useful in-
formation can be computed. Since the identified hazard is the human occupying the same space
as the robot, it is necessary to know the human’s spatial and temporal position. Therefore, the
workspace is divided into a cubic grid where the size of each voxel is determined by the required
resolution of operation. Detailed work by hand on a workbench would require a smaller voxel
size, while larger voxels would suffice in work where the human operator is moving around.
The spatial and temporal data is also stored in the memory component. Furthermore, the data
of interest are the times of when a human limb is visiting this specific voxel, Time of Visit
(ToV). The time registered is the time when a human limb is entering the voxel. Even though
it is occupied for a longer period of time, we just register the time the occupation starts (Figure
4.5). There is no need to register the entire occupancy as the system only needs to calculate the
probability of a visit in unoccupied voxels. If a voxel is occupied, the robot can not work there.
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Figure 4.4: The tracked points along the human body provided by the kinect v2.

The ToV is observed in the absolute time space. The observations in the relative time space is
the time since that last visit, Time Between Visits (TBV). The TBV is recorded as the time of
departure from the last occupancy, until the start of the next occupancy as shown in Figure 4.5.

cell occupied

cell unoccupied

t0 t1 t2 t3 t4 t5 t6

ToV1 ToV2 ToV3

TBV1 TBV2

t

Figure 4.5: ToV and TBV measured from a voxel being occupied and unoccupied over time.

The dataset ToV[t] contains all the observations of ToV for one voxel, while TBV[t] con-
tains the observations of TBV. For the observations in Figure 4.5, the data ToV [t1, t3, t5] and
T BV [t3 − t2, t5 − t4] can be extracted. Both of the datasets are organized in histograms; ToV(t)
and TBV(t), where t is the time interval index. The datasets are stored in the memory and
are thus available for the other components right away, however, the tracking continues, and
the datasets in the memory are continuously updated so that the other components are always
working with the most recent observations.

While there are several examples on human task recognition and classification [75], [82], a
great part of the articulated human motion is not part of a task, or delicate finger work might
be difficult to classify. Movement like scratching the head, checking the time, turning to see
what that sound was, is generally ignored. This motion is most of the time unpredictable and
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inaccurate. Moreover, a tracked limb of the human will seldom take the exact same path during
its next pass. Therefore, when a limb is tracked, the proximity factor κ is added to the appro-
priate bin in the histogram at the tracked point. At the tracked point, κ= 1. A reduced value of
κ is added to the histograms of adjacent voxels up to a maximum distance, ρ, from the tracked
point. This factor will also compensate for smaller errors in sensor data readings of limb po-
sitions. The resulting proximity factor, κ, is found by equation (4.1), where δ is the distance
from the tracked point to the adjacent voxel. In effect, this turns the skeletal point tracker into a
spherical representation of the human.

κ=
{

ρ−δ
ρ if δ≤ ρ
0 otherwise

(4.1)

The memory also holds a history of the tasks executed by the robot to keep track of its
productivity. To sum up, the inputs to the Memory component are the depth images with a
skeletal tracking of the human operator and the selected action. The outputs are the TBV[t] and
ToV[t] data sets, and the production history as depicted in Figure 4.6.

Memory

Input:

• Depth images for human tracking

• Selected action by the Decision
component

Output:

• TBV[t] data sets

• ToV[t] data sets

• Production history of the robot

Figure 4.6: The inputs and outputs of the Memory component.

4.4 Computations/Learning

The Computations/Learning component interprets the observations stored in the memory. The
component is responsible for all the calculations needed for the comprehensions for Level 2 SA
and projections for Level 3 SA. The datasets available for the Computations/Learning compo-
nents are the ToV[t] and the TBV[t] for each voxel. The information in the datasets must be
interpreted to something the likelihood analysis can use. A regression algorithm is used to fit
multipeak PDFs to each of the datasets. The parameters to the multipeak PDFs are then stored
in the memory again, and is available for the likelihood analysis in the Risk Estimate compo-
nent. The parameters are continuously improved, both with more observations and while there
is no observable human. The inputs and outputs to the Computations/Learning component is
depicted in Figure 4.7.

Computations/
Learning

Input:

• TBV[t] data set

• ToV[t] data set

Output:

• PDF parameters

Figure 4.7: The inputs and outputs of the Computations/Learning Component
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4.4.1 Regression Model

The regression algorithm will fit a multi-peak PDF to the ToV[t] and the TBV[t] datasets it
retrieves from the Memory component.

As there is an unknown number of PDFs that is needed to get the best fit to the data, this
can be said to be a variable size design space (VSDS) problem. The variable size lies in the
number of PDFs. The dataset is first fitted to a single PDF, and the fitness is calculated as the
mean square error (MSE). The algorithm is rerun, now with the available number of PDFs, g ,
increased by one, to two. The fitness of this double PDF curve is calculated and compared to
that of one PDF. If the improvement in the fitness is lower than a set threshold, ε, the algorithm
stops, and the parameters found with the single PDF is used. As long as there is a satisfying im-
provement in the fitness, the number of available PDFs are increased up to a maximum number
of PDFs, G . The outline of the algorithm can be seen in Table 4.1.

For the non linear curve fitting itself, a well known Levenberg-Marquardt algorithm (LMA)
is used [109]. The algorithm is a damped least squares method, which is considered to be
slightly more robust regarding starting parameters, than other similar approaches. This is an
important property, as the system can hardly make a qualified initial guess for every voxel.

Table 4.1: Curve Fitting

Step Action

1 Set g=1
2 Run LMA, get fi−1 = fi

3 Set g=2
4 Run LMA, get fi

5 While fi − fi−1 > ε and g <G
5.1 Set g = g +1
5.2 Set fi−1 = fi

5.3 Run LMA, get fi

Since the two datasets ToV[t] and TBV[t] have different properties, two different PDFs are
used. A Gaussian distribution, f (t ;µ,σ), is used for the ToV[t] given by (4.2)

f (t ;µ,σ) = 1

σ
p

2π
exp

(
− (t −µ)2

2σ2

)
(4.2)

where µ is the location parameter, and σ is the shape parameter. And a Weibull distribution,
g (t ;λ,k,µ), is used for the TBV[t] which is given by (4.3)

g (t ;λ,σ,µ) =
⎧⎨⎩ σ

λ

(
t−µ
λ

)(σ−1)
exp
(

t−µ
λ

)σ
x ≥ 0

0 x < 0
(4.3)

where λ is the scale parameter, σ is the shape parameter and µ is the location parameter.
The cumulative data and distributions are used since the datasets often are very chaotic and

very difficult to fit a curve to. Let the Cumulative Distribution Functions (CDFs) of g (t ;λ,σ,µ)

be g∗(t ;λ,σ,µ), and f (t ;µ,σ) be f ∗(t ;µ,σ). Further, since multiple PDFs might be used to
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fit the curve, it is still important to ensure that the C DF (t )|t=tmax = 1. A scaling multiplier, α,
is therefore introduced to each of the distributions. The sum of all scaling multipliers for the
active PDFs must be 1. The cumulative distributions are then given by

f ∗(t ;µ,σ,α) = α

2

[
1+erf

(
x −µ
σ
p

2

)]
(4.4)

g∗(t ;λ,σ,µ,α) =
{
α(1−exp

(
t−µ
λ

)σ
) x ≥ 0

0 x < 0
(4.5)

The combined distributions G(t ) and F (t ) are then given by (4.6) and (4.7)

F (t ) =∑
j

f (t ;µ j ,σ j ,α j ) where
∑

j
α j = 1 (4.6)

G(t ) =∑
i

g (t ;λi ,σi ,µi ,αi ), where
∑

i
αi = 1 (4.7)

where i and j is the number of active PDFs in the two distributions respectively. The corre-
sponding combined cumulative distributions follow naturally:

F∗(t ) =∑
j

f ∗(t ;µ j ,σ j ,α j ) where
∑

j
α j = 1 (4.8)

G∗(t ) =∑
i

g∗(t ;λi ,σi ,µi ,αi ), where
∑

i
αi = 1 (4.9)

To calculate the fitness, we use an objective function that gives us the Mean Square Error
(MSE). The MSE for the two distributions are given by (4.10) and (4.11).

MSEF = eF (t )2 = 1

tmax

tmax∑
t=0

(F∗(t )−ToV (t ))2 (4.10)

MSEG = eG (t )2 = 1

tmax

tmax∑
t=0

(G∗(t )−T BV (t ))2 (4.11)

The system will continuously search for a solution that minimizes MSEF and MSEG . And
while the tracking system will continue to add data to the memory component, and change
ToV[t] and TBV[t], the refitting algorithm will adjust F∗(t ) and G∗(t ) to fit the new data. For
some voxels, the fitted curve might not be a particularly good representation of the data. These
voxels should be excluded in the later probability estimation, pending more observations or a
better result from the regression algorithm.

4.4.2 Refitting

An important part of any forecaster is its ability to continuously learn, as more observations are
made and the datasets in the memory component grows. There are in general two reasons to
refit the MP-PDF to the dataset of a given voxel. The first being that new observations have
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been made in the given voxel, and the shape of the histogram have altered slightly. The second
being that the curve fitted during the previous execution of the algorithm did not result in a
satisfying fitness. While every voxel could benefit from being optimized again and again, it
is very computationally heavy to run every voxel at every iteration. To get the best overall
improvement of the system in a given iteration, the voxels go through a roulette wheel selection
process. The roulette wheel selection is a tool where an individual’s fitness is proportionate
with its probability of being selected. In this case its reversed, the voxels with the lowest fitness
will have the highest probability of being selected. This is done simply by negating the fitness
of the fitted curve, as shown in equation (4.12). The selection is run until the desired number of
voxels have been selected. This relearn rate should be carefully selected, not too low to avoid
saturating the process with messy datasets, or too high, as the iterations will be very slow and
many of the selected voxels might have very little room for improvement. A relearning rate of
25% was used in the later simulations.

pi = − fi∑N
j=1(− fi )

(4.12)

While voxels that have recently received new data might have a very good fitness before the
new data arrive, they’re given a priority in the selection process. The priority is given simply
by manipulating their fitness for the sake of the selection. This priority is given, rather than
simply recalculating the fitness, to give frequently visited voxels an advantage. As frequently
visited voxels are in general more likely to be occupied by a human than an infrequent one, a
good fitness in these areas is considered to be very valuable. This way of refitting also reduces
the effects from the disadvantage of the required initial guess of the LM-algorithm since the
previous solution is given as the initial guess.

4.5 Risk Estimate

The risk estimate is the means that will bring the systems SA to level 3. The risk is, as presented
in Section 3.2.2, the multiple of the likelihood of an unwanted event and the consequence of
that event. In all generality the risk can be expressed as the sum of these multiples as shown in
(4.13), where pi is the likelihood of event i and ci is the consequence of that event.

r =∑
i

pi ci (4.13)

As the likelihood is the part of the risk analysis that is responsible for the projections of
the future status of the system, it will be devoted the most attention. Firstly, however, the
consequence analysis will be presented in Section 4.5.1, followed by the likelihood analysis in
Section 4.5.2. How the risk picture for the work cell is expressed is then described in Section
4.5.3.

The input and output of the Risk Estimate component is shown in Figure 4.8. The inputs
are essentially the PDF parameters, data on the robot tasks and the objectives. The output is the
risk associated with completing each of the robot’s tasks.
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Risk Estimate

Input:

• PDF parameters

• Robot Task data

• Objectives

Output:

• The risk associated
with executing the
Robot Tasks

Figure 4.8: The inputs and outputs of the Risk Estimate Component

4.5.1 Consequence Analysis

Analyzing the consequence of an accident is a very challenging task that many have already
researched. So many factors are in play, that it is close to impossible to calculate accurately.
Simplifications are therefore necessary to gain reasonable results and many tools are available to
generalize the severity of an accident. Marvel et al. have presented an approach to characterize
hazards and their consequences in a HRC [13]. They also presented the data in Figure 4.9 which
depicts injury criteria and body models from early drafts of ISO TS 15066 [7].

Figure 4.9: Injury criteria and body models from early drafts of ISO TS 15066 [7]. Clamp-
ing/Squeezing Force (CSF), Impact Force (IMF), and Pressing Cross Section (Pressure/Surface
Pressing, PSP) limits are provided for several regions of the body (a), with the distinction be-
tween the two being characterized by duration and magnitude (b) [13].

Approaches that investigate and identify different contact scenarios in a Human-Robot re-
lated accident have been proposed by Haddadin et al. in [107] and [108]. They identify the
five contact scenarios constrained, partially constrained and unconstrained impact, clamping
and secondary impact. The last is often caused by one of the others, and might even be more
severe. Some of these scenarios were tested in a crash-test during which contact forces, neck
torques and other relevant data were collected. The data classifies the severity of the impacts.
Haddadin et al. also investigated injuries caused by sharp tools on the robot, and developed a
reactive avoidance system in [44].
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Kulic et al. have presented a natural approach to measuring the danger [55]. They compute
a danger index based on the potential impact force in a collision. Although they do not discuss
their research as a consequence analysis, the consequence of an impact is closely related to the
impact force. The velocity, stiffness and mass of the robotic manipulator combined with that of
the human operator are the important factors in estimating the potential impact force.

There are also many standardized approaches to indicate the severity of an injury in non-
robotic industry. The automobile industry started early to quantify injury severity and define
indexes and criteria for analyzing the consequence of an impact [110]. Great parts of this
research can be adapted to a consequence analysis. Most of this research is concerned with
head injuries in automobile crashes. Some of the approaches attempt to relate the resulting head
acceleration to the severity and likelihood of injury [111] [112]. The basis of these approaches
is the Wayne State Tolerance Curve depicted in Figure 4.10. The acceleration of the head is
related to severity of brain injury where points below the line are unlikely to cause brain injury.

Figure 4.10: The Wayne State Toleance Curve: Points below the line are unlikely to be associ-
ated with severe brain injury; (right) Expanded Prasad/Mertz Curves: Chance of specific injury
for a given HIC15 level [113].

Prasad and Mertz proposed a set of curves which statistically relates measured Head Injury
Criteria (HIC) values to the severity and likelihood of a head injury (Figure 4.10) [113]. These
curves can be combined with evaluated HIC values and then used to define the level of an injury
resulting from a given head acceleration time history. The resulting injury indices can be used
in a similar way to judge the severity of the injury combined with e.g. the Abbreviated Injury
Scale (AIS). Using the AIS, any injury level is evaluated on a scale from 1 to 6, as shown in
Table 4.2 [114].

It is apparent that a great deal of research and literature is available in relation to conse-
quence analysis and that there are several aspects that can be included. However, the purpose
of the consequence analysis remains the same: to quantify the severity of an unwanted event.
The number of factors included in the analysis may vary based on the implementation and type
of robot.

Therefore, in this model the consequence analysis will include the parameters Limb velocity,
vt , and Limb type factor, L, as seen in (4.14). A simplified model of critical areas of the human
body is depicted in Figure 4.11, and is developed based upon the research of Haddadin et al.
[107], [108] and Marvel et al. [13]. The torso and head are the most critical areas and the hands
and feet are the least critical areas.
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Table 4.2: Injury Severity Scale Classification according to AIS scale [114].

AIS Injury
level

Fatality
Probability Injuries Description

0 None 0% Pain

1 Minor 0%
Light brain injuries with headache, vertigo, no loss of
consciousness, light cervical injuries, whiplash, abrasion,
contusion.

2 Moderate 0,1-0,4%
Concussion with or without skull fracture, less than 15 minutes
unconsciousness, corneal tiny cracks, detachment of retina, face
or nose fracture without shifting

3 Serious 0,8-2,1%

Concussion with or without skull fracture, more than 15 minutes
unconsciousness without severe neurological damages, closed
and shifted or impressed skull fracture without unconsciousness
or other injury indications in skull, loss of vision, shifted and/or
open face bone fracture with antral or orbital implications,
cervical fracture without damage of spinal cord.

4 Severe 7,9-10,6% Closed and shifted or impressed skull fracture with severe
neurological injuries.

5 Critical 53,1-58,4%
Concussion with or without skull fracture with more than 12
hours unconsciousness with hemorrhage in skull and/or critical
neurological indications

6 Maximum
Death, partly or fully damage of brainstem or upper part of
cervical due to pressure or disruption, Fracture and/or wrench of
upper part of cervical with injuries of spinal cord

c = L(1+ v2
t ) (4.14)

4.5.2 Likelihood Analysis

The likelihood analysis is as previously emphasized an important piece of the model for realiz-
ing Responsible Robots. The result of the analysis is a prediction on the basis of the temporal
and spatial observations stored in the Memory component. The Computations/Learning com-
ponent have interpreted the observations and found appropriate parameters which will be used
in this section. The probability of a visit in a voxel is assumed to be stochastically independent
in the temporal domain, while the predictions in the spatial domain account for the probability
due to a visit to an adjacent voxel. A prediction of the human’s motion based on its recent mo-
tion in the spatial domain is presented first, then combined with the predictions in the temporal
domain.
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Spine

L = 1

L = 0.75

L = 0.5

Figure 4.11: Simplified Limb Factor map with the head and torso as the areas with the poten-
tially most severe consequence.

Human motion prediction

When calculating the portion of the probability triggered by the time of day or time since last
visit, each voxel is considered to be stochastically independent. However, if a voxel is occu-
pied, this will affect the probability that a neighboring voxel is or will soon be, occupied. A
probability field is therefore constructed around the current observed position of the tracked
points. The field is constructed around a predicted velocity vector based on a simple velocity
prediction. The velocity prediction is a weighted average of the most recent tracking history.
The prediction of the next iteration’s velocity vector, vt , is found from (4.15). The number of
iterations taken into account is denoted l , where η is given by (4.16).

vt = 1

η

l∑
i=1

2l − i

l
vt−i (4.15)

η=
l∑

i=1

2l − i

l
(4.16)

The probability field is based on the Danger Field proposed by Lacevic et al.[61]. The
author’s approach to safe human robot collaboration included, what they called, a Danger Field
(DF). This field was constructed to indicate the danger of occupying space in the vicinity of the
robot. The danger can be interpreted as the likelihood that the robot would occupy a given voxel
based on its current velocity. The field is a product of the distance from the object and the angle
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between the velocity vector and the vector from the traced point to the given point in space. It
is given by (4.17), where vt is the velocity vector predicted by (4.15). The object’s observed
point in space is given by s, and st is an arbitrary point in space. The constants, k1, k2 and γ,
are design parameters.

DF (s,st ,vt ) = k1

||s−st ||
+ k2||vt ||[γ+ cos ̸ (s−st ,vt )]

||s−st ||
(4.17)

The field is expanded until DF (s,st ,vt ) is lower than a set threshold. A probability field is
constructed by scaling the danger field, so that the sum of all active elements is 1 (4.18). PFn is
the probability that the tracked point, s, will occupy point n, defined by st , and corresponding
to the danger in DFn . This probability field gives the probability that a point in space will be
occupied due to its adjacency to a currently occupied point.

PFn = DFn

[
i∑

DFi

]−1

(4.18)

Figure 4.12 shows the probability field and the relevant vectors. The field is rotational
symmetric around the velocity vector.

vt

s− st

s

O

st

Figure 4.12: The probability field surrounding the velocity vector, vt . Red indicates a high
probability of a visit, while yellow indicates a lower probability of visit.

Estimating the Probability

The predictions in the temporal domain are calculated on the basis of the multipeak PDFs,
F (t ) and G(t ) whose parameters have been found by the Computations/Learning component.
The parameters have been stored in the Memory component and can be used to calculate the
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probability that a human will occupy this space within a given time. Let tV be the time of a
visit, and ∆tV be the time between two visits. The probability of a visit P (V |t ) within a time,
T , is then given by (4.19)

P (V |t ) = PToV [t0 ≤ tV ≤ t0 +T ]∪PT BV [∆t0 ≤∆tV ≤∆t0 +T ]∪PF (4.19)

where t0 is the current time, and ∆t0 is the current time since the last time the voxel was
occupied by a human. PF is the probability caused by the prediction of the velocity of a human
limb and its surrounding probability field. The probability of a visit due to the time of day,
PToV is given by (4.20). Since there could be many visits per day to the same voxel, a binomial
function is used to calculate the probability of more than one visit (4.20). The average number
of visits per day is denoted ADV . PF [t ] is found from the binomial equation as shown in (4.21).
The probability of a visit due to adjacency, PFn , is given by (4.18).

PToV [a ≤ t ≤ b] = 1− (1−PF [t ])ADV (4.20)

PF [a ≤ t ≤ b] =
b∫

a

F (t )d t (4.21)

And the probability of a visit due to the time since the previous visit is given by (4.22).

PT BV [a ≤ t ≤ b] = PG [a ≤ t ≤ b] =
b∫

a

G(t )d t (4.22)

The integrals in (4.21) and (4.22) are solved easily using the CDFs from (4.8) and (4.9) as
shown in (4.23) and (4.24).

PF [a ≤ t ≤ b] =
b∫

a

F (t )d t = F∗(b)−F∗(a) (4.23)

PG [a ≤ t ≤ b] =
b∫

a

G(t )d t =G∗(b)−G∗(a) (4.24)

This can now be expanded to cover more voxels. A region of interest can be defined based
on the shared sub-workspace (SSW) required by the robot to complete a specific task. The
SSW is available in the Robot Task Library Component as a part of the system factors. Let m

be the number of voxels included in a SSW and T be the time the robot will stay within the
SSW to complete its task. The probability of a visit, given we are in voxel n, at time t , is now,
P (V |t ,T,n). The event of a visit in the different voxels can now be treated as stochastically
independent because the PF term in (4.19) includes the probability of visit due to adjacency.
The probability, P (V |t ,T,SSW ), that a human will visit some part of the SSW within time T ,
given we are at time t , can therefore be found as shown in (4.25).

P (V |t ,T,SSW ) = 1−
m∏

n=0
P (V |t ,T,n) (4.25)
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The fitness of the fitted multipeak PDFs might be satisfactory for all the voxels inside a given
SSW. This might be caused by too few observations to properly fit a curve, or that the regression
algorithm simply could not find any proper parameters at all. These voxels are filtered out by
setting a maximum accepted MSEF and MSEG denoted εmax . If these voxels are rarely visited,
the Computation/Learning component is likely to ignore it. However, if the voxel is frequently
visited, it is more likely to be selected for a refitting as described in section 4.4.2.

4.5.3 Risk Picture

The risk picture is the output of the Level 3 SA and will highly influence the Decision compo-
nent. The risk picture is both linked to the dedicated tasks for the robot, but also expressed as
a gradient field as discussed in Section 3.5. The gradient field can be used in a potential field
approach as part of an obstacle avoidance approach to reactive safety control.

Estimating the risk in a task

The risk associated with completing a robot task is the multiple of the estimated likelihood and
the consequence. From the previous sections 4.5.1 and 4.5.2 the consequence C from (4.14) and
the likelihood in (4.25) have been presented. The risk ri associated with completing a specific
task i from the Robot Task Library is expressed as the multiple of these as shown in (4.26).

ri = P (V |t ,T,SSW )C (4.26)

The risk associated with completing every task in the Robot Task Library is calculated and
passed on to the Decision component. The risk associated with the tasks are continuously
updated on the basis of the latest information and observations available. This information is
the key information when the system will decide whether to start one of the tasks, or wait until
the situation improves.

Risk Field

The risk can also be derived as a risk field over the entire work space. Let T be a human limb
whose position and velocity are defined by the vectors st = (xt yt zt )T and vt = (vt x vt y vt z)T .
The δ from (4.1) is then δ= ∥s−st∥, where s = (x y z)T is an arbitrary point in space. . From the
consequence analysis in Section 4.5.1 and likelihood analysis in Section 4.5.2, the risk related
to a single point in space can be quantified. The risk field created by a single moving human
limb at time i , RF (s)i , is then defined by (4.27) with κ from (4.28).

RF (s)i = κL f (1+∥vt∥2)+γRF (s)i−1 (4.27)

κ=

⎧⎪⎨⎪⎩
ρ−∥s−st∥

ρ
if ∥s−st∥ ≤ ρ

0 otherwise
(4.28)
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While multiple limbs may pose a risk at s, it is necessary to accumulate the risk posed by
every limb. The risk field is thus expanded and derived by super positioning. RF (s)i is then
the sum of the risk posed by all spheres for every limb (4.29). Each limb and sphere will have
a specified ρt and L f ,t . Each sphere of the sphere-based geometry of the human is used to
calculate the risk. The total number of spheres, l , and their radii, ρi , should be selected to best
model the human body.

RF (s)i =
l∑

t=1
κt L f ,t (1+∥vt∥2)+γRF (s)i−1 (4.29)

κt =

⎧⎪⎨⎪⎩
ρ−∥s−st∥

ρt
if ∥s−st∥ ≤ ρt

0 otherwise

The field RF (s)i is by definition a scalar field. Nevertheless, a vector field can easily be
constructed upon it using its gradient (4.30).

−→
RF (s)i = RF (s)i

∇RF (s)i

∥∇RF (s)i∥
(4.30)

The
−→
RF (s)i vector is anchored in s and with the direction of ∇RF (s)i . Its magnitude is

set by the risk level in s, RF (s)i . The risk associated with the robot’s current pose can now
be calculated on the basis of its occupied space, velocity vector and the Risk Field [106]. A
reactive action can be taken if the risk is unacceptably high, such as alerting the human operator
with an audio/visual output or other devices. The robot’s path could also be augmented, very
similar to a potential field approach. This approach, along with simulations, was presented in a
paper by the candidate in a previous paper [106].

4.6 Goals and Objectives

The goals of the system is a summary of its purposes and is in this system closely inspired by
the three laws of robotics, as mentioned in the introduction of this thesis. The first law states
that "A robot may not injure a human being or, by inaction, allow a human being to come to
harm". This is used quite directly in any safety system, as the goal in any safety system would
be not to harm the human. Furthermore, "A robot must obey the orders given it by the human
beings except where such orders would conflict with the first law". Therefore, for the robot to
be useful and productive, some objectives regarding task progression and production rates must
be included. However, the objectives regarding productivity must have a lower priority than
the objectives to keep the human unharmed. The third law states that "A robot must protect its
own existence as long as such protection does not conflict with the first and second law". From
this there can be derived a goal about avoiding material damage to the robot or its surrounding.
However, as opposed to the priorities in the three laws, this is given a higher priority than
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productivity, yet lower than the safety of the human being. Objectives to achieve these goals
can then be formulated (Table 4.3).

Table 4.3: Objectives formulated for the Goals & Objectives component

Priority Related goal Objective

1 Human safety The robot must stop immediately in case of contact with
the human or an emergency stop etc is activated.

2 Human safety The human and the robot must never have a smaller
separation than the minimum separation.

3 Human safety The system should never execute a task with a higher
risk than the maximum accepted risk.

4 Material damage The robot must stop immediately if it comes in contact
with its surroundings.

5 Material damage The robot must never have a smaller distance to its
surroundings than a set minimum distance.

6 Productivity The system must execute as many of the different tasks
as is required within a given time span.

A simple objective to keep the human operator safe can be formulated on the basis of the
information available from the Situation Awareness component. This component provides the
risk associated with each of the robot’s tasks as the Level 3 SA information. To keep the human
safe, the system should never start a robot task that has a higher risk than a set threshold. An
objective to at all times keep the risk below this threshold is thus implemented. From Level 2
SA, the human and robot separation distances is available. The second objective to keep the
human out of harms way is thus to never go below a minimum separation distance. Lastly, the
Level 1 SA information gives the opportunity to formulate a final safety objective. The robot
must stop immediately in the case of an emergency stop, light curtain break etc. These three
objectives, as summarized in Table 4.3, make up the objectives to keep the human operator safe.

The objectives to avoid material damage is not prioritized in this research. However, they
much resembles the objectives to keep the humans safe. The only difference is that the human
operator is replaced with the robot’s surroundings, and prioritized after the human safety related
objectives.

The objectives on productivity are very task dependent and will be described separately for
each of the scenarios in the experiments. In some cases it might be required of the robot to
perform a specific task based on the human operator’s progression such as in an alternating
assembly task. Other tasks might be more open, such as replenishing parts or other supporting
tasks. However, an open objective is formulated for demonstration purposes.



page 52 of 119 CHAPTER 4. DEVELOPMENT OF MODEL

Similar to the Identifying Hazards component the input of the Goals & Objectives compo-
nent is given by the human operator/integrator prior to operation (Figure 4.13). The output is a
list of the objectives in a prioritized order.

Goals &
Objectives

Input:

• Information prede-
fined by the human
integrator

Output:

• Maximum acceptable risk

• Minimum human-robot
separation

• Productivity criteria

Figure 4.13: The inputs and outputs of the Goals & Objectives Component

4.7 Robot Task Library

The Robot Task Library component contains all the necessary information about the different
robot tasks. This includes the robot programs themselves, the execution time and from this, the
tasks sub workspaces. These sub workspaces are compared to the human operator’s workspace,
and the relevant SSWs are defined. The time from task initialization until the robot is clear of
any SSW can be found from this, and stored in the Robot Task Library component. The robot’s
trajectories and velocities throughout the path will also be available here. In other words, all
the information that is needed by other components about the robot’s tasks. Also the Robot
Task Library’s input is added by the human integrator prior to operation and contains all the
necessary data. The output is the same data in a format comprehensible for the system (Figure
4.14).

Robot Task
Library

Input:

• Information predefined
by human integrator

Output:

• Robot task trajectories

• Robot task execution
times

• Robot task sub workspace

Figure 4.14: The inputs and outputs of the Robot Task Library Component

4.8 Decision

In all generality it can be said that the decision component combines all available information to
achieve the goals and fulfill the objectives (Figure 4.15). The SA is as previously stated the most
influential component. The decision component can best be described as shown in Algorithm 1.
The highest priority goal is the goal to keep the human safe. The highest prioritized objective
is based on the quickly accessible information from Level 1 SA, then the information from
Level 2 SA. If those levels deem the situation to be safe enough to continue, and the robot is
available, the system may execute a robot task according to the goals and objectives. In its
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simplest form the decision block goes through the objectives in a prioritized order and takes
action to fulfill the highest priority objective currently not fulfilled. The decision components
updates continuously, and a higher ranking objective might override an action taken to fulfill a
lower prioritized objective if necessary.

Algorithm 1 Decision Component
1: procedure SELECT ACTION

2: if E-stop = TRUE then
3: STOP, Engage breaks
4: else if Separation Distance < Minimum Distance then
5: Augment Trajectory path and velocity
6: else if Robot busy = FALSE then
7: if Risk(Taski ) <Riskmax then
8: if Task Penalty(Taski ) <Task Penaltymax then
9: Start Taski

10: Task penalty(Taski ) ← Task Penalty(Taski )+increment
11: else Return
12: else Return
13: else Return

Decision

Input:

• Risk assosiated with each
robot task

• Task progression

• Maximum acceptabel risk

• Productivity criteria

Output:

• Selected action

Figure 4.15: The inputs and outputs of the Decision Component

4.9 Other Components

The other components that are of relevance to the system include Performance of Action and
Operator Information. The performance of action is an evaluation block that can be used to
enhance the learning capabilities of the system. However, it is not implemented in the system
at this stage. The focus has been on the implementation and influence of Level 3 SA. The
operator information can also be used at a later stage to distinguish between the work style of
different operators. In the later experiments, the system will be reinitialized for every operator.
However, the system operator component could hold the necessary information to distinguish
and automatically bring up the relevant observations from memory. The Robot Task Library
has already been discussed, however, the remaining components in the system specifications
contains more information about the system. This can include the cell layout with its known
static obstacles and information about the production such as components’ geometry etc. Any
other information about the system that is needed by other components is available here.
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4.10 Summary

In this chapter the relevant components in the Responsible Robot-model have been presented.
The importance of the likelihood analysis have been emphasized as it is the component that
accounts for the projection of the future status of the system, as required at Level 3 SA. Some
of the components were identified as dependent on the specific collaborative work cell, and
will be described in the experiments chapters. Furthermore, systems for realizing the Compu-
tation/learning, Risk Estimate, Hazard Identification, Goals and Objectives, and the Decision
component have been proposed. The model and its components have been developed to fulfill
PS defined in Section 2.8. The following chapter will verify the systems behavior with respect
to the PS.



Chapter 5

Skill and Performance of the Likelihood
Analysis

5.1 Introduction

The previous chapter presented the necessary components in the Responsible Robots-model,
and the importance of a high level of SA in decision making has been discussed. Since the
likelihood analysis is the component that accounts for projecting the future status of the system
and enhancing the system’s SA to Level 3, it is tested separately. In PS1 it is stated that the
system should act proactive against dangers. The system’s ability to be proactive is directly
related to the likelihood analysis. A verification of the performance of the likelihood analysis
is important due to the importance of this component. In this chapter, the likelihood analysis,
and its depending components, is experimentally tested as a binary forecaster and evaluated to
confirm the fulfillment of PS1. The experimental setup will be presented first, followed by the
results and an evaluation of the results.

5.2 Experiments

A series of experiments were conducted to measure the performance of the likelihood analysis.
The Responsible Robots-model was reduced to only include the likelihood analysis and the
components it is dependent on. The system was tested through three scenarios, each a different
type of Lego assembly task. In each of the scenarios, the human had a set of instructions, like
picking Lego bricks, assembling Lego figures or take Lego figure apart. The instructions had
a low level of detail which allowed for a variety of different ways to complete the tasks in
the instructions. The human operator could choose how to complete the tasks, and also vary
how the tasks were completed throughout operation. Lego bricks in two sizes were used, later
referenced to as large and small bricks, in a variety of colors. The robot also had a set of tasks,
like replenish bricks or pick up Lego figures. Each of the robot’s tasks had a defined SSW
and a task execution time associated with it, all stored in the Robot Task Library. The human
worked one “workday” in each scenario while being observed by the system, defined as day
zero. After the system had learned sufficiently, the human worked another 10 “workdays”. The

55
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system estimated the likelihood for the human to occupy the different SSWs within the robot’s
task execution times. The human occupancy is also observed and used to evaluate the system
with a Decomposed Brier Score (DBS) [115]. Further the skill of the system is measured with
the Brier Skill Score (BSS).

5.2.1 Experimental Setup

For the experimental evaluation, a workspace was built around a desk as depicted in Figure
5.1. A Kinect V2 sensor was used to track the human operator. The code was developed
in LabVIEW, with the HARO3D™1 VI library for integration with the Kinect. Two off-the-
shelf desktop PCs were used, one of which was dedicated to handle the Computation/Learning
component. The desk was located between the human and the robot, allowing the human and
the robot to work on the desk from each side of the table. The desk used measured 180 cm
by 40 cm. The workspace was separated into human sub-workspaces (HSWs) and robot sub-
workspaces (RSWs) based on their tasks. The areas where a HSW and a RSW are overlapping
are the shared sub-workspaces (SSWs) as shown in Figure 5.1. Note that HSWs, RSWs and
thus also the SSWs might also overlap themselves. The HSWs were fixed for all scenarios and
defined as three equal parts of the desk, HSW1 being the leftmost part of the desk, HSW2 the
middle and HSW3 the rightmost for the human. The RSWs were defined from the robots tasks
in the different scenarios.

Storage

HSW1 HSW2 HSW3

Figure 5.1: Layout of the workcell used in the experiments.

5.2.2 Procedure

The experiment was conducted with a human subject working in a total of three scenarios
described in section 5.2.3. The participant first worked through one workday, designated day

1HaroTek LCC. www.harotek.com (Accessed 11/10/2015)
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zero. The system was given some time for the computation/learning component to produce
viable variables for the likelihood analysis. The participant then worked another day. This
time, the system made predictions whether or not the participant would occupy a given SSW
withing the corresponding task execution time for the robot. Since there were three SSWs in
all scenarios, the system made three predictions each iteration. The system never acted upon
the predictions thus continued to make predictions throughout the day. After the workday was
completed, the DBS and BSS were calculated for that workday. Both during and in between
workdays the Computations/Learning component keep improving the relevant parameters based
on the new observations. The participant worked a total of 10 workdays in addition to day zero,
in each scenario. After the 10 days in each scenario, the DBS and BSS were compared for each
day, and its development analyzed. A summary of the steps in the experiment can be seen in
table 5.1.

Table 5.1: Summary of the procedure the participant went through during the experiment.

Step Procedure

1 Work one day as day zero
2 Allow system to compute
3 Work one work day while the system makes predictions about occupancy
4 Calculate DBS and BSS on the basis of the previous work day.
5 Repeat step 2-3 10 times
6 Repeat step 1-4 3 times, one for each scenario

5.2.3 Scenarios

The first scenario was a task where the human operator built several Lego cubes, and took them
apart sequentially (Table 5.2). The robot’s tasks involved replenishing bricks containers and
picking up containers (Table 5.3) and resulted in three SSWs, two of which were overlapping
(Figure 5.2). The robots task execution times were set based on an estimated time it would need
from it decides to start the task, until it is clear of the SSW. The robot uses more time than the
task time before it is ready to start a new task, however outside the SSW. In this scenario the
human is visiting the different SSWs quite frequently and with approximately 180◦ phase shift.
The amount of time the human is away from SSW1 does not leave much room for the robot to
start its task. The human operator could typically complete 4 cycles during one workday.

In the second scenario, the human operator built a larger Lego figure, alternating between
building in two different HSWs (Table 5.4). The robot’s tasks involved replenishing bricks and
picking up figures (Table 5.5) and resulting in three SSWs, all of them separated (Figure 5.3).
The robots task execution times were set based on an estimated time it would need from it
decides to start the task, until it is clear of the SSW. The robot uses more time than the task time
before it is ready to start a new task. The human will be away from the two building zones for
longer in this scenario, while more often and for shorter periods in the pick up zone. During
one work day in the scenario 2 the operator could normally finish 3 cycles.
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Figure 5.2: The workspace for scenario 1, with the three shared sub-workspaces indicated by
the red, blue and green frames respectively.

Table 5.2: Human work instructions Scenario 1

Step Action

1 Pick 3 large and 6 small bricks of the same color in HSW1
2 Assemble bricks to small cube in HSW1
3 Place the Lego cube in HSW2
4 Repeat step 1-3 a total of four times.
5 Pick up Lego cube from HSW2
6 Take Lego cube apart in HSW3
7 Place bricks in a container in HSW3
8 Repeat step 5-7 until no more cubes
9 Repeat step 1-8 until end of day

Table 5.3: Robot Tasks Scenario 1

Task Action Time

1 Replenish bricks in brick container in HSW1 25
2 Replenish empty containers in HSW3 24
3 Collect container with used bricks from HSW3 18
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Figure 5.3: The workspace for scenario 2, with the three shared sub-workspaces indicated by
red, blue and green respectively.

Table 5.4: Human work instructions Scenario 2

Step Action

1 Pick 12 large and 24 small bricks of any color in HSW2
2 Pack bricks in an empty container
3 Bring container with bricks and assemble Lego figure in HSW1
4 Bring the now empty container to HSW2
5 Pick 12 large and 24 small bricks of any color in HSW2
6 Pack bricks in an empty container
7 Bring container with bricks and assemble Lego figure in HSW3
8 Bring the now empty container to HSW2
9 Repeat step 1-8 until end of day

Table 5.5: Robot Tasks Scenario 2

Task Action Time

1 Collect Lego figure in HSW1 16
2 Replenish brick in brick container in HSW2 25
3 Collect Lego figure from HSW3 16



page 60 of 119 CHAPTER 5. PERFORMANCE OF THE LIKELIHOOD ANALYSIS

The third scenario shows a human building two larger Lego figures at the time, then taking
them a part. (Table 5.6). The robot’s tasks were the same, and designated to the same three
areas as in scenario 1 (Table 5.7 and Figure 5.4). The robot’s task times were set based on
an estimated time it would need from it decides to start the task, until it is clear of the SSW.
Because of this, the robot uses more time than the task time before it is ready to start a new task.
In this scenario the human would be building the figures in a sub workspace not shared with
the robot, thus leaving all the SSWs unvisited at the same time. The cycles are also shorter, the
operator usually finished 5 cycles in one workday.

Figure 5.4: The shared workspace for scenario 3, with the three shared sub-workspaces indi-
cated by red, blue and green respectively.

Table 5.6: Human work instructions Scenario 3

Step Action

1 Pick 12 large and 24 small bricks of any color in HSW1
2 Pack bricks in an empty box
3 Bring the box with bricks and assemble two figures in HSW2
4 Bring the figures to HSW3 and take them apart
5 Pack used Lego bricks in an empty box
6 Repeat step 1-5 until end of day
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Table 5.7: Robot Tasks Scenario 3

Task Action Time

1 Replenish bricks in brick container in HSW1 25
2 Replenish empty containers to HSW3 24
3 Collect container with used bricks from HSW3 18

5.2.4 Hypothesis

A set of hypotheses is formulated to determine whether or not PS1 is fulfilled. Two hypotheses
are formulated for these experiments, one regarding its performance and one regarding its im-
provement as the dataset grew. Firstly, it is hypothesized that the system is able to give a better
prediction whether a given SSW will be occupied by a human within the given time or not than
the base rate prediction. This means that the system has a low DBS and a BSS closer to 1 than
0. Secondly, that the system skill and score will improve throughout the 10 "workdays" the
experiment lasts. This is measured by an decreasing DBS and an increasing BSS.

H1.1 The likelihood analysis is able to predict whether or not a human will occupy a given SSW
within a given time.

H1.2 The systems performance is improving as more observations are made.

If both hypotheses holds, it is safe to conclude that the the system fulfills the proactive
requirement formulated in PS1

5.2.5 Parameter Settings

The workday was set to 10 minutes in all scenarios, and the maximum TBV set to 1 minute.
Both the ToV and the TBV datasets were distributed over 200 bins, giving a time interval of 3
seconds and 0.3 seconds in (4.10) and (4.11) respectively. The maximum accepted MSE for the
fitness of the curve fitting was set to εmax = 5×10−4. The maximum number of PDFs was set
to 5 and the relearn rate was set to 25%.

The design parameters used in the human motion predictions, k1, k2 and γ, were set to
k1 = 1, k2 = 0.25 and γ = 1. The length of the human velocity prediction history, L, was set
to L = 1second . The maximum distance of the proximity field ρ is set to ρ = 20cm. The
likelihood analysis iteration time was set to 1 second.

5.3 Results

The system could typically deliver a well enough learned system to continue 10-15 minutes
after the day was completed. The scenarios typically generated enough observations to provide
usable parameters in 1000 voxels. While a larger number of active voxels will result in a higher
computational cost, the cost at this point is considered to be well within what is reasonable to
continue with this approach.
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Figure 5.5: The predictions, Pi , through a day and the corresponding observations, Oi , for
Scenario 1
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Figure 5.6: The predictions, Pi , through a day and the corresponding observations, Oi , for
Scenario 2

The plots in Figures 5.5-5.7 show the predictions at the time they were made for each of
the SSWs in each scenario. These are displayed as the thin lines, in red, blue and green for the
three SSWs respectively. The observations made, if a human visited the SSW within the task
time at the time of the prediction or not, is indicated by the thicker lines with the same color
scheme. A “1” indicates a visit, and a “0” indicates no visit (the values are slightly shifted to
avoid obscuration). An ideal prediction will be the same as the observation, it is desired to be
as close to this as possible.

In the plot from scenario 1 we can see the apparent similarity between the predictions and
observations made for SSW 2 and 3 (Figure 5.5). The most distinguishable difference is due to
the shorter task time of SSW 2. The unevenness and peaks is most likely caused by the TBV,
which is most apparent in SSW 2 and 3. The predictions are most of the time very close to one
or zero.

In scenario 2 the observations are matching the peaks and valleys of the predictions quite
well (Figure 5.6). The peaks and valleys are on the other hand not as high and deep in SSW 2.
The short time between each visit makes the tails of the PDFs overlap between the visit. This
turns out to be a challenge with this approach. Further, the effect of the TBV is only visible as
small peaks in the curves. This both fits well with the impression of the well matching observa-
tions, but also might indicate that the TBV component of the prediction has little influence on
the system, especially when the ToV component fits well.
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Figure 5.7: The predictions, Pi , through a day and the corresponding observations, Oi , for
Scenario 3

The first difference seen in the plots from scenario 3 compared to the first two scenarios
is that the system is now more affected by the TBV (Figure 5.7). The impact is especially
dominant for P1 where sudden peaks can be seen. There is also much more overlap between
the visitations, and times where no shared sub-workspace is visited. This corresponds well with
the expectations from the scenario description. Also in this scenario, the plots indicate a good
match between the predictions and observations.

5.3.1 Brier Score

The Brier Score (BS) is a proper score function that measures the accuracy of probabilistic
predictions [116]. This is applicable to described scenarios as the outcomes are binary, a SSW
is either visited by a human within the time frame or not. The score measures the mean square
difference between the probability assigned to an outcome, and the actual outcome, o. The
score is thus always between zero and one, where a lower score indicates better predictions. A
decomposed Brier Score provides insight on the deeper behavior of the binary classifier [115].
The three additive components; Reliability (REL), Resolution (RES) and Uncertainty (UNC)
are used (5.1) and (5.2).

BS = REL−RES +U NC (5.1)

BS= 1

N

K∑
k=1

mk (pk−ōk)2 − 1

N

K∑
k=1

mk (ōk − ō)2 + ō(1− ō) (5.2)

The number of unique predictions are denoted K , this is the number of bins the predictions
are organized in. In this paper the predictions are divided into 10% intervals, thus K = 10. With
M being the number of predictions, ō is the base rate of events as shown in equation (5.3),
mk is the number of predictions in the same bin of K , and ōk is the observed frequency, given
prediction pk.

ō =
M∑

t=1

ot

M
(5.3)
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The Reliability term measures how close the probabilities are to the true probabilities. This
means that it is expected that the event will occur one out of ten times a 10% chance is predicted.
The reliability term is the mean square of the predicted value and the expected value. A low
reliability value contributes towards a low Brier Score. The Resolution term measures how
much the observed frequencies differ from the base rate of events. A perfect resolution gives
one, while the worst case gives zero. The uncertainty is the inherent uncertainty in the event.
The most uncertain event is one that has a 50% occurrence rate. The uncertainty is zero if the
event always or never occurs and 0.25 if the occurrence rate is 50%.

Further, the system is evaluated with the Brier Skill Score (BSS). The skill score is a measure
of the difference between the score for the predictions and the score for an unskilled standard
prediction. The range of the skill score is from −∞ to 1, where all negative scores indicate a
system that is less accurate than an unskilled standard prediction. A skill score of 1 indicates a
prefect prediction model. The unskilled prediction used in this paper is the base rate referred to
earlier, which gives us the BSS as shown in (5.4)

BSS = 1− BS

BSr e f
= RES −REL

U NC
(5.4)

In Appendix B the development of the different scoring components is shown. The effect
of the relearning is not too apparent, even over ten days. Most of the values are in the same
order of magnitude as that of the first day. This, however, might also indicate good performance
after the first day. The uncertainty values (UNC) for SSW2 and SSW3 are 0.2484 and 0.2492
respectively and indicate that each of the zones are occupied close to 50% of the time. This level
of uncertainty describes a challenging event to predict. The uncertainty in SSW1 is still high,
however significantly lower than that of SSW2 and SSW3. The reliability is on the other hand
very good for all three tasks. The DBS for the three cases are not as low as one might wish for,
however, the values of the different components can be compared further. A high uncertainty
is mainly compensated for with a high resolution. The resolution is, however, not high enough
to deal with the very high uncertainty. The best resolutions can be seen with SSW2 and SSW3
with 0.1463 and 0.1506 respectively, on the other hand the uncertainty is equally higher in these
SSWs. The Brier Score is the best for SSW2 and SSW3 with 0.1069 and 0.1053 respectively,
although not by much.

Studying the skill scores reveals a greater difference in the predictions between SSW1 and
SSW2 and SSW3 (Figure 5.8). The skill score the system achieved for SSW2 and SSW3 are
more than double that for SSW1, almost triple. The scores of 0.57 and 0.58 describe a predictor
that is closer to perfect than to a base rate predictor.

Similarly to scenario 1, scenario 2 is dealing with events with a very high uncertainty, more
than 0.24 for all SSWs (Figure 5.9). Again, this indicates the challenge in predicting the event.
SSW1 and SSW3 have very high skill scores, these were the assembly areas and were visited
three times each during the work day. This makes them easier to predict than the pick up areas
that were visited for a shorter time, six times a day. The skill score for SSW2 is not even half
of that of SSW1 and SSW3. The resolution is similarly to scenario 1 not high enough to deal
with the very high uncertainty.
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Figure 5.8: Average Decomposed Brier Scores for Scenario 1
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Figure 5.9: Average Decomposed Brier Scores for Scenario 2

The scores from scenario 3 show many of the same traits as that of scenario 1 and 2 (Figure
5.10). There is a very high uncertainty, a good reliability and a resolution that is not high enough
to give a very good Brier Score or Skill score. The Brier Score and Skill score are on the other
hand rather good, especially for SSW2 and SSW3, where the operator spent the most time.

5.3.2 Total Scores

The combined DBS and BSS for all experiments can now be calculated to investigate whether or
not hypothesis H1.1 holds. Over the course of 3 scenarios, all with 3 SSWs and 600 predictions
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Figure 5.10: Average Decomposed Brier Scores for Scenario 3
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Figure 5.11: Scores for all predictions by day.

Table 5.8: The average REL, RES, UNC, DBS and BSS for all predictions.

REL RES UNC DBS BSS

Avg. 0.0132 0.1449 0.2419 0.1103 0.5373
Std. 0.0085 0.1840 0.2488 0.0732 0.7056
Slope -0.0006 0.0022 0.0003 -0.0025 0.0113
MSE 0.0013 0.0068 0.0006 0.0071 0.0291
Improvement 34.1% 14.4% 0.99% 18.5% 20.8%

per SSW, each ran for 10 workdays, the total number of predictions can be calculated. The total
number of predictions throughout the experiment is then 3 scenarios ×3 SSWs ×600 iterations
×10 days = 54000. The average REL, RES, UNC, DBS and BSS for these 54000 predictions
are shown in Table 5.8. The system has a DBS of 0.1103 and a BSS at 0.5373. The BSS
indicates that the system is slightly closer to a perfect predictor than a base rate predictor. The
low DBS also indicates a well performing predictor and for the purpose of further development
it is concluded that H1.1 holds.

The effect of the relearning is investigated to confirm hypothesis H1.2 by combining all
predictions made for each of the days. The resulting plot can be seen in Figure 5.11. A positive
development would mean an increasing RES and BSS, and a decreasing REL, UNC and DBS.
Using linear regression the slope of the development of the scores can be found. The slope and
the MSE from the regression can be seen in Table 5.8. Although every score has the desired
sign, the slope for both UNC and REL is too small to indicate any real change. Although the
REL improves with 34.1% over 10 days, it is already very good from day 1, so the effect of
the improvement is minimal. The improvement of UNC is less than 1%, however, it was not
expected to improve, as it is based on the observations alone, and not the predictions. The slope
of RES and BS are also small but indicate a positive development as more data is gathered.
Their improvements are 14.4% and 18.5% respectively. The most significant development can
be seen in the skill score, BSS. Being a result of the slight improvement of all other scores,
it is as expected. An improvement of 20.8% over 10 days clearly indicates the effect of the
continuously relearning model in the system, H1.2 thus holds.
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5.4 Summary

The purpose of these experiments was to investigate how the system corresponds to PS1. The
proactive abilities of the system is directly related to the performance of the likelihood analysis.

PS1: The developed system should act proactive against dangers. Today’s safety systems
moves the robot away if it is in a conflict with the human to avoid a collision. The devel-
oped system should avoid human-robot conflicts, thus acting as a new layer of safety.

Two hypotheses were presented to verify PS1, firstly that the system is able to predict
whether the human operator will occupy a given SSW within the robot’s task execution time.
Secondly, that the system’s predictive capabilities would improve over time, as more observa-
tions were made, and the Computation/Learning component was given more time to calculate
appropriate parameters. This was verified using evaluations of the results of DBS and BSS.

The total Brier Score over 54 000 predictions at 0.1103 and Brier Skill Score at 0.5373
clearly indicates the system’s ability to predict whether a SSW will be occupied by a human
within the robot task execution time, or not. It is therefore safe to conclude that hypothesis
H1.1 holds. Over the course of 10 “workdays” the systems skill improved by 20.8% and the
Brier score for the system improved by 18.5%. This demonstrates the system’s ability to adjust,
relearn, and improve as more data is gathered, and hypothesis H1.2 thus holds. The performance
of the likelihood analysis is therefore satisfactory for a proactive system, and thus far can it be
said that PS1 holds. The next chapter will experimentally test the proactive decisions of the
system further.





Chapter 6

Performance of the Responsible Robot
Based HRC

6.1 Introduction

This chapter will describe the experiments conducted to verify the system’s compliance with
PS1 and PS2. These involve the proactiveness of the system and its ability to maintain pro-
ductivity. An experiment was set up to compare the performance of the proposed system to
that of a preprogrammed robot assistant. The experiments were conducted with the decisions
in the system based solely on Level 3 SA. This might not eliminate all human-robot conflicts,
however, the goal of this new safety layer is to reduce the number of human-robot conflicts as
much as possible. A safety layer with a reactive response to any conflict would be necessary to
realize a proper safety system. However, the purpose of these experiments is to test the effects
of Level 3 SA, and the Level 2 SA will not influence the decisions not to confuse which level
of SA is causing the decision.

6.2 Experiments

An assembly task was devised where the human and the robot each had a set of tasks. The
participants then completed one “workday” as a human-human collaboration (HHC) as a refer-
ence to the later experiments. The participants then completed two more “workdays”, one as a
preprogrammed human-robot collaboration (PP-HRC) and one as a Responsible Robots based
human-robot collaboration.

6.2.1 Experimental Setup

The experimental setup was built around the same setup as in Chapter 5, a workspace was
built around a desk. A Kinect V2 sensor was used to track the human operator. The code
was developed in LabVIEW, with the HARO3D™1 VI library for integration with the Kinect.

1HaroTek LCC. www.harotek.com (Accessed 11/10/2015)
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Two off-the-shelf desktop PCs were used, one of which was dedicated to handle the Computa-
tion/Learning component. The desk was located between the human and the robot, allowing the
human and the robot to work on the desk from each side of the table. The desk used measured
180 cm by 40 cm. The workspace was separated into human sub-workspaces (HSWs) and robot
sub-workspaces (RSWs) based on their tasks. The areas where a HSW and a RSW are overlap-
ping are the shared sub-workspaces (SSWs) as shown in Figure 6.1. Note that HSWs, RSWs
and thus also the SSWs might also overlap themselves. The HSWs were fixed for all scenarios
and defined as three equal parts of the desk, HSW1 being the leftmost part of the desk, HSW2
the middle and HSW3 the rightmost for the human. The RSWs were defined from the robot’s
tasks in the different scenarios. A second table was placed on the robot’s side serving as a
storage place for full and empty brick containers.

Storage

HSW1 HSW2 HSW3

Figure 6.1: Layout of the workcell used in the experiments.

6.2.2 Procedure

When the participant first arrived at the work space, they received training from an instructor.
They then got a few minutes to familiarize themselves with the tasks, until they were comfort-
able enough to proceed. They then went on with completing a work day, while being observed
by the system. The participants had no assistant through this day and they had to bring the boxes
with bricks back themselves. This workday was used as day zero, and the observations were
stored in the system’s Memory component while the Computation/Learning component pro-
cessed them. The participants then worked one workday while collaborating with the instructor
as a human-human collaboration (HHC). The instructors task were the same as the robot would
later have. The participants then worked one workday as a preprogrammed human-robot col-
laboration (PP-HRC), or a Responsible Robots based HRC. The PP-HRC included a robot that
had been preprogrammed to perform its tasks at given points in time based on a predefined work
pattern. A workday with the final approach, Responsible robot based HRC or PP-HRC was then
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performed. A summary of the steps is shown in Table 6.1. All the trials were recorded, and the
video material was reviewed to gather the relevant data.

Table 6.1: Summary of the procedure the participants went through during an experiment.

Step Procedure

1 Receive training
2 Work one day on their own
3 Work one day as HHC
4 Work one day as PP-HRC/Responsible Robot based-HRC
5 Work one day as Responsible Robot based-HRC/PP-HRC

6.2.3 Scenario

The system was tested in a scenario where the human was building two Lego figures at a time,
then taking them a part (Table 6.2). The instructions had a low level of detail which allowed
for a variety of different ways to complete the tasks in the instructions. The human operator
could choose how to complete the tasks, and also vary how the tasks were completed throughout
operation. The robot’s tasks involved replenishing bricks and containers, and picking up full
containers (Table 6.3 and resulted in three SSWs, two of which were overlapping (Figure 6.2)).
The robot’s task execution times were set as the time it would need from it decides to start
the task, until it is clear of the SSW. Because of this, the robot uses more time than the task
execution time before it is ready to start a new task. In this scenario the human would be
building the figures in a sub-workspace not shared with the robot, thus leaving all the SSWs
unvisited at the same time. The subjects were able to finish anything between three and five
cycles during one workday.

Table 6.2: Human work instructions

Step Action

1 Pick 12 large and 24 small bricks of any color in HSW1
2 Pack bricks in an empty box
3 Bring the box with bricks and assemble two figures in HSW2
4 Bring the figures to HSW3 and take them apart
5 Pack used Lego bricks in an empty box
6 Repeat step 1-5 until end of day

6.2.4 Model Components

The design of some of the components in the proposed model for Responsible Robots based-
HRC depend on the implementation. These include Hazard Identification, Goals and Objec-
tives, and the Decision components, these will be described in this section.
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Figure 6.2: The shared workspace for the scenario, with the three shared sub-workspaces indi-
cated by red, blue and green respectively.

Table 6.3: Robot Tasks

Task Action Time

1 Replenish bricks in brick container in HSW1 25
2 Replenish empty containers to HSW3 24
3 Collect container with used bricks from HSW3 18

Hazard Identification

As discussed in Section 4.2 the most essential hazards in a HRC are any form of unwanted
contact between the human and the robot. This is therefore what will be regarded as the main
hazard in these experiments and the only hazard included, that the human and the robot is
occupying the same space at the same time.

Goals and Objectives

The primary objective was to keep the risk below a level of 0.5. Further, the system had a goal
to complete as many tasks as possible, with an objective to not exceed an imbalance of one task
being executed more than two times more than the others. The task progression was monitored
and tasks with fewer executions were thus prioritized.
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Decision

To investigate the contribution of the proactive safety layer, there is no other safety layers in-
cluded in the system. Basic necessary safety measures such as emergency stop is included
externally. The decision making mechanism in the system is thus only affected by the risk re-
lated objective and the productivity objective. The algorithm governing the decision component
is depicted in Figure 2. Essentially, the system has four available options: execute Robot Task
1, Robot Task 2 or Robot Task 3, or it can wait. First, the tasks with a risk lower than the set
threshold is identified. If no task have a low enough risk associated with it, the system waits.
The number of executions of each task is then compared, and any task that has been executed
two times or more than the least executed task is excluded from selection. The task with the
combination of the lowest risk, and the lowest number of executions is then selected for ex-
ecution. The system continuously runs this decision loop as long as the robot is in stand by.
A system with all three safety layers would continuously run the decision loop, and decisions
based on low level SA would overrule and interrupt actions started on the basis of higher level
SA.

Algorithm 2 Decision Component
1: procedure SELECT ACTION

2: if Robot busy = FALSE then
3: if Risk(Taski ) <Riskmax then
4: if Task Penalty(Taski ) <Task Penaltymax then
5: Start Taski

6: Task penalty(Taski ) ← Task Penalty(Taski )+increment
7: else Return
8: else Return
9: else Return

6.2.5 Parameter Settings

The workday was set to 10 minutes, and the maximum TBV set to 1 minute. Both the ToV
and the TBV dataset were distributed over 200 bins, giving a time interval of 3 seconds and 0.3
seconds in (4.10) and (4.11) respectively. The maximum accepted MSE for the fitness of the
curve fitting was set to εmax = 5×10−4. The maximum number of PDFs was set to 5 and the
relearn rate was set to 25%.

The design parameters used in the human motion predictions, k1, k2 and γ, were set to
k1 = 1, k2 = 0.25 and γ = 1. The length of the human velocity prediction history, L, was set
to L = 1second . The maximum distance of the proximity field ρ was set to ρ = 20cm. The
likelihood analysis iteration time was set to 1 second.
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6.2.6 Participants

The experiments were conducted with a total of 9 participants. The participants were students
at Chuo University and were all male in their 20’s. The participants were recruited by email and
word-of-mouth.

6.2.7 Hypothesis

A set of hypotheses is formulated to help determine whether or not the system is in compliance
with PS1 and PS2. The forecaster used to make proactive decisions was thoroughly tested and
verified in Chapter 5, in this chapter the system’s ability to make safe proactive decisions in a
real human-robot collaboration will be tested. The three indicators were used for verification of
the two PSs.

First of these indicators is the precision, which is the rate at which true positives (TP) occur,
in a set of positives. A positive is given if the system estimates the risk to be low enough, and
it is safe to start a task. A set of positives is thus all the positives throughout a workday. A false
positive (FP) is when it turns out that it was not safe, and the human and the robot enters the
same SSW at the same time. The precision is the probability that it is safe to start a task, given
the system decides to start a task.

Secondly, it is important that the robot manages to keep up with the operator’s work pace.
To keep up the robot was in this scenario required to completed 3 tasks per cycle completed by
the operator. If the robot cannot keep up with the human’s pace, it might result in frustration
and loss of concentration for the human. No one likes to wait and be delayed by coworkers that
cannot keep up with one’s pace.

Lastly, the number of human-robot conflicts was counted. A conflict is when the human and
the robot is present in the same SSW at the same time. These conflicts might not pose a danger
for the human, however it is frustrating and stressful to work with anyone who continuously
interrupts one’s work. Avoiding these conflicts might lead to a much more comfortable and
relaxed work situation for the human. This is important to allow the human to focus more on
his/her task, rather than where the robot is and what it will do next. The safety in a conflict
would be resolved by a reactive Level 2 SA system. However, in these experiments there is no
reactive layer to get a clear picture of the proactive layer’s performance.

The goal of the system is therefore to reduce the number of human-robot conflicts, have a
high precision and being able to produce at the same, or higher, rate as the human.

H2.1 The system has a high precision (rate of true positives).

H2.2 The system reduces the number of human robot conflicts.

H2.3 The system is able to keep up with the human operators productivity.

It can safely be concluded that the system is in compliance with the two statements, PS1
and PS2, if these three hypothesis holds in combination with the results from Chapter 5.
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6.3 Results

The experiments were conducted as previously described with a total of 9 participants. The
HHC case was always conducted first, to give the system time to learn, then either the PP-
HRC or Responsible Robots based-HRC were second. A total of 5 participants followed the
HHC→PP-HRC→Responsible Robots based-HRC pattern, and 4 followed the HHC→ Respon-
sible Robots based-HRC→PP-HRC pattern. Due to practical reasons the learning time allowed
to the system was limited to a minimum, and the Responsible Robots based-HRC case was
conducted after the first or second iteration, typically.

The human task was as expected solved in a variety of ways. Step 1 in Table 5.6 was by
some solved by counting a few bricks at the time into one hand, then dropping them in the box.
Some counted the bricks one by one using one hand, others with both hands. When building
the figures some built the two figures step by step in parallel and some built one at the time.
Some of the participants built the figure on the table, while some held the figure in one hand
while building. Similarly when taking the bricks apart, some took them both apart on the table,
then scooped the bricks into the box, some picked the bricks directly of the figure and into the
box and some broke the figures into smaller pieces on the table, then took those apart directly
into the box. These variations, and many other minor variations were observed. The different
approaches to solve the task also led to a variation in the relative time spent on each sub task.
Some spent the most time on building while the others spent more time on picking apart than
building.

During the experiments the necessary data to evaluate the system based on the performance
indicators was gathered (see Table 6.4). The data was found by carefully going through video
recordings of the experiments. Note that the required number of Robot Tasks are not necessarily
an integer. The required number is calculated based on the progression of the human operator
which may have been interrupted in the middle of a task cycle at the end of the work day.

Table 6.4: Data gathered during the experiments regarding system performance. (Responsible
Robots based-HRC is denoted RR-HRC)

Positives Human-Robot conflicts Robot Tasks
# TP FP PP-HRC RR-HRC Required Completed

1 12 1 5 1 10.5 13
2 13 1 3 1 9.9 14
3 11 1 3 1 6.6 12
4 13 0 0 0 12 13
5 15 0 6 0 16.2 15
6 10 2 1 2 12.9 12
7 13 0 5 0 13.5 13
8 14 0 0 0 12.6 14
9 10 0 3 0 9.6 10

Table 6.4 shows that the system considered the situation safe and decided to start a robot task
a total of 116 times throughout all 9 experiments, as shown in Table 6.5. Amongst these 111
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were completed successfully without causing a human-robot conflict, while 5 caused a conflict.
This gives an average precision of T P

T P+F P = 111
111+5 = 0.96.

Table 6.5: Number of true and false positive predictions.

Positives TP FP Precision

116 111 5 96%

Further, another important performance indicator is the reduction of human-robot conflicts.
In the PP-HRC case the human alone was responsible for avoiding conflicts, while it was a
shared responsibility with the Responsible Robots based-HRC approach. In Table 6.4 can it
be seen that there in most cases is a great reduction of conflicts with the Responsible Robots
based-HRC approach. In only one case (participant 6) was there one more conflict with the
proposed approach. Both participants 4 and 8 avoided conflicts totally with both methods. The
mean reduction of conflicts is then 2.3 fewer conflicts through the workday in this experiment
(Table 6.6). The best improvement was experienced by participant 5 who went from 6 conflicts
to none.

Table 6.6: Difference in number of human robot conflicts between methods

RR-HRC -
PP-HRC

Mean -2.3
SEM 0.8
SD 2.4
Minimum -6
Maximum 1
Count 9

The productivity rate was investigated as the last performance indicator. The robot was
required to complete three tasks for each human work cycle to be able to keep up. The re-
quired number of robot tasks as shown in Table 6.4 was therefore found by multiplying the
number of completed work cycles by the human operator with three. Compared to the number
of completed tasks, it becomes apparent that the robot is ahead in 6 of the 9 experiments. For
participants 6 and 7 the robot was less than one task behind. The robot was more than one
task behind for participant 5 only, whose pace was by far the fastest in the group. This pace
was borderline on the capabilities of the system with the selected speed of the robot. The mean
difference between required and completed robot tasks is shown in Table 6.7.

6.4 Evaluation of Results

A statistical analysis of the data was carried out by comparing the means with a Student’s t-test.
Independent samples or paired samples were used depending on the comparison. The alpha
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Table 6.7: Number of robot tasks completed compared to the pace of the human

#Completed Tasks -
#Required Tasks

Mean 1.4
SEM 0.8
SD 2.3
Minimum -1.2
Maximum 5.4
Count 9

level was set arbitrarily to 0.1 and the null hypothesis was that the means are equal for the
paired or equal to 0 for the individual samples.

As described in Section 6.2.7 there were some goals with implementing the Responsible
Robots based-HRC approach and some hypotheses were presented. The first hypothesis, H2.1,
states that the system has a low rate of false positives. Therefore, the precision was, as previ-
ously calculated, 0.96 which is equivalent to a False Positive Rate (FPR) of 0.04. In other words,
the probability that there will be no conflict if the system starts a task is 0.96. The conflicts that
occurred in the conducted experiments yielded in general low risk and would be absorbed by
a reactive layer. The speeds were low at all times, and there was no use of hazardous tools.
A different scenario with potentially greater consequences might result in a different precision.
The data is evaluated with a one tailed Poisson confidence interval at 95% (Table 6.8). This
yields a Precision greater than 91% with a 95%CI and it is therefore concluded that H2.1 holds.

Table 6.8: Number of true and false positive predictions.

Positives TP FP Precision 95%CI

116 111 5 > 91%

Further, the reduction of human-robot conflicts was tested in accordance with H2.2. The
mean of the reductions was 2.3, for the difference to be significant the alternative hypothesis
that the mean is less than 0 must be true. An individual sampled one-tailed t-test gives

t (9) = 2.92,

p = 0.0097,

p <α→ null hypothesis rejected,

Ha :∆mean < 0 → is true.

Resulting in the conclusion that the reduction of human-robot conflicts is significant and that
H2.2 holds.
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The data regarding the pace of the robot was analyzed as a last indicator to verify the per-
formance of the Responsible Robots based-HRC approach. In this case the number of tasks
completed by the robot should exceed the required number based on the human’s pace. The al-
ternative hypothesis is therefore that the mean of the difference is greater than 0. An individual
sampled one-tailed t-test gives

t (9) = 1.79,

p = 0.056,

p <α→ null hypothesis rejected,

Ha :∆mean > 0 → is true,

which also in this case concludes with a significant difference. The Responsible Robots based-
HRC approach is therefore capable of keeping up with the human operator and H2.3 thus holds.

All three indicators used to evaluate the system performance resulted in favor of the pro-
posed system and all three hypotheses were kept. It is therefore concluded that the performance
of the Responsible Robots based-HRC system is as expected.

6.5 Summary

The purpose of these experiments was to verify if the proposed system is in compliance with
PS1 and PS2.

PS1: The developed system should act proactive against dangers. Today’s safety systems
moves the robot away if it is in a conflict with the human to avoid a collision. The devel-
oped system should avoid human-robot conflicts, thus acting as a new layer of safety.

PS2: The developed system should be able to solve the necessary tasks to maintain its produc-
tivity. The system should be designed to be independent of task and robotic hardware.
Further, the developed system should have an awareness of what the human operator
expects of it.

The performance of the proposed Responsible Robots based HRC was experimentally tested
with several test subjects. The participants worked alongside a responsible robot on an assembly
task, and the robotic system decided autonomously when to safely execute its own tasks and
when to wait. Three hypotheses were formulated to investigate this performance. Firstly, that
the system had a low rate of false positives. Secondly that the system reduced the number of
human robot conflicts. And lastly that the system is able to keep up with the human operator’s
productivity. An alpha level of 0.1 was arbitrarily chosen for evaluation purposes.

Firstly, the rate of false positives was found to be 0.04, which is well below the set alpha
value. It was therefore concluded that the system has a low rate of false positive and hypothesis
H2.1 holds. Further, the very important hypothesis on the reduction of human robot conflicts was
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investigated. The average reduction during the 10 minute workday was 2.3 and the difference
was confirmed to be significant by using a student-t test. It is therefore safe to say that the
proposed method reduces the number of human robot conflicts and H2.2 holds. Lastly, the last
hypothesis about the productivity of the system was investigated. It was found that the system
on average was 1.4 tasks ahead of the human, and the difference was confirmed to be significant
in a student-t test. Therefore, it is concluded that H2.3 also holds.

The experiments verified the performance and demonstrated a reduced number of human
robot conflicts, and an ability to keep up with the human’s work pace, and its precision in
decision making. It is therefore safe to conclude that the system’s performance corresponds to
the statements PS1 and PS2.





Chapter 7

Effects of working with a Responsible
Robot in a HRC

7.1 Introduction

In this chapter, the experiments related to PS3 will be presented. It is stated that the proposed
system should be designed to improve the effect the collaboration has on the human operator.
It is vital that the human operator is able to maintain focus on his/her task to have a fruitful
collaboration. If the human operator is continuously interrupted by the robot’s unpredictable
movements, it might cause stress and unnecessary time pressure and frustration. These experi-
ments will investigate how the proposed system affects this.

7.2 Experiments

A series of experiments with several human participants was conducted. The purpose was to
explore the differences in stress and perceived workload between collaborating with a human,
a pre-programmed robot and a RR. An assembly task was devised where the human and the
robot each had a set of tasks. The human operator’s instructions had a low level of detail which
allowed for a variety of different ways to complete the tasks in the instructions. The human
operator could choose how to complete the tasks, and also vary how the tasks were completed
throughout operation. This is important as it provides a more natural behavior by the human
operator. The participants then completed one “workday” as a HHC, one in collaboration with
a preprogrammed robot and one working with a Responsible Robot.

7.2.1 Experimental Setup

The same work cell and system that was as used in Chapter 6 was also used in this experiment. A
Kinect V2 sensor was used to track the human operator. The code was developed in LabVIEW,
with the HARO3D™1 VI library for integration with the Kinect. Two off-the-shelf desktop PCs

1HaroTek LCC. www.harotek.com (Accessed 11/10/2015)
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were used, one of which was dedicated to do the curve fittings. The desk was located between
the human and the robot, allowing the human and the robot to work on the desk from each side
of the table. The desk used measured 180 cm by 40 cm. The workspace was separated into
human sub-workspaces (HSWs) and robot sub-workspaces (RSWs) based on their tasks. The
areas where a HSW and a RSW overlap are the shared sub-workspaces (SSWs) as depicted in
Figure 7.1. Note that HSWs, RSWs and thus also the SSWs might also overlap themselves. The
HSWs were defined as three equal parts of the desk, HSW1 being the leftmost part of the desk,
HSW2 the middle and HSW3 the rightmost for the human. A second table was placed on the
robots side serving as a storage place for full and empty brick containers.

Storage

HSW1 HSW2 HSW3

Figure 7.1: The layout of the collaborative work cell used in the experiments.

7.2.2 Procedure

When the participant first arrived at the work space, they received training from an instructor
(Table 7.1). They then got a few minutes to familiarize themselves with the tasks, until they were
comfortable enough to proceed. They then went on with completing a work day, while being
observed by the system, recording the observations to the memory component. The system
Computations/Learning component immediately starts to calculate proper parameters for the
likelihood analysis. The participants had no assistant through this day and they had to bring
the boxes with bricks back themselves. This workday was used as day zero, and the learning
algorithms were applied to the data. The participants were then instructed to read about the
different scales in the NASA-Task Load Index test (See Section 7.2.4), and arrange them by
importance. The scale that was most important to them was to be assigned a weight of 6, the
least important a 1. The participants then worked one workday while collaborating with the
instructor. The instructor’s tasks were the same as the robot would later have. A NASA-TLX
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form was then filled out for the HHC case. The participants then went on with the PP-HRC
case, or the Responsible Robots based-HRC case. Another NASA-TLX form was filled out for
the performed case. A workday with the final approach, Responsible Robots based-HRC or
PP-HRC was then performed before the final NASA-TLX form was filled out. A summary of
the steps is shown in Table 7.1.

Table 7.1: Summary of the procedure the participants went through during an experiment.

Step Procedure

1 Receive training
2 Work one day on their own
3 Assign weights to NASA-TLX scales
4 Work one day as HHC
5 Fill out a NASA-TLX form
6 Work one day as PP-HRC/Responsible Robots based-HRC
7 Fill out a NASA-TLX form
8 Work one day as Responsible Robots based-HRC/PP-HRC
9 Fill out a NASA-TLX form

7.2.3 Scenario

The same scenario that was used in the performance experiments (Chapter 6) was also used in
these experiments The system was tested in a scenario where the human was building two Lego
figures at a time, then taking them apart (Table 7.2). The robot’s tasks involved replenishing
bricks and containers, and picking up full containers (Table 7.3) and resulted in three SSWs,
two of which were overlapping (Figure 7.2). The robot’s task execution times were set as the
time it would need from it decides to start the task, until it is clear of the SSW. Because of this,
the robot uses more time than the task execution time before it is ready to start a new task. In
this scenario the human would be building the figures in a sub-workspace not shared with the
robot, thus leaving all the SSWs unvisited at the same time. The subjects were able to finish
anything between three and five cycles during one workday.

Table 7.2: Human work instructions

Step Action

1 Pick 12 large and 24 small bricks of any color in HSW1
2 Pack bricks in an empty box
3 Bring the box with bricks and assemble two figures in HSW2
4 Bring the figures to HSW3 and take them apart
5 Pack used Lego bricks in an empty box
6 Repeat step 1-5 until end of day
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Figure 7.2: The shared workspace for the scenario, with the three shared sub-workspaces indi-
cated by red, blue and green respectively.

Table 7.3: Robot Tasks

Task Action Time

1 Replenish bricks in brick container in HSW1 25
2 Replenish empty containers to HSW3 24
3 Collect container with used bricks from HSW3 18

7.2.4 NASA Task Load Index

In these experiments the participants were asked to complete a NASA Task Load Index form
(NASA-TLX) after each test to test the perceived workload of the task [117]. The scales Mental
Demand (MD), Physical Demand (PD), Temporal Demand (TD), Performance (PE), Effort (EF)
and Frustration (FR) were used (Table 7.4). Each of the scales were given a value between 0
and 100, where 0 denotes no load at all while 100 is perceived as a maximal load.

The participants were asked to weigh the different scales before the experiments started
which were used to calculate a user weighted workload (UWWL). While the ambition of the
system was not necessarily to reduce all the scales, a set of weights was also chosen by the
research team to calculate a research weighted workload (RWWL). As shown in table 7.5, the
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Table 7.4: The scales used in the NASA-TLX

Scale Description

Mental Demand
The amount of mental activity that was required. How much

thinking, deciding, remembering, searching etc
Physical Demand How much physical activity was required

Temporal Demand
The amount of time pressure felt due to the rate at which the

task elements occurred

Performance
How successfully was the task completed. How satisfied

were you with your performance

Effort
How hard did you have to work to accomplish your level of

performance

Frustration
How irritated, stressed, and annoyed were you, compared to

calm and relaxed

scores with the highest priority to reduce are Temporal Demand and Frustration, and the lowest
weights are given to Performance and Physical Demand.

Table 7.5: Selected weight for the TLX scales by the research team.

Weight Scale

6 Temporal Demand
5 Frustration
4 Effort
3 Mental Demand
2 Performance
1 Physical Demand

The UWWL and RWWL are calculated as the sum of the multiples of the weights and scores
given to each sub scale. The two scores UWWL and RWWL are calculated with two sets of
weights set by the participant and the researcher respectively. The scores are then calculated
as shown in (7.1) and (7.2) respectively, where si is the score denoted by the participant to sub
scale i . The weights set by the user and researcher are denoted as wui and wr i respectively. A
lower UWWL or RWWL indicates a lower workload, and is thus the goal of the system.

UW W L = 1∑
i wui

∑
i

wui si (7.1)

RW W L = 1∑
i wr i

∑
i

wr i si (7.2)

7.2.5 Model Components

The design of some of the components in the proposed model for Responsible Robots based-
HRC depend on the implementation. These include Hazard Identification, Goals and Objec-
tives, and the Decision components, these will be described in this section.
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Hazard Identification

As discussed in Section 4.2 the most essential hazards in a HRC is any form of unwanted contact
between the human and the robot. This is therefore what will be regarded as the main hazard in
this experiments, and the only one hazard to be included in the evaluation, that the human and
the robot is occupying the same space at the same time.

Goals and Objectives

The primary objective was to keep the risk below a level of 0.5. Further, the system had a goal
to complete as many tasks as possible, with an objective to not exceed an imbalance of one task
being executed more than two times more than the others. The task progression is monitored
and tasks with fewer executions was thus prioritized.

Decision

To investigate the contribution of the proactive safety layer, there are no other safety layers
included in the system. Basic necessary safety measures such as emergency stop is included
externally. The decision making mechanism in the system is thus only affected by the risk re-
lated objective and the productivity objective. The algorithm governing the decision component
is depicted in Figure 3. Essentially, the system has four available options: execute Robot Task
1, Robot Task 2 or Robot Task 3, or it can wait. First, the tasks with a risk lower than the set
threshold is identified. If no task has a low enough risk associated with it, the system waits. The
number of executions of each task is then compared, and any task that has been executed two
times or more than the least executed task is excluded from selection. The task with the com-
bination of the lowest risk, and the lowest number of executions is then selected for execution.
The system continuously runs this decision loop as long as the robot is in stand by. A system
with all three safety layers would continuously run the decision loop, and decisions based on
low level SA would overrule and interrupt actions started on the basis of higher level SA.

Algorithm 3 Decision Component
1: procedure SELECT ACTION

2: if Robot busy = FALSE then
3: if Risk(Taski ) <Riskmax then
4: if Task Penalty(Taski ) <Task Penaltymax then
5: Start Taski

6: Task penalty(Taski ) ← Task Penalty(Taski )+increment
7: else Return
8: else Return
9: else Return

7.2.6 Parameter Settings

The workday was set to 10 minutes, and the maximum TBV set to 1 minute. Both the ToV and
the TBV datasets were distributed over 200 bins, giving a time interval of 3 seconds and 0.3
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seconds in (4.10) and (4.11) respectively. The maximum accepted MSE for the fitness of the
curve fitting was set to εmax = 5×10−4. The maximum number of PDFs was set to 5 and the
relearn rate was set to 25%.

The design parameters used in the human motion predictions, k1, k2 and γ, were set to
k1 = 1, k2 = 0.25 and γ = 1. The length of the human velocity prediction history, L, was set
to L = 1second . The maximum distance of the proximity field ρ was set to ρ = 20cm. The
likelihood analysis iteration time was set to 1 second.

7.2.7 Participants

The experiments were conducted with a total of 9 participants. The participants were students
at Chuo University and were all male in their 20’s. The participants were recruited by email and
word-of-mouth.

7.2.8 Hypothesis

A set of hypotheses was formulated for this experiment also. If the hypotheses hold, it is safe to
conclude that the system corresponds to PS3. The effects on the human operator working with
a Responsible Robot is tested regarding workload and stress. The workload is tested with the
NASA-TLX, which was presented in Section 7.2.4. The NASA-TLX is a well used and reliable
questionnaire working with several sub-scales that can be investigated separately as well as
combined using a weighting scale. In these experiments, two set of weights will be used, one
set by the participants, and one set by the research team. This is done to investigate both which
sub-scales the participants find it the most important to improve, and to study the effects on the
workload in the light of the research goals. The most important sub-scales to improve for the
research team can be seen in Table 7.5.

Further, as a stress indicator, the number of human errors was counted in each case. Human
errors are used as an indicator as they can be an indicator on lack of concentration. Causing
many errors may also be frustrating and reduce the sense of accomplishment for the human.
The errors included counting the wrong number of bricks, building the figure wrong, loosing
bricks of the table, etc. Some smaller errors like missing the box with a brick when packing
bricks or having to recount the bricks during picking, were counted as half an error. The goal of
the system is thus to reduce the workload and the number of human errors and two hypotheses
are formulated as shown below.

H3.1 The proposed system will reduce the perceived workload for the human operator com-
pared to a system using a preprogrammed robot co-worker.

H3.2 The system reduces the number of human errors in the scenario.
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7.3 Results

The experiments were conducted as previously described with a total of 9 participants. The
HHC case was always conducted first, to give the system time to learn, then either the PP-
HRC or Responsible Robots based-HRC was second. A total of 5 participants followed the
HHC→PP-HRC→Responsible Robots based-HRC pattern, and 4 followed the HHC→ Respon-
sible Robots based-HRC→PP-HRC pattern. Due to practical reasons the learning time allowed
to the system was limited to a minimum, and the Responsible Robots based-HRC case was
conducted after the first or second iteration, typically.

As mentioned, the workload and stress levels for the operators were studied through the
NASA-TLX forms completed by the participants and the human error counts. The error counts
were found by studying the video material. The errors were counted as either a full error or a
half error. The two error types are previously described in Section 7.2.8, however some types
of errors were on some occasions counted as a full error, and on some as a half. This was based
on a subjective assessment based on the severity. In some cases did a recount of bricks only
take a few seconds, while it sometimes took multiple seconds and caused more frustration for
the human. The number of human errors for each of the participants in each case can be seen in
Table 7.6.

Table 7.6: Number of human errors observed during the experiments.

HHC PP-HRC RR-HRC
# Full Half Tot Full Half Tot Full Half Tot

1 0 0 0 0 1 0.5 2 0 2
2 4 2 5 3 4 5 2 3 3.5
3 2 3 3.5 0 9 4.5 0 2 1
4 0 0 0 0 0 0 0 0 0
5 1 2 2 3 0 3 0 0 0
6 4 1 4.5 1 7 4.5 0 1 0.5
7 0 1 0.5 0 0 0 0 0 0
8 1 0 1 0 1 0.5 2 0 2
9 0 0 0 0 3 1.5 0 0 0

From examining the total errors the Responsible Robots based-HRC approach reduced the
number of errors in 5 out of 9 experiments. Two of the 9 participants (4 and 7) had no errors in
both the PP-HRC approach and the Responsible Robots based-HRC approach. Only participant
1 and 8 had more human errors with the Responsible Robots based-HRC approach compared
to the PP-HRC approach. Another observation is the high number of human errors when the
participant was working with another human in the HHC approach. This can most likely be
accounted for by it being the first in the series. The average reduction or increase of numbers
when comparing the approaches is shown in table 7.7. The mean reduction of errors with the
Responsible Robots based-HRC approach compared to the two other approaches is close to one
error. In the best experiment the number of errors was reduced with 3.5 errors when using the
Responsible Robots based-HRC approach.
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Table 7.7: Differences in number of human error between methods

HHC -
PP-HRC

HHC -
RR-HRC

RR-HRC -
PP-HRC

Mean 0.11 -0.83 -0.94
SEM 0.24 0.62 0.62
SD 0.74 1.85 1.86
Minimum -0.5 -2 -3.5
Maximum 1.5 4 1.5
Count 9 9 9

Investigating the NASA-TLX forms gives insight in the experienced workload by the par-
ticipants. The mean loads in each scale can be seen in Figure 7.3. The data reveals that the
greatest improvement can be seen in temporal demand, effort and frustration. The mean of the
weights defined by the participants are listed by priority in Table 7.8. Frustration is the high-
est weighted load by the participants, and physical demand the least. The effort, performance,
temporal demand and mental demand all follow in between with similar weights. The weighted
workloads are calculated using the weights defined by the participants and the ones defined by
the research group as shown in (7.1) and (7.2).

MD PD TD PE EF FR
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HHC 39.8 44.7 43.1 50.6 53.9 49.6

PP-HRC 38.0 49.1 56.6 47.7 58.0 42.4

RAB-HRC 41.8 40.1 45.9 44.6 46.1 36.8

Figure 7.3: The mean of the scales investigated with the NASA-TLX

Table 7.8: Mean weight for the TLX scales

Weight
Research User Scale

5 5 Frustration
4 3.9 Effort
2 3.6 Performance
6 3.3 Temporal Demand
3 3.0 Mental Demand
1 2.2 Physical Demand

The means of the UWWL and RWWL can be seen in Figure 7.4. For both set of weights
the UWWL and the RWWL are lower than both other approaches with the Responsible Robots
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based-HRC approach. It is also apparent that the two sets of weights produced similar sets of
UWWLs and RWWLs.

RWWL UWWL
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HHC 47 47

PP-HRC 48.6 49.6

RAB-HRC 42.5 42.8

Figure 7.4: The weighted means for the user and research weighted workloads

7.4 Evaluation of Results

The means of the UWWLs and RWWLs can be analyzed with a paired sample, two-tailed t-
test. A comparison to the HHC approach is excluded since it was always tested first by the
participants. This might have affected the level of perceived workload, since the participants
then had little experience with the tasks.

The means of the UWWLs can be seen in Figure 7.4, comparing the means of PP-HRC and
Responsible Robots based-HRC yeilds

t (9) = 1.88,

p = 0.039,

p <α→ null hypothesis rejected,

Ha :∆mean ̸= 0 → is accepted.

Further, a comparison of the means of the RWWLs for PP-HRC and Responsible Robots
based-HRC gives

t (9) = 1.57,

p = 0.068,

p <α→ null hypothesis rejected,

Ha :∆mean ̸= 0 → is accepted.

As a result of the null hypothesis being rejected in both cases, it is safe to conclude that the
Responsible Robots based-HRC approach present a lower workload for the operator than the
PP-HRC approach and that hypothesis H3.1 holds.

The last indicator analyzed was the number of human errors throughout the workday. Sim-
ilarly to the analysis of the number of conflicts the mean was compared to a mean of 0 in a
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one-tailed t-test. The t-test yielded

t (9) = 1.52,

p = 0.08,

p <α→ null hypothesis rejected,

Ha :∆mean < 0 → is accepted,

and it is concluded that the Responsible Robots based-HRC approach reduces the number of
human errors. Although the number of human errors is only one indicator it is a clear indica-
tion that hypothesis H3.2 holds. What caused these errors needs further investigations, however,
when used as an indicator on concentration and stress the results support the use of the Respon-
sible Robots based-HRC approach.

7.5 Summary

This experiment was conducted to investigate the proposed system’s compliance with PS3.

PS3: The developed system should be designed to improve the effect the collaboration has on
the human operator. The developed system should reduce the workload for the human
and have a low rate of false alarms. Further, it should inherit some human-like attributes
to build trust.

The effects of collaboration with a responsible robot compared to a pre-programmed robot
have been investigated in this chapter. Two hypotheses were formulated to investigate these
effects. Firstly, H3.1 stated that the system should reduce the perceived workload for the human
operator. Further, H3.2 stated that the system would reduce the number of human errors due
to a reduced stress level. Several participants worked in collaboration with a human, a pre-
programmed robot and a responsible robot on an assembly task. The participants’ errors were
monitored in all cases, and task load scores were calculated.

Both the NASA-TLX workloads, UWWL and RWWL, were significantly reduced by the use
of the proposed method. The UWWL was reduced from a load of 49.6 to 42.8, while the RWWL
was reduced from 48.6 to 42.5. The reductions are a clear indication on the effects of working
with a Responsible Robot and H3.1 was kept. The number of average errors was reduced by
∼ 1. This might not seem like much, however, the experiment only lasted 10 minutes. Using
the number of human errors as a stress indicator, the result is an indication of a reduced stress
level. The hypothesis H3.2 is therefore kept.

The proposed approach proves to be more comfortable and less stressful to work with for
humans than a preprogrammed robot and it is safe to conclude that PS3 is fulfilled.





Chapter 8

Conclusion

8.1 Conclusion

In this work, a novel strategy for safe and productive human-robot collaboration has been pre-
sented, called Responsible Robots. The term Responsible Robots was chosen because rather
than blindly obeying rules to ensure the safety of the human operator, the system makes deci-
sions on the basis of which actions are safe.

A model was then proposed to realize Responsible Robots. The model enhances the robot’s
situation awareness by implementing a risk perception. The risk perception is based on stan-
dardized risk analysis framework and is active throughout operation. The enhanced situation
awareness requires a projection of the future status of the system, which in this system is pro-
vided by the likelihood analysis in the risk perception. Three problem statements were formu-
lated as criteria to the new system. The three problem statements regarded the proactive actions,
productivity and the effect the proposed system had on the human operator.

The performance of the system was extensively tested in a series of experiments with human
test subjects. The human test subjects received instructions that could be solved in a variety of
ways. This variety represent the flexibility in how humans solve tasks and poses a tremendous
challenge for the robotic system. Despite this, the experiments demonstrated that the system
acts proactively against dangers with a precision of 96% and that the human operator’s NASA-
TLX workload is reduced by 14,5%. Moreover, the Responsible Robot reduced the number of
human-robot conflicts by 81%.

It is therefore concluded that Responsible Robots as an approach to safe and productive
HRC has been realized and that this approach has a positive effect on the human operator. The
proposed method is also appropriate as a new layer of safety before the currently researched
separation monitoring. The following sections will further discuss the conclusion about the
problem statements and Responsible Robot-model. Lastly, some thoughts and ideas about fu-
ture work is discussed in Section 8.2.
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8.1.1 On Responsible Robots

A new strategy for safe and productive HRC called Responsible Robots has been proposed in
this thesis. Responsible Robots have been introduced as robots that acts proactively against dan-
ger while maintaining productivity. A model to realize Responsible Robots was then presented
and some of the possibilities that comes with the implemented risk perception was explored.

To realize a Responsible Robot some aspects about how human’s make safe decisions has
been explored. The importance of situation awareness in the human’s decision making process
was discussed. Further, the three levels of situation awareness have been presented and related
to current research and available safety systems. It was found that a proper safety system at
Level 3 SA was missing. The risk perception was identified as a means of enhancing the SA
to Level 3 as the likelihood analysis give a projection of the future status of the system. The
industrial standard risk framework was then presented and current safety systems was discussed
in the light of the risk framework.

The relevant components in the Responsible Robot-model has been presented. The impor-
tance of the likelihood analysis was emphasized as it is the component that accounts for the
projection of the future status of the system, as required at Level 3 SA. Models for realizing
the Computation/Learning, Risk Estimate, Hazard Identification, Goals and Objectives, and the
Decision component have been proposed.

8.1.2 On the Proactive Behavior of the Responsible Robot

PS1: The developed system should act proactively against dangers. Today’s safety systems
moves the robot away if it is in a conflict with the human to avoid a collision. The
developed system should avoid human-robot conflicts, thus acting as a new layer of safety.

This PS was verified in two steps, first by purely testing the likelihood analysis, then through
the decision maker in the completed system.

Two hypotheses were presented for the likelihood analysis, firstly that the system is able to
predict whether the human operator will occupy a given SSW within the robots task execution
time. Secondly, that the system’s predictive capabilities would improve over time, as more
observations were made, and the Computation/Learning component was given more time to
calculate appropriate parameters. This was verified using evaluations of the DBS and BSS
results and it was demonstrated that both hypotheses holds.

Furthermore, the proactive capabilities of the proposed Responsible Robots based HRC was
experimentally tested with several test subjects. The participants worked alongside a respon-
sible robot on an assembly task, and the robotic system decided autonomously when to safely
execute its own tasks and when to wait. Two hypotheses were formulated to investigate this
performance. Firstly, that the system had a low rate of false positives and secondly that the
system reduced the number of human robot conflicts. It was shown through the experiment that
both hypotheses holds.
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On the basis of the two experiments and the validity of the four hypotheses it has been
shown that the system is able to act proactive against dangers. It is concluded that the proposed
system complies with PS1.

8.1.3 On the Productivity of the Responsible Robot

PS2: The developed system should be able to solve the necessary tasks to maintain its produc-
tivity. The system should be designed to be independent of task and robotic hardware.
Further, the developed system should have an awareness of what the human operator
expects of it.

The compliance of PS2 was tested as a part of the experiment in Chapter 6. A HRC work
cell was set up with a Responsible Robot and experimentally tested with several test subjects.
The participants worked alongside a responsible robot on an assembly task, and the robotic sys-
tem decided autonomously when to safely execute its own tasks and when to wait. A hypothesis
was formulated that stated that the system is able to keep up with the human operator’s produc-
tivity. An alpha level of 0.1 was arbitrarily chosen for evaluation purposes. The experiments
demonstrated that also this hypothesis holds and it was verified that the Responsible Robot is
able to keep up with the human’s work pace. It is therefor safe to conclude that the proposed
system is in compliance with PS2.

8.1.4 On the Effect of Working with a Responsible Robot

PS3: The developed system should be designed to improve the effect the collaboration has on
the human operator. The developed system should reduce the workload for the human
and have a low rate of false alarms. Further, it should inherit some human-like attributes
to build trust.

The last PS stated that the system should have a positive effect on the human worker. This
was tested in a similar experiment as the previously described scenarios. Firstly, two hypotheses
were formulated to investigate this effects. It was stated that the system should reduce the
perceived workload for the human operator and that the system would reduce the number of
human errors. Several participants worked in a collaboration with a human, a pre-programmed
robot and a Responsible Robot on an assembly task. The participant’s errors were monitored in
all cases, and task load scores were calculated using a NASA-TLX form. It was found that both
hypotheses holds.

Therefore, the proposed approach proves to be more comfortable and less stressful to work
with for the human operator than a preprogrammed robot. Therefore, it is safe to conclude that
the proposed system complies with PS3.
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8.2 Recommendations for further work

The system proposed in this thesis fulfilled all the problem statements defined in the beginning
of the thesis. In spite of that, there are several approaches to improve the system. One of the
great advantages of the system is its module based approach. The dynamic decision making
model makes it possible to e.g. solely improve the Computations/Learning component. At
some level, every component can always be improved both with regards to computational needs
and performance.

More importantly, the strategy behind Responsible Robots can have an impact on research
on HRC. Nowadays, most approaches focus either on safety or on task related challenges. The
proposed strategy brings these two branches closer together with its safe task execution. This
new way of thinking opens up for some new approaches to HRC in research with a greater focus
on the entire collaboration.

Moreover, the proposed strategy is not dependent on or limited to industrial HRC and can
be applied to any branch of robotics. One can even imagine Responsible Robots being imple-
mented in any industrial robot. During installation of a new industrial robot, the Responsible
Robot system would be aware of its lack of data about its environment and human activities.
This way, it could be more prone to sound alarms when moving and alert the human integrator.
The risk perception in general is a new modality on which human-robot communication can be
based. Research into how the risk perception can be used to improve the robot’s selectivity in
communicated information would be interesting.

The Responsible Robots has been shown to have a positive effect on the human operator.
However, a deeper investigation of the long-term effects of working with Responsible Robots
would be beneficial. These investigations could include bio-data to get a better understanding
of stress factors, concentration levels and the comfort of the human operator. After all, the
human operator and the robot now the share the responsibility for the work cell’s safety and
productivity and should thus be devoted the same attention.
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Table A.1: Decomposed Brier Score (BS) and Brier Skill Scores (BSS) for Scenario 1 in Chap-
ter 5

SSW1
Day REL RES UNC DBS BSS

1 0.0519 0.0777 0.1875 0.1617 0.1379
2 0.0330 0.0808 0.1956 0.1478 0.2441
3 0.0259 0.0777 0.1908 0.1390 0.2713
4 0.0363 0.0758 0.1971 0.1576 0.2003
5 0.0391 0.0763 0.1940 0.1568 0.1916
6 0.0338 0.0767 0.2059 0.1629 0.2086
7 0.0257 0.0720 0.2001 0.1538 0.2314
8 0.0175 0.0761 0.1986 0.1400 0.2950
9 0.0142 0.0810 0.1986 0.1318 0.3363
10 0.0114 0.0844 0.2052 0.1323 0.3554

Avg. 0.0289 0.0778 0.1973 0.1484 0.2472

SSW2
Day REL RES UNC DBS BSS

1 0.0055 0.1236 0.2495 0.1314 0.4736
2 0.0051 0.1505 0.2488 0.1034 0.5844
3 0.0038 0.1489 0.2495 0.1044 0.5815
4 0.0039 0.1455 0.2478 0.1062 0.5716
5 0.0046 0.1459 0.2487 0.1073 0.5684
6 0.0071 0.1361 0.2458 0.1168 0.5249
7 0.0033 0.1399 0.2475 0.1109 0.5519
8 0.0055 0.1630 0.2484 0.0910 0.6338
9 0.0051 0.1725 0.2485 0.0812 0.6734
10 0.0054 0.1391 0.2498 0.1161 0.5351

Avg. 0.0049 0.1465 0.2484 0.1069 0.5698

SSW3
Day REL RES UNC DBS BSS

1 0.0055 0.1236 0.2488 0.1307 0.4747
2 0.0071 0.1557 0.2496 0.1009 0.5956
3 0.0068 0.1530 0.2491 0.1029 0.5868
4 0.0066 0.1523 0.2499 0.1043 0.5828
5 0.0055 0.1519 0.2497 0.1033 0.5864
6 0.0073 0.1420 0.2499 0.1152 0.5391
7 0.0068 0.1488 0.2500 0.1081 0.5677
8 0.0076 0.1658 0.2498 0.0916 0.6332
9 0.0076 0.1760 0.2498 0.0813 0.6744
10 0.0059 0.1366 0.2453 0.1146 0.5330

Avg. 0.0067 0.1506 0.2492 0.1053 0.5774
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Table A.2: Decomposed Brier Score (BS) and Brier Skill Scores (BSS) for Scenario 2 in Chap-
ter 5

SSW1
Day REL RES UNC DBS BSS

1 0.0085 0.1840 0.2488 0.0732 0.7056
2 0.0115 0.2174 0.2500 0.0441 0.8237
3 0.0058 0.1729 0.2491 0.0820 0.6708
4 0.0153 0.2232 0.2495 0.0415 0.8337
5 0.0077 0.1870 0.2490 0.0697 0.7202
6 0.0094 0.1909 0.2495 0.0681 0.7271
7 0.0121 0.1979 0.2478 0.0620 0.7498
8 0.0104 0.2133 0.2498 0.0469 0.8124
9 0.0096 0.1985 0.2483 0.0594 0.7608
10 0.0095 0.1915 0.2481 0.0661 0.7338

Avg. 0.0100 0.1977 0.2490 0.0613 0.7538

SSW2
Day REL RES UNC DBS BSS

1 0.0161 0.0489 0.2446 0.2118 0.1341
2 0.0117 0.0865 0.2477 0.1728 0.3022
3 0.0302 0.0383 0.2419 0.2338 0.0333
4 0.0181 0.1052 0.2478 0.1607 0.3514
5 0.0106 0.0663 0.2495 0.1938 0.2233
6 0.0221 0.0365 0.2475 0.2330 0.0584
7 0.0038 0.1165 0.2498 0.1371 0.4510
8 0.0072 0.1285 0.2499 0.1287 0.4850
9 0.0062 0.1116 0.2497 0.1442 0.4222
10 0.0036 0.0911 0.2500 0.1624 0.3504

Avg. 0.0130 0.0830 0.2478 0.1779 0.2811

SSW3
Day REL RES UNC DBS BSS

1 0.0053 0.1621 0.2431 0.0862 0.6453
2 0.0054 0.1788 0.2449 0.0714 0.7083
3 0.0060 0.1513 0.2390 0.0937 0.6078
4 0.0126 0.2028 0.2456 0.0553 0.7746
5 0.0042 0.1488 0.2433 0.0988 0.5941
6 0.0040 0.1508 0.2449 0.0980 0.5996
7 0.0032 0.1733 0.2458 0.0757 0.6921
8 0.0085 0.1913 0.2446 0.0618 0.7472
9 0.0050 0.1726 0.2446 0.0771 0.6849
10 0.0045 0.1736 0.2468 0.0778 0.6848

Avg. 0.0059 0.1705 0.2442 0.0796 0.6739
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Table A.3: Decomposed Brier Score (BS) and Brier Skill Scores (BSS) for Scenario 3 in Chap-
ter 5

SSW1
Day REL RES UNC DBS BSS

1 0.0268 0.0760 0.2480 0.1987 0.1986
2 0.0128 0.1040 0.2425 0.1513 0.3760
3 0.0134 0.1323 0.2413 0.1224 0.4927
4 0.0195 0.1111 0.2462 0.1546 0.3720
5 0.0153 0.1418 0.2410 0.1145 0.5248
6 0.0195 0.1657 0.2403 0.0941 0.6083
7 0.0192 0.1252 0.2484 0.1425 0.4265
8 0.0179 0.1584 0.2425 0.1019 0.5797
9 0.0147 0.1242 0.2475 0.1380 0.4425
10 0.0150 0.1009 0.2472 0.1613 0.3474

Avg. 0.0174 0.1240 0.2445 0.1379 0.4368

SSW2
Day REL RES UNC DBS BSS

1 0.0173 0.1693 0.2497 0.0978 0.6085
2 0.0184 0.1825 0.2495 0.0854 0.6577
3 0.0184 0.1786 0.2495 0.0892 0.6423
4 0.0176 0.1682 0.2496 0.0990 0.6034
5 0.0243 0.1525 0.2460 0.1178 0.5211
6 0.0188 0.1784 0.2496 0.0900 0.6394
7 0.0110 0.1748 0.2495 0.0857 0.6564
8 0.0107 0.1752 0.2499 0.0854 0.6582
9 0.0145 0.1844 0.2495 0.0796 0.6811
10 0.0150 0.1770 0.2487 0.0866 0.6516

Avg. 0.0166 0.1741 0.2491 0.0917 0.6320

SSW3
Day REL RES UNC DBS BSS

1 0.0101 0.1480 0.2473 0.1095 0.5574
2 0.0082 0.1626 0.2480 0.0936 0.6224
3 0.0122 0.1838 0.2484 0.0768 0.6908
4 0.0161 0.1677 0.2481 0.0965 0.6109
5 0.0199 0.1944 0.2483 0.0737 0.7031
6 0.0190 0.1906 0.2480 0.0763 0.6921
7 0.0159 0.1871 0.2478 0.0766 0.6908
8 0.0130 0.1832 0.2464 0.0762 0.6906
9 0.0198 0.1924 0.2478 0.0752 0.6966
10 0.0178 0.1864 0.2490 0.0804 0.6773

Avg. 0.0152 0.1796 0.2479 0.0835 0.6632



Appendix B

Hardware and Software

The following hardware and software was used in the experimental setup of the proposed sys-
tem.

Hardware

Sensor
Microsoft Kinect v2 for Windows, time of flight sensor. (dev.windows.com/kinect)

Robot
NACHI MR20 7-axes industrial robot. (www.nachirobotics.com/mr20.html)
NACHI FD11 robot controller. (www.nachirobotics.com/sales-data/fd-controller.html)
In-house high-speed interface to the FD11 controller.

Computers
Main Computer: Intel Core i7-950 @ 3.07GHz, 16GB RAM, Windows 8.1 Pro.
Computations/Learning-component Computer: Intel Core i7-5820K @ 3.30GHz, 16GB RAM,
Windows 8.1 Pro.

Software
National Instruments LabVIEW 2012 SP1 Development System with, Real-Time Module,
Robotics Module, Vision Development Module, MathScript RT Module. (www.ni.com/labview)
HARO 3D library for Kinect v2. (www.harotek.com)
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