
中央大学博士論文

Dielectric Permittivity Estimation at

Microwave Frequencies

NGUYEN NGOC AN

博士（工学）

中央大学大学院 理工学研究科 情報セキュリティ科学専攻

Chuo University

Graduate School of Science and Engineering

Information Security Sciences Course

March 2017



Table of Contents

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Some introductions on dielectric permittivity and estimation meth-

ods 5

2.1 Dielectric permittivity of materials . . . . . . . . . . . . . . . . . . . 5

2.2 Current permittivity estimation methods . . . . . . . . . . . . . . . . 8

2.3 Free space methods for dielectric permittivity estimation . . . . . . . 9

2.3.1 Current free space methods . . . . . . . . . . . . . . . . . . . 9

2.3.2 Introduction of a new free space method and the required

scattering analysis . . . . . . . . . . . . . . . . . . . . . . . . 10

3 High frequency electromagnetic scattering analysis of rectangular

dielectric cuboids 12

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Scattering formulation by Kirchhoff approximation . . . . . . . . . . 15

3.3 Scattering from rectangular PEC cuboids . . . . . . . . . . . . . . . . 19

3.4 Scattering from rectangular dielectric cuboids . . . . . . . . . . . . . 26

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Dielectric permittivity estimation for solid materials using free

space method 33

i



4.1 The relation between the complex relative dielectric permittivity, the

multiple reflection coefficient and the complex scattering quantity . . 34

4.2 Permittivity estimation method . . . . . . . . . . . . . . . . . . . . . 38

4.3 Requirements of the method . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Measurements and discussions . . . . . . . . . . . . . . . . . . . . . . 47

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Dielectric permittivity estimation for liquids 57

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2 Scattering analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.1 Some differences compared to the case of a solid material . . . 59

5.2.2 The decomposition of the scattering container . . . . . . . . . 60

5.2.3 Scattering analysis and validation . . . . . . . . . . . . . . . . 60

5.3 Permittivity estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4 Measurements and discussions . . . . . . . . . . . . . . . . . . . . . . 75

5.4.1 Water’s relative permittivity . . . . . . . . . . . . . . . . . . . 75

5.4.2 Container’s relative permittivity . . . . . . . . . . . . . . . . . 75

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6 Concluding remarks 82

Acknowledgment 85

References 86

List of Publications 90

ii



List of Figures

1.1 The potentials of dielectric permittivity measurement in some appli-

cations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Some common types of dielectric polarization. . . . . . . . . . . . . . 6

2.2 The effect of permittivity on capacitance. . . . . . . . . . . . . . . . . 7

2.3 Some current dielectric permittivity measurement methods. . . . . . . 7

3.1 Scattering from a rectangular dielectric cuboid. . . . . . . . . . . . . 14

3.2 Monostatic RCS of thin conducting plate S1 (ϕ = ϕ0 = 90◦). (a)

——: this method (=PO); – – –: GTD single diff.; – ·· – ·· –: HFSS;

· · · · ·: measured (b) Thickness consideration ——: 2c = 0.5 mm; · · · · ·:

2c = 0 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Monostatic RCS of conducting cuboid S2 (ϕ = ϕ0 = 90◦). . . . . . . . 23

3.4 Monostatic RCS of aluminum cube S3 (ϕ = ϕ0 = 90◦). . . . . . . . . 23

3.5 Bistatic RCS of thin aluminum plate S1 (ϕ0 = 90◦, θ0 = 45◦). . . . . . 24

3.6 Bistatic RCS of aluminum cuboid S2 (ϕ0 = 90◦, θ0 = 45◦). . . . . . . 24

3.7 Bistatic RCS of aluminum cube S3 (ϕ0 = 90◦, θ0 = 45◦). . . . . . . . 25

3.8 Range Sn of the departing rays rn after n-time internal reflection in

yOz plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.9 Monostatic RCS of the polymer cuboid S4 (ϕ = ϕ0 = 90◦, 24 GHz).

(a) ——: this method; – – –: surface reflection only; –·–: collective

approximation. (b) ——: this method; · · · · ·: measured; – ·· – ·· –:

HFSS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

iii



3.10 Monostatic RCS of the polymer material S5 (ϕ = ϕ0 = 90◦, 24 GHz).

(a) ——: this method; – – –: surface reflection only; –·–: collective

approximation. (b) ——: this method; · · · · ·: measured; – ·· – ·· –:

HFSS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.11 Monostatic RCS of the polymer material S6 (ϕ = ϕ0 = 90◦, 19.5

GHz). (a) ——: this method; – – –: surface reflection only; –·–:

collective approximation. (b) ——: this method; · · · · ·: measured; –

·· – ·· –: HFSS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 TE polarized plane wave scattering from a rectangular dielectric cuboid

at the normal incidence. . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Monostatic RCS of a nylon cuboid in the frequency domain (2a =

2b = 100.0 mm, 2c = 29.0 mm). The relative permittivity εr (=

3.023 + i0.043) is assumed to be the average value measured by the

open-ended coaxial probe method given in Table 4.1. . . . . . . . . . 37

4.3 Schematic diagram of the measurement configuration. . . . . . . . . . 37

4.4 Example of least squares approximation of the real part of Γ̄s from

the multiple reflection coefficient Γm. . . . . . . . . . . . . . . . . . . 41

4.5 Approximation of the real parts of the multiple reflection coefficients

of a 21-mm thick dielectric slab, εr = 3.00 + i0.01. . . . . . . . . . . . 41

4.6 Approximation of the real parts of the multiple reflection coefficients

of a 21-mm thick dielectric slab, εr = 100.00 + i0.01. . . . . . . . . . 42

4.7 Least squares approximation of the real part of Γ̄s from the measured

multiple reflection coefficient Γm of a Macor cuboid (2a = 2b = 100.0

mm, 2c = 30.0 mm). . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.8 An example of the differences between the approximated reflection

coefficients and the true surface reflection coefficient. . . . . . . . . . 46

4.9 Relative permittivity estimations at different thicknesses of nylon and

colored acrylic slabs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

iv



4.10 Relative permittivity εr extracted from a nylon cuboid (2a = 2b =

100.0 mm, 2c = 29.0 mm) at 23.0◦C. . . . . . . . . . . . . . . . . . . 49

4.11 Relative permittivity εr extracted from an acrylic cuboid (2a = 2b =

100.0 mm, 2c = 30.0 mm) at 23.0◦C. . . . . . . . . . . . . . . . . . . 50

4.12 Relative permittivity εr extracted from a Macor ceramic cuboid (2a =

2b = 100.0 mm, 2c = 30.0 mm) at 21.0◦C. . . . . . . . . . . . . . . . 51

4.13 Percent cumulative probability distribution of the real part of the

relative permittivity of measured acrylic sample. . . . . . . . . . . . . 52

4.14 Percent cumulative probability distribution of the imaginary part of

the relative permittivity of measured acrylic sample. . . . . . . . . . . 52

4.15 Percent cumulative probability distribution of the real part of the

relative permittivity of measured Macor ceramic sample. . . . . . . . 53

4.16 Percent cumulative probability distribution of the imaginary part of

the relative permittivity of measured Macor ceramic sample. . . . . . 53

4.17 Percent cumulative probability distribution of the real part of the

relative permittivity of measured nylon sample. . . . . . . . . . . . . 54

4.18 Percent cumulative probability distribution of the imaginary part of

the relative permittivity of measured nylon sample. . . . . . . . . . . 54

4.19 Relative permittivities extracted from a rubber cuboid. . . . . . . . . 55

4.20 Relative permittivities extracted from a glass cuboid cuboid. . . . . . 55

4.21 εr extracted from a wood cuboid (2a = 2b = 2c = 120.0 mm). . . . . 56

5.1 Scattering model for the liquid container. . . . . . . . . . . . . . . . . 65

5.2 Multiple-layer dielectric structures for scattering analysis. . . . . . . . 66

5.3 Complex relative permittivities of container’s material and water at

22◦C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4 Debye model of the relative permittivity of water at 22◦C by Stogryn

in a comparison with contemporary results [37]. . . . . . . . . . . . . 68

5.5 Complex far field scattering quantities of each container’s part and

total contribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

v



5.6 A comparison with measurement. . . . . . . . . . . . . . . . . . . . . 70

5.7 The complex scattering quantity of a container filled with air. . . . . 71

5.8 Reduced model of the center part of the container. . . . . . . . . . . . 72

5.9 Effects of the thickness b on the real part of the reflection coefficient

of the center part (l = w = 100.0 mm, a = 1.0 mm) of a container. . . 73

5.10 Effects of the thickness b on the imaginary part of the reflection co-

efficient of the center part (l = w = 100.0 mm, a = 1.0 mm) of a

container. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.11 Permittivity estimation process. . . . . . . . . . . . . . . . . . . . . . 74

5.12 The real container used for measurement. . . . . . . . . . . . . . . . . 76

5.13 Theoretical and extracted complex far field scattering quantities of

the center part- Case I. . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.14 Complex relative permittivity of water estimated from the partially

filled container- Case I. . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.15 Complex relative permittivity of water estimated from the fully filled

container- Case II. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.16 Complex relative permittivity of acrylic estimated from the partially

filled container. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

vi



List of Tables

2.1 Permittivity estimation models used in free space methods for solid

materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 List of materials under test . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1 Sample materials and their relative permittivities . . . . . . . . . . . 48

5.1 Dimensions of the components of the container . . . . . . . . . . . . . 63

vii



Chapter 1

Introduction

1.1 Background

In general, substances can be categorized into three groups, namely dielectrics, semi-

conductors and conductors in terms of the ability to allow electric currents to travel

through [1]. Dielectrics or insulators are materials which do not conduct electric

currents or have very low conductivity. Meanwhile, conductors allow electric cur-

rent to flow easily. Dielectric materials show their presence everywhere in our daily

life. They are the insulators that protect us from electric currents, the concrete and

bricks that built our houses, the wood in our furniture, the leather of our shoes, the

fabric of our clothes, the food that we eat and even the air that we breath.

The dielectric permittivity is a parameter that draws very much attentions of re-

searchers and the industries. The main reason is that knowing the permittivity or

how it changes at certain frequencies provides us with information that sheds in-

sights and creates many important applications in various disciplines. For example,

knowing the change in complex permittivity of wine allows authorities to quickly

investigate the quality and composition of liquids [2]. Understandings on soil, clay,

rock and various plants’ permittivities are crucial for earth science, agriculture pro-

duction and even the oil industry in several important application such as drought

prediction, landslide prevention and oil field management, and etc. [3, 4]. Another
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Figure 1.1: The potentials of dielectric permittivity measurement in some applica-

tions.

material example that can highlight the importance of knowing the dielectric per-

mittivity is polymers. Polymers are revolutionary materials. They are important

and are the main ingredients to make insulators, the base of electronic circuits and

RF circuits and etc. Therefore, understanding the dielectric properties of plastics

has been an important part of material science [5]. Such examples can be numerous

but all of them confirm the paramount importance of permittivity estimation and

lead to the development of many methods in past several decades [1]. Although there

have been several methods developed to estimate the dielectric permittivity of ma-

terials, each method has its own advantages and disadvantages as will be explained

with more details in Chapter 2. Furthermore, with recent advances in sciences and

industries, knowing the frequency-dependent dielectric properties of materials at a

wide range of microwave frequencies has become a more and more important re-

2



quirement in several industrial applications and various disciplines of science such

as electromagnetics, chemistry, material science, biology, water studies, and etc. To

fulfill the requirement, this research aims to develop a fast, broadband technique

to estimate relative permittivity of solid materials and water-based liquids. The

output technique is expected to be robust and able to make contactless, nondestruc-

tive estimations. This research also offers new approaches to solve the difficulty

in permittivity estimation that current methods are facing. Promising results were

obtained.

1.2 Thesis contents

This thesis consists of six chapters.

In Chapter 2, some basics on dielectric property of material are explained. A

brief review on some main methods of permittivity estimation is also presented

showing the advantages and disadvantage of each category. Taking the advantage

of the group of the free space methods, my method of permittivity estimation is

introduced to overcome the difficulties that the conventional free space methods

struggle. My method is based on an electromagnetic scattering analysis using high

frequency technique.

In Chapter 3, the electromagnetic scattering analysis that make the foundation of

my estimation method is explained. The analysis is based on a high frequency tech-

nique called Kirchhoff approximation using reflected wave. The theoretical deriva-

tion is shown and verified by several comparisons with experiments and reference

methods. Good agreements were confirmed with both PEC and dielectric scatterers.

In the case of dielectric cuboids, a ray tracing technique has been used to estimate

quite accurately the scattering far field.

In Chapter 4, the analysis established in Chapter 3 is summarized to emphasis

the relation between the scattering quantity and the dielectric permittivity of solid

materials. The relation is further analyzed to devise an iterative process in order

to extract the relative permittivity from the measured data. An algorithm was

3



developed to calculate for the relative permittivity without knowing much about

the material’s dielectric property in advance. The proposed methods were applied

on several material samples. Dielectric permittivites were successfully estimated and

compared to the results by another method and references. Good agreements were

observed.

Chapter 5 is an expansion into the realm of water and water-based liquids. Since

liquids need containers, the effect from a container needs to be included in the scat-

tering analysis. A decomposition was proposed to separate the unwanted scattering

contributions from the measured scattering quantities. Based on the theory de-

veloped in Chapter 3, the validity of the proposed decomposition was confirmed.

Based on the structure of the container and the lossy nature of water in liquids, two

reflection coefficient models are proposed to calculate the scattering quantities and

to establish a direct analytic relation between the dielectric permittivity of water

and known information. Later, a procedure for dielectric permittivity estimation on

water and water-based liquids is described. The procedure is verified by estimat-

ing water permittivity from an acrylic container and inversely. The results contain

measurement errors so they oscillate, however the average values agree well with

references. Further improvements are required to increase accuracy.

Finally, Chapter 6 shows some conclusions and discussions on future prospects of

the estimation process. In the following chapters, a time harmonic factor e−iωt is

assumed and suppressed throughout the context.

4



Chapter 2

Some introductions on dielectric

permittivity and estimation

methods

2.1 Dielectric permittivity of materials

The dielectric permittivity is an intrinsic parameter of a dielectric material that

represents the capacity to store electrical energy of the material. Various authors

[1, 6, 7] have introduced very comprehensive and thorough introductions on the

definition and significance of this quantity. Therefore, I would like to summarize

just some basics information to provide a simple grasp on this important parameter.

While conductors and semiconductors have the free electric charges, dielectrics or

insulators have bound charges, constrained by atomic and molecular forces. When

an electric field is applied on a dielectric material, the bound charges cannot travel

freely but can only change their positions a little creating polarization in accordance

to the field direction. That means a net amount or dipole moment or energy is stored

inside the dielectric volume. The effect of an external electric field on the polarization

of material is illustrated in Fig. 2.1. To further illustrate the idea, we consider the

5
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Figure 2.1: Some common types of dielectric polarization.

case of two large conducting plates placed in parallel with one another in vacuum

so that the distance between the two plates are much smaller than the dimensions

of the plates. The same amount of charges with opposite signs are placed on each

side. This is the configuration of a vacuum capacitor, represented by a capacitance

C0. When we replace the entire vacuum environment by a dielectric medium, the

capacitance will change to a new value C1. The proportion between C1 and C0 gives

us a quantity named the static dielectric permittivity of the material. In practice, a

capacitor has small dimensions, so that other effects can prevent us from obtaining

the dielectric permittivity exactly. The effect of permittivity on the capacitance of

a capacitor is shown in Fig. 2.2.

When a dielectric material is exposed to an electric field that varies in time, the

orientation of electric charges in the material also will change in accordance with

the applied field. For the polar dielectrics, the re-orientation of the electric charges

inside the material may not keep pace with the reversal of the electric field, thus

induces loss in the form of heat inside the material. To account for energy loss in

the material, the imaginary part of permittivity ε
′′
is defined. Meanwhile, ε

′
is the

real part of permittivity that represents the capacity to store energy in the material.

6
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Figure 2.2: The effect of permittivity on capacitance.
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Figure 2.3: Some current dielectric permittivity measurement methods.

Therefore, the dielectric permittivity is described in complex form by

ε = ε
′
+ iε

′′
= ε0ε

′

r + iε0ε
′′

r · (2.1)

Here, ε0 is the dielectric permittivity of vacuum. εr = (ε
′

r, ε
′′

r) is the complex

relative permittivity of the material. The complex permittivity of a material is a

characteristic that depends on frequency.

7



2.2 Current permittivity estimation methods

Various measurement methods designed for different materials, frequencies and other

requirements have been reviewed extensively and thoroughly by many authors [1,

8, 9, 10, 11, 12, 13]. Well-known techniques are the capacitor, the resonant cavity,

the open resonator, the waveguide, the coaxial probe and the free space methods.

The configurations of some of the common methods can be seen in Fig. 2.3. These

methods can be divided broadly into two groups of techniques, namely the resonance

methods and the transmission line methods [13].

The resonance methods are capable of conducting nondestructive measurements

of very low loss materials with high accuracy. However, measurements can be made

at only narrow frequency bands or separate frequencies [13].

The transmission line methods, on the other hand, are able to make fast, broad-

band measurements and are capable of measuring medium and high permittivity

[13]. In this group, the waveguide methods, the open-ended coaxial probe meth-

ods and the free space transmission and/or reflection methods are well known.

The waveguide methods are known for high accuracy and are suitable for high

and medium loss materials [12, 13]. There are some difficulties, however, from the

facts that they require fine preparation of the sample materials and highly accurate

positioning. Among this group, the open-ended coaxial probe method is versatile,

simple and easy to use. This method has, on the other hand, some limiting factors.

Firstly, a perfect contact between the probe facet and the sample material needs

to be guaranteed. For liquid or semi-solid materials, it may be easy. But for solid

materials, this condition requires not only fine polishing on the sample’s surface, but

also extreme positioning care to maintain a good contact during the measurement.

Secondly, a direct contact between the probe and the material surface may create

scratches which may reduce the measurement accuracy.

Given the increasing need of broadband, non-destructive, non-contacting material

characterization in material science and electronics, as well as in large scale envi-

ronment monitoring systems, the traditional methods face several limits. In this

8



context, the free space techniques emerge as a powerful solution with many striking

features. They allow broadband measurements, safely reserve the material sample

and they are capable of assessing the material from afar or under extreme conditions.

2.3 Free space methods for dielectric permittivity

estimation

2.3.1 Current free space methods

The abilities of the free space methods have been verified by several authors with

different variations [14, 15, 16, 17]. These authors used various settings and param-

eters to estimate the relative permittivities and permeabilities. For example, they

have used two S-parameters, samples with different thicknesses, PEC plate termina-

tion, time domain gating technique and measurement at the Brewster angle. Efforts

have been made to improve the estimation accuracy.

In general, these techniques will face an ambiguity in determining the true value

of the relative permittivity, since there are numerous complex permittivity values

which satisfy the equation of the reflection/transmission coefficient as described by

Redheffer [8] and Hasar [18].

The problem is often fixed by limiting the sample thickness, knowing the range of

permittivity in advance or measuring with different initial conditions, etc. However,

these measures are rather laborious and inconvenient. Additionally, people often

use more than one S-parameter in the conventional permittivity estimation using

the transmission measurements. However, this practice requires more equipment,

which may cause more uncertainty than when only the reflection parameter is used.

Currently, solving this difficulty requires laborious procedures and reduces conve-

nience. Therefore, a new free space method to solve this difficulty is meaningful in

the research perspective and will improve industrial efficiency. This new method is

the purpose of this research.

9



2.3.2 Introduction of a new free space method and the re-

quired scattering analysis

The need of a new free space method to improve efficiency and convenience is the

main motivation of this research. In this study, we shall propose a free space method

to find the relative permittivity of non-magnetic dielectric samples from the monos-

tatic complex scattering quantity in the specular reflection direction. This quantity

is defined in a way that gives a direct analytical calculation of the complex surface

reflection coefficient which, in turn, leads us to the desired permittivity by using our

proposed estimation process.

In the case of solid material, our free space method uses an algorithm to find au-

tomatically the appropriate initial guesses for the relative permittivity, avoiding the

difficulty of the multi-valued selection. In the cases of water and water-based liquids,

an analytical formula is presented to determine the dielectric permittivity approxi-

mately in a direct manner. My estimation is based on only the reflection coefficient

S11, while the transmission coefficient S21 is not used. Additional conditions, such

as fixing the sample length, measurements with different configurations, or knowing

the range of the relative permittivity in advance, are not used. Therefore, measure-

ment complexity is reduced and convenience is increased in comparison to other free

space methods. Typical free space methods are summarized in Table 2.1.

Our estimation formulation is based on the following assumptions.

1) The material under test is homogeneous and isotropic.

2) The sample has an electrically large cubic shape.

3) In case of solid material, its relative permittivity could be weakly frequency-

dispersive and could be approximated by a linear curve.

The validity of our approaches has been verified by comparisons with the open-

ended coaxial probe method and other references. Good agreements have been

observed for nylon and acrylic samples. An analysis was given to the limit of the

method regarding sample thickness.

As can be found in the literature, the reflection coefficient is a conventional start-

10



Table 2.1: Permittivity estimation models used in free space methods for solid ma-

terials

Calculation Solution Output Parameters Required information Initial guess Comments

model Type used

Our model Iterative εr S11 Non/weakly dispersive, Generated

non-magnetic material automatically —————-———

Sample dimensions,

reference plane

Nicholson-Ross Analytical εr, µr S11, S21 Sample length, Not required Unstable for the thickness

Model [19] reference plane of nλ/2.

(n is a positive integer and λ is

the wavelength inside the sample.)

NIST Model [20] Iterative εr S11, S12 Non-magnetic material Unknown The method needs to use 4 parameters

S21, S22 Independent of sample length, so it requires more equipment.

reference plane As a result, more measurement errors

may be included.

Transmission Iterative εr S21 Non-magnetic material Usually The initial guesses may be located too far

Model [21] Sample length, εr = 1 + i0.0 from the physical relative permittivity value.

reference plane Thus, estimation may be time consuming or

converges to unwanted solutions.

ing point to solve for the relative dielectric permittivity. This coefficient can be

determined by solving the scattering problem. To adopt the free space method, we

have chosen to calculate the reflection coefficient by establishing an analytic formula

between the reflection coefficient and the complex scattering quantity. This quantity

will be explained in Chapter 4. The establishment of this relation is the same as

solving for the scattering far field of the material sample and will be presented in

Chapter 3.
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Chapter 3

High frequency electromagnetic

scattering analysis of rectangular

dielectric cuboids

This chapter will explain the scattering analysis developed to calculate the scatter-

ing far field of a dielectric cuboid to build the basics of my permittivity estimation

method. A background introduction and comparisons with measurements, simula-

tions and other methods also will be given to show the novelty and validity of the

scattering analysis.

3.1 Introduction

Field Equivalence theorem is one of the powerful tools to analyze the radiation and

the scattered fields in electromagnetic theory [22, 23]. While the method provides

us with an exact field solution when the equivalent currents are derived from the

exact field, the method also works pretty well to predict the scattering field by using

only a primary constituent of the field. Huygens’ principle could be the original idea

for such equivalent sources for secondary waves and Kirchhoff’s approach, which is

12



sometimes referred as Physical Optics (PO) approximation, provides a reasonably

accurate estimation of the diffraction field when the scattering object is electrically

large [24, 25].

PO is a powerful method in dealing with PEC bodies, and is widely applied in scat-

tering estimation as well as in antenna design. Ever since the original PO formulation

was introduced, many modifications have been proposed to obtain more accurate

diffraction fields. Physical Theory of Diffraction (PTD), proposed by Ufimtsev, is

one of the well known extensions to correct field behaviors near the rim or the edge

of conducting scatterers by introducing a fringe wave [26]. Some works have been de-

veloped in conjunction with the Method of Equivalent Currents (MEC) [27, 28, 29].

Most of them, however, are devoted for the conducting bodies and few are related

with dielectric ones. In dealing with conducting scatterers, one might also apply

the Geometrical Theory of Diffraction (GTD), which describes the field as a sum of

diffracted rays [30]. While GTD utilizes the diffraction coefficient of the local scat-

tering feature, which may be obtained by solving the canonical problems, difficulties

arise in the derivation of the appropriate coefficients for corner or dielectric wedge

diffraction.

In this paper, a high frequency scattering field has been formulated using the

Kirchhoff approximation for dielectric cuboids. As will be shown later, our formu-

lation is closely related to the conventional PO method or aperture field integration

method. The equivalent electric and magnetic currents have been derived here

for the forward scattering field by the reflected electric and magnetic fields from

the scatterer. This concept marks a key difference between our proposal and the

conventional PO in which the equivalent current is derived from only the incident

magnetic field component. Moreover, because of its own definition, the conventional

PO is limited to calculations on conducting surfaces. Meanwhile, our method can

postulate the equivalent currents on any fictitious surface between the scatterer and

the observation point. In case of dielectric objects, these equivalent currents derived

from the reflected waves partially take into account the effects of multiple reflec-

13
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Figure 3.1: Scattering from a rectangular dielectric cuboid.

tion inside the object. Therefore, our method has a potential to explain scattering

properties of not only PEC but also dielectric bodies.

Monostatic and bistatic radar cross sections (RCSs) of rectangular dielectric cuboids

are calculated and compared with the results by other methods, such as PO, GTD,

the HFSS simulation and experiments. Good agreement has been found confirming

the validity of our method.
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3.2 Scattering formulation by Kirchhoff approxi-

mation

Figure 3.1 demonstrates a case when a transverse electric (TE) polarized plane wave

of the amplitude E0:

Ei = E0îEe
ikîi·r (3.1)

impinges upon a surface S′ of a rectangular dielectric cuboid whose relative dielectric

constant is εr and dimensions are 2a× 2b× 2c. Here, the vectors îE and îi denote

the unit polarization and propagation vectors of the incident wave, and k denotes

the free space wave number.

The scattering far field may be calculated from radiation integrals from equivalent

currents Jeq, Meq due to the field on a postulated surface Seq enclosing the scattering

object. For high frequency field where the dimension of the scattering object is

pretty large comparing with the wavelength, the main scattering field arises from

the specular reflection of the incident wave. Accordingly, the equivalent currents

Jeq, Meq may be derived from the reflected wave. Let us choose the postulated

surface Seq to be the surface S′ of the cuboid, and treat the contribution from each

component facet separately.

For the top surface S0(−a ≤ x ≤ a,−b ≤ y ≤ b, z = c), the reflected electric and

magnetic fields can be described as

Er = Γs(θ0)E0î
′
Ee

−i2kc cos θ0eikîr·r, (3.2)

Hr =
1

Z0
îr ×Er, (3.3)

where r, î
′
E and îr are the position vector of the observation point, the unit po-

larization and propagation vectors of the reflected wave, and Z0 (≈ 120π) denotes

the free space wave impedance. Following the Snell’s law of reflection, one finds

that îr = îi − 2n̂(̂ii · n̂) and î
′
E = îE with the unit normal vector n̂ (= ẑ). Γs(θ0)

represents the conventional reflection coefficient from the top surface, and

Γs(θ0) =
cosθ0 −

√
εr − sin2θ0

cosθ0 +
√

εr − sin2θ0
(3.4)

15



is obtained from the dielectric interface at z = c of two half spaces. When one

considers a finite thickness and the multiple bouncing effect, the reflection coefficient

may be modified as Γm(θ0) in a collective form [31]:

Γm(θ0) =
Γs(θ0)(1− ei4kc

√
εr−sin2 θ0)

1− Γ2
s(θ0)e

i4kc
√

εr−sin2 θ0
. (3.5)

This Γm(θ0) is valid only around the normal incident direction (θ0 = 0◦), and is

invalid when the reflected surface is truncated at a finite size, as one sees later. De-

tails on the derivation of this collective reflection coefficient in the normal direction

can be found in Ref. [31].

Equivalent currents Jeq, Meq may be found from the above reflected wave at z = c

as

Jeq = n̂×Hr, Meq = Er × n̂. (3.6)

Then the radiation electric fields due to these currents can be derived through electric

and magnetic vector potentials A and F as [31]

E = iωA+
iω

k2
∇(∇ ·A)− 1

ε0
∇× F, (3.7)

A =
µ0
4π

∫
S0

Jeq(r
′)
eik|r−r′|

| r− r′ |
dS′, (3.8)

F =
ε0
4π

∫
S0

Meq(r
′)
eik|r−r′|

| r− r′ |
dS′, (3.9)

where r′ denotes the position vector of the current source. Assuming that the

observation point is far from the cuboid, one can use the far field approximation to

execute the above integrals analytically. Without taking into account the multiple

bouncing effect, the electric scattering far field from the top surface in a spherical

16



coordinate system (r, θ, ϕ) can be given as

Es
θ = − i

kπ
Γs(θ0)E0

eikr

r
e−ikc(cos θ0+cos θ)(cos θ0 cos θ + 1)

· sin (ϕ− ϕ0)
sin[ka{sin θ0 cosϕ0 + sin θ cosϕ}]

sin θ0 cosϕ0 + sin θ cosϕ

·sin[kb{sin θ0 sinϕ0 + sin θ sinϕ}]
sin θ0 sinϕ0 + sin θ sinϕ

, (3.10)

Es
ϕ = − i

kπ
Γs(θ0)E0

eikr

r
e−ikc(cos θ0+cos θ)(cos θ0 + cos θ)

· cos (ϕ− ϕ0)
sin[ka{sin θ0 cosϕ0 + sin θ cosϕ}]

sin θ0 cosϕ0 + sin θ cosϕ

·sin[kb{sin θ0 sinϕ0 + sin θ sinϕ}]
sin θ0 sinϕ0 + sin θ sinϕ

. (3.11)

One should note that the above results are only valid for θ ≤ 90◦. Es
r is negligible.

Similar contributions from the other surfaces of the cuboid should also be considered

in the same manner, but the formulation is omitted here due to the limited space.

In order to verify the accuracy of our method, Radar Cross Section (RCS) of several

cuboids are calculated using the following definition.

σ3D = lim
r→∞

4πr2
|Es|2

|Ei|2
(3.12)

The obtained results are then compared with those by other methods and measure-

ments. The list of targets is summarized in Table I. Treatment for the multiple

bouncing effect will be described in the cases of dielectric cuboids.
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Table 3.1: List of materials under test

Sample Length Width Thickness Material Frequency

2a [mm] 2b [mm] 2c [mm] εr [GHz]

S1 100.0 100.0 0.5 Aluminum 24.0

σ → ∞

S2 100.5 100.5 8.2 Aluminum 24.0

σ → ∞

S3 100.0 101.1 101.1 Aluminum 24.0

σ → ∞

S4 100.0 150.0 53.7 Polymer 24.0

6.66 + 0.28i

S5 100.1 100.1 40.7 Polymer 24.0

6.40 + 0.11i

S6 101.9 100.5 100.7 Polymer 19.5

6.52 + 0.05i
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3.3 Scattering from rectangular PEC cuboids

Let us first discuss about the scattering from rectangular PEC cuboids. In this

instance, Γs(θ0) becomes −1 for all incident directions as taking the conductivity

σ → ∞. One should note the difference between our formulation and the conven-

tional PO. The latter involves the current distribution

JPO = 2n̂×Hi (3.13)

on the actual PEC surface. Therefore, the resultant scattering electric fields are

excited only from the vector potential A as

Ē
s
θ =

2i

kπ
E0

eikr

r
e−ikc(cos θ0+cos θ) cos θ0 cos θ

· sin (ϕ− ϕ0)
sin[ka{sin θ0 cosϕ0 + sin θ cosϕ}]

sin θ0 cosϕ0 + sin θ cosϕ

·sin[kb{sin θ0 sinϕ0 + sin θ sinϕ}]
sin θ0 sinϕ0 + sin θ sinϕ

, (3.14)

Ē
s
ϕ =

2i

kπ
E0

eikr

r
e−ikc(cos θ0+cos θ) cos θ0

· cos (ϕ− ϕ0)
sin[ka{sin θ0 cosϕ0 + sin θ cosϕ}]

sin θ0 cosϕ0 + sin θ cosϕ

·sin[kb{sin θ0 sinϕ0 + sin θ sinϕ}]
sin θ0 sinϕ0 + sin θ sinϕ

. (3.15)

By comparing the results Eqs. (3.10), (3.11) with Eqs. (3.14), (3.15), one notices

that some difference arises in the amplitude term as −Γs(θ0)(cos θ0 cos θ + 1) →

2 cos θ0 cos θ in Eq. (3.14) and −Γs(θ0)(cos θ0 + cos θ) → 2 cos θ0 in Eq. (3.15),

respectively. Thus, one can expect that our derived scattering solutions in Eqs.

(3.10) and (3.11) behave like PO but with different oscillation amplitudes, and the

accuracy would be similarly good as PO.

Monostatic and bistatic RCS of these PEC cuboids are calculated in the yOz plane

(ϕ = ϕ0 = 90◦) and compared with other methods in Figs. 3.2 ∼ 3.7. It is obvious

for the monostatic RCS calculation (θ = θ0) from the analytical formula that Es
θ in

Eq. (3.10) vanishes and Es
ϕ in Eq. (3.11) coincides with Ē

s
ϕ in Eq. (3.15) by PO.

For large PEC objects, it is expected that GTD can predict well for the high

frequency scattering waves by considering the edge diffraction. The problem occurs
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when the thickness of the plate is thin, and the distance between the adjacent edges

is too close to apply the high frequency approximation. Accordingly GTD would

fail to predict the edge diffraction except for the infinitely thin or pretty thick cases

[30, 32].

Figure 3.2(b) shows the monostatic RCS of the thin conducting plate S1. Com-

parisons are made by our proposed method, GTD, the HFSS simulation and mea-

surement in an anechoic chamber at 24 GHz. For the GTD calculation, multiple

edge interaction is ignored since the plate size is pretty large (2a = 2b = 8λ) and

the plate thickness (2c = 0.04λ) was assumed to be infinitely thin. At the specular

reflection direction θ = 0◦, all the results provide the same peak RCS value of about

9 dBsm. From the specular reflection direction up to θ = 50◦, our proposed method

explains well the measured data. Figure 3.2(b) shows the effect of the plate thickness

for our method. Even though the thickness is very thin (0.04λ), the result with the

contribution from the side surface is far better than that of the infinitely thin case at

the grazing incidence angles. In the next example, Fig. 3.3 shows the corresponding

results for sample S2, which has a finite thickness (0.656λ). Although there are

certain differences in terms of the RCS amplitude, especially around θ = 45◦, the

oscillation behaviors of the proposed method and other results are almost the same.

The third example of the monostatic RCS calculation is given for the rectangular

PEC cube S3 (2a ≃ 2b ≃ 2c ≃ 8λ) in Fig. 3.4. In this case, the proposed method

manifests an excellent explanation of the measured monostatic RCS. Not only the

locations of local maxima and minima provided by the two results are closer than

in the previous cases, the levels of RCS are in close agreement in all direction.

Through the above three examples, one may come to a conclusion that the pro-

posed method can explain accurately the backscattering phenomena of large rect-

angular PEC cuboids, which are illuminated by TE polarized plane wave.

The bistatic RCS of samples S1, S2, S3 are calculated and compared to those by

PO and the HFSS simulations in Figs. 3.5, 3.6, 3.7. Here, TE polarized plane wave

illumination is made at 24 GHz from the direction (ϕ0 = 90◦, θ0 = 45◦). For these

20



bistatic RCS calculations, our formulation differs from the conventional PO one, but

both results behave almost the same. Three curves have the same peak value (6.06

dBsm) at the specular reflection direction (θ = 45◦), and agree well as the thickness

of the cuboid gets thicker.
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2c = 0 mm
2c = 0.5 mm
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Figure 3.2: Monostatic RCS of thin conducting plate S1 (ϕ = ϕ0 = 90◦). (a) ——:

this method (=PO); – – –: GTD single diff.; – ·· – ·· –: HFSS; · · · · ·: measured (b)

Thickness consideration ——: 2c = 0.5 mm; · · · · ·: 2c = 0 mm

.
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Figure 3.3: Monostatic RCS of conducting cuboid S2 (ϕ = ϕ0 = 90◦).
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Figure 3.4: Monostatic RCS of aluminum cube S3 (ϕ = ϕ0 = 90◦).
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Figure 3.5: Bistatic RCS of thin aluminum plate S1 (ϕ0 = 90◦, θ0 = 45◦).
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Figure 3.6: Bistatic RCS of aluminum cuboid S2 (ϕ0 = 90◦, θ0 = 45◦).
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Figure 3.7: Bistatic RCS of aluminum cube S3 (ϕ0 = 90◦, θ0 = 45◦).
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3.4 Scattering from rectangular dielectric cuboids

Electromagnetic scattering from dielectric bodies is more complex since the incident

wave penetrates into the scattering body and excites internal reflected and trans-

mitted waves therein. While the conventional PO and GTD methods cannot be

applied for non-PEC bodies, our method can be applied even for dielectric bodies.

In this dielectric case, one needs to consider the finiteness of the scattering body

to estimate the multiple bouncing effect accurately. Figure 3.8 shows my ray trac-

ing technique to deal with this problem. Figure 3.8 illustrates a typical layout of

multiple internal bouncing for ϕ0 = 90◦. When the incident plane wave impinges

on the top surface of a dielectric cuboid, specular reflection Γs(θ0) occurs at the

entire top surface S0 where the equivalent currents J0, M0 will be excited. As the

internal reflection (Γ̄(θ′) = −Γs(θ0)) and transmission (T̄(θ′) = 1 + Γ̄(θ′)) continue,

the range Sn of the finally departing rays rn, on which the additional equivalent

currents Jn, Mn flow, gets reduced with lateral phase shift, except for the normal

��

r′ ��

�′
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���� ����

2� tan�′ Γ�
T

Γ	Γ	

Γ�′


	
�

�
O

Γ	Γ	
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r′′

Figure 3.8: Range Sn of the departing rays rn after n-time internal reflection in yOz

plane.

26



incidence (θ0 = 0◦). Because of the finite dimension 2b, one may also notice that

the internal bouncing rays eventually experience the reflection at the side interface

at y = −b, and emit two other groups of waves as classified as r′ and r′′ in Fig. 3.8.

This bouncing process continues until all the incident energy dissipates or leaks out.

The scattered field formulation due to the above internal bouncing wave is similar

to Eqs. (3.10), (3.11), but with a different integration range Sn. In this paper, the

contributions of the multiply reflected ray r′′ are neglected.

Figures 3.9 ∼ 3.11 show the monostatic RCS of dielectric cuboids S4 ∼ S6 listed

in Table I. Our calculated results are compared with those by the surface reflection

only (Eqs. (3.10), (3.11)), by the collective approximation (Eq. (4.3)), by our mea-

surement, and by the HFSS simulation. For these calculations, 5 internal bouncing

contributions are sufficient to get a converging result. In addition, the contribution

of a transmission from the facet at y = −b in Fig. 3.8 is omitted due to its negligible

effect in this monostatic setting.

It is found that the main RCS peak due to the specular reflection is predicted

correctly by all methods. While three approximation results in Fig. 3.9 (a), which

is the most lossy case among three sample materials S4, S5, S6, exhibit almost the

same behavior, they become different when the thickness of the cuboid gets thinner,

or the material loss gets smaller. Because of the material loss, the effect of multiple

bouncing is weak. Accordingly, the surface reflection is dominant and the RCS return

is pretty weak (about −20 dBsm) except for the specular reflection direction θ = 0◦.

Figure 3.10 shows the results for a thinner and smaller loss polymer cuboid S5.

One observes an internal bouncing effect even at specular reflection direction, and

a strong interaction yields the RCS oscillation for other directions. Final example

is shown in Fig. 3.11 for almost loss-less polymer cube S6. Symmetric RCS pattern

with respect to angle θ = 45◦ should be observed when width 2b and thickness 2c

become exactly the same. However the only difference 2c− 2b = 0.2 mm in sample

S6 makes a slight non-symmetric low RCS pattern around θ = 15◦ and 75◦. Our

result shows a good agreement with our measured data and the HFSS simulated
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result, except for the above mentioned low RCS angles. This may be due to the

omission of the contributions from the multiply bouncing ray r′′ in Fig. 3.8.

Besides, since material S6 has a relatively small dielectric loss, the multiple bounc-

ing effect could be strong causing the difference between the results by the proposed

method and the case with only the surface reflection as can be seen in at θ = 0◦ and

90◦ in Fig. 3.11(a). At these two angles, the effect of ray r′ also vanishes, therefore

the proposed method and the collective approximation model are the same.
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Figure 3.9: Monostatic RCS of the polymer cuboid S4 (ϕ = ϕ0 = 90◦, 24 GHz). (a)

——: this method; – – –: surface reflection only; –·–: collective approximation. (b)

——: this method; · · · · ·: measured; – ·· – ·· –: HFSS.
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Figure 3.10: Monostatic RCS of the polymer material S5 (ϕ = ϕ0 = 90◦, 24 GHz).

(a) ——: this method; – – –: surface reflection only; –·–: collective approximation.

(b) ——: this method; · · · · ·: measured; – ·· – ·· –: HFSS.

30



���

���

���

���

���

���

�

��

� �� �� �� �� �� �� 	� 
� ��

�
�
�
��
�
�
�	




�
������������

�
������
��

���������������

� �!������!������"��"�#

(a)

���

���

���

���

���

���

�

��

� �� �� �� �� �� �� 	� 
� ��

�
�
�
��
�
�
�	




�
������������

�
������
��

��������

����

(b)

Figure 3.11: Monostatic RCS of the polymer material S6 (ϕ = ϕ0 = 90◦, 19.5 GHz).

(a) ——: this method; – – –: surface reflection only; –·–: collective approximation.

(b) ——: this method; · · · · ·: measured; – ·· – ·· –: HFSS.
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3.5 Conclusions

A new high frequency approximation method to analyze the electromagnetic scat-

tering from rectangular dielectric cuboids has been proposed. The method is based

on the assumption that scattering far field is generated by the assumed equiva-

lent electric and magnetic currents excited by the outgoing reflected wave from the

scatterer.

From our numerical examples and comparisons, one may conclude that the pro-

posed method is capable of analyzing the scattering phenomena of a rectangular

cuboid, either PEC or dielectric, for the TE polarized plane wave illumination. For

the latter case, it has been proven that the proposed method gives a better result

as one includes the current contribution from the multiple internal bouncing ef-

fect. This method may be applicable for the scattering estimation from dielectric

polyhedrons or more general edged objects.

The scattering far field of a dielectric cuboid has been estimated by an analytic

relation between known information such as frequency, object dimensions and mate-

rial properties. Such analytic relation and accuracy may provide us with a basis to

deal with the inverse problem solving for the material properties when the scattering

far field is known. That is the topic to be discussed in the next chapter.
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Chapter 4

Dielectric permittivity estimation

for solid materials using free space

method

In the previous chapter, we have seen that the Kirchhoff approximation provides us

with a high frequency approximation method to calculate the monostatic scattering

far field of a dielectric cuboid. It has been shown that the method has acceptable

accuracy in the normal specular reflection direction. The complex scattering far field

can be calculated analytically from known parameters, such as frequency, object

dimensions and material properties. That also leads to the possibility to solve the

inverse problem to calculate the material properties from the object’s measured

scattering far field. In order to explain that, this chapter will summarize the relation

between the relative dielectric permittivity, the multiple reflection coefficient and the

complex far field scattering quantity. Based on this relation, this chapter also will

show the systemized steps of our free space method to estimate the relative dielectric

permittivity from measured scattering data. Together with the assumptions and

conditions, the limit of our method also will be verified. Several examples will be

shown to demonstrate the ability of the method.
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4.1 The relation between the complex relative di-

electric permittivity, the multiple reflection

coefficient and the complex scattering quan-

tity

Let’s consider the scattering phenomenon from a dielectric cuboid by a TE normal

incidence as shown in Fig. 4.1. Chapter 3 has shown a definition of radar cross section

(RCS) that relates the scattering quantity to other parameters. Unfortunately, it

is not enough to determine the complex value of the multiple reflection coefficient

and εr(= ε′r + iε′′r) because it is a real quantity. However, if one defines a complex

scattering quantity σ̂ as

σ̂ = lim
r→∞

2
√
πr

E s
y

E i
y

e−ikr, (4.1)

then the conventional RCS can be given by |σ̂|2 from Eq. (4.1). Here, k is the free

space wavenumber, and E i
y and E s

y denote the incident and the scattered electric

field at the observation point with distance r from the origin, respectively, as shown

in Fig. 4.1. H r
x and E r

y stand for the magnetic and electric fields of the primary

surface reflected wave excited without multiple reflections inside the material body,

respectively.

When a dielectric cuboid of the length 2a, the width 2b, the thickness 2c and the

relative permittivity εr is illuminated by a TE polarized electromagnetic plane wave,

one gets from Ref. [33] as

σ̂ = −4ikab√
π

Γme−2ikc, (4.2)

with Γm is the multiple reflection coefficient from the dielectric cuboid. Γm has

the general form of Eq. 4.3. However, in the normal reflection direction, it can be

simplified by

Γm =
Γs(1− ei4kc

√
εr)

1− Γ2
se

i4kc
√
εr

(4.3)
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with Γs is the surface reflection coefficient calculated from the primary surface re-

flected field E s
y at z = c:

Γs =
1−√

εr
1 +

√
εr
. (4.4)

As a brief verification, Fig. 4.2 shows the monostatic RCS values in the frequency

domain of a nylon cuboid estimated by our Kirchhoff approximation and obtained

by measurement. The relative permittivity εr of the nylon cuboid is assumed to be

constant, εr = 3.023 + i0.043, in the whole frequency range. This εr is the average

value of those measured by the open-ended probe method, as shown in Table 4.1.

As can be seen, the two results have close agreement in most of the frequency range.

However, there are deviations at frequencies around 21 and 24 GHz. Since these

deviations occur at low RCS values, at which the phase errors of multiply bouncing

rays play an important role for the cancellation, these errors may be due to the

inaccuracy of the assumed relative permittivity.

Equations (4.2), (4.3), (4.4) show us a clear connection between the complex scat-

tering far field, the reflection coefficient and the relative dielectric permittivity. In

the next section, these equations will be utilized to extract the relative dielectric

permittivity when the complex scattering far field is known.
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Figure 4.1: TE polarized plane wave scattering from a rectangular dielectric cuboid

at the normal incidence.
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Figure 4.2: Monostatic RCS of a nylon cuboid in the frequency domain (2a = 2b =

100.0 mm, 2c = 29.0 mm). The relative permittivity εr (= 3.023+i0.043) is assumed

to be the average value measured by the open-ended coaxial probe method given in

Table 4.1.
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Permittivity estimation

18-26 GHz 
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Figure 4.3: Schematic diagram of the measurement configuration.

37



4.2 Permittivity estimation method

Figure 4.3 is aimed to provide a clearer imagination on the measurement configura-

tion of our free space method. The transmit and receive horn antennas are aligned

in parallel in order not to lose the dynamic range of the measurement by an insertion

of a directional coupler. A sample material is placed on a Styrofoam pillar in an

anechoic chamber, more than 5 m away from the antennas to guarantee the far field

condition. The rotary table is used to adjust position so that the antennas are in

the normal specular direction of the sample’s surface. When the complex scattering

quantity σ̂ is obtained from measurements, the multiple reflection coefficient can be

calculated from Eq. (4.2) by

Γm = −
√
π

4ikab
σ̂e2ikc. (4.5)

As can be seen, Γm is a multivalued function of εr. For a certain value of Γm,

there are several potential mathematical solutions of εr. And it is difficult to obtain

the physical relative permittivity by solving Eq. (4.3) analytically. Therefore, an

iterative numerical method is used to find the value of εr in this work. The conver-

gence of this numerical calculation to the correct value needs to be secured by an

appropriate selection of the initial guess of εr. For many applications, this means an

understanding of the class of materials or the material properties. In this research,

we developed an algorithm to calculate the proper initial guess effectively without

knowing the relative permittivity range of the material in advance.

The multiple reflection coefficient Γm can be interpreted physically by an infinite

sum of the successive internal reflected waves as illustrated in Fig. 4.1. This fact is

also revealed by the Taylor series of Γm as

Γm = Γs − Γs(1− Γ2
s)e

i4kc
√
εr − Γ3

s(1− Γ2
s)e

i8kc
√
εr − · · · . (4.6)

From Eq. (4.6), it is predictable that Γm oscillates around and approaches to Γs

as the cuboid thickness 2c goes to infinity, or when the imaginary part of εr is

large. Since materials under test are assumed to be weakly dispersive and to have a
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linear dielectric property in the frequency range of interest, so the surface reflection

coefficient Γs will be predictably linear. Therefore, with the given assumptions, a

linear least squares approximation of Γm could be a good estimation of Γs. Then,

this approximated reflection coefficient Γ̄s can yield a reference relative permittivity

ε̄r, located near the true εr, by solving Eq. (4.4) as

ε̄r =

(
1− Γ̄s

1 + Γ̄s

)2

. (4.7)

Now one needs to find Γ̄s. Given a set of multiple reflection coefficients Γm at differ-

ent frequencies, for example as shown in Fig. 4.4, the following linear approximation

scheme is used to obtain Γ̄s, provided the material sample is assumed to have a

thickness larger than the limit thickness given in Sect. 4.3.

First, identify all the local extrema of the real part of Γm. If the numbers of

maxima and minima are both less than 2 in a desired measurement frequency range,

then Γs is almost equal to Γm and one can calculate ε̄r via Eq. (4.7) but replacing

Γ̄s with Γm. If any one of the numbers of local extrema is larger than 1, one

can take a least squares approximation of the multiple reflection coefficient in the

interval from the first to the last of the corresponding extrema, as seen in Fig. 4.4.

To illustrate how near the approximation can approach the true surface reflection

coefficient Γs, two ideal examples are given in Figs. 4.5, 4.6. The multiple reflection

coefficient of a dielectric slab with fixed thickness was calculated and approximated

by the proposed approximation with two known different permittivities. Then, the

approximated coefficients were compared with the true surface reflection coefficients

Γs. Very good agreement was observed in both cases.

In practice, measurements may suffer from a noise interference so that the real part

of the reflection coefficient may not be smooth as seen in the ideal case in Fig. 4.4,

but have small oscillations as shown in Fig. 4.7, for example. In such situations, one

may need to find the true local extrema of Γm. This local extrema finding process

may be possible by selecting the extrema twice from the measurement data [34].

When the extrema selections are impossible, one can take the normal least squares

approximation of Γm in the whole frequency range.
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Depending on thickness 2c, the approximations of the multiple reflection coefficient

by the proposed approach and by the normal least square approximation may differ

significantly. An example using a dielectric cuboid with known relative dielectric

permittivity εr = 3.00+ i0.01 from 18–26 GHz is shown in Fig. 4.8. In this example,

the reflection coefficient approximated using the proposed way quickly converged to

the true coefficient. The convergence in the case of approximation using the normal

least square approximation was slower.

The same process is applied to get the imaginary part of the approximate surface

reflection coefficient Γ̄s from the multiple reflection coefficient Γm, and the real and

the imaginary parts are combined to get a complex value Γ̄s for ε̄r.

Based on the assumptions and predictions prescribed above, a method proposed

here can be summarized in the followings when the sample’s cubic dimensions are

given:

1) Measure the complex scattering quantity σ̂ in the specular (normal) reflection

direction.

2) Extract the multiple reflection coefficient Γm from the complex scattering quantity

σ̂ using Eq. (4.5).

3) Find a linear least squares approximation Γ̄s of Γm.

4) Initial reference values of the relative dielectric permittivity ε̄r is calculated from

Γ̄s via Eq. (4.7).

5) Eq. (4.3) is solved iteratively to find a correct value of εr.
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Figure 4.4: Example of least squares approximation of the real part of Γ̄s from the

multiple reflection coefficient Γm.
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Figure 4.5: Approximation of the real parts of the multiple reflection coefficients of

a 21-mm thick dielectric slab, εr = 3.00 + i0.01.
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Figure 4.6: Approximation of the real parts of the multiple reflection coefficients of

a 21-mm thick dielectric slab, εr = 100.00 + i0.01.

Figure 4.7: Least squares approximation of the real part of Γ̄s from the measured

multiple reflection coefficient Γm of a Macor cuboid (2a = 2b = 100.0 mm, 2c = 30.0

mm).
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4.3 Requirements of the method

Our method is based on the assumptions that the material-under-test is isotropic,

homogeneous and non-magnetic. Because a linear least squares approximation of

the multiple reflection coefficient is used, the material is assumed to have a weakly

dispersive complex relative permittivity. Regarding dimensions, a sample needs to

be finely machined to cuboid shape. With the use of the Kirchhoff approximation

in the scattering solution, the sample’s surface of the measurement is required to be

electrically large comparing to the measuring wavelength.

The observations and the analyses on Eq. (4.3) reveal that when the dielectric

sample is very thick or possesses a high dielectric constant, the linear approximation

Γ̄s will closely resemble Γs since these conditions ensure a sufficient number of the

oscillation of Γm in the measured frequency range. In such a situation, our estimation

scheme works well. However, there are cases when there are less than two extrema

in oscillation. The first case is when the dielectric sample has almost an infinite

thickness or highly lossy property. In this situation, the Γm function itself closely

approaches Γs, resulting in a desirable estimation. The other case is when the

sample thickness is thin and the relative dielectric constant is low. When the sample

thickness is sufficiently thin, our approach may become inapplicable since the linear

approximation of Γm may not be in the desirable vicinity of the true Γs. The

minimal thickness, to which our method can be applied, may be found by analyzing

the oscillation of Γm as a function of frequency, the sample’s thickness and relative

dielectric permittivity for the number of its extrema in the measurement frequency

range (f− ≤ f ≤ f+). One can find the minimal applicable thickness of the sample

as

2cmin =
(M + 2)v0

4f+Re
[√

⟨εr⟩
] , (4.8)

M = Int

[
2f−

f+ − f−

]
+ 1, (4.9)

where v0 is the speed of light in free space, ⟨εr⟩ is the average relative permittivity
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value in the measurement range and Int [χ] denotes the integer part of χ.

Let us discuss on the minimal thickness of samples to assure the validity of our

estimation method. A special attention is needed for the case when |εr| ∼ 1.

From Eq. (4.6), one may notice that the first interaction from the bottom surface

arises from the second term Γs(1−Γ2
s)e

i4kc
√
εr . Thus the real and imaginary parts of

Γm oscillate due to the phase term 4kc
√
εr. In order to secure a stable approximation

Γ̄s for Γm, one needs at least two consecutive maxima or minima in a measurement

frequency range from f− to f+. For frequencies f1, f2 (0 < f− ≤ f1 < f2 ≤ f+), the

above requirement can be written with a positive integer m as

8πf1c Re [
√
εr]

v0
= mπ, (4.10)

8πf2c Re [
√
εr]

v0
= (m+ 2)π, (4.11)

where v0 is the speed of light in free space and Re [χ] denotes the real part of χ.

If the material is weakly dispersive on the measurement range, one may use the

measured average value ⟨εr⟩ for εr. Then taking the ratio f1/f2 from Eqs. (4.10)

and (4.11), one gets

f1
f2

=
m

m+ 2
≥ f−

f+
= R, (4.12)

and the minimal integer M can be found from this inequality as

M = Int

[
2R

1−R

]
+ 1 = Int

[
2f−

f+ − f−

]
+ 1, (4.13)

where Int [χ] denotes the integer part of χ. Accordingly, the minimal thickness

2cmin of the sample material can be derived from Eq. (4.11) as

2cmin =
(M + 2)v0

4f+Re
[√

⟨εr⟩
] < 2c =

(m+ 2)v0

4f Re
[√

⟨εr⟩
] . (4.14)

As one clearly sees from the above condition, the minimum thickness 2cmin is related

with the sample’s relative permittivity εr and the measurement range. For totally

unknown materials, one may assume ⟨εr⟩ = 1 as an initial guess. For our present

examples, the measurement frequency range is set as 18–26 GHz due to the usage
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range of the horn antenna. Then 2cmin becomes 11.6 mm, 12.6 mm and 8.5 mm

for nylon, acrylic and Macor ceramic, respectively. These values are feasible sample

sizes for practical measurements.

Given two samples materials, namely nylon and colored acrylic, which have the

relative dielectric permittivity approximately as εr = 3.00 + i0.01, the possibility

of estimation was verified at several thicknesses. The successful and unsuccessful

estimations at different sample thicknesses were shown in Fig. 4.9 in accordance

with the amount of difference shown in Fig. 4.8. Due to lack of proper thickness,

estimation at 11.6 mm was not conducted. However, Fig. 4.9 shows successful

estimation down to 12 mm. This may be considered as an evidence to confirm the

theoretical thickness limit described above.
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Figure 4.8: An example of the differences between the approximated reflection co-

efficients and the true surface reflection coefficient.
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Figure 4.9: Relative permittivity estimations at different thicknesses of nylon and

colored acrylic slabs.
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4.4 Measurements and discussions

Relative permittivities of several material samples were estimated to verify the va-

lidity of our method. The samples are machine-milled with accuracy of ±0.1 mm

and dimensions as described in Table 4.1. Estimations were performed following the

scheme proposed in Sect. 4.2. The results were then compared with those obtained

by a commercial open-ended coaxial probe method provided by the Agilent Tech-

nology. The frequency range (18–26 GHz) is selected due to the usage range of the

horn antennas for our RCS measurements.

Our method and the open-ended coaxial probe method have agreed well on the

permittivities for nylon and acrylic samples throughout the frequency range as can

be seen in Figs. 4.10 and 4.11. Estimations by both methods show that nylon and

acrylic have relatively low loss with the respective imaginary parts ε′′r oscillating

around 0.042 and 0.035, while the real parts ε′r of the two relative permittivities

are relatively constants varying around 3.00 and 2.57. Since the open-ended coaxial

probe method is a well studied and confirmed method, these agreements verified the

validity of estimations by my method.

Figure 4.12 shows results of Macor ceramic’s relative permittivity by our method,

the open-ended probe method and reference values at 19.0 and 20.0 GHz in Ref. [35].

At two frequencies given above, our method and the reference have close estimations.

This again confirmed the validity of my estimation. Regarding the result by the

open-ended probe method, while the estimated real part ε′r by the open-ended probe

method is close to the values by our method, the measured imaginary part ε′′r is not

reliable, because these values are negative. This may be due to the improper contact

of the probe caused by a surface irregularity of the sample, or by a calibration

error of the short measurement. This case of Macor ceramic sample is an example

illustrating the difficulties of the open-ended coaxial probe method in dealing with

solid samples. Meanwhile, my method works fine.

In order to estimate the relative permittivity of the material under test without

knowing the relative permittivity range of the material in advance, the assumptions
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Table 4.1: Sample materials and their relative permittivities

Material 2a 2b 2c Open-ended coaxial Our result

[mm] [mm] [mm] (⟨ε′r⟩, ⟨ε′′r⟩) (⟨ε′r⟩ ± σ′, ⟨ε′′r⟩ ± σ′′)

Nylon Type 6 100.0 100.0 29.0 (3.023, 0.043) (3.004± 0.031, 0.042± 0.021)

Cast acrylic 100.0 100.0 30.0 (2.625, 0.037) (2.578± 0.017, 0.035± 0.021)

Macor ceramic 100.0 100.0 30.0 (5.678,−0.433) (5.673± 0.028, 0.070± 0.021)

mentioned in Sect. 4.3 are necessary. With these assumptions, the physical Γs will

behave like a linear function and can be approximated quite accurately from the

oscillating Γm as explained in the second paragraph of Sect. 4.2. As a result, the

initial guesses for the estimation process will be located close to the physical value

of relative permittivity, hence a fast convergence is secured. In the experimented

cases, estimation converges after several steps for 5-digit accuracy.

Percent cumulative probability distributions of the permittivities of three samples

around the respective average values are given in Figs. 4.13, 4.14, 4.15, 4.16, 4.17,

4.18. As can be seen, our measurement values obey Gaussian distribution. Accord-

ingly, the true value would be located within the average value (⟨ε′r⟩ + i⟨ε′′r⟩) plus

minus one standard deviation σ′ ± iσ′′. These results are summarized in Table 4.1.

Given that a dielectric measurement by a typical open-ended coaxial probe normally

has an accuracy of 5% of |εr| for both real and imaginary parts [36], it may be con-

cluded that our method has a more stable estimation of the relative permittivity

than the open-ended coaxial probe method.
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(b) Imaginary parts of εr

Figure 4.10: Relative permittivity εr extracted from a nylon cuboid (2a = 2b = 100.0

mm, 2c = 29.0 mm) at 23.0◦C.
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(b) Imaginary parts of εr

Figure 4.11: Relative permittivity εr extracted from an acrylic cuboid (2a = 2b =

100.0 mm, 2c = 30.0 mm) at 23.0◦C.
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(b) Imaginary parts of εr

Figure 4.12: Relative permittivity εr extracted from a Macor ceramic cuboid (2a =

2b = 100.0 mm, 2c = 30.0 mm) at 21.0◦C.
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Figure 4.13: Percent cumulative probability distribution of the real part of the

relative permittivity of measured acrylic sample.
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Figure 4.14: Percent cumulative probability distribution of the imaginary part of

the relative permittivity of measured acrylic sample.
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Figure 4.15: Percent cumulative probability distribution of the real part of the

relative permittivity of measured Macor ceramic sample.
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Figure 4.16: Percent cumulative probability distribution of the imaginary part of

the relative permittivity of measured Macor ceramic sample.
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Figure 4.17: Percent cumulative probability distribution of the real part of the

relative permittivity of measured nylon sample.
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Figure 4.18: Percent cumulative probability distribution of the imaginary part of

the relative permittivity of measured nylon sample.
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Figure 4.19: Relative permittivities extracted from a rubber cuboid.
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Figure 4.20: Relative permittivities extracted from a glass cuboid cuboid.
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Figure 4.21: εr extracted from a wood cuboid (2a = 2b = 2c = 120.0 mm).

4.5 Conclusions

This chapter has proposed a free space method to estimate complex dielectric rela-

tive permittivity of homogeneous, isotropic non-magnetic solid materials. By using

the multiple reflection coefficient extracted from complex scattering quantity in the

normal reflection direction, complex dielectric relative permittivity of a sample ma-

terial was estimated numerically over a broad range of frequency. An algorithm was

developed to deal with the multi-value problem in solving for the complex relative

permittivity. In order to secure a stable performance, the thickness of a sample

material is suggested to follow the thickness requirement described by Eq. (4.8).

Results obtained by this method were compared with results by the commercial

open-ended coaxial probe method and the reference values [35]. Good agreements

between our method and references have been observed for nylon and acrylic sam-

ples. Some relative dielectric permittivity results estimated from other samples also

were presented. This method shows an attractive potential in dealing with both low

and high contrast dielectric materials.
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