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Chapter 1

Introduction

The advancements of the computer and sensor technology have enabled us to get

and save the high-dimensional, complex, and huge data in various fields of natural

and social sciences such as biotechnology, bioinformatics, system engineering, mar-

keting, and information technology. The statistical modeling plays an important

role for extracting useful information and knowledge from the data. The linear

regression modeling is used to model a linear relationship between a response

variable and several explanatory variables, and it represents the mechanisms of

phenomena by linear combinations of explanatory variables. The model tells us

various things; which variables have larger influence on the phenomena or which

have no influence on them.

The estimation of regression parameters and variable selection are fundamen-

tally important in the linear regression modeling. The parameter estimation cor-

responds to the estimation of the amount of the impact of the factors for the

phenomena, and the variable selection corresponds to the selection of the factors,

respectively. The parameters are usually estimated by using the ordinary least

squares or maximum likelihood procedures. Variable selection follows the best

subset selection based on the model selection criteria such as the AIC (Akaike,

1973) and the BIC (Schwarz, 1978). The cross-validation is also widely used as

a model selection criterion. For model selection criteria, we refer to Konishi and

Kitagawa (2008). For high-dimensional regression, however, these modeling pro-

cedures lead models with poor prediction accuracy. The least square procedures
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often yield model estimates with large variances, especially when there is a prob-

lem of multicollinearity. The best subset selection is often unstable because of its

inherent discreteness (Breiman, 1996). Further, the computational costs of the pa-

rameter estimation and the model evaluation complicate the modeling because we

need to calculate the inverse matrix of high-dimensional matrix and the number

of the candidate models are vast when the dimension of the data increases.

In order to overcome these issues, Tibshirani (1996) proposed the lasso (least

absolute shrinkage and selection operator), which tends to shrink some regression

coefficients toward exactly zero by imposing an L1 norm penalty on regression

coefficients. A distinctive feature of the lasso is its capability for simultaneous

model estimation and variable selection. The modeling procedures via the L1 norm

regularization is called the “sparse regression modeling” because they can produce

sparse estimates of the regression coefficients. For the last 20 years, various sparse

regression procedures which are inspired by the lasso have been proposed; e.g.

the bridge regression (Frank and Friedman, 1993), the SCAD (smoothly clipped

absolute deviation; Fan and Li, 2001), the elastic net (Zou and Hastie, 2005), the

adaptive lasso (Zou, 2006), the group lasso (Yuan and Lin, 2006) and the MCP

(minimax concave penalty; Zhang, 2010).

Although the least square or the maximum likelihood procedures give us the

closed form of the estimators of regression coefficients, analytical derivation of the

estimators for L1 regularizations is difficult, since L1 penalty is non-differentiable

at the origin. For this problem, several efficient algorithms have been proposed to

solve the L1 regularizations. Fu (1998) proposed the shooting algorithm for the

bridge regression, and the coordinate descent algorithm (Friedman et al. , 2010)

is an improved of the shooting algorithm. Mazumder et al. (2011) proposed the

SparseNet, which is an extension of the coordinate descent algorithm for the non-

convex optimization. The development of the LARS algorithm (Efron et al. , 2004)

touched off the growth of the area of the L1 regularizations. The GPS algorithm

(Friedman, 2012) is also known procedure for these problems. For non-convex

regularizations such as the bridge, the SCAD, and the MCP, the local quadratic

approximation (LQA; Fan and Li, 2001) and the local linear approximation (LLA;
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Zou and Li, 2008) are proposed.

In sparse regression modeling, the selection of adjusted tuning parameters in-

cluding in the L1 norm penalty is a crucial issue since these procedures depend on

the values of tuning parameters that control the bias-variance trade-off in resulting

estimates. Tuning parameters also identify a set of variables included in a model.

Ordinary model selection criteria, such as the AIC and the BIC, are often hard

to evaluate the goodness of estimated models. Although the AIC and the BIC

are the consistent estimators of the Kullback Leiblar information and logarithms

of the marginal likelihoods, respectively, when the regression coefficients and the

error variance are estimated by the maximum likelihood procedure, these criteria

have the estimation bias. In the estimation bias, the degrees of freedom (e.g. Ye,

1998; Efron, 1986; Efron, 2004) is often used to quantify the model complexity,

and it plays a key role in model selection. In the lasso, Efron (2004) showed that

Mallows’ Cp type criteria (Mallows, 1973) are unbiased estimators of the true pre-

diction error when degrees of freedom is given, and often provide better accuracy

than the cross-validation. It is, however, difficult to derive a closed form of the de-

grees of freedoms of the sparse regression modelings. For this problems, estimators

of the degrees of freedom of the lasso have been integrated by Zou et al. (2007),

Kato (2009), Tibshirani and Taylor (2012) and Hirose et al. (2013). Especially

Zou et al. (2007) showed that the number of non-zero estimates for regression

coefficients is an unbiased estimator of the degrees of freedom of the lasso.

The regularization procedures have the relationship with the Bayes model. The

Bayes model is one of the statistical modeling techniques, and its fundamental

characteristic is in evaluating the posterior probability distribution. In non-Bayes

modeling, the estimation of the model does through the evaluating of the like-

lihood or the loss functions. On the other hand, the Bayes modeling evaluates

the posterior probability derived from a product of the likelihood and the prior

probability. The regularization procedures are formed as the combination of the

loss function and a penalty term, and we can interpret it as the Bayes model (the

loss function and the penalty term correspond to the likelihood and the prior,

respectively). The GBIC (Konishi et al. , 2004) used as a criterion for evaluating
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models estimated by regularization methods, have been proposed from a Bayesian

viewpoint. Tibshirani (1996) indicated that the lasso estimates can be interpreted

as a MAP (maximum a posteriori) estimates when the regression coefficients have

independent and identical Laplace prior and the likelihood is taken to be normal

linear regression model. The Bayesian lasso (Park and Casella 2008, Hans 2009)

is a fully Bayesian analysis, and they suggested Gibbs sampling for the lasso with

Laplace prior in the hierarchical model. The Bayesian lasso provides the Bayesian

credible intervals of the lasso, and it guides the variable selection.

Compared to non-Bayesian modeling, the Bayesian lasso also has two advan-

tages:

1. estimating error variance.

2. choosing the value of tuning parameter.

In the lasso, the estimate of error variance is not directly obtained, and efficient

procedures were studied (see e.g. Reid et al., 2014). On the other hand, the

Bayesian lasso determines it as mode, median, or mean of posterior. Tuning

parameters which can be viewed as the Bayesian hyper parameters, are estimated

by hierarchical or empirical Bayesian method,

The Bayesian lasso has two drawbacks: it is difficult to calculate the posterior

mode of regression coefficients, and the resulting regression coefficients are not

sparse. Although the posterior mode of the Bayesian lasso coefficients is equivalent

to the lasso estimates, it is difficult to calculate the posterior mode because the

posterior function is not differentiable at zero. Kernel density estimation may be

applicable for this problem. It is however difficult to calculate a stable posterior

mode in high-dimensional density estimation. Furthermore, Park and Casella

(2008) indicate that the Bayesian lasso (point) estimates for regression coefficients

do not take zero value exactly.

To overcome these drawbacks, we propose three new methodologies:

A. The sparse algorithm (Hoshina, 2012).

B. aPIC: New model selection criterion that evaluates a Bayesian predictive

distribution (Kawano et al. , 2015).
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C. The MAP Bayesian lasso (Hoshina, 2015).

A. Sparse algorithm

The lack of the sparsity of the Bayesian lasso estimates is cased by the model

estimation, using MCMC or the Gibbs sampling. Since the estimates are calculated

by the random sample from the posterior, it is hard to take zero values as the

estimates. To overcome this issue, Hoshina (2012) proposed the sparse algorithm

that gives exactly zero values for some of the estimated coefficients according to

the posterior probability.

B. aPIC

Park and Casella (2008) proposed the method to select the value of the tuning

parameter taking an empirical Bayes approach. Hans (2010) proposed a variable

selection procedure that can model uncertainty based on the marginal likelihood.

We propose a new model selection criterion for evaluating a Bayesian predictive

distribution of the Bayesian lasso, which is used to choose appropriate values of

hyper-paramters included in a prior.

C. MAP Bayesian lasso

It is hard to derive the MAP estimates of the Bayesian lasso because of the non-

differentiability of the posterior function. For this problem, we propose a new

methodology that approximates posterior function by Monte Carlo integration;

estimating the posterior mode by Newton’s method, and modifying the resulting

estimates of regression coefficients to be sparse along a posterior probability.

The remainder of this thesis is organized as follows:

• Chapter 2 introduces L1 regularization procedures including the ridge, the

lasso, the elastic net, the adaptive lasso, the group lasso, the bridge regres-

sion, the SCAD, and the MCP for the linear regression modeling. Especially,
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the oracle property that is the asymptotic property of the sparse modeling

is provided. We describe the estimation algorithms for the L1 and the non-

convex regularizations; the LARS, the coordinate descent algorithm, the

LQA, and the LLA. The degrees of freedom of the L1 regularizations are

introduced and the algorithm which calculates the degrees of freedom of

the LARS are described. A number of the L1 regularization procedures are

compared in terms of the sparsity.

• In Chapter 3, we presents a review of the Bayes-type L1 regularizations,

the Bayesian lasso and its extensions. Some important properties on the

Bayesian lassos are described, and the unimodality of several Bayes-type L1

regularizations is shown.

• Chapter 4 introduces new procedures for the sparse regression modeling via

the Bayesian lasso: an algorithm to correct the resulting regression coeffi-

cients as sparse, a model selection criterion for the selection of appropriate

values of hyper-paramters included in a prior distribution of the Bayesian

lasso, and a new sparse modeling procedure which based on the MAP esti-

mation of the Bayesian lasso.

• In Chapter 5, we introduce the Bayesian information criteria; the BIC and

the GBIC, and a new model selection criterion for the elastic net is intro-

duced. This procedure evaluates the approximated marginal likelihood of

the elastic net or the Bayesian elastic net.

• Chapter 6 presents numerical studies to investigate the proposed procedures

through Monte Carlo simulations and the analyses of artificial and real data

sets.

• Chapter 7 gives some concluding remarks.
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Chapter 2

Lasso and L1 regularizations

2.1 Background

We consider the linear regression model

y = β01n +Xβ + ε, (2.1)

where y = (y1, . . . , yn)
T is an n-dimensional response vector, X = (x1, . . . ,xn)

T is

an n×p design matrix, x1, . . . ,xn are the p-dimensional observations for predictor

variables, the elements of xi are given as xi1, . . . , xip, β = (β1, . . . , βp)
T is a p-

dimensional regression coefficient vector, 1n is an n-dimensional vector whose all

components are one, and ε = (ε1, . . . , εn)
T is an n-dimensional error vector. It

is assumed that the elements of ε are independent and identically distributed

according to a normal distribution with mean zero and unknown variance σ2.

Without loss of generality, we assume that the predictors are standardized:

n∑
i=1

xij = 0,
n∑

i=1

x2
ij = n, j = 1, . . . , p. (2.2)

The linear regression model is usually fitted by the ordinary least squares pro-

cedure (OLS) or the maximum likelihood estimator (MLE). The OLS estimates of
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β0 and β are obtained by minimizing the sum of squared error

R(β0,β) =
n∑

i=1

yi − β0 −
p∑

j=1

xijβj

2

= (y − β01n −Xβ)T (y − β01n −Xβ).

(2.3)

Differentiating with respect to β0 and β we obtain

∂

∂β0
R(β0,β) = −2(yT1n − β0),

∂2

∂β2
0

R(β0,β) = 2,

∂

∂β
R(β0,β) = −2XT (y −Xβ),

∂2

∂β∂βT
R(β0,β) = 2XTX.

(2.4)

Assuming that X has a full column rank (XTX is positive definite), we have the

normal equation

−2(yT1n − β0) = 0, −2XT (y −Xβ) = 0. (2.5)

Thus the OLS estimates of β0 and β are given by

β̂0 = ȳ =
1

n

n∑
i=1

yi, β̂ = (XTX)−1XTy. (2.6)

Since the error vector ε has an n-dimensional normal distribution Nn(0, σ
2In),

we also have the likelihood function for the response vector y in the form

p(y|X,β0,β, σ
2) =

n∏
i=1

1√
2πσ2

exp

{
− 1

2σ2
(yi − β0 − xT

i β)
2

}
= Nn(y|β01n +Xβ, σ2In),

(2.7)

where Nq(z|µ,Σ) is a probability density function of a q-dimensional normal dis-

tribution with variable z, the mean vector µ and the variance covariance matrix

Σ, and In is an n× n identity matrix.
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This leads to the log-likelihood function

log p(y|X,β0,β, σ
2) = −n

2
log(2πσ2)− 1

2σ2
∥y − β01n −Xβ∥2. (2.8)

Thus, the MLEs for β0 and β in model (2.1) are defined by

(β̂0, β̂) = argmax
β0,β

[
− 1

2σ2
∥y − β010 −Xβ∥2

]
. (2.9)

The maximizer of (2.9) is equivalent to the minimizer (2.6), and the OLS and the

MLE for β0 and β have the same values as in the Gaussian models.

2.2 Estimation accuracy and ridge regression

In the OLS or the MLE procedures, the mean vector and the variance covariance

matrix of β̂ are respectively given by

E
[
β̂
]
= β, Cov

[
β̂
]
= σ2(XTX)−1. (2.10)

This means that β̂ is an unbiased estimator of β and the variance covariance matrix

of β̂ depends on XTX. When some column elements of X are highly correlated,

the determinant of XTX decreases (XTX is close to singular) and the diagonal

elements of (XTX)−1 become extremely large (this is the multicollinearity prob-

lem). This problem is also encountered in the high-dimensional case. Even when

the true variance covariance matrix is an identity matrix (i.e., correlations between

any predictors are sufficiently small), the determinant of the variance covariance

matrix |S| (S = XTX/n) can be small (even if the sample size is sufficient). Fig.

2.1 shows that S or XTX approaches to singularity as the dimension increases.

The OLS procedures often yield poor prediction because of the large variance

of the estimator. The regularization techniques overcome this problem. The ridge

regression introduced by Hoerl and Kennard (1970) is known as one of the reg-

ularization procedures. The ridge estimates are defined by minimizing R(β0,β)
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Fig. 2.1 The relationship between dimensionality and determinant of
the variance covariance matrix: The variance covariance matrix S is
computed by 1000 random samples from Np(0p, Ip).

with a bound on the L2 norm of the coefficients:

(β̂0, β̂) := argmin
(β0,β)

R(β0,β),

subject to

p∑
j=1

∥βj∥2 ≤ t,
(2.11)

or equivalently,

(β̂0, β̂) = argmin
(β0,β)

R(β0,β) + λ

p∑
j=1

∥βj∥2, (2.12)

where a tuning parameter t and a regularization parameter λ (t, λ ≥ 0) control

the degrees of shrinkage. The ridge shrinks coefficients β toward 0 as t decreases

or λ increases, although β̂0 is ȳ for any t and λ (without loss of generality, we can

assume that ȳ = 0 and hence we omit β0 from the model for convenience).
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The ridge estimator is given by

β̂ridge = (XTX + λIp)
−1XTy, (2.13)

and there is a one-to-one correspondence between t and λ:

λ =
1

t
(Xβ̂ridge)T (y −Xβ̂ridge). (2.14)

The mean vector and the variance covariance matrix of the ridge estimator are

respectively given by

E
[
β̂ridge

]
= (XTX + λIp)

−1XTXβ

Cov
[
β̂ridge

]
= σ2(XTX + λIp)

−1XTX(XTX + λIp)
−1.

(2.15)

(2.15) indicates that although the ridge estimator is not an unbiased estimator of

β, the ridge estimator has a smaller variance than OLS does, that is, the ridge is

more stable than the OLS. If XTX is singular, XTX + λIp remains nonsingular

taking an appropriate value of λ > 0. The cause of instability of the OLS is the

singular or near singular matrix XTX, and it often appears when there are a set of

highly correlated predictors or high dimensionality. Therefore, the ridge performs

a more stable estimation and achieves a better prediction accuracy than the OLS

does in such cases.

2.3 L1 regularization

2.3.1 Lasso

Frank and Friedman (1993) extended the ridge for the Lq regularization called the

bridge regression. The bridge estimator is given by

β̂bridge := argmin
β
∥y −Xβ∥2, subject to

p∑
j=1

|βj |q ≤ t, (2.16)
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or,

β̂bridge := argmin
β
∥y −Xβ∥2 + λ

p∑
j=1

|βj |q, (2.17)

where q > 0. The bridge regression includes the ridge with q = 2 as a special case.

If we take q = 0, we have the following optimization of least square loss and L0

penalty term:

β̂L0 = argmin
β
∥y −Xβ∥2 + λ

p∑
j=1

I(|βj | > 0), (2.18)

where I(·) is the indicator function. L0 bridge produces a parsimonious model

(i.e., some coefficients are estimated to be exactly zero) because it penalizes the

number of non-zero coefficients in the model and performs as a variable selection

procedure. However, it is hard to solve this L0 optimization problem because

of its non-convexity. It is known that the L0 optimization is equivalent to the

“subset selection” based on some information criteria. If we set λ in (2.18) to be

proportional to some constant or log n, the L0 optimization can be reckoned as the

subset selection based on the AIC or BIC, respectively, and known as traditional

model selection procedures.

Although variable selection enables us to improve prediction performance and

helps us to interpret the fitted model, an increase in the number of predictors

hinder the application of subset selection. Further, high dimensionality adversely

affects the prediction accuracy of the resulting model. In such cases, the subset se-

lection is computationally expensive because it needs to choose the most moderate

combination of predictors (the number of the candidate model is 2p). In addition,

the subset selection often becomes extremely variable because of its inherent dis-

creteness. Since predictors are either retained or dropped from the model, the

prediction accuracy of the resulting model becomes poor (Breiman 1996).

For these problems, the efficiency of the lasso (Least Absolute Shrinkage and

Selection Operator; Tibshirani 1996) is well known. The lasso minimizes the least

square loss subject to the sum of the absolute values of the coefficients (L1 norm
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of the coefficient vector) being less than a constant t,

β̂lasso := argmin
β
∥y −Xβ∥2, subject to

p∑
j=1

|βj | ≤ t. (2.19)

Further, the lasso estimates have the Lagrangian form with L1 penalty

β̂lasso := argmin
β

∥y −Xβ∥2 + λ

p∑
j=1

|βj |

 , (2.20)

and they correspond to the case of the bridge with q = 1.

The lasso continuously shrinks the coefficients toward zero as λ increases. In

the case of λ = 0 and n > p, β̂ is equivalent to the OLS or the MLE. Further,

β̂ becomes sparse, that is, some coefficients are shrunk to exactly zero when the

scale of λ is sufficiently large, because of the nature of the L1 penalty.

In the case of XTX = Ip (i.e., X is orthonormal),

β̂lasso = argmin
β

∥y −Xβ∥2 + λ

p∑
j=1

|βj |


= argmin

β

−2yTXβ + βTXTXβ + λ

p∑
j=1

|βj |


= argmin

β

−2β̂Tβ + βTβ + λ

p∑
j=1

|βj |


= argmin

β

p∑
j=1

[
−2β̂jβj + β2

j + λ|βj |
]

= argmin
β

∑
βj≥0

{
β2
j − (2β̂j − λ)βj

}
+
∑
βj<0

{
β2
j − (2β̂j + λ)βj

} ,

(2.21)

where β̂ = (β̂1, ..., β̂p)
T is the OLS estimate of β. If βj ≥ 0 and 2β̂j − λ ≤ 0,

argmin βjβ
2
j − (2β̂j − λ)βj = 0. If βj ≤ 0 and 2β̂j + λ ≥ 0, then argmin βjβ

2
j +
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(2β̂j − λ)βj = 0. Further,

∂

∂βj
β2
j − (2β̂j − λ)βj

∣∣∣∣
βj=β̂lasso

j

=2β̂lasso
j − (2β̂j − λ) = 0,

if β̂lasso
j ≥ 0 and 2β̂j − λ > 0,

∂

∂βj
β2
j − (2β̂j + λ)βj

∣∣∣∣
βj=β̂lasso

j

=2β̂lasso
j − (2β̂j + λ) = 0,

if β̂lasso
j ≤ 0 and 2β̂j + λ < 0.

(2.22)

Thus, we can see that the lasso estimates in the orthonormal case are given by

β̂lasso
j = sign(β̂j) ·

(
|β̂j | −

λ

2

)
+

, (2.23)

where

(x)+ =

 x if x > 0

0 if x ≤ 0
. (2.24)

That is, if λ is sufficiently large, then some coefficients of the lasso are shrunk to

exactly zero. In more general cases, since the L1 penalty is not differentiable at

βj = 0, the lasso estimates are not analytically derived. Several efficient algorithms

have been proposed to compute the lasso estimates, and these are discussed in

Section 2.4.

Comparison between the lasso and the ridge

In the orthonormal case, the ridge estimates are given by

β̂ridge =
1

1 + λ
β̂, (2.25)

where β̂ is the OLS estimate vector. The ridge and lasso estimates given by (2.23)

are compared in Fig. 2.2. This shows the following:

• The ridge yields a proportional shrinkage and the lasso translates each co-

efficient by a constant truncating at zero.
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• The lasso estimates often can take zero values and the ridge takes zero only

when the OLS is zero (i.e., “non-sparsity” of the ridge).

Fig. 2.2 The relationship between the ridge (left) and the lasso (right) esti-
mates in orthonormal case: Real lines indicate the estimates and dashed lines
represent β̂ridge = β̂ or β̂lasso = β̂, where β̂ is the OLS estimates.

In the non-orthonormal case, the elementary differential geometry helps us to

show the non-sparsity of the ridge. The minimizing problem of the least square

loss function ∥y −Xβ∥2 can be interpreted as minimizing the quadratic function

(β − β̂)TXTX(β − β̂), (2.26)

where β̂ = (β̂1, . . . , β̂p)
T denotes the OLS estimates, which implies the ellipsoid

contour for fixed loss ℓ. Thus, the ridge estimates and the lasso estimates can be

interpreted as the points where the ellipsoids hit the sphere
∑p

j ∥βj∥2 = t and the

cube
∑p

j |βj | = t, respectively, where t is some fixed value (Fig. 2.3).

At the ridge or the lasso estimates in Fig. 2.3, the ellipsoids and the ridge sphere

or the lasso cube have the same tangent plane. Generally, the tangent plane of a

curved surface S := {x = (x1, ..., xp) ∈ Rp; G(x) = 0} has the equation

p∑
j=1

∂

∂xj
G(x)

∣∣∣∣
x=x∗

(xj − x∗
j ) = 0 (2.27)
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Fig. 2.3 Graphical representation of the ridge (left) and the lasso (right)
estimates: The dark grey sphere and cube mean the areas

∑p
j ∥βj∥2 ≤ t

and
∑p

j |βj | ≤ t, respectively. Both estimates are the points where the loss
ellipsoids hit the penalty sphere or cube.

at the point x∗ = (x∗
1, ..., x

∗
p) ∈ S. In matrix form, we have

(
∂G(x∗)

∂x

)T

(x− x∗) = 0. (2.28)

Let F (β) be

F (β) = (β − β̂)TXTX(β − β̂)− ℓ = 0, (2.29)

then, we have the tangent plane of the loss ellipsoid at β∗ as the following:

(
∂F (β∗)

∂β

)T

(β − β∗) =
{
XTX(β∗ − β̂)

}T

(β − β∗)

= (β∗ − β̂)TXTX(β − β∗)

= 0.

(2.30)

The tangent planes for the ridge sphere at β = β∗ are given by

(
∂βTβ

∂β

∣∣∣∣
β=β∗

)T

(β − β∗) = 2β∗T (β − β∗). (2.31)
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In p = 2, let β∗ = (0,
√
t)T be the ridge estimates and S = XTX have the

components

S =

 s11 s12

s21 s22

 . (2.32)

Then, we have

 −β̂1
√
t− β̂2

T  s11 s12

s21 s22

 β1

β2 −
√
t

 = 0, ∀β1, β2 ∈ R,

2

 0
√
t

T  β1

β2 −
√
t

 = 0, ∀β1, β2 ∈ R,

(2.33)

and

 −β̂1
√
t− β̂2

T  s11 s12

s21 s22

 β1

0


=

 −β̂1
√
t− β̂2

T  c11

c21

β1,
∀β1 ∈ R.

(2.34)

From the above, the OLS β̂ = (β̂1, β̂2)
T satisfies

−(c11β̂1 + c21β̂2 − c21
√
t)β1 = 0, ∀β1 ∈ R. (2.35)

This means that the ridge estimates have a zero component when the OLS exists

on the line such that

c11β̂1 + c21β̂2 − c21
√
t = 0, (2.36)

however, this is an event with probability zero (Fig. 2.4).
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Fig. 2.4 The conditions in which the ridge and lasso estimates become sparse:
The ridge estimates (left) have zero component only when the OLSs on the
dashed line but this event has zero probability. The lasso estimates (right)
are sparse when the OLS exists on the light grey area. This is why the ridge
has no sparsity but the lasso does.

On the other hand, the tangent planes of the lasso cube at β∗ = (0, t)T are not

specified uniquely, which is given by

sβ1 + β2 − t = 0, s ∈ [−1, 1]. (2.37)

From (2.30) and (2.37), we have

 −β̂1

t− β̂2

T  s11 s12

s21 s22

 β1

β2 − t

 = 0, ∀β1, β2 ∈ R. (2.38)

Further we have the equation

−{(c11 − sc12)β̂1 + (c21 − sc22)β̂2 − t(c21 − sc22)}β1 = 0, ∀β1 ∈ R, (2.39)

for fixed s ∈ [−1, 1]. That is, the lasso estimates have a zero component if the

OLS exists in the area that satisfies (2.39) (Fig. 2.4).

2.3.2 Elastic net

The lasso enables us to do both continuous shrinkage and automatic variable

selection simultaneously. However, some limitations of the lasso have been pointed

out. Zou and Hastie (2005) mentioned the following limitations of the lasso :
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• In the case of p > n, the lasso only takes in at most n predictors into

the model because the nature of the convex optimization. (However, some

algorithms that solve the lasso optimization take in more than n predictors

into the model because they approximate the optimization problems.)

• If there are groups of predictors among which the pairwise correlations are

very strong, the lasso takes in only one predictor from the groups.

• In the case of n > p, as Tibshirani (1996) suggested, the prediction per-

formance of the lasso often is dominated by the ridge if there are high

correlations between predictors.

These limitations indicate that the lasso leads to poor prediction and model se-

lection accuracy in high-dimensional or highly correlated situations. To overcome

these drawbacks, Zou and Hastie (2005) proposed an L1 + L2 type regularization

procedure, called the “elastic net”. Similar to the lasso, the elastic net does sparse

estimation, but in contrast to the lasso, it takes in all members from the group of

the highly correlated predictors into the model.

The elastic net for the linear regression model are given by

β̂EN := (1 + λ2) argmin
β

∥y −Xβ∥2 + λ1

p∑
j=1

|βj |+ λ2

p∑
j=1

β2
j

 , (2.40)

where λ1, λ2(> 0) are the tuning parameters that control the strength of the L1

or L2 penalties. The elastic net includes the lasso with λ2 = 0 as a special case.

Further, the elastic net has the conditional optimization form:

β̂EN := (1 + λ2) argmin
β

[
∥y −Xβ∥2

]
,

subject to α

p∑
j=1

|βj |+ (1− α)

p∑
j=1

β2
j ≤ t,

(2.41)

where t(> 0) and α ∈ [0, 1] are the tuning parameters. Thus, it is shown that

the elastic net estimates can be interpreted as the point where the squared loss

ellipsoid hits the shape α
∑p

j |βj | + (1 − α)
∑p

j β
2
j = t, where t and α are some

fixed values (Fig. 2.5).
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Fig. 2.5 Graphical representation of the elastic net (left) and lasso (right)
estimates: The dark grey shape on the left-hand side means α

∑p
j |βj |+ (1−

α)
∑p

j ∥βj∥2 ≤ t (α = 0.5). The elastic net estimate is the point where the
loss ellipsoid hits the penalty shape.

Note that the elastic net, which has two penalty terms in the objective function

of the optimization problem, incurs the “double shrinkage” without scaling by

(1+λ2). It is observed in an empirical evidence of Zou and Hastie (2005) that the

elastic net without scaling does not perform well compared with the ridge and the

lasso.

2.3.3 Adaptive lasso

In the field of regression modeling, several studies (Fan and Li, 2001; Fan and

Peng, 2004; Zou, 2006) have claimed that a good regression procedure should

have the oracle property, where the oracle property is defined by the following:

A. Consistency in variable selection: Pr(A = A∗)→ 1 (n→∞).

B. Asymptotic normality:
√
n(β̂A − β∗

A∗)
d→ Nq(0q,Σ

∗),

where the active set A is the set of predictors that are included in the estimated

model based on n observations, A∗ is the true active set, β̂A is the estimated

regression coefficient vector according to A, β∗
A∗ is part of the true regression co-

efficient vector with nonzero component,
d→ means the convergence in distribution,

and Σ∗ is the variance covariance matrix knowing A∗.
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Zou (2006) showed that the lasso must satisfy some nontrivial condition to have

consistency in variable selection and proposed the adaptive lasso that has the

oracle property . The adaptive lasso is given by

β̂ := argmin
β

∥y −Xβ∥2 + λn

p∑
j=1

ŵj |βj |

 , (2.42)

where λn is a tuning parameter dependant on sample size n, ŵj = 1/|β̃j |γ (j =

1, . . . , p), β̃ = (β̃1, . . . , β̃p)
T is the root-n consistent estimator of true regression

coefficients β∗ (e.g., the OLS or the MLE), and γ > 0 is a tuning parameter.

2.3.4 Group lasso

The linear regression modeling is used to model a linear relationship between a

response variable and predictors, and it is widely used for the purpose of identifying

the true structure that generates the response variable. We usually interpret the

resulting models as meaning that the predictors, included in the model, are the

explanatory factors of the response variable. These explanatory factors sometimes

consist of a group of predictors. In the ANOVA (analysis of variance) model, a

group of dummy variables compounds the predictor (e.g., we analyze the sexual

influence by using a dummy variable, such that we set the male variable as one

and female variable as zero for some observation from the male). The additive

model in the nonlinear regression model also consists of a group of basis functions.

In these cases, the variable selection amounts to the selection of the important

factor. The lasso, however, does not perform as the factor selection because it

evaluates only each predictor in the penalty term. In order to overcome this

difficulty, Yuan and Lin (2006) extended the group lasso, which is a lasso for

factor selection.
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We consider the regression model with J factors:

y =
J∑

j=1

Xjβj + ε

= Xβ + ε,

(2.43)

where y = (y1, ..., yn)
T is the response vector, X = (X1, ..., XJ) is the n × p

design matrix, Xj = (xj1, ...,xjpj
) is the n × pj matrix corresponding to the

jth factor, x1j , ...,x1pj
are the predictors of jth factor, β = (βT

1 , ...,β
T
J )

T is the

coefficient vector, βj = (βj1, ..., βjpj )
T is the coefficient vector of jth factor, and

ε = (ε1, .., εn)
T is the vector of independent and identically distributed error with

mean 0 and variance σ2. Similar to the lasso, we assume that the response and

the predictor are centered without loss of generality. (Note that we do not assume

that the predictors are standardized).

For a q-dimensional vector x (q ≥ 1), we denote

∥x∥K =
√
xTKx, (2.44)

where K is a q × q positive definite matrix. Let us have positive definite matrices

K1, . . . ,KJ , then the group lasso is given by

β̂ := argmin
β

1
2
∥y −Xβ∥2 + λ

J∑
j=1

∥βj∥Kj

 , (2.45)

where λ(> 0) is a tuning parameter that controls the strength of regularization.

2.3.5 Bridge regression

As mentioned in Section 2.3.1, Frank and Friedman (1993) proposed the bridge

regression as a generalization of the ridge estimates, and it is given by

β̂bridge := argmin
β

∥y −Xβ∥2 + λ

p∑
j=1

|βj |q
 , (2.46)
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where λ, q(> 0) are the tuning parameters (the bridge regression includes the ridge

and lasso with q = 2 or q = 1).

Further, the bridge regression also has the conditional optimization form:

β̂bridge := argmin
β

[
∥y −Xβ∥2

]
, subject to

p∑
j=1

|βj |q ≤ t, (2.47)

where t(> 0) is a tuning parameter. Thus, it is shown that the bridge estimates

can be interpreted as the point where the squared loss ellipsoid hits the shape∑p
j |βj |q = t, where t and q are some fixed values (Fig. 2.6). When 0 < q ≤ 1, the

Fig. 2.6 Graphical representation of the bridge regression (left) and lasso
(right) estimates: The dark grey shape on the left-hand side means

∑p
j |βj |q ≤

t (q = 0.5). The bridge regression estimates is the point where the loss ellipsoid
hits the penalty shape.

bridge regression enables us to obtain the sparse solution, and it also does stable

estimation when q > 1.

Fig. 2.7 compares the penalty functions of the bridge regression, the adaptive

lasso, and the lasso. The left-hand side panel is the case of ŵ = 1/|β̃| = 1/2 (the

OLS is large) and the right-hand side one is the case of ŵ = 1/|β̃| = 1/0.5 (the

OLS is small), respectively. It is shown that the adaptive lasso penalty becomes

flat when the OLS is large and it sharpens when the OLS is small. This is a part

of the reason of the oracle property of the adaptive lasso. On the other hand, the

bridge penalty is sharp around the origin and becomes flat when β is large in Fig.

2.7. From this, it is also known that the q < 1 bridge has the oracle property.
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Fig. 2.7 Penalty functions of the lasso (grey dashed line), bridge regression
(black real line, q = 0.5), and adaptive lasso (black dotted line, left: ŵ = 0.5,
right: ŵ = 2).

Further, Huang et al. (2008) showed the oracle property of the bridge regression

in high-dimensional models.

2.3.6 SCAD and MCP

The oracle property has another definition. We consider a convex loss function

ln(β) such as ln(β) = ∥y −Xβ∥2 or logNn(y|Xβ, σ2In) and a penalty function

Pλ(β).

As in Fan et al. (2014), the oracle estimator is defined as

β̂oracle :=

 β̂oracle
A∗

0

 = argmin
β;βB∗=0

ln(β), (2.48)

where A∗ is a true active set and B∗ is a complementary set of A∗. Here, we

assume that

∇j ln(β̂
oracle) = 0, ∀j ∈ A∗, (2.49)

where ∇j denotes the sub-gradient with respect to the j-th element of β.

When an estimator

β̂ = argmin
β

[ln(β) + Pλ(β)] (2.50)
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has the same asymptotic distribution as the oracle estimator, it is said to have

the oracle property. Moreover, β̂ is said to have the strong oracle property if β̂

converges in probability on the oracle estimator.

Fan et al. (2014) showed that β̂ has the strong oracle property if the folded

concave penalty function Pλ(β) defined on βj ∈ (−∞,∞) satisfies the following

four conditions:

(i). Pλ(βj) is increasing and concave in βj ∈ [0,∞) with Pλ(0) = 0.

(ii). Pλ(βj) is differentiable in βj ∈ (0,∞) with P ′
λ(0+) ≥ a1λ, where a1 is some

fixed positive constant.

(iii). P ′
λ(βj) ≥ a1λ for βj ∈ (0, a2λ), where a2 is some fixed positive constant.

(iv). P ′
λ(βj) = 0 for βj ∈ [aλ,∞) with the pre-specified positive constant a > a2.

Although the bridge penalty Pλ = |βj |q (0 < q < 1) satisfies the conditions

(i), (ii) and (iii), it does not satisfy condition (iv). Condition (iv) means that the

penalty function becomes completely flat for βj > c (c is some constant). If Pλ(βj)

that is flat at around β̃j (β̃ = (β̃1, . . . , β̃p)
T ) is the minimizer of ln(β)), the bias

|β̃j − β̂j | decreases. However |βj |q is not bounded, and thus, the bridge regression

has the oracle property but does not have the strong oracle property.

There are two famous procedures that have the strong oracle property: the

SCAD (Fan and Li, 2001) and the MCP (Zhang, 2010).

The penalty function of the smoothly clipped absolute deviation penalty

(SCAD) is continuous differentiable, and its derivatives are defined by

∂

∂βj
Pλ(βj) = λ

{
I(|βj | ≤ λ) +

(aλ− |βj |)+
(a− 1)λ

I(|βj | > λ)

}
, a > 2. (2.51)
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Thus, the SCAD estimates are given by

β̂ := argmin
β

∥y −Xβ∥2 +
p∑

j=1

λ|βj | · I(|βj | < aλ)

− (|βj | − λ)2

2(α− 1)
· I(λ ≤ |βj | < aλ)

+
(α+ 1)λ2

2
· I(|βj | ≥ aλ)

 .

(2.52)

The value of tuning parameter a is often taken to be 3.7 in terms of the Bayes

risks.

From (2.52), it can be seen that the SCAD is a bridge of L1 and the OLS.

When |βj | < λ, the SCAD penalty is the L1 norm of βj . Further, for |βj | ≥ aλ,

the SCAD does not penalize βj . The tuning parameter a controls a length of the

transition interval from L1 to the OLS.

When the minimax concave penalty (MCP) resembles the SCAD, the penalty

function is also continuous differentiable. The MCP estimates are given by

β̂ := argmin
β

∥y −Xβ∥2 +
p∑

j=1

λ

∫ |βj |

0

(
1− t

aλ

)
dt

 , a > 1. (2.53)

The integral in (2.53) is

∫ |βj |

0

(
1− t

aλ

)
dt =

|βj |(2aλ− |βj |)
2a

· I(|βj | < aλ) +
aλ2

2
· I(|βj | ≥ aλ). (2.54)

From (2.54), it can be seen that the MCP is also a bridge of L1 and the OLS,

When |βj | → 0, the MCP penalty is the L1 norm of βj . Further for |βj | ≥ aλ, the

MCP does not penalize βj .

In the conditions of the strong oracle property, a1 = a2 = 1 for the SCAD, and

a1 = 1− 1/a, a2 = 1 for the MCP.
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2.4 Algorithms for L1 regularizations

In this section, we describe the typical algorithms to derive the lasso solution,

LARS (Efron et al., 2004) and the coordinate descent algorithm (Friedman et al.,

2010). Furthermore, we describe the algorithms for the non-convex regularizations

such as the bridge, the SCAD and the MCP.

2.4.1 LARS

The least angle regression (LAR; Efron et al. 2004) builds a model continuously

and enables us to obtain sparse models, that is, some coefficients shrink to exactly

zero. LAR is very similar to the lasso, and we can obtain the lasso solution by

slightly correcting LAR (this is called the “LARS”).

Initially, the active set A = ∅, the inactive set B = {x1, ...,xp}, and coefficients

according to B are all set to zero. First, LAR identifies the predictor most cor-

related with y in B, which we denote as xj , and shifts it to A. Although the

best subset selection based on the least square procedure fits xj completely, LAR

gradually moves the coefficient of xj (= βj) continuously from zero towards its

least square value, causing its correlation with the current residual r = y − βjxj

to decrease in terms of absolute value (this correlation equals zero when βj reaches

its least square value). As soon as another predictor xk has correlation with r as

much, the process is paused and xk is shifted to A.

Next, LAR moves the coefficients of A together in a way that keeps their corre-

lation with r (= y− βjxj − βkxk) tied and decreasing (they have their respective

joint least square values in this direction). Then, when some other predictor xℓ in

B has correlation with the current residual as much, xℓ is shifted to A.

This process is continued until all the variables in the model are used, and it

ends at the least squares estimates of min(n − 1, p) predictors. If p > n − 1, the

residual becomes zero when the size of A is n − 1 and the coefficients of A reach

their joint least square values (i.e., the coefficients of B remains zero at the end of

process).
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The variables corresponding to A are tied in their absolute correlation with the

current residuals, and we can express this as

xT
j (y −Xβ) = cjγ, (2.55)

where cj = sign[xT
j (y −Xβ)], j ∈ A, and γ is some positive constant value. On

the other hand, the lasso estimate β̂lasso(λ) for a given value of λ is the minimizer

of

R(β) = ∥y −Xβ∥2 + λ

p∑
j=1

|βj |. (2.56)

Suppose that D = {j ; β̂lasso
j (λ) ̸= 0}, R(β) is differentiable for the variables

corresponding to D, and we have the following relationship

xT
j (y −Xβ) =

λ

2
· sign(β̂lasso

j ), ∀j ∈ D. (2.57)

From (2.55) and (2.57), the LAR estimates and the lasso estimates are identical

only if sign[xT
j (y−Xβ)] = sign(β̂lasso

j ) and A = D. Hence the LAR and the lasso

have similar estimates. However, when some coefficient of LAR passes through

zero, A is not equivalent to D. Therefore, we can calculate the lasso estimate by

LARS with simple modification (Algorithm 1).
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Algorithm 1 Least angle regression with lasso modification

1. Start with the residual r = y, β = 0p, the active set A = ∅, and

the inactive set B = {1, ..., p}.

2. Find the predictor most correlated with r from B, and add it to A.

3. Move βA toward β̂A = (XT
AXA)

−1XT
Ay, gradually.

4. Stop above movement if

a. some component of βA hits zero, and drop its variable from A.

b. some member of B has much correlation with the current resid-

ual.

5. Repeat steps 2, 3, 4 until all p predictors have been entered.

Fig 2.8 shows all possible LAR solutions β for the diabetes data of Efron et al.

(2004), as t =
∑

j=1 |βj | increases from zero (β = 0) to 3460, where β equals the

least square value, which we call the “solution path”. It is desired that a single

estimate is chosen from the solution path, that is the model selection process of

LAR.

2.4.2 Coordinate descent algorithm

The coordinate descent algorithm of Friedman et al. (2010) is proposed for solv-

ing L1 + L2 type regularization. In the recent years, most researchers used this

algorithm to derive the lasso solution because of its extremely high speed.

We consider the elastic net problem,

argmin
β

 1

2n

n∑
i=1

(yi − xT
i β)

2 + λ1

p∑
j=1

|βj |+
λ2

2

p∑
j=1

β2
j

 . (2.58)

Here, we try to partially optimize (2.58) with respect to βj . Suppose that we have
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Fig. 2.8 Solution path of diabetes data

estimates β̃ℓ (ℓ ̸= j); then, the gradient at βj = β̃j (β̃j ̸= 0) is

∂

∂βj

 1

2n

n∑
i=1

(yi − xT
i β)

2 + λ1

p∑
j=1

|βj |+
λ2

2

p∑
j=1

β2
j


∣∣∣∣∣∣
βj=β̃j

= − 1

n

n∑
i=1

xij(yi − xT
i β̃) + λ1 sign(β̃j) + λ2β̃j .

(2.59)

From the Karush-Kuhn-Tucker (KKT) conditions about this optimization, it is
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shown that the estimates β̃j (̸= 0) always maintain

β̃j =
1

λ2

(
1

n

n∑
i=1

xij(yi − xT
i β̃)− λ1 sign(β̃j)

)
. (2.60)

Thus, we have

∣∣∣∣∣ 1n
n∑

i=1

xij(yi − xT
i β̃)

∣∣∣∣∣ > λ1, if and only β̃j ̸= 0,∣∣∣∣∣ 1n
n∑

i=1

xij(yi − xT
i β̃)

∣∣∣∣∣ ≤ λ1, if and only β̃j = 0.

(2.61)

Hence, the coordinate descent algorithm for an elastic net is given by an iterative

algorithm that updates from β̃
(t)
j to β̃

(t+1)
j by

β̃
(t+1)
j ← 1

λ2
S

(
1

n

n∑
i=1

xij(yi − ỹ
(t)
i(j)), λ1

)
, (2.62)

where

ỹ
(t)
i(j) =

∑
ℓ̸=j

xiℓβ̃
(t)
ℓ ,

S(x, λ) = sign(x)(|x| − λ)+ =


x− λ if x > 0 and λ < |x|,

x+ λ if x < 0 and λ < |x|,

0 if λ ≥ |x|.

(2.63)

Since the coordinate descent algorithm does not need to calculate any inverse

matrix, it is able to obtain the elastic net solution within a short time. Mazumder

et al. (2011) said that “Coordinate-wise optimization algorithms appear to be the

fastest for computing the regularization paths for a variety of loss functions, and

scale well”.

2.4.3 Local approximation procedures

The estimation algorithms for the lasso enable us to derive the solutions of other

L1 regularizations such as the elastic net and the adaptive lasso. We can transform
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the elastic net optimization into the lasso problem (this is shown in Lemma 1 of

Zou and Hastie (2005)):

argmin
β

∥y −Xβ∥2 + λ1

p∑
j=1

|βj |+ λ2

p∑
j=1

|βj |2


= argmin
β

yT
∗ y∗ − 2yT

∗ X∗β + βTXT
∗ X∗β + λ1

p∑
j=1

|βj |

 ,

(2.64)

where

y∗ =

 y

0p

 , X∗ =

 X
√
λ2Ip

 . (2.65)

Thus we can obtain the elastic net solution by the following L1 optimization:

argmin
β

∥y∗ −X∗β∥2 + λ1

p∑
j=1

|βj |

 . (2.66)

We can also obtain the solution of the adaptive lasso. The adaptive lasso problem

can be transformed as follows:

argmin
β

∥y −Xβ∥2 + λ

p∑
j=1

wj |βj |


= argmin

β=Wγ

∥y −XW−1γ∥2 + λ

p∑
j=1

|γj |

 ,

(2.67)

where γ = (γ1, . . . , γp)
T (γj = wjβj) and W = diag(w1, . . . , wp). Thus, the

adaptive lasso is estimated by the following:

β̂ = W−1 argmin
β

∥y −X∗∗β∥2 + λ

p∑
j=1

|βj |

 , (2.68)

where X∗∗ = XW−1.

The solution of the L1+L2 or the weighted L1 regularizations can be transformed
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as the lasso problem. However, it is difficult to obtain the solutions of the non-

convex regularizations such as the bridge, the SCAD, and the MCP. Fan and

Li (2001) proposed the local quadratic approximation (LQA) procedure for this

drawback.

We consider the regularized least square problem:

β̂ = argmin
β

∥y −Xβ∥2 +
p∑

j=1

Pλ(|βj |)

 , (2.69)

where Pλ(|βj |)(j = 1, . . . , p) are some penalty functions such as Pλ(|βj |) = λ|βj |q.

In this optimization problem, it is difficult to solve the optimal value since the

non-differentiability at the origin and the non-convexity of Pλ(|βj |) with respect

to βj . Hence, Fan and Li (2001) use a locally quadratic approximation to Pλ(|βj |):

Pλ(|βj |) ≈ Pλ(|β(0)
j |) +

1

2

P ′
λ(|β

(0)
j |)

|β(0)
j |

(β2
j − β

(0)2
j ), βj ≈ β

(0)
j , (2.70)

where

P ′
λ(|βj |) =

∂

∂βj
Pλ(|βj |). (2.71)

The LQA enables us to solve the optimization problem of (2.69) with an iterative

update,

β̂(k+1) = argmin
β

∥y −Xβ∥2 + 1

2

p∑
j=1

P ′
λ(|β

(k)
j |)

|β(k)
j |

β2
j

 , k = 1, . . . , . (2.72)

The initial values of the LQA often use the OLS or the MLE.

However, the LQA does not derive a sparse solution for any regularization prob-

lems. Fan and Li (2001) suggested that if an absolute value of some component of

the estimated regression coefficient vector in (2.72) is smaller than a pre-specified

value ε0, then we need to set it to zero and delete the corresponding predictor from

iterations. Zou and Li (2008) listed two drawbacks of this procedure. First, if the

LQA deletes a predictor at any step from a model, the predictor never returns to
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the model. Second, the size of ε0 affects the degrees of sparsity and the speed of

convergence.

To overcome these drawbacks, Zou and Li (2008) proposed the local linear ap-

proximation (LLA) procedure. They approximated Pλ(|βj |) by the linear function,

Pλ(|βj |) ≈ Pλ(|β(0)
j |) + P ′

λ(|β
(0)
j |)(|βj | − |β(0)

j |), βj ≈ β
(0)
j , (2.73)

where

P ′
λ(|βj |) =

∂

∂|βj |
Pλ(|βj |). (2.74)

Note that the LLA uses the derivation of Pλ(|βj |) by |βj |, although the LQA

differentiates it by βj .

Thus, we have a local linear approximated non-convex regularization as follows:

β̂(k+1) = argmin
β

∥y −Xβ∥2 +
p∑

j=1

P ′
λ(|β

(k)
j |)|βj |

 , k = 1, . . . . (2.75)

We can easily obtain the solution of this optimization problem because it is an

adaptive lasso-type regularization in the case of wj = P ′
λ(|β

(k)
j |).

Further, Zou and Li (2008) proposed the following procedure, which is called

the “one-step local linear approximation”:

β̂ = argmin
β

∥y −Xβ∥2 +
p∑

j=1

P ′
λ(|β

(0)
j |)|βj |

 , (2.76)

where β
(0)
j is the OLS or the MLE. Although the penalty functions prefer that the

resulting estimator is continuous, the bridge regression is not. On the other hand,

the one-step LLA bridge is continuous. Furthermore, Zou and Li (2008) showed

that the one-step LLA procedures have the oracle property, and Kanba and Naito

(2011) proposed the model selection method for the one-step LLA procedures using

results of Zou and Li (2008).
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2.5 Degrees of freedom of the L1 regularizations

In regression modeling, Mallows’ Cp type criteria (Mallows 1973) estimates the

prediction error. The “degrees of freedom”, which is often used to quantify the

model complexity of modeling procedure, plays an important role in Cp. With

the degrees of freedom, Cp is an unbiased estimator of true prediction error, and

Efron (2004) showed that in some setting, it offers substantially better accuracy

than the cross-validation does. However, it is difficult to derive the closed form of

the degrees of freedom of most continuous modeling, including LAR. The unbiased

estimators of the degrees of freedom were used by several previous works.

For this problem, we show that the degrees of freedom of LAR are derived by

the property of LAR. In this section, first, the definition of the degrees of freedom

is described. Then, a new procedure that calculate the degrees of freedom of LAR

is introduced. Note that this work is unpublished because we need to validate the

efficiency of procedure.

2.5.1 Degrees of freedom

Let the expectation and the variance covariance matrix of response vector y be

E [y] = µ, Var [y] = σ2In, (2.77)

where µ = (µ1, µ2, ..., µn)
T is a true mean vector, σ2 is a true variance, and In is

an n-dimensional identity matrix. We define a modeling procedureM as

M : y → µ̂, (2.78)

where µ̂ = (µ̂1, µ̂2, ..., µ̂n)
T , and we often use the notation µ̂ = µ̂(y) to emphasize

the dependence of µ̂ on y. Then, degrees of freedom ofM are defined as (Ye 1998,
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Efron 1986, 2004)

DF =
n∑

i=1

cov(µ̂i, yi)

σ2
, (2.79)

where cov(µ̂i, yi) refers to the sampling covariance between µ̂i and yi.

For example, in the simple case thatM is the identity map, i.e. µ̂(y) = y, the

degrees of freedom is n. When µ̂ is given in the linear form of µ̂ = Hy, where

H is a matrix that does not depend on y, degrees of freedom is trH. The matrix

H is called a hat matrix or smoother matrix, which is widely used to select the

optimal values of several tuning parameters, such as the ridge parameter and the

smoothing parameters.

Degrees of freedom plays a key role in Mallows’ Cp criterion, which is an unbiased

estimator of the true prediction error. Define the expected error as

Err := E
[
E∗
{
(µ̂− y∗)T (µ̂− y∗)

}]
, (2.80)

where the expectation “E∗” is taken over y∗ ∼ (µ, σ2I) independent of y. Err can

be expressed as

Err = E
[
∥y − µ̂∥2 + 2σ2df

]
. (2.81)

This shows that Cp criterion, defined by

Cp = ∥y − µ̂∥2 + 2σ2df, (2.82)

is an unbiased estimator of Err with degrees of freedom.

2.5.2 DFLAR algorithm

As mentioned in Section 2.4.1, LAR moves the coefficients of active set A towards

its least square solution, and when some predictor in the inactive set B has as

much correlation with the current residual, it pauses the movement and shifts this

predictor to A. That is, LAR changes the direction of coefficients, movement at
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the point where A has a new member (we call this point as the “turn point”) and

moves straightly between turn points. We show that this property enables us to

obtain an estimate of the degrees of freedom of the LAR.

At first, we introduce the following new theorem.

Theorem 2.5.1 β(1) and β(2) are some estimates of the regression coefficient vec-

tor. When an estimate β∗ is defined by

β∗ := mβ(1) + (1−m)β(2), (2.83)

where m is a positive constant in [0, 1], the degrees of freedom of β is

m · df(β(1)) + (1−m) · df(β(2)), (2.84)

where df(β) denotes the degrees of freedom of β.

For example, if H1 and H2 are hat matrices and β1 and β2 are coefficient vectors

according to H1 and H2, then degrees of freedom of these average coefficients

β∗ = (β1 + β2)/2 is df(β1)/2 + df(β2)/2, because

µ̂∗ = Xβ∗ =
1

2
X(β1 + β2) =

1

2
(H1 +H2)y. (2.85)

Fig. 2.9 The property of LAR
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This theorem plays a key role in deriving the degrees of freedom of LAR. When

β is any possible LAR estimate, it is the inner point of two turn points as shown

in the left-hand side panel of Fig. 2.9. We can represent this as follows:

∀β ∈ {βLAR} , ∃m, k s.t. β = mβ̃(k−1) + (1−m)β̃(k), (2.86)

where βLAR represents any LAR estimate, m ∈ [0, 1], k = 0, 1, ...,min(n−1, p)−1,

and β̃(k) is the kth turn point of LAR (β̃(0) is 0). Thus, it follows from Theorem

2.5.1 that if we can obtain the degrees of freedom of all turn points of LAR, we

can also obtain degrees of freedom of all possible estimates of LAR.

As given in the right-hand side panel of Fig. 2.9, the least square value of A is

an extension of the next turn point from the previous turn point. Then, every turn

point is also the inner point of the previous turn point and least square estimate,

which we can represent as follows:

∀β ∈
{
β̃(j) | j = 1, 2, ...,min(p, n− 1)

}
,

∃m, s.t. β = mβ̃(k−1) + (1−m)β̂Ak+,
(2.87)

where m is some constant in [0, 1], β̃(k−1) is the previous turn point, β̂A is the

least square estimate on predictors in A, Ak is the current active set, β̂Ak+ is a p

dimensional vector whose elements corresponding to the predictors in Ak are their

joint least square values, and other elements are zero. From the above two results,

we can obtain the following new theorem.

Theorem 2.5.2 For a single LAR estimate β, there is k such that

β = mβ̃(k−1) + (1−m)β̂Ak+, (2.88)

where m is some constant in [0, 1].

If we obtain all turn points of LAR, we can calculate m for a given estimate β
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by

m =
∥β − β̂Ak+∥

∥β̃(k−1) − β̂Ak+∥
. (2.89)

However, the calculation of m can be computationally expensive in high-

dimensional data because computing the least square solution needs the

calculation of the inverse matrix. We calculate m by using the relationship

xT
j (y −Xβ) = xT

j

{
y −X(mβ̃(k−1) + (1−m)β̂Ak+

}
= m

{
xT
j (y −Xβ̃(k−1))

}
+ (1−m)

{
xT
j (y −Xβ̂Ak+)

}
= m

{
xT
j (y −Xβ̃(k−1))

} (2.90)

where xj is some predictor in Ak,

m =
xT
j (y −Xβ)

xT
j (y −Xβ̃(k−1))

. (2.91)

Thus, we obtain the following algorithm that computes the solution path of

LAR and its degrees of freedom.

LAR is closely related to L1 regularizations. From this relationship, we can

obtain the degrees of freedom of various L1 type regularizations, such as lasso,

adaptive lasso, group lasso, and elastic net, by using the proposed algorithm. This

is an unpublished result. We need more validation for this procedure to publish.

2.6 Strength of the sparsity of the L1 regularizations

Several L1 regularizations have been proposed, and they have different character-

istics. For example, the elastic net works well in high-dimensional modeling, the

bridge has the oracle property, and the SCAD and the MCP have the strong oracle

property.

Here, we consider the strength of the sparsity. Some experience has shown that

the strength of sparsity of the elastic net is weaker than that of the lasso, and

the bridge has strong sparsity. However, as we do not have the definition of the
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Algorithm 2 Least angle regression with degrees of freedom

1. Start with the residual r = y, β1 = β2 = · · · = βp = 0,
DF = 0 and set the active set A = ∅ and the inactive set
B = {x1,x2, ...,xp}.

2. Find the predictor most correlated with r from B, add it to
A, and let k = |A|.

3. Move the coefficients according to member of A toward its

least squares coefficient β̂A.

4. Calculate DF = m · df(β̃(k−1)) + (1 − m) · k, where m =

(xT
j r)/(x

T
j (y−Xβ̃(k−1))), xj ∈ A, and df(β̃(k−1)) denotes

the degrees of freedom of the previous turn point.

5. Stop this move if some member of B has large correlation
with the current residual.

6. Repeat steps 2, 3, 4, 5 until all p predictors have been en-
tered.

strength of the sparsity, it is difficult to evaluate it in a quantitative way. Therefore

we establish the definition of the strength of the sparsity.

Most regularization procedures shrink the OLS or the MLE towards zero. Fur-

ther, if the least squares are closed to zero, they produce zero values for the

regularized estimates. Henceforth, we define the strength of the sparsity (SS) of a

penalty function Pλ(β) as follows:

SS := argmax
β∗

[
argmin

β

{
∥β∗ − β∥2 + P1(β)

}
= 0

]
. (2.92)

The strength of sparsity of the L1 regularizations (the lasso, the elastic net (α =

0.3, 0.5, 0.7), the adaptive lasso (w = 1/|β∗|γ , γ = 0.5, 1.0, 2.0), the bridge (q =

0.3, 0.5, 0.7), the SCAD (a = 3.7) and the MCP (a = 0.5, 1.0, 2.0)) are given in

Table 2.1. It shows that the lasso, the SCAD and the MCP have the same values

of the strength of the sparsity, and the adaptive lasso and the bridge have larger
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Table 2.1 The strength of the sparsity of the L1 regularizations

Procedure SS

lasso 0.500

elastic net
0.150 (α=0.3)
0.250 (α=0.5)
0.350 (α=0.7)

adaptive lasso
0.630 (γ=0.5)
0.707 (γ=1.0)
0.794 (γ=2.0)

bridge
0.984 (q=0.3)
0.945 (q=0.5)
0.858 (q=0.7)

SCAD 0.500 (a=3.7)

MCP
0.500 (a=0.5)
0.500 (a=1.0)
0.500 (a=2.0)

values of it. The strength of the sparsity of the elastic net is smaller than that of

the lasso.
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Chapter 3

Bayes model for L1 regularizations

Several regularization procedures can be interpreted as the MAP (maximum a

posteriori) estimation under some Bayes model. For example, the ridge in linear

regression model

β̂ = argmin
β

[
∥y −Xβ∥2 + λ∥β∥2

]
(3.1)

is equivalent to the MAP estimator of the model

Likelihood : Nn(y|Xβ, σ2In),

Prior on β : Np

(
β|0, σ

2

λ
Ip

)
,

(3.2)

where Nq(x|µ,Σ) is a probability density function of a normal distribution with

mean µ and variance-covariance matrix Σ.

In this chapter, we discuss the relationship between the L1 regularizations and

the Bayes models. Further, we introduce some Bayesian analysis procedures which

have been extended from L1 regularizations (for details, we refer to Park and

Casella (2008) and Kyung et al. (2010)). Moreover, we show that various Bayesian

procedures have the unimodality, which is a keyrole in Bayesian analysis using

some computational techniques.
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3.1 Relationship between the lasso and Bayes model

We consider a linear regression model

y = Xβ + ε, (3.3)

where y = (y1, . . . , yn)
T is an n-dimensional response vector, X = (x1, . . . ,xn)

T is

an n×p design matrix, x1, . . . ,xn are the p-dimensional observations for predictor

variables, the elements of xi is given as xi1, . . . , xip, β = (β1, . . . , βp)
T is a p-

dimensional regression coefficient vector, and ε = (ε1, . . . , εn)
T is an n-dimensional

error vector which elements have independent and identically distributed according

to a normal distribution with mean zero and unknown variance σ2. Without loss

of generality, we assume that the predictors are standardized:

n∑
i=1

yi = 0,
n∑

i=1

xij = 0,
n∑

i=1

x2
ij = n, j = 1, . . . , p. (3.4)

The lasso estimate

β̂ = argmin
β

∥y −Xβ∥2 + λ

p∑
j=1

|βj |

 , λ > 0, (3.5)

can be interpreted as follows:

β̂ = argmax
β

−∥y −Xβ∥2 − λ

p∑
j=1

|βj |


= argmax

β

exp(−∥y −Xβ∥2) ·
p∏

j=1

exp(−λ|βj |)


= argmax

β

exp(− 1

2σ2
∥y −Xβ∥2

)
·

p∏
j=1

exp

(
− λ

2σ2
|βj |
)

= argmax
β

Nn(y|Xβ, σ2In) ·
p∏

j=1

λ

4σ2
exp

(
− λ

2σ2
|βj |
) .

(3.6)
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Thus, the lasso estimate can be interpreted as the MAP estimates under indepen-

dent Laplace priors for β (e.g. Tibshirani, 1996; Park and Casella, 2008).

3.2 Laplace distribution and Scale mixture normal

distribution

However, it is difficult to obtain the posterior distribution or MCMC sample from

(3.6) because of the Laplace prior. For this drawback, the result of Andrews and

Mallows (1974) is applicable.

Suppose that Z has a standard normal distribution and V is a positive contin-

uous random variable, and V is independent of Z. Let X = Z/V , then X has a

probability density function

fX(x) =
1√
2π

∫ ∞

0

v · exp
(
−1

2
v2x2

)
fV (v)dv, (3.7)

where fV (v) is a probability density function of V .

Consider the transformation v =
√
2t, and we define h(t) by

h(t) =

√
t√
π
fV (
√
2t)

∣∣∣∣dvdt
∣∣∣∣ . (3.8)

Then, if h(y) = fX(
√
y), h(y) is the Laplace transformation of h(t), because

h(y) =
1√
2π

∫ ∞

0

v · exp
(
−1

2
v2y

)
fV (v)dv

=
1√
2π

∫ ∞

0

√
2t · exp (−ty) fV (

√
2t)

1√
2t
dt

=

∫ ∞

0

exp(−yt)f(t)dt.

(3.9)
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Hence, we have the relationship between h(y), f(t) and fV (v) as follows:

h(y) =

∫ ∞

0

exp(−yt)f(t)dt,

f(t) =
1√
2π

fV (
√
2t),

fV (v) =
√
2π · f

(
1

2
v2
)
.

(3.10)

Now, let X have the Laplace distribution, i.e.

fX(x) =
1

2
exp(−|x|), (3.11)

the inverse Laplace transformation of h(y) = (1/2) exp(−√y) is

1

2
exp(−√y) =

∫ ∞

0

exp(−yt) 1

4
√
πt3

exp

(
− 1

4t

)
dt, (3.12)

because the inverse Laplace transformation of exp(−a
√
s) is given by

{a/(2
√
πt3)} exp(−a2/(4t)). Thus, we have

fV (v) =
√
2π · f

(
1

2
v2
)

=
1

v3
exp

(
− 1

2v2

)
.

(3.13)

We transform τ2 = (2v2)−1,

fτ2(τ2) = exp(−τ2). (3.14)

From above, Andrews and Mallows (1974) showed that the Laplace distribution

can be represented as the following scale mixture normals:

λ

2
exp(−λ|x|) =

∫ ∞

0

1√
2πτ2

exp

(
− x2

2τ2

)
λ2

2
exp

(
−λ

2
τ2
)
, (3.15)

where λ > 0.
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3.3 Bayesian lasso

Park and Casella (2008) proposed the Gibbs sampling for the lasso with a hierar-

chical Laplace prior or scale mixture normal prior based on the result of Andrews

and Mallows (1974). Note that Park and Casella (2008) considered the Bayes

model based on the following conditional Laplace prior:

π(β|σ2) =

p∏
j=1

λ

2
√
σ2

exp

(
− λ√

σ2
|βj |
)
. (3.16)

This conditional prior of β given σ2 guarantees a unimodal posterior distribution

of (β, σ2), this avoids the slow convergence of the Gibbs sampler. This proce-

dure that is called the “Bayesian lasso”, is the Gibbs sampling from hierarchical

representation of the following full model:

p(y|X,β, σ2) = Nn(y|Xβ, σ2In),

p(β|σ2, τ21 , . . . , τ
2
p ) = Np(β|0p, σ

2D),

p(σ2) =
1

σ2
or IG(σ2|ν0, η0),

p(τ21 , . . . , τ
2
p |λ) =

p∏
j=1

Exp

(
τ2j |

λ2

2

)
,

(3.17)

where 0q is a q-dimensional vector whose elements are all 0, D = diag(τ21 , . . . , τ
2
p ),

IG(x|ν, η) is a probability density function of a inverse gamma distribution with

variable x, the shape parameter ν and the rate parameter η.

The full model (3.17) leads to the following full conditional distributions of β,

σ2, and 1/τ21 , . . . , 1/τ
2
p (when p(σ2) = 1/σ2):

pfull(β|y, X, σ2, τ21 , . . . , τ
2
p ) = Np(β|A−1XTy, σ2A−1),

pfull(σ
2|y, X,β, τ21 , . . . , τ

2
p ) = IG(σ2|ν1, η1)

pfull(1/τ
2
1 , . . . , 1/τ

2
p |y, X,β, σ2, λ) =

p∏
j=1

IGauss(1/τ2j |µ′
j , λ

′),

(3.18)
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where

A = XTX +D−1,

ν1 =
n+ p

2
, η1 =

(y −Xβ)T (y −Xβ) + βTD−1β

2
,

µ′
j =

√
λ2σ2

β2
j

, λ′ = λ2,

(3.19)

and IGauss(x|µ, λ) is a probability density function of a inverse gaussian distribu-

tion with variable x (x > 0), the mean µ, and the shape parameter λ (if σ2 has a

inverse gamma prior, ν1 = (n+p+ν0)/2 and η1 = {(y−Xβ)T (y−Xβ)+βTD−1β+

η0}/2). Further, Park and Casella (2008) suggested how to choose the Bayesian

lasso tuning parameter λ in Bayesian analysis; empirical Bayes through marginal

maximum likelihood and hierarchical Bayes through gamma priors Gamma(λ2|r, δ)

on λ2, where

Gamma(λ2|r, δ) = δr

Γ(r)
(λ2)r−1 exp(−δλ2), r > 0, δ > 0. (3.20)

By generating Gibbs samples according to these full conditional distributions

(3.18), we can obtain some information about the posterior of (β, σ2), even if

it is difficult to derive a closed form of the posterior.

3.4 Other Bayes model of L1 regularizations

Similar to the Bayesian lasso, various extensions for Bayesian procedures of L1

regularizations have been proposed (e.g., Kyung et al. , 2010). Here, we introduce

some Bayes-type L1 regularizations, and we discuss about the unimodality of the

posterior distribution of these procedures. Also, Polson et al. (2014) introduced

an extension of the bridge regression for the Bayesian modeling.
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3.4.1 Bayesian elastic net

The elastic net problem for β

β̂ = argmin
β

∥y −Xβ∥2 + λ1

p∑
j=1

|βj |+ λ2

p∑
j=1

β2
j

 (3.21)

is equivalent to the MAP problem

β̂ = argmax
β

exp(−∥y −Xβ∥2) ·
p∏

j=1

exp (−λ1|βj |) ·
p∏

j=1

exp
(
−λ2β

2
j

) . (3.22)

Hence, it is shown that the elastic net is also the MAP estimator when β has a

Laplace and normal prior in a normal linear regression model. From this rela-

tionship, Kyung et al. (2010) suggested the Gibbs sampling from the following

hierarchical model:

p(y|X,β, σ2) = Nn(y|Xβ, σ2In),

p(β|σ2, τ21 , . . . , τ
2
p ) = Np(β|0p, σ

2D),

p(σ2) =
1

σ2
or IG(σ2|ν0, η0),

p(τ21 , . . . , τ
2
p |λ) =

p∏
j=1

Exp

(
τ2j |

λ2
1

2

)
,

(3.23)

where D = diag(τ21 , . . . , τ
2
p ) + (1/λ2)Ip.

The full model (3.23) leads to the following full conditional distributions of β,

σ2, and 1/τ21 , . . . , 1/τ
2
p (when p(σ2) = 1/σ2):

pfull(β|y, X, σ2, τ21 , . . . , τ
2
p ) = Np(β|A−1XTy, σ2A−1),

pfull(σ
2|y, X,β, τ21 , . . . , τ

2
p ) = IG(σ2|ν1, η1)

pfull(1/τ
2
1 , . . . , 1/τ

2
p |y, X,β, σ2, λ) =

p∏
j=1

IGauss(1/τ2j |µ′
j , λ

′),

(3.24)
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where

A = XTX +D−1,

ν1 =
n+ p

2
, η1 =

(y −Xβ)T (y −Xβ) + βTD−1β

2
,

µ′
j =

√
λ2
1σ

2

β2
j

, λ′ = λ2
1,

(3.25)

and if σ2 has a inverse gamma prior, ν1 = (n+p+ν0)/2 and η1 = {(y−Xβ)T (y−

Xβ) + βTD−1β + η0}/2). Kyung et al. (2010) also suggested how to choose

the Bayesian elastic net tuning parameter λ in Bayesian analysis; empirical Bayes

through marginal maximum likelihood and hierarchical Bayes through gamma

priors Gamma(λ2
1|r1, δ1) on λ2

1 and Gamma(λ2|r2, δ2) on λ2.

3.4.2 Bayesian adaptive lasso

Further, the adaptive lasso has the MAP problem form

β̂ = argmax
β

exp(−∥y −Xβ∥2) ·
p∏

j=1

exp (−λj |βj |)

 . (3.26)

Hence, the Gibbs sampling of the adaptive lasso can be take from following hier-

archical model:

p(y|X,β, σ2) = Nn(y|Xβ, σ2In),

p(β|σ2, τ21 , . . . , τ
2
p ) = Np(β|0p, σ

2D),

p(σ2) =
1

σ2
or IG(σ2|ν0, η0),

p(τ21 , . . . , τ
2
p |λ) =

p∏
j=1

Exp

(
τ2j |

λ2
j

2

)
,

(3.27)

where D = diag(τ21 , . . . , τ
2
p ).

The full model (3.27) leads to following full conditional distributions of β, σ2,
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and 1/τ21 , . . . , 1/τ
2
p (when p(σ2) = 1/σ2):

pfull(β|y, X, σ2, τ21 , . . . , τ
2
p ) = Np(β|A−1XTy, σ2A−1),

pfull(σ
2|y, X,β, τ21 , . . . , τ

2
p ) = IG(σ2|ν1, η1)

pfull(1/τ
2
1 , . . . , 1/τ

2
p |y, X,β, σ2, λ) =

p∏
j=1

IGauss(1/τ2j |µ′
j , λ

′),

(3.28)

where

A = XTX +D−1,

ν1 =
n+ p

2
, η1 =

(y −Xβ)T (y −Xβ) + βTD−1β

2
,

µ′
j =

√
λ2
jσ

2

β2
j

, λ′ = λ2
j ,

(3.29)

and if σ2 has a inverse gamma prior, ν1 = (n+p+ν0)/2 and η1 = {(y−Xβ)T (y−

Xβ) + βTD−1β + η0}/2). It is considered that the we can set the gamma priors

on λj Gamma(λ2
j |r, δ) on λ2

j (j = 1, . . . , p).

3.4.3 Bayesian group lasso

Moreover, Kyung et al. (2010) suggested the Bayesian extension of the group

lasso,

β̂ = argmin
β

∥y − J∑
j=1

Xβj∥2 + λ
J∑

j=1

∥βj∥

 , (3.30)

where J is the number of factor, and penalty terms based on ∥βj∥ despite original

group lasso penalty is based on (βT
j Kjβj)

1/2.
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The full model and full conditional of the Bayesian group lasso is given by

p(y|X,β, σ2) = Nn(y|Xβ, σ2In),

p(βj |σ2, τ2j ) = Npj
(β|0p, σ

2τ2j ),

p(σ2) =
1

σ2
or IG(σ2|ν0, η0),

p(τ21 , . . . , τ
2
p |λ) =

J∏
j=1

Gamma

(
τ2j |

λ2
pj+1

2
,
λ2

2

)
,

pfull(βj |y, X,β(−j), σ
2, τ21 , . . . , τ

2
J ) = Npj

(β|A−1
j XT ỹ(j), σ

2A−1
j ),

pfull(σ
2|y, X,β, τ21 , . . . , τ

2
p ) = IG(σ2|ν1, η1)

pfull(1/τ
2
1 , . . . , 1/τ

2
p |y, X,β, σ2, λ) =

p∏
j=1

IGauss(1/τ2j |µ′
j , λ

′),

(3.31)

where pj is the dimensionality of βj ,

β(−j) = (βT
1 , . . . ,β

T
j−1,β

T
j+1, . . . ,β

T
J )

T ,

Aj = XT
j Xj +

1

τ2j
Ipj

,

ỹ(j) = y − 1

2

∑
k ̸=j

Xkβk,

ν1 =
n+ p

2
, η1 =

(y −Xβ)T (y −Xβ)

2
+

J∑
j

βT
j βj

2τ2j
,

µ′
j =

√
λ2
jσ

2

β2
j

, λ′ = λ2
j ,

(3.32)

and if σ2 has a inverse gamma prior, ν1 = (n+p+ν0)/2 and η1 = {(y−Xβ)T (y−

Xβ) +
∑J

j (β
T
j βj/τ

2
j ) + η0}/2). Kyung et al. (2010) suggested how to choose the

Bayesian group lasso tuning parameter λ in Bayesian analysis; empirical Bayes

through marginal maximum likelihood and hierarchical Bayes through gamma

priors Gamma(λ|r, δ) on λ.
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3.4.4 Unimodality of the posteriors

In Bayesian procedures, the unimodality of the posterior is important role to obtain

the MCMC sample via the Gibbs sampler. Absence of the unimodality induces

retardation of convergence of the Gibbs sampler and the point estimates becomes

less meaningful.

Park and Casella (2008) proposed the Bayesian lasso that has unimodal poste-

rior. However, Park and Casella (2008) only showed that the joint posterior of β

and σ2 is unimodal. Here, we show that the Bayesian lasso, the Bayesian elastic

net and the Bayesian adaptive lasso have a unimodal posterior when the tuning

parameters have gamma priors.

Unimodality of the Bayesian lasso

In the Bayesian lasso with gamma prior Gamma(λ2|r, δ) on λ2, the likelihood and

priors are given by

Likelihood: (2π)−n/2(σ2)−n/2 exp

(
− 1

2σ2
∥y −Xβ∥2

)
,

Priors:

p∏
j=1

λ

2
√
σ2

exp

(
− λ

σ2
|βj |
)
· π(σ2) · δr

Γ(r)
(λ2)r−1 exp(−δλ2).

(3.33)

The log posterior is proportionate to

log π(σ2)− n+ p

2
log(σ2) + p log λ− 1

2σ2
∥y −Xy∥2

− λ√
σ2

p∑
j=1

|βj |+ (r − 1) log λ2 − δλ2.
(3.34)

The unimodality of a function F in some coordinates is equivalent to unimodality

in transformed coordinates when the transformation is continuous with a contin-

uous inverse at support of F . Using this property, we transform the coordinate

as

ϕj =
1√
σ2

βj (j = 1, . . . , p), ρ =
1√
σ2

, λ, (3.35)
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and (3.34) becomes

log π

(
1

ρ2

)
+ (n+ p) log(ρ)− 1

2
∥ρy −Xϕ∥2

− λ

p∑
j=1

|ϕj |+
(
r − 1 +

p

2

)
log λ2 − δλ2,

(3.36)

where ϕ = (ϕ1, . . . , ϕp)
T . If π(σ2) is 1/σ2 or inverse gamma density, the first term

is concave. The second and sixth terms are concave in (ϕ, ρ, λ), The fourth term

is also concave in (ϕ, ρ, λ) because it is a sum of concave function −λ|ϕj | , and the

third term is concave quadratic in (ϕ, ρ, λ). The fifth term is concave in (ϕ, ρ, λ)

when r > 1− (p/2) (it is always satisfied when p ≥ 2 since r takes positive value).

Hence, it is showed that (3.34) is concave, and the posterior of the Bayesian lasso

with prior Gamma(λ2|r, δ) is unimodal when r > 1− (1/p).

Unimodality of the Bayesian elastic net

In the Bayesian elastic net, Sepehri (2016) only showed the unimodality of the

joint posterior of (β, σ2). We show that the Bayesian elastic net has a unimodal

posterior when the tuning parameters have gamma priors.

The Bayesian elastic net has the following likelihood and priors:

Likelihood: (2π)−n/2(σ2)−n/2 exp

(
− 1

2σ2
∥y −Xβ∥2

)
,

Priors:

p∏
j=1

λ1

2
√
σ2

exp

(
−λ1

σ2
|βj |
)
· (2π)−p/2(σ2)−p/2(λ2)

p/2 exp

(
− λ2

2σ2
βTβ

)
· π(σ2) · δr11

Γ(r1)
(λ2

1)
r1−1 exp(−δ1λ2

1) ·
δr22

Γ(r2)
(λ2)

r2−1 exp(−δ2λ2).

(3.37)

Note that the tuning parameter λ2 has gamma prior Gamma(λ2|r2, δ2) (not λ2
2).
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The log posterior is proportionate to

log π(σ2)− n+ 2p

2
log(σ2) + p log λ1 +

p

2
log λ2 −

1

2σ2
∥y −Xy∥2

− λ1√
σ2

p∑
j=1

|βj | −
λ2

2σ2

p∑
j=1

β2
j + (r1 − 1) log λ2

1 − δ1λ
2
1

+ (r2 − 1) log λ2 − δ2λ2,

(3.38)

and we transform the coordinate as

ϕj =
1√
σ2

βj (j = 1, . . . , p), ρ =
1√
σ2

, λj , (3.39)

and (3.38) becomes

log π

(
1

ρ2

)
+ (n+ 2p) log(ρ)− 1

2
∥ρy −Xϕ∥2

− λ1

p∑
j=1

|ϕj | − λ2

p∑
j=1

ϕ2
j +

(
r1 − 1 +

p

2

)
log λ2

1 − δ1
∑
j=1

λ2
j

+
(
r2 − 1 +

p

2

)
log λ2 − δ2λ2,

(3.40)

where ϕ = (ϕ1, . . . , ϕp)
T . If π(σ2) is 1/σ2 or inverse gamma density, the first,

second, fourth, fifth, seventh and ninth terms are concave in (ϕ, ρ, λ), and the

third term is concave quadratic in (ϕ, ρ, λ). Sixth and eighth terms are concave

in (ϕ, ρ, λ) when r1 and r2 are both greater than 1/2.

Hence, if rk > 1/2 (k = 1, 2), (3.38) is concave, and the posterior of the Bayesian

Adaptive lasso with prior Gamma(λ2
1|r1, δ1) and Gamma(λ2|r2, δ2) is unimodal.

Unimodality of the Bayesian adaptive lasso

We can easily show the unimodality of the Bayesian elastic net with gamma prior

Gamma(λ2
j |r, δ) on λ2

j .
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The Bayesian adaptive lasso has the following likelihood and priors:

Likelihood: (2π)−n/2(σ2)−n/2 exp

(
− 1

2σ2
∥y −Xβ∥2

)
,

Priors:

p∏
j=1

λj

2
√
σ2

exp

(
−λj

σ2
|βj |
)
· π(σ2) · δr

Γ(r)
(λ2

j )
r−1 exp(−δλ2

j ).

(3.41)

The log posterior is proportionate to

log π(σ2)− n+ p

2
log(σ2) +

p∑
j=1

log λj −
1

2σ2
∥y −Xy∥2

− 1√
σ2

p∑
j=1

λj |βj |+ (r − 1)

p∑
j=1

log λ2
j − δ

p∑
j=1

λ2
j ,

(3.42)

and we transform the coordinate as

ϕj =
1√
σ2

βj (j = 1, . . . , p), ρ =
1√
σ2

, λj , (3.43)

and (3.42) becomes

log π

(
1

ρ2

)
+ (n+ p) log(ρ)− 1

2
∥ρy −Xϕ∥2

−
p∑

j=1

λj |ϕj |+
(
r − 1 +

1

2

) p∑
j=1

log λ2
j − δ

∑
j=1

λ2
j ,

(3.44)

where ϕ = (ϕ1, . . . , ϕp)
T . As similar to the Bayesian lasso, if π(σ2) is 1/σ2 or

inverse gamma density, the first, second, fourth and sixth terms are concave in

(ϕ, ρ, λ). And the third term is concave quadratic in (ϕ, ρ, λ). Fifth term is

concave in (ϕ, ρ, λ) when r > 1/2. Hence, if r > 1/2, (3.42) is concave, and the

posterior of the Bayesian adaptive lasso with prior Gamma(λ2
j |r, δ) is unimodal.
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Chapter 4

Sparse modeling in the Bayesian

lasso

4.1 Sparse algorithm in the Bayesian lasso

Since the Bayesian lasso enables us to treat the lasso from the Bayesian viewpoint,

we can estimate the posterior distribution of the lasso. However, a crucial problem

arises in the lack of the sparsity.

Although the lasso produces some coefficients exactly into zero, the Bayesian

lasso does not. The cause arises from the estimation of the posterior distribution

using MCMC method such as the Gibbs sampler (e.g., Bishop, 2006). In the

Bayesian analysis, it is often hard to derive the posterior distribution analytically

when the prior distribution is not conjugate. On the other hand, the MCMC

procedure enables us to obtain the random sample from the posterior distribution

even if there are no closed form of the posterior distribution. Thus, we can estimate

the posterior using the MCMC.

Since it is hard to obtain the closed form of the Bayesian lasso, Park and Casella

(2008) used the Gibbs sampler for the estimation of the posterior distribution.

Bayesian lasso gives us the random sample from the posterior distribution of the

lasso, and we can calculate the posterior mode, posterior median, and posterior

mean from this sample. However, MCMC does not produce zero estimates of
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coefficients, since a posterior mode estimated by MCMC is not equivalent to a

mode of the true posterior distribution, exactly. Further, the posterior median

and mean is not equivalent to the lasso estimate.

In order to overcome this problem, Hoshina (2012) proposed the sparse algo-

rithm (SA). The proposed algorithm is given in Table 4.1. We focused the MAP

estimation in the Bayesian lasso. If the estimated posterior mode is close to the

true value enough, some components of it may be exactly zero. That is, the lack

of sparsity is cased by poor estimation accuracy. We can evaluate the estimation

accuracy of the MAP estimation by the posterior probability, and if there is some

estimate that have larger posterior probability than current MAP estimate, we can

employ it as new MAP estimate. SA is based on this idea. After MCMC process,

the SA gives zero values for some components of estimated coefficient vector such

that the posterior probability becomes large. An outline of SA is given in Fig. 4.1.

Fig. 4.1 Illustration of the sparse algorithm (Hoshina, 2012): The real line
and the black circle are the true posterior density and the true posterior mode
θ∗. The dashed line and the grey circle are the estimated posterior density

and the estimated posterior mode θ̂. Let θ̃ = 0. Then, we employ θ̃ as the

point estimates if θ̃ has larger posterior probability than θ̂. On the other

hand, we employ θ̂ as the point estimates if θ̂ has larger posterior probability
than θ̃.
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Table 4.1 Sparse algorithm (Hoshina, 2012).

Sparse algorithm

1. Estimate the coefficient vector β̂ = (β̂1, . . . , β̂p)
T

2. β̃ = (β̃1, . . . , β̃p)
T ← β̂

3. For j = 1, . . . , p,

set β̃j ← 0

3.1 if g(β̃, ξ̂,y) ≥ g(β̂, ξ̂,y) then β̂j ← β̃j

3.2 else β̂j ← β̂j

where g(β, ξ,y) = log f(y|β, ξ) + log π(β, ξ),
f(y|β, ξ) is a likelihood, π(β, ξ) is a prior on (β, ξ),

and ξ̂ is point estimates of the parameter vector
ξ = (σ2, τ21 , . . . , τ

2
p )

T .

One advantage of the SA is that enables us to obtain sparse MAP estimates of

the Bayesian lasso. However, this procedure only corrects for the resulting point

estimates, and the numerically-computed MAP estimates are often instable. Fig.

4.2 represents the solution paths of the diabetes data (Efron et al. , 2004). The

point estimates are the posterior mode(=MAP), median and mean of the Bayesian

lasso, respectively. This figure shows the instability of the MAP estimates. To

overcome this drawback, we propose another procedure, the MAP Bayesian lasso,

in Section 4.3.

4.2 aPIC criterion for the Bayesian lasso

In the Bayesian lasso, the value of the tuning parameter λ controls the strength

of an impact of the Laplace prior on the model, and the resulting model depends

on the value of λ. To choose the values of λ, Park and Casella (2008) proposed

two approaches; the empirical Bayes based on maximizing the marginal likelihood

and the hierarchical Bayes.

The hierarchical Bayes approach such as the MAP procedure evaluates the like-

lihood and the prior information, and we can avoid the overfitting because of the

prior. On the other hand, the marginal likelihood evaluates the estimation accu-

racy of the estimated model in terms of the parameter space, and it is known that

the marginal likelihood also enables us to avoid the overfitting. However, it does
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Fig. 4.2 Solution paths of the diabetes data of Efron et al. (2004): The
posterior mode (left), median (center) and mean (right) of the Bayesian lasso
for the diabetes data are represented. Each Bayesian lasso estimates were
computed over a grid of λ values, using 10000 Gibbs sample (after 1000 burn
in) for each λ.

not evaluate the prediction accuracy.

In the Bayes statistics, the Bayesian predictive distribution has an information

from a predictive point of view. Thus, we propose a model selection criterion for

evaluating a Bayesian predictive distribution for the Bayesian lasso (Kawano et

al. , 2015).
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4.2.1 aPIC criterion

Kitagawa (1997) proposed the predictive information criterion (PIC) for evaluating

the Bayesian predictive distribution. A Bayesian predictive distribution is, in

general, given by

h(z|y) =
∫

f(z|θ) p(θ|y)dθ, (4.1)

where z = (z1, . . . , zn)
T is an n-dimensional future observation, f(z|θ) =∏n

i=1 f(zi|θ) is the likelihood, θ is a parameter vector, and p(θ|y) is the posterior

distribution on θ defined by

p(θ|y) = f(y|θ) π(θ)∫
f(y|θ) π(θ)dθ

. (4.2)

Using the Bayesian predictive distribution, Kitagawa (1997) derived the predictive

information criterion (PIC)

PIC = −2 log h(y|y) + 2Bp, (4.3)

where Bp is the bias term given by

Bp = Eq(y)

[
log h(y|y)− Eq(z) [log h(z|y)]

]
(4.4)

with q(·) being the true distribution that generates the data.

In order to derive PIC for the Bayesian lasso, we obtain the Bayesian predictive

distribution in (4.1). In the Bayesian lasso, the prior distribution is formulated by

π(β|σ2) =

p∏
j=1

λ

2
√
σ2

exp

(
− λ√

σ2
|βj |
)
. (4.5)

It is, however, difficult to obtain the predictive distribution h(z|y) based on this

prior in closed form, since it is difficult to analytically represent the form of the

posterior distribution. This problem arises from the fact that the prior distribution
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π(β|σ2) is not a conjugate prior for the likelihood function. In Section 4.2.2, we

approximate the prior distribution π(β|σ2) by a conjugate prior distribution (a

normal prior distribution) for the likelihood function.

4.2.2 Approximated prior distribution

Let f(β) be the Laplace distribution

f(β) =
λ

2
√
σ2

exp

(
− λ|β|√

σ2

)
, (4.6)

and g(β|α2) be the normal distribution

g(β|α2) =
1√
2πα2

exp

(
− β2

2α2

)
, (4.7)

where α is positive.

Our aim is to find the normal distribution that is the closest to the Laplace

distribution. Here, we measure the closeness between the distributions in terms

of the Kullback-Leibler information (Kullback and Leibler, 1951). We determine

the normal distribution g(β|α̂2), where α̂2 is an estimator of α2, such that the

Kullback-Leibler information between the distributions f(β) and g(β|α2);

KL(f, g) =

∫ ∞

−∞
f(β) log

f(β)

g(β|α2)
dβ (4.8)

is minimized with respect to the parameter α2.

Theorem 4.2.1 The minimum of the Kullback-Leibler information (4.8) attains at

α̂2 = 2(
√
σ2/λ)2.

Proof. The Kullback-Leibler information between f(β) and g(β|α2) is calculated

as

KL(f, g) = log λ− log(2
√
σ2) +

1

2
log
(
2πα2

)
− 1 +

1

α2

(√
σ2

λ

)2

. (4.9)

A minimizer of (4.9) is α̂2 = 2(
√
σ2/λ)2, which is obtained by solving the equation
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∂KL(f, g)/∂α2 = 0.

□

From this result, the Laplace distribution f(β) can be approximated by the

normal distribution g(β|α̂2), and we have

π(β|σ2) =

p∏
j=1

λ

2
√
σ2

exp

[
−λ|βj |√

σ2

]

≈ π̃(β|σ2) =

p∏
j=1

λ√
2π(2σ2)

exp

[
−

λ2β2
j

2(2σ2)

]
.

(4.10)

The approximated distribution π̃(β|σ2) can be regarded as the closest to the

Laplace distribution π(β|σ2) in terms of the Kullback-Leibler information. Fig.

4.3 illustrates the case with p = 1 and λ/
√
σ2 = 1.
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Fig. 4.3 Laplace distribution and the closest normal distribution: Dashed
line is the Laplace distribution with rate 1, and real line is the closest normal
distribution N(0, 1/2).

Note that the approximated distribution is employed only when we obtain a

model selection criterion, and that the Laplace distribution is employed when we

estimate the coefficient parameters.
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4.2.3 Bayesian predictive distribution for Bayesian lasso

Using the approximated prior distribution π̃(β|σ2) in (4.10) on β and assuming

an inverse gamma distribution π(σ2) = IG(ν0/2, η0/2) on σ2, we derive the joint

prior distribution π(β, σ2) in the form

π(β, σ2) = π(β|σ2)π(σ2) ≈ π̃(β|σ2)π(σ2) = π̃(β, σ2). (4.11)

From the approximated prior distribution and Bayes’ rule, the approximated

joint posterior distribution can be expressed as

p̃(β, σ2|y) = p̃(β|σ2,y) p̃(σ2|y), (4.12)

where each approximated posterior distribution is given by

p̃(β|σ2,y) = Np(β|β̃, σ2A), p̃(σ2|y) = IG
(
σ2|ν1

2
,
η1
2

)
. (4.13)

Here,

A =

(
XTX +

λ2

2
Ip

)−1

,

β̃ = AXTy,

ν1 = n+ ν0,

η1 = η0 + yTy − β̃TA−1β̃.

(4.14)

Note that if the prior distribution π(β|σ2) in (4.5) is used instead of the approxi-

mated prior distribution π̃(β|σ2), it is difficult to obtain the posterior distribution

p(β|σ2,y).

Using the approximated posterior distributions, we obtain the Bayesian predic-
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tive distribution for the Bayesian lasso given by

h(z|y) =
∫

f(z|β, σ2) p(β, σ2|y)dβdσ2

=
Γ
(
n+ν1

2

)
Γ
(
ν1

2

)
(πν1)n/2

|Σ̃|−1/2

[
1 +

1

ν1
(z −Xβ̃n)

T Σ̃−1(z −Xβ̃n)

]−(n+ν1)/2

,

(4.15)

where Σ̃ = (η1/ν1)(XAXT + In) and Γ(·) is the Gamma function. This predictive

distribution is an n-dimensional t-distribution with ν1 degrees of freedom.

4.2.4 Proposed criterion: aPIC

To derive the PIC type criterion, we need to calculate the bias term (4.4) for

the Bayesian predictive distribution h(z|y) (4.15). It is still difficult to calculate

the bias term analytically, because the Bayesian predictive distribution h(z|y) in

(4.15) is an n-dimensional t-distribution. Hence, we approximate the distribution

h(z|y) by a normal distribution f(z|β̃, σ̃2) in the form

h(z|y) = f(z|β̃, σ̃2)
{
1 +Op(n

−1)
}
, (4.16)

where σ̃2 is given by

σ̃2 =
(y −Xβ̃)T (y −Xβ̃) +

λ2

2
β̃T β̃ + η0

n+ p+ ν0 + 2
. (4.17)

This approximation is based on the Laplace approximation (Tierney and Kanade,

1986). For details of this approximation, we refer to Konishi and Kitagawa (2008).

For the approximated predictive distribution f(z|β̃, σ̃2) in (4.16), we define an

approximated predictive information criterion (aPIC) as follows:

aPIC = −2 log h(y|y) + 2B∗
p , (4.18)
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where the approximated bias term B∗
p is given by

B∗
p = Eq(y)

[
log f(y|β̃, σ̃2)− Eq(z){log f(z|β̃, σ̃2)}

]
≈ − 1

2σ̃2

[
Eq(y)[(y −Xβ̃)T (y −Xβ̃)− Eq(z){(z −Xβ̃)T (z −Xβ̃)}]

]
.

(4.19)

Using the results of Kitagawa (1997) and Kim et al. (2012), we can calculate the

approximated bias term as

B∗
p ≈

(
σ∗2

σ̃2

)
tr

[
X

(
XTX +

n2λ2

2
Ip

)−1

XT

]
, (4.20)

where σ∗2 is a specific value such that q(z) = f(z|β∗, σ∗2).

Then we obtain aPIC in the form

aPIC = −2 log Γ
(
n+ ν1

2

)
+ 2 log Γ

(ν1
2

)
+ n log(πν1) + log

∣∣∣Σ̃∣∣∣
+ (n+ ν1) log

[
1 +

1

νn
(y −Xβ̃)T Σ̃−1(y −Xβ̃)

]
+ 2

(
σ∗2

σ̃2

)
tr

[
X

(
XTX +

λ2

2
Ip

)−1

XT

]
.

(4.21)

Since the value of σ∗2 is generally unknown, we replace σ∗2 by the mode of the

posterior distribution σ̃2, and have

aPIC = −2 log Γ
(
n+ ν1

2

)
+ 2 log Γ

(ν1
2

)
+ n log(πν1) + log

∣∣∣Σ̃∣∣∣
+ (n+ ν1) log

[
1 +

1

ν1
(y −Xβ̃)T Σ̃−1(y −Xβ̃)

]
+ 2tr

[
X

(
XTX +

λ2

2
Ip

)−1

XT

]
.

(4.22)

The value of the hyperparameter λ is selected as the minimizer of aPIC in (4.22).

Some numerical results about aPIC are reported in Section 6.1.
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4.3 MAP Bayesian lasso

To obtain the sparse MAP estimates of β, the optimization methods such as any

gradient procedures are required. However, it is difficult to obtain the posterior

density function for the Bayesian lasso, and it may not be differentiable at β = 0

since it includes the Laplace prior. To overcome these drawbacks, we approximate

the posterior density by the Monte Carlo integration, and propose a procedure

that enables us to obtain the MAP estimates of the Bayesian lasso by Newton’s

method.

4.3.1 Posterior distribution approximated by Monte Carlo integration

Since the Bayesian lasso gives us the estimates of σ2 and λ, our procedure leverages

these estimates. Let σ̂2 and λ̂ be the MAP estimates of σ2 and λ, respectively.

Then the (conditional) posterior density of β given σ̂2 and λ̂ is proportionate to

∫
· · ·
∫

Nn(y|Xβ, σ̂2In) ·Np(β|0p, σ̂
2D)


p∏

j=1

Exp

(
τ2j

∣∣∣∣∣ λ̂2

2

) dτ21 · · · τ2p

∝
∫
· · ·
∫

Np(β|A−1XTy, σ̂2A−1) · |D|−1/2 · |A|−1/2

· exp
{
− 1

2σ̂2
yT (In −XA−1XT )y

}
p∏

j=1

Exp

(
τ2j

∣∣∣∣∣ λ̂2

2

) dτ21 · · · τ2p .

(4.23)

It is difficult to evaluate the integration in (4.23) because of complexity of inte-

grand. In general, some approximation methods, such as the Laplace approxi-

mation (Tierny and Kadane, 1986), may be used to approximate it. We cannot,

however, employ this procedure since the integrand in (4.23) is not differentiable

at βj = 0.

In contrast, the Monte Carlo integration is applicable for posterior approxi-

mation. The Monte Carlo integration is a well-known numerical technique to
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approximate a integration in statistics.

Let {τ21(m), . . . , τ
2
p(m) : m = 1, . . . ,M} be a random sample generated from

∏p
j=1

Exp(τ2j |λ̂2/2) artificially, where sizeM is encouraged to determine sufficiently large

number. Then, we have the following approximation of (4.23):

1

M

M∑
m=1

Np(β|A−1
(m)X

Ty, σ̂2A−1
(m))

· |D(m)|−1/2|A(m)|−1/2 · exp
{
− 1

2σ̂2
yT (In −XA−1

(m)X
T )y

}
,

(4.24)

where D(m) = diag(τ21(m), . . . , τ
2
p(m)), A(m) = XTX+D−1

(m). Since (4.24) is formed

as the sum of differentiable function, (4.24) is totally differentiable. Hence, the

posterior mode of the Bayesian lasso regression coefficients are given by maximizing

(4.24) using Newton’s method.

Thus, the approximated posterior distribution p̃(β|y, X, λ, σ2) and the approx-

imated marginal likelihood p̃(y|X,σ2, λ) of the lasso are respectively given by

p̃(β|y, X, σ̂2, λ̂) =

1
M

∑M
m=1 Np(β|A−1

(m)X
Ty, σ̂2A−1

(m)) · ξ(m)∫
1
M

∑M
ℓ=1 Np(β|A−1

(ℓ)X
Ty, σ̂2A−1

(ℓ)) · ξ(ℓ)dβ

=
M∑

m=1

γ(m)Np(β|A−1
(m)X

Ty, σ̂2A−1
(m)),

p̃(y|X, σ̂2, λ̂) =

∫
1

M

M∑
m=1

Np(β|A−1
(m)X

Ty, σ̂2A−1
(m)) · ξ(m)dβ

=
1

M

M∑
m=1

|D(m)|−1/2|A(m)|−1/2

· exp
{
− 1

2σ̂2
yT (In −XA−1

(m)X
T )y

}
,

(4.25)
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where

ξ(m) = |D(m)|−1/2|A(m)|−1/2 · exp
{
− 1

2σ̂2
yT (In −XA−1

(m)X
T )y

}
,

γ(m) =
ξ(m)∑M
ℓ=1 ξ(ℓ)

.

Note that, the approximated posterior of the lasso is given in the form of a mixture

of normal distributions with mixture weights γ(1), . . . , γ(M).

4.3.2 MAP estimation by Newton’s method

Newton’s method (e.g., Murphy, 2012) is one of the second order optimization

methods that take the Hessian, i.e. the curvature of the space, into account. This

iterative algorithm consists of updates of the following form:

θk+1 = θk + ηkH
−1
k gk, gk =

∂f(θk)

∂θ
, Hk =

∂2f(θk)

∂θ∂θT
,

where θk (k = 1, . . .) is a sequence of variables which converges to the optimal

value θ̂, f(θ) is a function which is maximized, and ηk is a step size for k-th

update.

In our procedure, the resulting regression coefficients are given by maximizing

(4.24) or p̃(β|y, X, σ̂2, λ̂) of (4.25). We use (4.24) as the objective function of the

maximization problem, and the gradient gk and the Hessian Hk for k-th update
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are respectively given as follows:

gk =
1

M
(2π)−p/2(σ̂2)−(p+2)/2

M∑
m=1

|D(m)|−1/2

· exp
{
− 1

2σ̂2
(yTy − 2yTXβk + βkD

−1
(m)βk)

}
(XTy −A(m)βk),

Hk =
1

M
(2π)−p/2(σ̂2)−(p+2)/2

·
M∑

m=1

|D(m)|−1/2 exp

{
− 1

2σ̂2
(yTy − 2yTXβk + βkD

−1
(m)βk)

}
·
{
A(m) +

1

σ̂2
(XTy −A(m)βk)(X

Ty −A(m)βk)
T

}
.

(4.26)

We choose the value of step size ηk from candidate values {η(1)k , . . . , η
(ℓ)
k } so that

θk+1 = βk+1 has the largest posterior density, and we substitute the following

function for the posterior density of β:

q(β,y, X, σ2, λ) = logNn(y|Xβ, σ2In) +

p∑
j=1

log

{
λ√
2σ2

exp

(
− λ√

σ2
|βj |
)}

.

(4.27)

We use this formula to obtain the MAP estimates of the Bayesian lasso. How-

ever, it is difficult to derive sparse solutions for regression coefficients since we

use a numerical procedure. For this problem, we can apply the sparse algorithm

(Hoshina, 2012), which sets some regression coefficients exactly zero so that a

posterior probability becomes large.

Although this procedure enables us to obtain the sparse MAP estimates of the

Bayesian lasso, the optimized solution of Newton’s method depends on the initial

value. Especially, since objective function of this optimization may be waggly, it

seems that many local optimums exist as shown in Fig. 4.4. To avoid this problem,

the initial value selection is very important. We employ the posterior means as the

initial value of the Newton’s method because of its estimation stability, as shown
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in Fig. 4.5.

Fig. 4.4 Overview of the objective function of our procedure. Solid and
dashed lines illustrate the approximated posterior and true posterior, respec-
tively. Even if true posterior has no local maximum, the approximated poste-
rior may have many local maximums. Thus, it is desired that the initial value
of Newton’s method is slightly near the global maximum.

The size of numerical integration M may affect the result of our procedure. For

this point, an empirical evidence shows that the size of M also suffices at the

relatively-small value. Figure 4.5 shows the solution paths in cases of M = 50,

500, 5000 respectively, and all solution paths are similar. From these results, we

set M to 500 in numerical studies of Chapter 6.2.

We call this procedure the “MAP Bayesian lasso” (Maximum a Approximated

Posteriori with the Bayesian lasso). The details of the proposed procedure are

given in Algorithm 3.

4.3.3 Other procedures

This section describes other sparse model building techniques which choose the

value of a tuning parameter by model selection criteria.

Baysian lasso with model selection criteria

Suppose that p(y|θ) is a likelihood of n-observation vector y on parameter θ, and

p(θ|y) is a posterior density of θ. Deviance information criterion (DIC) proposed
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Fig. 4.5 Regularization paths for the diabetes data (Efron et al. , 2004) for
M = 50 (left), M = 500 (center) and M = 5000 (right).

by Spiegelhalter et al. (2002) measures the effective number of parameters in a

Bayesian model using an information theoretic argument. The measure pD for

parameter θ is defined by

pD = −2Eθ|y[log p(y|θ)] + 2 log p(y|θ̄),

where Eθ|y(·) denotes the expectation over posterior distribution of θ, and θ̄ is

the posterior mean of θ.

Based on this measure, Spiegelhalter et al. (2002) proposed a deviance infor-

mation criterion

DIC = −2 log p(y|θ̂) + 2pD.
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Algorithm 3 MAP Bayesian lasso

1: σ2 ⇐ σ̂2: posterior mode of σ2;

2: λ⇐ λ̂: posterior mode of λ;
3: Initialize β0 = β̄ : posterior mean;
4: for k = 1, 2, . . . until convergence do
5: Evaluate the gradient gk of (4.26);
6: Evaluate the Hessian Hk of (4.26);
7: Solve zk = H−1

k gk;
8: for ℓ = 1, 2, . . . , L, solve βk+1(ℓ) = βk + ηk(ℓ)zk do

9: Evaluate the value q(ℓ) = q(βk+1(ℓ),y, X, σ2, λ) of (4.27);
10: end for
11: βk+1 ⇐ argmax

βk+1(ℓ)

{q(ℓ)};

12: β̂ = (β̂1, β̂2, . . . , β̂p)
T ⇐ βk+1;

13: end for
14: β̃ = (β̃1, β̃2, . . . , β̃p)⇐ β̂;
15: for j = 1, 2, . . . , p do
16: β̃j ⇐ 0;

17: if q(β̃,y, X, σ2, λ) > q(β̂,y, X, σ2, λ) then

18: β̂ ⇐ β̃;

19: else β̃ ⇐ β̂;
20: end if
21: end for

Widely applicable or Watanabe-Akaike information criterion (WAIC) is pro-

posed by Watanabe (2010a, 2010b). WAIC intends to evaluate the model accuracy

by the Bayes or Gibbs generalization loss for singular or non-singular model. How-

ever, it is difficult to obtain these losses since we need to evaluate a expectation on

predictive distribution. For this problem, Watanabe (2010a, 2010b) showed that

the consistent estimator of the Bayes generalization loss is given by

WAIC =− 1

n

n∑
i=1

logEθ|y [p(y|θ)]

+
1

n

n∑
i=1

{
Eθ|y

[
(log p(yi|θ))2

]
− Eθ|y [log p(yi|θ)]2

}
.

DIC and WAIC need to evaluate the posterior and predictive distribution re-

spectively. The Gibbs sampler enables us to derive these values, and the Bayesian

lasso which gives us the Gibbs sample of the lasso can be applicable for these

procedures.
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Lasso with model selection criteria

The degrees of freedom can lead to several model selection criteria (e.g. Hirose et

al., 2013) which may improve prediction accuracy in the lasso.

In the lasso, Zou et al. (2007) introduced the AIC (Akaike, 1973), the BIC

(Schwarz, 1978) and the Mallows’ Cp (Mallows, 1973), respectively, given by

AIC = n log(2πσ̂2) +
∥y −Xβ̂∥2

2σ̂2
+ 2DF,

BIC = n log(2πσ̂2) +
∥y −Xβ̂∥2

2σ̂2
+ log n ·DF,

Cp = ∥y −Xβ̂∥2 + 2σ̂2DF,

where the likelihood of y is given by Nn(y|Xβ, σ2In) and DF is the degrees of

freedom of the lasso. Although true value of DF is unknown, Zou et al. (2007)

showed that the number of non-zero coefficients of the lasso estimate is an unbiased

estimator of DF. The AIC and Cp yield the same results when the same estimated

σ2 is used.

Hirose et al. (2013) also introduced the generalized cross validation (GCV;

Craven and Wahba, 1979)

GCV = n
∥y −Xβ̂∥2

(n−DF)2
.

Note that the GCV does not need estimate of σ2.
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Chapter 5

Model selection in elastic net via

Bayes model

The Bayesian lasso and other Bayesian extensions of the L1 regularizations use

the relationship between the regularizations and the Bayes model. The Bayesian

information criterion (BIC; Schwarz, 1978) and the generalized Bayesian informa-

tion criterion (GBIC; Konishi et al., 2004) have also been derived based on the

same relationship, and they evaluate the posterior probability of the models.

The GBIC, which is extension of the BIC, is applicable for the regularization

procedure, while the BIC is not. However, the GBIC depends on the sample size

since it evaluates the posterior density using the Laplace approximation (Tierney

and Kadane 1986).

In contrast to this, we propose a model selection criterion, which evaluates the

prediction accuracy of resulting models based on the Bayes model.

5.1 Bayes model of the elastic net

We consider the linear regression model

y = Xβ + ε, (5.1)
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where y = (y1, . . . , yn)
T is an n-dimensional response vector, X = (x1, . . . ,xn)

T is

an n×p design matrix, x1, . . . ,xn are the p-dimensional observations for predictor

variables, the elements of xi are given as xi1, . . . , xip, β = (β1, . . . , βp)
T is a p-

dimensional regression coefficient vector, and ε = (ε1, . . . , εn)
T is an n-dimensional

error vector which elements have independent and identically distributed according

to a normal distribution with mean zero and unknown variance σ2. Without loss

of generality, we assume that the predictors and response are standardized:

n∑
i=1

yi = 0,
n∑

i=1

xij = 0,
n∑

i=1

x2
ij = n, j = 1, . . . , p. (5.2)

The elastic net (Zou and Hastie, 2005) for linear regression models is given by

β̂ := (1 + λ2) argmin
β

 1

2n
∥y −Xβ∥2 + λ2

2

p∑
j=1

β2
j + λ1

p∑
j=1

|βj |

 , (5.3)

where λ1 (> 0) and λ2 (> 0) are the regularization parameters which control the

L1 and L2 penalty.

We can transform the expression (5.3) as follows:

β̂ = argmin
β

 1

2n
∥y − cλ2

Xβ∥2 +
λ2c

2
λ2

2

p∑
j=1

β2
j + λ1cλ2

p∑
j=1

|βj |


= argmax

β

exp(− 1

2σ2
∥y − cλ2

Xβ∥2
)

· exp

−nλ2c
2
λ2

2σ2

p∑
j=1

β2
j

 · exp
−nλ1cλ2

σ2

p∑
j=1

|βj |


= argmax

β

Nn(y|cλ2Xβ, σ2In)

·Np

(
β|0p,

σ2

nλ2c2λ2

Ip

)
·

p∏
j=1

nλ1cλ2

2σ2
exp

(
−nλ1cλ2

σ2
|βj |
) ,

(5.4)
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where cλ2 = 1/(1 + λ2). Laplace distribution (λ/2) exp(−λx) has scale mixture

normal representation with an exponential mixing density,

λ

2
exp(−λx) =

∫ ∞

0

1√
2πτ

exp

(
− 1

2τ
x2

)
· Exp(τ |λ2), (5.5)

where Exp(τ |λ2) = (λ2/2) exp(−λ2τ/2) is a exponential density function with rate

parameter λ2. We exploit this in (5.4),

β̂ = argmax
β

Nn(y|cλ2
Xβ, σ2In) ·Np

(
β|0p,

σ2

nλ2c2λ2

Ip

)

·
∫
· · ·
∫

Np

(
β|0p,

σ4

n2λ2
1c

2
λ2

D

)
·

p∏
j=1

Exp

(
τ2j |

1

2

)
dτ21 · · · dτ2p

 ,

(5.6)

where D = diag(τ21 , . . . , τ
2
p ). In (5.6), since β has two normal priors, we set these

priors to one.

Np

(
β|0p,

σ2

nλ2c2λ2

Ip

)
·Np

(
β|0p,

σ4

n2λ2
1c

2
λ2

D

)
∝ Np

(
β|0p,

σ2

c2λ2

A−1
1

)
, (5.7)

where A1 = nλ2Ip + (n2λ2
1/σ

2)D−1.
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Thus, the Bayes model of the elastic net of (5.3) is given by

β̂ = argmax
β

∫ · · · ∫ Nn(y|cλ2
Xβ, σ2In) ·Np

(
β|0p,

σ2

c2λ2

A−1
1

)

·
p∏

j=1

Exp

(
τ2j |

1

2

)
dτ21 · · · dτ2p


= argmax

β

∫ · · · ∫ (2π)−(n+p)/2(σ2)−(n+p)/2|c2λ2
A1|1/2

· exp
{
− 1

2σ2
(β − cλ2

A−1
2 XTy)TA2(β − cλ2

A−1
2 XTy)

}
· exp

{
− 1

2σ2
yT (In − c2λ2

XA−1
2 XT )y

}

·
p∏

j=1

Exp

(
τ2j |

1

2

)
dτ21 · · · dτ2p

 ,

(5.8)

where A2 = c2λ2
(A1 +XTX).

5.2 Bayesian information criteria

5.2.1 BIC and GBIC

The BIC proposed by Schwarz (1978) is a traditional model selection criterion and

it is known that the BIC is one of the effective criteria. The BIC is motivated in

the Bayesian approach, and it selects a model from a set of candidate models by

maximizing the posterior probability.

Suppose we have a set of candidate models M1, . . . ,Mℓ, and each model is char-

acterized by the unknown model parameter θk (k = 1, . . . , ℓ) and the probability

density function fk(y|θk) (y is an n-dimensional response vector). Let πk(θk|λk)

be the prior distribution for θk under Mk, and λk is a hyperparameter correspond-
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ing Mk. Then, the posterior probability of the model Mk is defined by

ppost(Mk|y) =
π(Mk)

∫
fk(y|θk)πk(θk|λk)dθk∑ℓ

k=1 π(Mk)
∫
fk(y|θk)πk(θk|λk)dθk

, (5.9)

where π(Mk) is the prior distribution for the model Mk. The model with the

largest posterior probability is equivalent to the model that maximizes

π(Mk)

∫
fk(y|θk)πk(θk|λk)dθk = π(Mk) ·ML(λk|y), (5.10)

where ML(λk|y) is the marginal likelihood of the model Mk. Typically, it is

assumed that the priors over models are uniform, so that π(Mk) is constant. The

BIC select the model from a set of candidate models with the largest marginal

likelihood.

To derive the marginal likelihood, we need to evaluate the following integral:

ML(λk|y) =
∫

fk(y|θk)πk(θk|λk)dθk. (5.11)

For this problem, the following Laplace approximation (Tierney and Kadane, 1986)

is applicable.

We consider the following integral;

∫
exp {nq(θ)} dθ, (5.12)

where θ is a p-dimensional vector, and q(θ) is a twice differentiable function. Then,

this integral is approximated as

∫
exp {nq(θ)} dθ ≈ exp

{
nq(θ̂)

}∫
exp

{
−n

2
(θ − θ̂)TJ(θ̂)(θ − θ̂)

}
, (5.13)

where θ̂ is a mode of q(θ), and

J(θ̂) = − ∂2

∂θ∂θT
q(θ)

∣∣∣∣
θ=θ̂

. (5.14)

This approximation is based on the Taylor expansion of q(θ) around its mode. The
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first derivative term of the Taylor expansion becomes zero because ∂q(θ̂)/∂θ = 0.

Further, the integral of the right-hand side of (5.14) is known as the multivariate

Gaussian integral, thus we obtain the following Laplace approximation:

∫
exp {nq(θ)} dθ ≈ exp

{
nq(θ̂)

}
(2π)p/2n−p/2|J(θ̂)|−1/2. (5.15)

Schwarz (1978) used the Laplace approximation for the approximate the

marginal likelihood around the MLE of θk, and derived the following model

selection criterion:

BIC(θ̂k) = −2 log fk(y|θ̂k) + p log n

≈ −2 logML(λk|y),
(5.16)

where θ̂k is a MLE of θk, all component of θ̂k are not zero, and the dimension of

θk is p. Note that terms with order less than O(1) with respect to n are ignored

in the elicitation process of the BIC.

The BIC requires that the parameter must be estimated by MLEs procedure,

that is, the BIC is not applicable in models estimated by any regularization pro-

cedures including the L1 regularizations. To overcome this drawback, Konishi et

al. (2004) proposed the GBIC for regularization procedures. Suppose that θ̂k is a

mode of fk(y|θk)πk(θk|λk). Then, the GBIC is given by

−p log 2π + p log n+ log |J(θ̂k)| − 2nq(θ̂k), (5.17)

where

q(θk) =
1

n
log {fk(y|θk)πk(θk|λk)} ,

J(θ̂k) = −
∂2q(θk)

∂θk∂θT
k

∣∣∣∣
θk=θ̂k

.
(5.18)

GBIC is widely applicable because it assumes that θ̂k is the posterior mode, and

a number of regularized estimate can be seen as it.
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5.2.2 Bayesian information criterion for the elastic net using the Monte

Carlo integration

In Bayes model of elastic net, it is, however, hard to apply the GBIC because

integrand of the marginal likelihood is not differentiable at βj = 0. Thus, it

is difficult to directly apply the Laplace approximation in this case. Further,

accuracy of approximation the Laplace approximation depends on the sample size

n. To overcome these drawback, we propose the methods which approximate the

marginal likelihood using the Monte Carlo integration.

When n > p, using the Monte Carlo integration, we can approximate the right-

hand side of (5.8) by the following:

1

M

M∑
m=1

(2π)−(n+p)/2(σ2)−(n+p)/2|c2λ2
A1(m)|1/2

· exp
{
− 1

2σ2
(β − cλ2

A−1
2(m)X

Ty)TA2(m)(β − cλ2
A−1

2(m)X
Ty)

}
· exp

{
− 1

2σ2
yT (In − c2λ2

XA−1
2(m)X

T )y

}
,

(5.19)

where A1(m) = nλ2Ip + (n2λ2
1/σ

2)D−1
(m), D(m) = diag(τ21(m), . . . , τ

2
p(m)),

{τ21(m), . . . , τ
2
p(m)| m = 1, . . . ,M} is a set of random samples from a ex-

ponential distribution
∏p

j=1 Exp(τ
2
j |1/2) =

∏p
j=1(1/2) · exp(−τ2j /2), and

A2(m) = c2λ2
(A1(m) +XTX).

Hence, we have the approximated marginal likelihood by integrating (5.8) over

β

ML =
1

M
(2π)−n/2(σ2)−n/2

M∑
m=1

|c2λ2
A1(m)|1/2|A2(m)|−1/2

· exp
{
− 1

2σ2
yT (In − c2λ2

XA−1
2(m)X

T )y

}
.

(5.20)
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Similar to the GBIC, we derive a model selection criterion by taking the loga-

rithm of (5.20) and multiplying −2

−2 logML = 2 logM + n log 2π + n log σ2 − 2 log
M∑

m=1

|c2λ2
A1(m)|1/2|A2(m)|−1/2B,

(5.21)

where B = exp{−yT (In − c2λ2
XA−1

2(m)X
T )y/(2σ2)}.
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Chapter 6

Numerical results

6.1 Numerical results for aPIC criterion

6.1.1 Monte Carlo simulations

Monte Carlo simulations were conducted to investigate the efficiency of the pro-

posed modeling procedure based on the aPIC criterion for the Bayesian lasso

described in Chapter 4. We generated data according to the linear regression

model

y = xTβ∗ + ε, (6.1)

where β∗ is a p-dimensional true coefficient vector, ε ∼ N(0, σ2), and x was gener-

ated from a multivariate normal distribution with mean vector 0p and covariance

matrix Σ. The structure of the covariance matrix is given below. In this simula-

tion, we considered four cases inspired by Tibshirani (1996) as follows:

• Case 1: In this case we simulated 200 data sets with 20, 50, or 100 observa-

tions. Here, we set β∗ = (3, 1.5, 0, 0, 2, 0, 0, 0)T , σ = 3, and the correlation

between xi and xj was 0.5|i−j|.

• Case 2: The second case is the same as Case 1, but with β∗ = 0.85 · 18.

• Case 3: The third case is the same as Case 1, but with β∗ = (0.5,0T
7 )

T ,

and σ = 2.



Chapter 6 Numerical results 83

• Case 4: In this case we simulated 200 data sets with 50, 100, or 200

observations. Here, we set β∗ = (0T
5 ,2

T
5 ,0

T
5 ,0.5

T
5 )

T , and σ = 5.

In all cases, 2,000 samples from the MCMC simulation were used for estimating the

parameters, where the first 1,000 samples were discarded as burn-in. In addition,

we confirmed the convergence of the Markov chain simulations by using R.hat

(Gelman and Rubin, 1992); the values were close to one. The hyperparameter

λ was tested for 200 values; λi = λmin · exp[(log λmax − log λmin) · (i/200)] (i =

1, . . . , 200), where λmax is such that all coefficient parameters are zero and λmin is

10−4 when n = 20 and 10−4/n when n is larger than 50.

The performances of our proposed procedure were evaluated in terms of three

accuracies; variable selection, estimation, and prediction accuracies. As the vari-

able selection accuracy, we employed the true positive rate (TPR), true negative

rate (TNR), and true sign rate (TSR), respectively, defined by

TPR =
1

200

200∑
k=1

∣∣∣{j : β̂(k)
j ̸= 0 ∧ β∗

j ̸= 0
}∣∣∣∣∣{j : β∗

j ̸= 0
}∣∣ ,

TNR =
1

200

200∑
k=1

∣∣∣{j : β̂(k)
j = 0 ∧ β∗

j = 0
}∣∣∣∣∣{j : β∗

j = 0
}∣∣ ,

TSR =
1

200

200∑
k=1

∣∣∣{j : sign(β̂(k)
j ) = sign(β∗

j )
}∣∣∣

p
,

where β̂(k) = (β̂
(k)
1 , . . . , β̂

(k)
p )T is the estimated coefficient vector for the k-th data

set, and |{∗}| is the number of elements included in a set {∗}. The estimation and

prediction accuracies are determined by MSE and PSE as follows;

MSE =
1

200

200∑
k=1

(β̂(k) − β∗)TΣ(β̂(k) − β∗),

PSE =
1

200

200∑
k=1

{
1

n
∥ŷ(k) − ỹ(k)∥2

}
,

where ŷ(k) = x(k)T β̂(k), x(k) is the predictor for the k-th data set, and ỹ(k) is a

future observation generated from the true model (6.1).
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Table 6.1 The results for Case 1 and Case 2.

Case 1 Case 2
n = 20 n = 20

TPR TNR TSR MSE PSE TPR TNR TSR MSE PSE

aPIC 1.00 0.00 0.37 4.79 11.88 1.00 — 0.93 3.42 11.16
aPIC+SA 0.81 0.62 0.69 5.64 12.56 0.51 — 0.49 5.83 13.04
DIC 1.00 0.00 0.36 5.31 11.94 1.00 — 0.88 4.38 11.38
DIC+SA 0.90 0.43 0.60 5.61 12.17 0.70 — 0.64 5.32 12.05
Blasso 1.00 0.00 0.37 5.06 12.16 1.00 — 0.91 3.80 11.46
Blasso+SA 0.65 0.73 0.70 8.10 14.49 0.45 — 0.44 6.64 13.74
WAIC 1.00 0.00 0.37 4.60 11.46 1.00 — 0.88 4.04 11.20
WAIC+SA 0.96 0.30 0.55 4.61 11.45 0.78 — 0.82 4.43 11.46
Lasso 0.90 0.57 0.70 4.33 11.61 0.72 — 0.70 4.33 11.61

n = 50 n = 50
TPR TNR TSR MSE PSE TPR TNR TSR MSE PSE

aPIC 1.00 0.00 0.38 1.39 9.95 1.00 — 0.99 1.43 10.42
aPIC+SA 0.99 0.58 0.73 1.38 9.96 0.81 — 0.81 2.03 10.91
DIC 1.00 0.00 0.38 1.56 10.04 1.00 — 0.97 1.47 10.44
DIC+SA 0.99 0.42 0.63 1.57 10.06 0.90 — 0.89 1.59 10.55
Blasso 1.00 0.00 0.38 1.42 9.98 1.00 — 0.98 1.36 10.34
Blasso+SA 0.98 0.51 0.69 1.65 10.16 0.86 — 0.86 1.72 10.63
WAIC 1.00 0.00 0.38 1.43 9.99 1.00 — 0.97 1.41 10.00
WAIC+SA 1.00 0.42 0.64 1.42 10.00 0.88 — 0.93 1.56 10.11
Lasso 1.00 0.56 0.72 1.34 9.94 0.91 — 0.90 1.71 10.60

n = 100 n = 100
TPR TNR TSR MSE PSE TPR TNR TSR MSE PSE

aPIC 1.00 0.00 0.38 0.63 9.71 1.00 — 1.00 0.85 9.76
aPIC+SA 1.00 0.50 0.69 0.61 9.70 0.96 — 0.96 0.94 9.84
DIC 1.00 0.00 0.38 0.66 9.74 1.00 — 0.99 0.79 9.69
DIC+SA 1.00 0.47 0.67 0.64 9.73 0.98 — 0.98 0.80 9.70
Blasso 1.00 0.00 0.38 0.65 9.73 1.00 — 1.00 0.76 9.67
Blasso+SA 1.00 0.41 0.63 0.73 9.81 0.98 — 0.97 0.79 9.69
WAIC 1.00 0.00 0.38 0.66 9.46 1.00 — 0.99 0.76 9.54
WAIC+SA 1.00 0.50 0.69 0.65 9.45 0.97 — 0.98 0.79 9.56
Lasso 1.00 0.56 0.73 0.62 9.70 0.98 — 0.98 0.82 9.71

For each case, we compared nine procedures; aPIC (proposed procedure), aPIC

+ SA (aPIC with the sparse algorithm proposed by Hoshina (2012)), DIC, DIC +

SA, Blasso (fully Bayesian procedure for the Bayesian lasso proposed by Park and

Casella (2008)), Blasso + SA, WAIC, WAIC + SA, and Lasso. Except for Lasso,

the parameters were estimated by using the posterior means, and the values of

the hyperparameters ν0 and η0 involved in the prior distribution on σ2 were set
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Table 6.2 The results for Case 3 and Case 4.

Case 3 Case 4
n = 20 n = 50

TPR TNR TSR MSE PSE TPR TNR TSR MSE PSE

aPIC 1.00 0.00 0.10 0.51 4.31 1.00 0.00 0.45 7.44 30.93
aPIC+SA 0.12 0.90 0.80 0.46 4.32 0.60 0.82 0.71 8.86 32.20
DIC 1.00 0.00 0.10 1.17 4.63 1.00 0.00 0.43 9.41 31.79
DIC+SA 0.37 0.71 0.66 1.12 4.61 0.73 0.57 0.63 9.94 32.35
Blasso 1.00 0.00 0.10 0.30 4.23 1.00 0.00 0.44 8.02 31.41
Blasso+SA 0.02 0.99 0.87 0.26 4.20 0.61 0.75 0.67 10.51 33.78
WAIC 1.00 0.00 0.11 1.38 4.73 1.00 0.00 0.46 4.29 28.25
WAIC+SA 0.58 0.55 0.57 1.32 4.68 0.84 0.49 0.69 4.28 28.29
Lasso 0.77 0.39 0.43 1.14 4.70 0.71 0.65 0.67 7.94 31.05

n = 50 n = 100
TPR TNR TSR MSE PSE TPR TNR TSR MSE PSE

aPIC 1.00 0.00 0.11 0.18 4.06 1.00 0.00 0.47 3.61 28.02
aPIC+SA 0.23 0.95 0.86 0.22 4.10 0.74 0.78 0.76 3.77 28.11
DIC 1.00 0.00 0.11 0.27 4.12 1.00 0.00 0.46 3.98 28.31
DIC+SA 0.41 0.83 0.78 0.28 4.13 0.80 0.60 0.69 4.01 28.33
Blasso 1.00 0.00 0.11 0.21 4.09 1.00 0.00 0.46 5.21 29.46
Blasso+SA 0.04 0.99 0.87 0.25 4.14 0.72 0.64 0.67 7.68 31.67
WAIC 1.00 0.00 0.12 0.39 4.27 1.00 0.00 0.48 1.94 26.62
WAIC+SA 0.64 0.64 0.66 0.38 4.25 0.88 0.56 0.75 1.97 26.65
Lasso 0.93 0.31 0.38 0.44 4.24 0.81 0.61 0.71 3.70 28.03

n = 100 n = 200
TPR TNR TSR MSE PSE TPR TNR TSR MSE PSE

aPIC 1.00 0.00 0.12 0.13 4.12 1.00 0.00 0.48 1.90 26.76
aPIC+SA 0.35 0.95 0.88 0.18 4.18 0.85 0.71 0.78 1.94 26.84
DIC 1.00 0.00 0.12 0.15 4.13 1.00 0.00 0.48 2.01 26.82
DIC+SA 0.54 0.86 0.82 0.18 4.16 0.87 0.59 0.73 2.02 26.88
Blasso 1.00 0.00 0.12 0.18 4.17 1.00 0.00 0.47 3.63 28.43
Blasso+SA 0.14 0.97 0.87 0.23 4.22 0.77 0.57 0.66 8.15 33.11
WAIC 1.00 0.00 0.12 0.20 4.12 1.00 0.00 0.50 0.77 25.70
WAIC+SA 0.81 0.65 0.68 0.20 4.12 0.96 0.70 0.84 0.78 25.72
Lasso 0.98 0.26 0.35 0.20 4.18 0.89 0.59 0.74 1.92 26.80

to 0.001. The tuning parameter in Lasso was selected by 10-fold cross-validation.

Tables 6.1 and 6.2 summarize the simulation results. We observe that aPIC has

smaller MSE and PSE than other methods in Case 2 when n = 20 and Case 3

when n = 50, 100, while aPIC+SA does larger TNR than other methods in Case 4.

DIC or DIC+SA provides slightly smaller TSR than other methods in many cases.

While Blasso or Blasso+SA outperforms other methods in Case 3 when n = 20
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Table 6.3 The numbers of observations and predictors for real datasets.

diabetes
Boston
housing

Parkinson
communities
and crimes

# of observations 442 506 5875 2195
# of predictors 10 13 19 102

with respect to MSE or PSE, these methods tend to have poor performances in

other cases. WAIC and WAIC+SA are better than other methods in terms of

MSE and PSE in many cases, but WAIC provides the largest MSE and PSE in

Case 3 when n = 20. Lasso provides the largest MSE in Case 3 when n = 50,

although Lasso is competitive with other methods in many cases.

We also compared run-times of the methods; aPIC, DIC, Blasso, and WAIC.

Case 1 when n = 20 was performed two times, and we averaged the computational

times. The computational times of DIC, Blasso, and WAIC were 181.47 times,

0.93 times, and 203.74 times as much as aPIC, respectively. From this result, we

observe that the computational time of aPIC is competitive with that of Bolasso,

while DIC and WAIC require much computational times compared to aPIC or

Bolasso.

6.1.2 Real data examples

By applying our proposed method to real datasets, we examined the effective-

ness of our proposed procedure. We used four benchmark datasets; diabetes,

Boston housing, Parkinson’s disease, and communities and crimes datasets.

The diabetes dataset is available from the lars package in the software R

(R Core Team, 2015). Remaining datasets are obtained from UCI database

(http://archive.ics.uci.edu/ml/index.html). The numbers of observations and

predictors for the four datasets are summarized in Table 6.3. Note that we deleted

missing values for Parkinson’s disease and communities and crimes datasets.

We randomly and equally divided each dataset into training data and test data.

Using the training data, we implemented our proposed procedures (aPIC and

aPIC+SA), and then computed PSEs by using the test data. We repeated this
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Fig. 6.1 Boxplots of the PSE. (a) shows the result for the diabetes, (b) that
for the Boston housing.

procedure 200 times. In addition to our proposed procedures, we implemented

DIC, DIC+SA, Blasso, Blasso+SA, and Lasso. WAIC and WAIC were not im-

plemented owing to the computational problem (for details, memory shortage on

our PC). For all datasets, we generated 4,000 MCMC samples, and then the first

1,000 samples were discarded as burn-in. We observed that the MCMC simulations

converged, since the R.hat ratios were close to one.

Fig. 6.1 and 6.2 show the boxplots of the PSEs. Note that we eliminated
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Fig. 6.2 Boxplots of the PSE. (c) shows the result for the Parkinson, (d) that
for the communities and crimes.

one result for the communities and crimes dataset, since the result was clearly

an outlier. From the figures, we observe that Blasso and Blasso+SA are often

superior to other methods, although the Blasso has large variances in the diabetes

dataset. Meanwhile, our proposed procedures, aPIC and aPIC+SA, produce small

median values of PSEs similar to Blasso and Blasso+SA except for the Parkinson

dataset, and have variances that are small and relatively stable. We conclude that

aPIC and aPIC+SA may be useful in terms of yielding relatively small medians
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with small variances.

6.2 Numerical results for the MAP Bayesian lasso

In order to examine the effectiveness of our proposed procedure, we conducted

Monte Carlo simulations and real data analysis.

6.2.1 Simulated performance

Monte Carlo simulations were conducted to investigate the efficacy of our proce-

dure. The data were generated from

y = xTβ∗ + ε, (6.2)

where β∗ is a p-dimensional regression coefficients vector, ε ∼ N(0, σ2), and x =

(x1, . . . , xp)
T has the p-variate normal distribution with mean 0p. We considered

the following cases.

Example 1 n = 20, p = 8, β∗ = (3, 1.5, 0, 0, 2, 0, 0, 0)T , σ2 = 32.

cor(xi, xj) = ρ|i−j|, ρ = 0.5.

Example 2 n = 20, p = 8, β∗ = 0.85 · 1p, σ
2 = 32. cor(xi, xj) = ρ|i−j|,

ρ = 0.5.

Example 3 n = 20, p = 8, β∗ = (5,0T
p−1)

T , σ2 = 22. cor(xi, xj) =

ρ|i−j|, ρ = 0.5.

Example 4 n = 200, p = 40, β∗ = (0T
10,2

T
10,0

T
10,2

T
10)

T , σ2 = 152.

cor(xi, xj) = ρ (i ̸= j), ρ = 0.5.

We computed the following four indicators; prediction squared error (PSE),

mean squared error of the regression coefficients vector (MSE), false positive rate

(FPR), and false negative rate (FNR) to evaluate the prediction and estimation

accuracy of outcome model, and the simulation results were obtained by 200 Monte
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Carlo trials.

PSE =
1

200

(
200∑
k=1

∥ŷ(k) − ỹ(k)∥2/n

)
,

MSE =
1

200

{
200∑
k=1

(β̂(k) − β∗)TR(β̂(k) − β∗)

}
,

FPR =
1

200

(
200∑
k=1

#{β̂(k)
j ̸= 0 ; β∗

j = 0}/#{β∗
j = 0}

)
,

FNR =
1

200

(
200∑
k=1

#{β̂(k)
j = 0 ; β∗

j ̸= 0}/#{β∗
j ̸= 0}

)
.

(6.3)

Where ŷ(k) is a predicted vector of k-th data sets, ỹ(k) is a new response vector

that independent from y, p× p matrix R is a correlation matrix of x, and β̂(k) =

(β̂
(k)
1 , . . . , β̂p)

T is an estimated regression coefficients vector from k-th data set. We

set M of (4.25) to 500, shape and rate parameter ν0, η0 of inverse-gamma prior

on σ2 are both 0.001, the tuning parameter λ is estimated by the hierarchical

Bayesian estimation with non-informative gamma prior on λ2, and we use MLE

for estimates of σ2. In all examples, 3000 samples from the Gibbs sampler were

used for estimating parameters after 1000 burn in.

We compared the indicators of our procedure with those of the other procedures

described in Section 4.3.3 and the 10-fold Cross validation (CV). The full Bayesian

approach (Mean) which estimates all parameters by posterior mean is also com-

pared with our procedure. Table 6.4 and 6.5 show the comparison of these sparse

regression modeling procedures. The result of AIC is not presented, since Mal-

lows’ Cp criterion and AIC yield the same result when σ2 is given. The Bayesian

estimates derived by three procedures (Mean, DIC, and WAIC) were calculated

by the sparse algorithm (Hoshina, 2012), since they have no sparse solution for

the estimates of regression coefficients. The error variance σ2 was estimated by

the MLE in the lasso procedures with Cp and BIC.

The simulation results are summarized as follows:

1. For Examples 1, 3, and 4, the Bayesian procedures except to a DIC have

smaller errors than all lasso procedures in terms of PSE and MSE.
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2. Our procedure has slightly large FPR in Examples 1, 3, 4, but all exam-

ples show that our procedure has smaller FNR. This may denotes that our

procedure takes in more variables into the estimated model.

3. In Examples 1, 2, and 3, our procedure has the smallest value in terms of

PSE, and has the smallest value in terms of MSE in Examples 1, 3.

From the summary of the Monte Carlo simulation, our procedure has better

prediction and estimation accuracy. Moreover, our procedure hardly waste the

important variables from model. Thus, we believe that our proposed methodol-

ogy seems to be useful in terms of variable selection, parameter estimation and

prediction. Note that WAIC needs the Gibbs sampling for each candidate value

of λ.

6.2.2 Real data analysis

We explore our procedure by using two types of the diabetes datasets of Efron

et al. (2004) which have been obtained from 442 diabetes patients. First, the

proposed procedure was applied to low-dimensional dataset which are constructed

ten baseline variable (age, sex, body mass index, average blood pressure and six

blood serum measurements) and the response variable which is a quantitative

measure of disease progression one year after baseline.

We compare 8 procedures, the proposed procedure (Proposed), posterior mean

(Mean), DIC, WAIC, 10-fold Cross validation (CV), Mallows’ Cp (Cp), BIC, and

Generalized Cross-validation (GCV). Table 6.6 reported the estimated standard-

ized regression coefficients for this datasets.

In order to compare the prediction accuracy, the out-of-sample comparison was

also conducted. We divided the datasets into 221 training and 221 test data. After

the model building in training data, we computed the prediction error for test data.

Table 6.6 showed the average prediction errors of 50 trials of this procedure.

Secondly, we studied high-dimensional diabetes dataset which has ten baseline

predictor of first example and 54 certain interactions. Table 6.6 also reported

the average prediction error of this dataset, and Fig. 6.3 and 6.4 reported the
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Table 6.4 Comparison of sparse regression modeling procedures in Example
1 and 2. The values in parenthesis of PSE and MSE are their standard
deviations.

Example 1.

PSE MSE FPR FNR

Proposed 6.17 (2.71) 3.83 (2.89) 0.53 0.09

Mean 8.04 (4.66) 5.57 (5.35) 0.27 0.25

DIC 15.18 (6.28) 10.29 (5.28) 0.04 0.50

WAIC 6.45 (3.23) 4.39 (3.37) 0.46 0.14

CV 7.49 (4.60) 4.25 (4.02) 0.47 0.12

Cp 11.66 (9.00) 7.01 (6.96) 0.28 0.24

BIC 9.44 (7.24) 5.47 (5.90) 0.39 0.18

GCV 11.66 (9.00) 7.01 (6.96) 0.28 0.24

Example 2.

PSE MSE FPR FNR

Proposed 6.33 (2.90) 4.22 (2.28) – 0.34

Mean 8.70 (5.04) 6.12 (4.29) – 0.55

DIC 15.30 (6.05) 10.26 (3.38) – 0.80

WAIC 7.06 (3.80) 4.86 (3.21) – 0.45

CV 6.99 (4.34) 4.21 (2.84) – 0.36

Cp 10.71 (7.57) 6.49 (4.40) – 0.50

BIC 9.48 (6.97) 5.76 (4.16) – 0.45

GCV 10.71 (7.57) 6.49 (4.40) – 0.50

estimated standardized regression coefficients.

The results of the real data analysis are summarized as follows:

1. In low-dimensional diabetes dataset, the resulting models of the Bayesian

procedures except to a DIC have more variables than all lasso procedures.

These procedures also have smaller values in terms of the value of the average

prediction error.
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Fig. 6.3 Barplots of the estimated standardized regression coefficients for the
high dimensional diabetes dataset: (a) shows the result for the proposed, (b)
that for the Mean, (c) that for the DIC, (d) that for the WAIC, (e) that for
the CV, (f) that for the Cp, (g) that for the BIC, and (h) that for the GCV.
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Fig. 6.4 The sparsity of the estimated standardized regression coefficients for
the high dimensional diabetes dataset: (a) shows the result for the proposed,
(b) that for the Mean, (c) that for the DIC, (d) that for the WAIC, (e) that for
the CV, (f) that for the Cp, (g) that for the BIC, and (h) that for the GCV.
Grey areas correspond to non-zero coefficients, and black areas correspond to
zero coefficients.
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Table 6.5 Comparison of sparse regression modeling procedures in Example
3 and 4. The values in parenthesis of PSE and MSE are their standard
deviations.

Example 3.

PSE MSE FPR FNR

Proposed 2.59 (1.11) 1.34 (1.07) 0.62 0.00

Mean 2.76 (1.23) 1.36 (1.16) 0.44 0.00

DIC 6.56 (2.23) 3.37 (2.00) 0.01 0.00

WAIC 2.79 (1.32) 1.40 (1.24) 0.44 0.00

CV 3.73 (4.17) 1.53 (3.64) 0.42 0.02

Cp 6.76 (8.03) 3.81 (7.05) 0.18 0.06

BIC 4.64 (5.25) 2.04 (4.76) 0.31 0.03

GCV 6.76 (8.03) 3.81 (7.05) 0.18 0.06

Example 4.

PSE MSE FPR FNR

Proposed 193.70 (21.85) 25.08 (5.76) 0.49 0.14

Mean 193.67 (22.01) 24.66 (5.83) 0.42 0.15

DIC 437.80 (49.79) 234.72 (46.73) 0.36 0.13

WAIC 202.37 (24.00) 24.23 (7.11) 0.46 0.09

CV 238.87 (36.03) 67.19 (34.35) 0.28 0.26

Cp 315.58 (144.96) 140.80 (137.76) 0.23 0.34

BIC 220.94 (33.12) 50.27 (27.49) 0.31 0.23

GCV 315.58 (144.96) 140.80 (137.76) 0.23 0.34

2. In high-dimensional diabetes datasets, the resulting models of the Bayesian

procedures except to a DIC have also more variables than all lasso proce-

dures. Our procedure, posterior mean, and BIC have smaller values in terms

of the value of the average prediction error though WAIC has larger value.

From the summary of the real data analysis, our procedure has better prediction

accuracy.
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Table 6.6 The estimated standardized regression coefficients for low-
dimensional diabetes dataset. ∗s in table are expressive exactly zero values.

Proposed Mean DIC WAIC CV Cp BIC GCV

age ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

sex -10.62 -10.18 ∗ -9.77 ∗ ∗ ∗ ∗

bmi 24.94 24.96 18.47 24.88 17.44 14.65 14.65 14.65

map 14.94 14.65 3.68 14.34 0.24 ∗ ∗ ∗

tc -13.07 -9.80 ∗ -7.42 ∗ ∗ ∗ ∗

ldl 3.15 ∗ ∗ ∗ ∗ ∗ ∗ ∗

hdl -5.63 -6.73 ∗ -7.73 ∗ ∗ ∗ ∗

tch 5.39 4.85 ∗ 4.34 ∗ ∗ ∗ ∗

ltg 26.65 25.35 14.71 24.48 14.58 11.79 11.79 11.79

glu 3.17 3.07 ∗ 2.94 ∗ ∗ ∗ ∗

Table 6.7 The average prediction error of the out-of-sample comparison. The
number in parenthesis are the standard deviations.

Low-dimensional diabetes dataset

Proposed Mean DIC WAIC
3025.39 3024.16 3856.53 3034.29
(203.31) (207.78) (268.22) (205.80)

CV Cp BIC GCV
4212.28 4397.09 3430.46 4397.09
(993.33) (1096.13) (651.82) (1096.13)

High-dimensional diabetes dataset

Proposed Mean DIC WAIC
3095.19 3090.59 3933.00 3848.07
(197.05) (190.03) (302.43) (1597.29)

CV Cp BIC GCV
3152.15 3259.43 3046.11 3259.43
(259.40) (386.14) (184.40) (386.14)
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Chapter 7

Concluding remarks

In the present thesis, we have proposed a number of new regularization procedures.

We first proposed an algorithm which corrects the resulting regression coefficients

of the Bayesian modeling to be sparse according to the posterior probability. This

algorithm enables us to obtain sparse solutions from the Bayesian lasso, and it can

be applied for several Bayes-type L1 regularizations to perform simultaneously the

parameter estimation and the variable selection.

Secondly, we proposed a new model selection criterion aPIC, for evaluating a

Bayesian predictive distribution of the Bayesian lasso, for the selection of appropri-

ate values of hyper-paramters included in a prior distribution. The proposed model

selection criterion has been introduced by the approximated prior; the Laplace

prior for the regression coefficients are approximated by a normal prior which is

the closest distribution in terms of the the Kullback-Leibler information. Monte

Carlo experiments showed that the proposed procedure is effective in terms of

prediction, estimation, and model selection accuracies.

Further, we have proposed a new modeling procedure, the MAP Bayesian lasso,

which derives the MAP estimates of the Bayesian lasso from an approximated

posterior density. The posterior approximation is based on the Monte Carlo inte-

gration. Numerical examples showed that our procedure performs well in terms of

variable selection, parameter estimation, and prediction. The real data analysis

also showed the prediction efficiency of our procedure.

A model selection criterion for the elastic net have been proposed. This model
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selection criterion evaluates the marginal likelihood. Although GBIC of Konishi et

al. (2004) also evaluates the marginal likelihood using the Laplace approximation

(it depends on the dimensionality and the sample size), our proposed procedure

is derived by the Monte Carlo integration. It is expected that the our procedure

does not depend on the dimensionality and the sample size, compared to analytical

approaches. However, we have known that the estimation of the error variance

affects the accuracy of our procedure from an empirical evidence. We leave this

topics as future research.

Moreover, we have described some properties of the L1 regularizations. The

sparsities of the ridge, the lasso are compared by using the elementary differential

geometry. The algorithms which calculate the estimates of the L1 regularizations

are introduced and a new algorithm which calculates the degrees of freedom of the

LARS are described. The definition of the strength of the sparsity is given. We

have introduced the relationships between the L1 regularizations and the Bayes

model, and the unimodalities of the Bayesian lasso, the Bayesian elastic net and

the Bayesian adaptive lasso with hyper-priors have been shown. Although they

are unpublished works, we believe that these results have academic values.

About the MAP Bayesian lasso, future studies will be required to consider the

generalized sparse regression procedures such as the elastic net, the adaptive lasso,

and the group lasso. The algorithm that calculates the degrees of freedom of the

LARS requires further validation to publish its results.
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