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Chapter 1

Introduction

Statistical decision making is quite important for many fields, such as drug development, epidemi-
ology, and other natural and social sciences. For almost all situations, frequentist methods have
been mainly used. Even when we have some historical data, we can use them only at the planning
stage. Recently, on the other hand, large databases have become available in many fields and there
Is an expectation that decision making utilizing the accumulated data will become more efficient.

In line with this, Bayesian methods have been gaining attention.

In this thesis, we mainly focus on Bayesian evidence for decision making, especially “the pos-
terior probabilities of some hypotheses being true”. This type of Bayesian evidence has long been
studied. For the binomial probability, Altham (1969) derived the exact expression for the poste-
rior probability of the “odds ratio being less than 1” by using the cumulative distribution of the
hypergeometric distribution and showed the relationship between this probability ape/ahee
of Fisher's exact test. Casella and Berger (1987) reconciled Bayesian and frequentist evidence
for some general classes of distributions for the one group case. Recently, a guidance from US
Food and Drug Administration (FDA) “Guidance for the Use of Bayesian Statistics in Medical
Device Clinical Trials” ( US Food and Drug Administration and others (2010)) stated that as the
Bayesian hypothesis testing, we may use the posterior probability that a particular hypothesis is
true, given the observed data. Now, this type of decision making is studied actively especially
in biomedical fields. For example, Zaslavsky (2010) studied the Bayesian posterior probabilities
of some hypotheses being true for the binomial probability and the Poisson rate parameter and

compared them with frequentigtvalues for the one group case. For a two group superiority test,



Kawasaki and Miyaoka (2012b) expressed the posterior probability of superiority hypothesis being
true for binomial probabilities by using the generalized hypergeometric series, and derived a nor-
mal approximation formula. Kawasaki and Miyaoka (2014) and Zaslavsky (2013) investigated the
relationship between this probability and {hw@alue of Fisher’s exact test. Kawasaki and Miyaoka
(2012a) expressed the posterior probability of superiority hypothesis being true for Poisson rate
parameters by using Gauss hypergeometric series, and derived a normal approximation formula.

For a non-inferiority test, Gamalo et al. (2016) and Ghosh et al. (2016) considered the normal
mean for two groups and three groups (active, placebo, and active control), respectively. Kawasaki
and Miyaoka (2013) expressed the posterior probability of non-inferiority hypothesis being true for
binomial probabilities by generalized hypergeometric series. Zaslavsky (2013) derived an approx-
imation formula for the posterior probability of non-inferiority hypothesis being true based on the
risk difference and the exact formula for the posterior probability of non-inferiority hypothesis be-
ing true based on the risk ratio. Gamalo et al. (2011) investigated how to decide the non-inferiority
margin based on historical trial data and evaluated the posterior probability by using normal ap-
proximations and Monte Carlo approximation. Kawasaki et al. (2016) considered the posterior
probability of non-inferiority hypothesis being true for the Poisson rate parameters.

In this thesis, we mainly consider one-sided hypothesis testing. For the importance of one-sided
test, Casella and Berger (1987) stated, “There is a direction of interest in many experiments, and
saddling an experimenter with a two-sided test would not be appropriate.” In addition, Zaslavsky
(2013) stated, “From a practical perspective, one-sided hypotheses that aim for better performance
or non-inferiority are very natural in the clinical environment”.

More precisely, the theme for this thesis is in the following:

e Bayesian superiority and non-inferiority testing for Poisson rate parameters
e Bayesian superiority and equivalence testing for the variances of the normal distributions

e Bayesian non-inferiority test for binomial probabilities.

We study (i) the exact expressions for the posterior probabilities of some hypotheses being true,
(i) the situation where Bayesian and frequentist decisions coincide, and (iif) how much the prior
distributions affect Bayesian evidence.

The remainder of this thesis is organized as follows:

2



¢ In Chapter 2, we briefly summarize the Bayesian method of decision making. Especially,

we focus on the posterior probabilities of some hypotheses being true.

¢ In Chapter 3, we consider the Bayesian superiority hypothesis testing for Poisson rate pa-
rameters\; and\;. We derive exact and quite simple expressions for the posterior probability
of superiority hypothesis being true given the data X,, i.e., P{\; < Ay | X3, X5) and
show the relationship between this posterior probability andpthalue of the frequentist
conditional test. Then, we generalize the results to the posterior probability/Rs < c |

X1, X3) and the correspondingvalue of the frequentist test.

¢ In Chapter 4, we consider the Bayesian non-inferiority hypothesis testing for Poisson rate
parameters. We derive an exact and simple expression fof Rt X\, + A | X3, X5)
with non-inferiority marginA under mild conditions, and then construct a non-inferiority
framework which can be considered as an extension of the conditional test stated in Chapter

3. In this framework, we can naturally treat switching from non-inferiority to superiority test.

e In Chapter 5, we consider the Bayesian superiority and equivalence testing for the vari-
ancess? ando? of two normal distributionsV (p;, 0?) and N (us, 02). First, we treat the
posterior probabiltity of superiority hypothesis being true given the data vexy@adxs,

i.e., P(o? > o2 | x1,x3). We derive exact and quite simple expressions for this poste-
rior probability. Then we show the relationship betweeo®r> o2 | x;,x,) and the
p-value of the frequentist’-test where (i) the means,, u, are known and the priors of

o2 and o2 are scaled inverse chi-square distributions, (ii) the means are unknown and the
priors of y;, us are noninformative, and the priors of and o2 are scaled inverse chi-
square distributions, (iii) the means are unknown and the priofs.0f?) and (j,, o3) are
normal-inverse-gamma distributions. We also evaluate the posterior probability of equiva-

lence P(1/A < 01/09 < A | x1,x2) Which we are able to express quite simply.

¢ In Chapter 6, we consider the Bayesian non-inferiority hypothesis testing for binomial prob-
abilities. We derive the exact expression for the posterior probability;Pe m — A |
X1, X32) under mild conditions, and then consider a framework which can be interpreted as

the Bayesian non-inferiority extension of Fisher’s exact test. Finally, we calculate sample



size when historical data can be utilized.

e Chapter 7, we presents some concluding remarks.



Chapter 2

Bayesian evidences for decision makings

In this chapter, we briefly overview several Bayesian evidences for decision makings, mainly based
on the posterior probabilities of some hypotheses being true. First, we summarize the results of
Casella and Berger (1987) which are stated in general form. Then, we summarize the results based

on the specific distributions. Finally, we briefly comment on the Bayes factor.

2.1 Reconciling Bayesian and frequentist evidence in the one-

sided hypothesis testing by Casella and Berger (1987)

We first consider the reconciliation between Bayesian and frequentist evidence shown by Casella
and Berger (1987). Consider the testing hypothdsgs ¢ < 0 vs H; : # > 0 based on the

observed datX = x. Here, we suppose thathas the probability density functiof{x= — 0) where
f()is
(&) symmetric about zero.

(b) f(z — @) has monotone likelihood ratio (MLR), that is, for afly < 6, the distribution
f(z —60y) and f(z — 6) are distinct, and the ratif(x — 0,)/f(x — 6,) is a nondecreasing

function ofz.

For the frequentist perspectiyeyvalue givenX = z is defined as

p(@) = Pi(X >z [6=0) = /oo F(t)dt.

5



Next, consider the Bayesian posterior probability given= x. Let the probability density func-
tion of the prior distribution of) be 7(#). Then, the probability density function of the posterior

distribution is

fa— 0)2(0)
01 = =G g

Therefore, the probability of the hypothegis : § < 0 being true is

Pr(Hy | z) =Pr <0 | x)

Here, Casella and Berger (1987) derived the following relationships between the Bayesian and

frequentist evidences.

Theorem 2.1(Casella and Berger (1987)or the hypotheseH, : § < 0vsH; : 6 > 0, if fis

symmetric and has MLR andif > 0, then

inf Pr(H, | z) = inf Pr(H,|z) < p(z)

nel's melapg
wherel's = { all distributions symmetric about zefoandI'yps = { all two-point distributions
symmetric about Q.

Theorem 2.2(Casella and Berger (1987)or the hypotheseH, : § < 0vsH; : 6 > 0, if fis

symmetric and has MLR andif > 0, then

inf Pr(Hy | z) = inf Pr(Hy | z) = p(z)

mel'ys welUg

wherel'ys = { all distributions with unimodal densities, symmetric about zZeemdUs = { all

symmetric uniform distribution$.

These theorems clarified some relationships between Bayesian posterior probability and fre-

guentistp-values. However, the limitations are the following:

6



(i) Only one distribution (one group situation) is considered.

(i) Especially for Theorem 2.1, the condition where the equality holds is not sufficiently charac-

terized.

(iif) The assumption wher¢ is symmetric about 0 is quite strong.
In this thesis,
(i) We consider mainly two group comparison.
(i)’ We explicitly state the prior distribution where |, | z) = 1 — p is achieved.

(i)’ We consider Poisson and binomial distribution whose probability functions are asymmetric

about 0.

2.2 Bayesian probabilities being the hypothesis true for the spe-
cific distributions

Next, consider the posterior probabilities(Hf | =) (¢ = 0,1) for more concrete situations,
that is, for the superiority and non-inferiority of the parameters of normal, binomial, and Poisson

distributions.

2.2.1 Mean of the normal distribution
2.2.1.1 One group

Following Berger (2013), we consider the evaluaion of the mean of the normal distribution. Let

X1, X, N (6, 0%) with 02 known and the prior of ber(6) o 1. Let the observed data &f;

bex; fori =1,...,nandz = 1/n > | z;. Then, the posterior distribution éfis N (z, s?/n).

Here, for the fixed valué,, posterior probability of > 6, being true is the following:

_ > ['n n(f — )?
Pr(0 > 6 = ————— ) db
ne > 0y | ) /90 2027Texp( 572 )
oo 1 )

[ e (@_) i (5= YH0=0)

7




= / $(0)do
Vn(6o—7) /o

Jabo-B)fo
- / 6(0)d0

o0

— 10 (V2= (2.1)

o

where¢(z) and®(x) are the probability density function and the cumulative distribution function
of the standard normal distribution, respectively. On the other hand, for the null hypothesis
6 < 6, and the alternativél; : § > 6, thep-value based o = /n(X — 6y)/o ~ N(0,1) is

(2 VI =0)

zl_cp(M)

o

—o (YHRZD), (2.2)

g

Then, from (2.1) and (2.2), we obtain
PrH, |z)=1-p.

2.2.1.2 Two group comparison (superiority)

znd

Let X, N (i, o*) with o known, and letz;; be the realized value oX;; for i = 1,2 and

j=1,...,n LetX; = I/ny >0 Xijandz; = 1/n) " x;; fori = 1,2. Suppose the prior
distributions ofuy, 12 be f(uy) o< 1, f(u2) o< 1, then the posterior distributions aré(z,, 0% /n)
and N (7,,0?/n), respectively. Theny, — us | 71,72 ~ N(T; — Ts,20%/n). Therefore, the

posterior probability of superiority hypothesgis > 1, being true is the following:

Pr([tl > 2 | Zfl,.l’g Pr Ml Lo > 0 | 1'1,1'2)

o) ( sz (e = (@1 = 7))

N /;\/n/202($1—x2)



\/n/202(i‘17§:2)
/ ¢(21)d21 ( 21 = —2’2>

—p (W) . (2.3)

On the other hand, when the null and alternative hypotheseEare.; < u, andH; : py > po,
thep-value based o = /n(X, — X,)/v20 ~ N(0,1) is

p= Pr(Z > —\/ﬁ(%; @))
—1-d (%) . (2.4)

From (2.3) and (2.4), we obtain
PI‘(H1 | 1_71,1_32> =1 —p.

2.2.1.3 Two group comparison (non-inferiority)

Next, consider the non-inferiority of the mean of one normal distribution to the otherXZl,».éfvd
N(pi,02) fori=1,2andj =1,...,n;, andX; = 1/n; Z?;l X;;. Gamalo et al. (2016) evaluated
P(py — p2 > —A | X1, Xy).

Suppose? ando? are known, the posterior distribution pf given X; is N (zi;, ;) fori = 1,2,

andy; | X; andy, | X, are independent. Then,

\/oi+ 03

When the variances; ands? are unknown, Gamalo et al. (2016) utilized the Monte Carlo approx-

— — _A_ ~ _N
Pripn — p2 =2 —A [ X3, X5) :1—<I>< (F1 M2)>'

imation assuming that the prior distributionssgfando, are inverse gamma distributions.



2.2.1.4 Three group comparison (non-inferiority)

Next, consider the situation wheteg is the mean of the new drug groyp, andu; are those of the

active control drug group, and the placebo group, respectively. Ghosh et al. (2011) evaluated

F>r<—“1 B ‘ Xl,XQ,Xg) (2.5)
M2 — 3

whered is the threshold, anX; = (X;1,...,X;,,) is the data for each group for= 1,2, 3.
SupposeX;; ' N(u;,0%) and, for the prior, supposg; | o2 ~ N(joi,02/ko;) ando? ~
Inv-Ga(vy; /2, 02.10:/2) conditioned onuy, — pg > 0 with fixed parametersy;, xo;, voi, 0o for
i=1,2,3andj = 1,...,n;, which indicates that the active control drug is superior to the placebo
group. For the evaluation of (2.5), Ghosh et al. (2011) utilized the Monte Carlo approximation.
Next, they considered the case whe¥g does not follow the normal distribution utilizing the
Dirichlet Process Mixture.

Next, consider to compare (i); andyu., and (ii) uo andus, simultaneously. Here, we evaluate
simultaneously (a) the non-inferiority of the new drug to the active control drug and (b) the superi-
ority of the active control drug to placebo (called assay sensitivity). In this situation, Ghosh et al.

(2016) evaluated
Pr(uy — po > AN pg — pz > AJr | Xq, Xy, X3)

based on the bivariate normal distribution. This probability is calculated by using Monte Carlo

approximation.

2.2.2 Binomial probability
2.2.2.1 One group

Following Zaslavsky (2010), we first consider the one group situation XL&illow the binomial
distribution Bin(n, w) and let the prior distribution of be Beta(«, ) for o, 5 > 0. Then, given
the dataX = z, the posterior distribution of is Beta(a,b) wherea = a + z,b = 8+ (n — x). If

10



a,beN,

1 1
Pr(r > p | a) = gy | 7= ) e
’ p
a—1
(Z—l—b— 1 r at+b—1—r
— < . )p (1—p) to—1-r (2.6)
r=0

For the frequentist hypothesis testing withh : = > p andH; : = < p, thep-value is given as

follows:

xT

Pee) =PiX <2 m=p) = 3 ()0 @)

From (2.6) and (2.7), when = a — 1 andn = a + b — 1, that is, the posterior distribution afis
Beta(x+1,n—x), Pr(z) equals Pfr > p | ). Remark that, for this situation, the corresponding

prior of 7 is not a beta distribution but the improper prifirr) o (1 — 7).

2.2.2.2 Two group comparison (superiority)

Next, consider two group comparison. L¥t nd Bin(n;, ;) and let the prior distribution of; be
Beta(wy, B;) fori = 1,2 and letr; andr, be independent. Given the data = z;, the posterior
distribution of r; is Beta(a;, b;), wherea; = «; + z;,b; = B; + (n; — x;) for i = 1,2. Here,
to evaluate Rrr; > m | X, X3), Kawasaki and Miyaoka (2012b) utilized the following normal

approximation.

( ay (05} )
Pr(W1>7T2|X1,X2)z1—q> a1+b1 a2+b2

\/ a1b1 + a2b2
(al + b1)2(a1 + b + 1) (az + 52)2(662 + by + 1)
Kawasaki and Miyaoka (2012b) also derived the following expression for the posterior probability:

B(a1 + asg, bl)

Pr X1, Xs) =
(7]'1 > o | 1, 2> Q,QB(al,bl)B(a’27b2)

35 (ag, 1 — be, a1 4+ ag; 1+ ag, ay + as + by; 1)

11



where

 (K1)e(ko)i(ks)e
Fy(ky, ko, k3sly,los2) = — . —
sFo (K, ko, k3 1y, lo; 2) ; (1):(Ia)s A
is the generalized hypergeometric series.
Next, following theorem states the relationship between the Bayesian posterior probability and

thep-value of Fisher’s exact test.

Theorem 2.3(Kawasaki et al. (2014), Altham (1969), Howard (1998 uppose that the priors of
7 andmy are f(m;) oc ;' and f(m) o (1 — mp)~t, respectively, and(; > 0, X, < ng, then
between the Bayesian posterior probabilityRr> m | X;, Xs) and the one sideg-value of

Fisher’s exact test witltl,, : 71 < 7y versusH, : m; > my, the following relation holds
Prim > mo | X1, X2) =1—p.

2.2.2.3 Two group comparison (non-inferiority)

Next, consider the two group non-inferiority situation. L¥f ind Bin(n;,m;) fori = 1,2 and
let the priors ofr; andm, be beta distributions and be independent. Gamalo et al. (2011) eval-
uated Pfm;, — m > —A | X1, X5) using Monte Carlo approximation and two type of normal
approximations. For the first approximation, they utilized tBata(«, 3) is approximated by
N (a/(a+ B8),aB/{(a+ B)*(a+ f+ 1)}). For the second one, they approximated the posterior
of ; given X; = x; by N (z;/n;, x;(n; — x;)/n?) sincem; = X/n ~ N(m;, m(1 — ;) /ny).

When the posterior distirbution af is Beta(a;, b;) fori = 1,2, Kawasaki and Miyaoka (2010)

derived the following probability density function of the posterior distribution of m; — 7s:

( B(ay,by)(1 + §)uto—t
B(ay,by)B(ay, by)
B(ay +as — 1,0y + by — 1)

B(ay,by)B(asg, by)
Bl(ay, by)(1 — §)etbri-t
L B(ai1,b1)B(az, bs)

Fs(ay,be,1 —by,1 —ag;a1 +b2;1+9,14+6) (-1<5<0)

Fg(aQ,bl,l—bg,l—al;a2+b1;1—5,1—5) (0<(5§1)

12



where

7. e (F)ilka)j(h)ille); b
F3<k17k27l17127h7u1au2)_ZZ (h>z+ 77
=0 75=0 J
Is the Appell hypergeometric function.
Using f(0), Kawasaki and Miyaoka (2013) expressed the posterior probability of non-inferiority

hypothesis being true as follows:
1
Prlms > 12— A | X1, X5) = PH(0 > —A | Xy, Xa) = / 1(5)ds.
—A

This expression is exact. However, it is too complicated. Another expression under some mild
assumptions are derived and the relationship between this posterior probability ardalbe of
Fisher's exact test are shown in Chapter 6.

On the other hand, Zaslavsky (2013) derived the approximate expressiongiven; and the
prior of r; of beingBeta(a;, b;) fori = 1,2. Whenzy, x9, a1, as, by,by € N, x14+a; > 0,29+ay >

Oandn1+b1—x1—1>0,

Pl'(ﬂ'l + A < 79 | [L’l,l‘g)

ny+a+b—1\/ny+as+by—1

ml( s+ a; )( s+as—1 )

por <n1+a1+b1—1+n2+a2+b2—1)
ni+a+b—1

) F(al + b1 + nl)I‘(ag + bQ + ng)
F(a1 + xl)F(bl + ny — xl)F(ag + xz)F(bg + Ng — Ig)
% F(a1+a2+x1+m2—1)F(b1—|—b2—|—n1—|—n2—x1 —1’2—1)
F(a1+ag—|—bl+bg+n1+n2—2)

+ o(A).

As another type of non-inferiority, Zaslavsky (2013) considerdd P cms | X7, X5) for 0 <
¢ < 1 and derived the following exact formula when= z; +a;,n =ni+a;+b;—1,s = x5+ as
andm = ny + as + by — 1:

N I(n+1) Fin—p+1)

p < X, X,) — -1 n—pu—k n—k .

13



y Im+n+s—k) Dm+DI'(n+s—k)
Fs)m+n—k+1) T(m+n+s—k)

2.2.3 Poisson rate parameter
2.2.3.1 One group

Following Zaslavsky (2010), we consider the one group situation. XLé&bllow the Poisson dis-
tribution Po(n\) with n € N andX > 0. Let the prior distribution of\ be Ga(«, 5) with
a,f > 0. Given the observed datd = z, the posterior distribution of is Ga(a,b) where

a=a+zx,b=p+n.lIf a €N, forthe fixed)\,,

a

Ao b
PriA < X | 2) = / AL exp(—bA)dA

=1 —/ b AL exp(—bA)dA
Ao

[(a)
=1- /b/\ ﬁx\‘f‘l exp(—A1)dA\1 (A1 =bA)
= (bi\;;) exp (—bAg) . (2.8)
m=0 ’

For the frequentigt-value withHy : A > A\g VS Hy : A < Ao, givenX =z, is

Pr(x) =PrX <z | A=)\ = zx: (n;\;)m

m=0

exp(—nAo). (2.9)

If the prior distribution of\ is Ga(1, 1), the posterior distribution of is Ga(1+xz, 1+n). Therefore,

PA< Ao [2) = > W exp(—bAo).

m=0

Furthermore, if the posterior distribution &fis Ga(1 + x, n),

PN < Ao 2) =Y (”:f!)m exp(—bo) = Pp(z).

Remark that, in this case, the corresponding prior distribution is not a gamma distribution, but the

improper priorf(\) oc A7
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2.2.3.2 Two group comparison (superiority)

ind

Let X; ~ Po(n;\;) with n;, A; > 0 and let the prior distribution of; be Ga(«;, 5;) with «;, 5; > 0
fori = 1,2. GivenX; = z;, the posterior distribution of; is Ga(a;, b;) wherea; = «; + x; and
b; = B; +n;. In this situation, Kawasaki and Miyaoka (2012a) derived the following approximation

formula for PfA; < Ay | X, Xo):

Prid; < Ay | X1, Xo) = @ (—a1/b1 —|—a2/b2> |

\/al/b%‘l‘(lg/b%

Furthermore, Kawasaki and Miyaoka (2012a) also derived the following “exact” expression:

1 by 42 by
Pridi <X | X, X5)=1-— <o I 1—a:1 =,
(A1 2 | X1, Xs) 2B(ay, az) <b1—|—b2> 211 (a2, ay; +a2’b1+b2)

For this probability, other quite simple exact expressions and the relation to the frequesatise
Is shown in Chapter 3.
2.2.3.3 Two group comparison (non-inferiority)

Kawasaki et al. (2016) evaluated the posterior probabiligA\Pr X; + A | X3, X5) by normal

approximation

\/al/b% +a2/bg

and Monte Carlo approximation. For this probability, exact expression under some mild conditions

Pr()\l <X+ A | X1,X2) ~ P (A - (&1/51 - &2/b2)>

is derived in Chapter 4 .

2.3 Bayes factor

2.3.1 Definition

Another famous evidence for Bayesian decision making is the Bayes factor. Let the parameter

of interest bef and the parameter space Be Then, let©, and ©,; be the parameter spaces
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corresponding to the null and alternative hypothesis, that is,

Hy:0€06y H,:0c06,

where©, N ©,; = (). Here, we suppos®, U ©, = 6.

Next, let

be the prior probability of{; being true.

Following Robert (2007), Bayes factor is defined as follows

Definition 2.4. The Bayes factor is the ratio of the posterior probabilities of the null hypotligsis
and the alternative hypothesHs over the ratio of the prior probabilities of the null and alternative

hypotheses, i.e.,

_ Pr(Hy | x) /Pr(Hy)
BFy(z) == BT, | w)/Pr(Hl). (2.10)

2.3.2 Relation between the Bayes factor and the posterior probability of the

hypothesis being true

Since® = 0, U Oy, PrH,) = 1 — Pr(Hy) and P(H, | ) = 1 — Pr(H, | x). Therefore, from
(2.10), we obtain the following relationship between the Bayes factor and the posterior probability

of the hypothesis being true:

1
1 — Pr(Hy) 1
Pr(Hy)  BFy(z)

Pr(Hy | z) =

1+

For the detail of Bayes factors, see Jeffreys (1961), Kass and Raftery (1995), Berger et al.
(2001), Ghosh et al. (2005), Pericchi (2005) and references therein.
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Chapter 3

Bayesian superiority and non-inferiority
hypothesis testings and the-value of the
conditional test for the Poisson rate

parameters

3.1 Introduction

Comparing two groups is one of the most popular topics in statistics. For comparisons, frequen-
tist methods are often applied in medical statistics and epidemiology. However, in recent years,
Bayesian methods have gained increasing attention because prior information can be used to im-
prove the efficiency of inference. Particularly for categorical data analysis, to evaluate the superi-
ority of one group over another from the Bayesian perspective, Kawasaki and Miyaoka (2012a,b,
2014), and Howard (1998) investigated the posterior probabili; Pr 0, | X, X,) whereX;, X,

are data and, 0, are parameters of interest in each group. For binomial distributions with propor-
tions 7w, Ty, Kawasaki and Miyaoka (2012b) referred@e= Pr(m; > 7 | X, X3) as a Bayesian

index and expressed it by the hypergeometric series. Kawasaki et al. (2014) showkdrttidahe

one sideg-value of Fisher’s exact test are equivalent under certain conditions. A similar relation-

ship was investigated by Altham (1969) and Howard (1998). For Poisson distributions with param-

17



eters\;, \,, Kawasaki and Miyaoka (2012a) proposed a Bayesian iAdeXPr(\; < A\, | X1, X5),
expressed it using the hypergeometric series, and inferred the relationship bétarethe one-
sidedp-value of the z-type Wald test. However, hypergeometric series are, in general, difficult to
calculate, and the exact relationship betwéamdp-value was not established. In this chapter, we
give other expressions for the Bayesian index, which can be easily calculated, and show the exact
relationship betweeé with the non-informative prior and the one-side#alue of the conditional

test. Additionally, we investigate the relationship between the generalized version of the Bayesian
index and thep-value of the conditional test with more general hypotheses. The remainder of
this chapter is structured as follows. In Section 3.2, we give four expressions for the Bayesian
index Pr(\; < X2 | X3, X3) other than the hypergeometric series under some conditions. In Sec-
tion 3.3, we investigate the relationship between the Bayesian index apevtiee of the condi-

tional test with the null hypothesid, : A\; > A, versus the alternative hypothegis : \; < Xs.

In Section 3.4, as a generalization, we investigate the relationship betwéer Br < ¢) and the
p-value of the conditional test with the null hypothegis : A\;/\, > ¢ versus the alternative

Hy : M\/X2 < c. In Section 3.6, we illustrate the Bayesian index using analyses of real data.

Finally, we provide some concluding remarks in Section 3.7.

3.2 Bayesian index for the Poisson parameters and its expres-

sions

3.2.1 Bayesian index with the gamma prior

We consider two situations. First, for= 1,2 andj = 1,...,n;, let X;; be the outcome ofth
subject in theith group and independently follow the Poisson distributiesy();), and letX; =
Z?;l X,;. Second, foi = 1, 2, let X; be the independent Poisson process with Poissonyated
letn; be the person-years at risk. For both caéésffbd Po(n;)\;). Inthe following, letn,, n, be the
fixed integers for simplicity. For the Bayesian analysis, let the prior distributionst®Ga(«;, 5;)
with «;, 5; > 0 for i = 1,2, whose probability density function i5(\; | «s, 5;) = B8 /T(«ay) -
A?H exp(—pFiNi). Let X; = ki, a; := «; + k;, andb; := B; + n;, then the posterior distributions

of \; is Ga(a;,b;). Here, ifa; € N, thena; € N for i = 1,2. However, in the following, we
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suppose thaty, as, f1, 82 > 0 andk;, ko € NU {0}. When the posterior ok; is Ga(a;, b;) for
i = 1,2, Kawasaki and Miyaoka (2012a) proposed the Bayesian ifldexPr(\; < Ay | X;, X3)

and derived the following expression:

Pr(/\1 < )\2 | Xl, XQ)

1 b2 2 b2
- 11— o F 1—ag;l ; 3.1
2 B(ar,aa) (bl+b2> 211 (02, ay; 1+ as; b1+b2> (3.1)

where

Fiabez) =Y (a):(0): = (2] < 1)

—0 (C)t t!

is the hypergeometric series af¥l); is the Pochhammer symbol, that %), = 1 and (k); =

k(k+1)-(k+t—1)fort € N. Let F, ,,(z) be the cumulative distribution function af

distribution with degrees of freedo(m, 1), that is,

Fyyon (@) / : ( — )M ( & )W d (3.2)
v\ L) = z .
L2 o 2B (v1/2,15/2) \v1z + 1» V12 + 1

where B(a,b) = [ z* (1 — x)""'dz is the beta function. Then, we can obtain the following

expressions fof.

Theorem 3.1.If the posterior distribution od; is Ga(a;, b;) with a;,b; > 0 for i = 1,2, then the

Bayesian inde¥ = Pr(\; < A\, | X3, X5) has the following two expressions:

Pridvt < Mo | X1, Xo) = Iy sy 400) (a1, a2) (3-3)
bl/al

= P09, | —— 3.4

2a1,2a2 <b2/a2> ( )

where

1 xT
I.(a,b) = N1 =)t

Is the cumulative distribution function of the beta distribution, also known as the regularized in-

complete beta function. Moreover, if bathanda, are natural numbers, then(Ry < A, | X3, X5)
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has the following two additional expressions:

az—1 T o=l
ap +az — 1 b b
PI’<)\1 < >\2‘X17X2> = Z ( 1 r2 ) (bl‘ibQ) (bl_:bQ) (35)

r=0

as—1 a r
. ay+nr— 1 b1 ! b2
N Z ( CL1—1 ) (bl+bg) (b1—|—b2) ' (36)

r=0

(3.5) and (3.6) are the cumulative distribution functions of the binomial and negative binomial

distributions, respectively.

Proof. First, (3.3) can be shown by modifying (3.1) usihga, b) = @’%'QFI(G’ 1-b;1+a; )
and/.(a,b) = 1 — I,_,(b,a), which are 26.5.23 and 26.5.2 of Abramowitz and Stegun (1964),
respectively. Next, (3.4) can be shown by changing variabte v,z / (v, z + 1) for (3.2) with

V1 = 2a1,v5 = 2ay andx = (by/ay)/(bs/az). In the following, suppose that, a; € N. (3.5) can

be shown by (3.3), 26.5.2 of Abramowitz and Stegun (1964) above, and 26.5.4 of Abramowitz and

Stegun (1964)3" (")p" (1 — )" = L(a,n — a + 1) as follows

Prid < Ao | X1, Xo) = Dy jitoe)(ar,a2) (0 (3.3))

= 1 — Dby /by 4b)(az,a1) (. 26.5.2 of Abramowitz and Stegun (1964)

o alJitgl ay + ag — 1 b2 r bl ar+azs—1—r
r b1 + bg bl + bg

r=az

(" 26.5.4 of Abramowitz and Stegun (1964)

B az2—1 (al + ay — 1) ( bQ )T ( b]_ )a1+aglr
N —0 T b1 + b2 b1 + bg '

Finally, (3.6) can be shown by 8.352-2 of Zwillinger (2014) :

n m

oo—n —x z
/mettdt:n!-e Z% (n e N,z € R) (3.7)

m=0

as follows

Pr()\l < )\2 ‘ Xl, XQ)

a ail

o o0 b - b .
= (L s esn(otuaahin) 0 et nin,
0 A1 2 L
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00 00 bg2 (772 ) az—1 dry btlll .
N =) ep(—m) o= | A= AR T exp(—bidi)dA
J (/ [az) \ b p(—m) 5% | Fra AT ep(—bih)dA

— /ooo (QZ <b2;\!1)r exp(—bg)q)) %)\?1_1 exp(=biA)dA (. (3.7))

as—1

_ bllllbg > ar+r—1
— ;W/o Af exp(—(by + ba)A1)d A

az2—1

btlll bg o) m a1+r—1 dﬂ‘l
ZTZO F(al)ﬂ/o <61 +b2) ep(=m)- g, (M= Gt b))

- B ) ()
- —0 F(al)r! b1+b2 b1+b2

B “il(a1+r—1>< b, )( b )
N —0 &1—1 b1+b2 b1—|—b2 ’

We have completed the proof of Theorem 3.1. O

Kawasaki and Miyaoka (2012a) expresgedsing the hypergeometric series and computed it
by summing the series. However, in general, it is difficult to calculate the hypergeometric series.
Additionally, it is also difficult to understand the relationship betwéeand other distributions.
On the other hand, our expressions above have two advantages. First, we can céleakke
using the cumulative distribution functions of well-known distributions. Second, we can find the
relationship betweef and some values represented by these cumulative distribution functions.
Particularly, from expression (3.3), we can easily show the relationship betveeehthep-value of
the conditional test in Section 3.3. Here, we note an assumption for Theorem 3.1. At the beginning
of this section, we supposed the priors to be gamma distributions. However, for Theorem 3.1, we
only need the posteriors to be gamma. Therefore, as long as the posteriors are gamma, we need not

assume the priors to be gamma.

3.2.2 Examples of the prior distribution

In this section, we consider several examples of the priov; oAll of the following examples are

gamma distribution or the limit of the gamma distribution, and all the posteriors are gamma.
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Example 1(Non-informative prior)

The non-informative prior distribution ig;(\;) o A;'. This is an improper prior but can
be considered the limit offa(«;, 5;) when(«;, 8;) — (0,0). Here, fork; > 0, the posterior is

Ga(k;, n;). Therefore, wheik,, k; > 0, that is,k, k2 € N, Theorem 3.1 states

Pr()\1 < )\2 ‘ Xl,X2> = Inl/(n1+n2)(k}1, ]{72)
nl/kl
= F — -

2%+ 2k (ng/kg)

o kzz_l k’l + k’g — 1 %) " ny kithy—1-r
B T ny + no 11 + No

r=0
B ’“il(k1+r—1)( ny )’“( Ny >
—o k’l—l ni + N ni + N ’

Whenk; = 0, the probability density function of the posterior is

0

b
FOG X)) o AT 0—" exp(—A;) = A\, texp(—\).

Hence, the posterior is improper and not a gamma distribution. Therefore, Theorem 3.1 cannot be

applied.
Example 2 (Jeffreys prior)

The Jeffreys prior distribution (Jeffreys, 1946)fig)\;) )\;1/2. This is also an improper prior
but can be considered the limit6fu(1/2, 5;) wheng; — 0. Here, the posterior i&a(k; +1/2,n;)

for k; > 0. Therefore, Theorem 3.1 states

Pr()\l < )\2 | Xl,XQ) = Inl/(n1+n2) (kl + 1/2, k]g + 1/2)
_ n (n1/(k1+1/2))
2k1+1,2ko+1 —ng/(k2 n 1/2) .
Because:; + 1/2 ¢ N for anyk; € NU {0}, we cannot have expression (3.5) and (3.6).

Example 3(Conditional power prior)
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Let the historical data? ~ Po(m;\;). Then the likelihood fop\; is

(M) ™

0
!

L(\i|2)) = exp(—m;A;).

Here, an example of the conditional power prior distribution Ibrahim and Chen (2000) is given as
fa(Ne) oc L | 2)™ - fr(M)
wherea; is the fixed parameter such thak a; < 1 andf,()\;) o< A\; . Thus

f3(Ai) o (Af? exp(—mi)\i)yi AT

= )\(.lix’?il exp(—aimi/\i).

)

Hence, the prior of\; is Ga(a;x?, a;m;) whenz) > 0. The posterior i€7a(a;z? + ki, a;m; + n;).

Therefore, Theorem 3.1 states

Pridy < | X1, Xp) = 1 aymy+ng (alx? + k1, agxg + ko)

(agmy+ni)+(agmao+ng)
(a1m1 -+ nl)/(alx? -+ kl))
(GQmQ + ng)/(ag.’lfg + k‘g) '

FQ(alx?—&-kl),Q(agxg—l—kg) (

Here, because, 2!, a,z ¢ N in general, we cannot have expression (3.5) and (3.6) in general. On

the other hand, whem 29, a»,29 € N, we have expression (3.5) and (3.6) as follows

Pr()\1 < )\2 ’ Xl,XQ)

(Zgitg-‘rkz—l

B Z (alx? + k1 + apx + ky — 1)
T
r=0
0 0
+k1+agxd+ka—1—
X a1y + N ’ aimi +n e TaE TR
aimy +ny + asme + N9 aypm;q + nq + asMo + No

agxg-i-k‘g—l

B Z arr) +ky+r—1
N arr) +ky —1

r=0
0
+k
X aymy + 1 T Mg + No "
a1my + Ny + Mo + Ny a1my + Nq + asMso + Ny
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3.3 Therelationship between the Bayesian index and thevalue
of the conditional test

For binomial proportions, Kawasaki et al. (2014) and Altham (1969) showed the relationship be-
tween the Bayesian index and the one-sigae@lue of Fisher’s exact test under certain conditions.
For Poisson parameters, a similar relationship holds between the Bayesian index and the one-sided

p-value of the conditional test.

3.3.1 Conditional test

From the frequentist perspective, we consider the conditional test based on the conditional distri-
bution of X; given X; + X, = ky + ko ( Przyborowski and Wilenski (1940); Krishnamoorthy and
Thomson (2004)). The probability function is

f(Xi =k | X1+ Xo =k + ko)

B (kl + k’z) ( ni\ )k1 < N As >(k1+k2)—k1
lﬁ n1>\1 + 7”&2)\2 nl)\1 + ng)\g ’

To test the null hypothesiH, : A\; > X, versus the alternative; : \; < \,, thep-value is

p = PrXi<ki|Xi+Xo=k+koy A\ = \o)

k1 r ki+ko—r
-2 ()G G @
T Ny + No ny + No

r=0

Lemma 3.2(Doi (2016)) If k£, > 0, then the one-sideg-value of the conditional test with,, :

A1 > Ay VS. Hy 1 A\ < Ag has the following expressions:

p = InQ/(n1+n2)(k27k1 + 1)

- F ng/k’g
= 2k9,2(k1+1) m

B i(k2+r_1)( N )’“( n )
B =\ k-1 ny + ng ny + ng
1 ) k2 ( o )
= coFy | ko, =K1 1+ ko .
]{?QB(k'g, k’l + 1) (nl + ng) 2t 2 ! 2 ny + No
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If ko =0, thenp = 1.

Proof. For k, > 0, the proof is similar to that of Theorem 3.1 with, a, € N. Fork, = 0, from

(3.8),
k1 r ki—r
]{?1 Al %)
= = 1.
p ;(T) <n1+n2) (n1+n2)

3.3.2 The relationship between the Bayesian index and thevalue of the

conditional test

Theorem 3.3(Doi (2016)) (1) If ky > 0, then betweefl = Pr(\; < Ay | X3, X5) givenX; = ki +
1, X5 = ko and the one-sideg-value of the conditional test withly : Ay > Ay vs. Hy : A < Ay

given X, = ky, Xy, = ko, the following relation holds

lim Pr(/\1 < Ay | Xl,XQ) =1—-np
(al,ag,ﬁl,ﬁg)ﬁ(0,0,0,0)

Heren, andn, are the same for PX; < Ay | X1, X5) andp.

(2) Suppose that the prior of is Ga(«;, 5;) with «;, 8; € Nfori = 1,2, and letm,, m, € N. Then,
betweery = Pr(/\1 < Mg | Xl,XQ) giVGnXl =k —oy + 1,X2 =ky — o, N1 = M1 — 517712 =
mo — (32, and the one-sideghvalue of the conditional test withly : A\ > Ay vs. Hy : A\; < A

given Xy = ky, Xy = ko, n; = my, ny = my, the following relation holds
Pr(>\1 < Ay | Xl,XQ) =1 —p.
Proof. (1) From Lemma 3.2, thg-value givenX; = ki, Xy = k; is

p = In2/(n1+n2)(k27k1 + 1)
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Therefore, from the relatioh, (a,b) =1 — I,_,(b, a),

1- p = In1/(n1+n2)(k1 + 17 k2)

(3.9)

GiVEﬂXl = k?l—l-l,Xg = ko, 0N the other handz,1 = a1+k‘1—|—1,a2 = Oég—l—k’g,bl = 51—1-711, by =

B + ny. Therefore, the Bayesian index is

Pridy < Ao | X1, Xo) = Ty jbi4b0)(ar, a2)

= I pim (a1 + ki 4+ 1,00 + ko).

B1+n1+Ba+ng

From (3.9) and (3.10),
lim Pr()\l < )\2|X1,X2) =1-—p

(041 ,02,51 762)_>(0707070)

holds. We have just completed the proof of (1).

(2) From Lemma 3.2, thg-value givenX; = ki, Xo = kg, n1 = mq,no = my iS

p = Imz/(m1+m2)(k27 kl + 1)

Therefore,

1 - p= Iml/(m1+m2)(k1 + 17 k2)

(3.10)

(3.11)

On the other hand, giveﬁfl =k — o + 1,X2 = ky — g, N1 = My — ﬂl,ng = Mo — 52,

andGa(ay, ;) as the prior for\; for i = 1,2, the posterior of\; and A, areGa(k; + 1,m,) and

Ga(kqe, my), respectively. Then, the Bayesian index is

Pr()\1 < A9 | Xl,X2> = Iml/(ml—i—mg)(kl + 1, ]{32)

From (3.11) and (3.12),

Pr(/\1 < /\2|X1,X2) =1 —p
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holds. We have completed the proof of (2). O

Remarkl. (i) lim 0 equals the Bayesian index with the non-informative prior when
(al,ag,ﬁl,ﬂg)a(0,0,0,0)
]{?1, k’g > 0.

(ii) For the conditional power prior, if both;z? anda;m; are natural numbers for= 1, 2, then (2)

of Theorem 3.3 can be applied.

(iii) For the conditional power prior, if at least one afz? anda,z, is not an integer, then at

least one ofi; 2% + k; andayxl + ko is not a natural number. Therefore(Rr < X2 | X1, X5) =

I agmytny (@129 + k1, asx + ko) does not equal — p. Similarly, for the Jeffreys prior,
(a3my+n1)+(agmao+ng)

sincek; + 1/2 andk, 4+ 1/2 are not natural numbers, Bq < X2 | X1, X2) = Ly, /n,4no) (k1 +
1/2, ke + 1/2) does not equal — p.

Corollary 3.4. Suppose the prior distribution of; and )\, are f(A;) o 1 and f(A\y) o A,
respectively. Then, iX, > 0, between the posterior probability and the one-sigedlue of the

conditional test, the following relationship holds
Pr(/\1 < Ay ’ Xl,XQ) =1 —p.

Proof. The proof directly follows from Theorem 3.3. O

3.4 Generalization

As a generalization of Theorems 3.1 and 3.3, we consider the generalized version of the Bayesian
index® = Pr(\;/X\y < c¢| X1, X5), and investigate the relationship betweeand the one-sided
p-value of the conditional test with the null hypothegfs : A\; /A, > ¢ versus the alternative

Hy @ Mi/X < c. Letwm := A\;/X2. We consider the posterior af when the posterior of; is
Ga(a;, b;) fori = 1,2. First, the joint density function df\;, \s) is

b{'b3?

— L2 \;—lya-l — (DA + bo)y)).
Tlagl(a) % o dir i)

f()\l \ abbl) ) f()\z ’ Clz,bz) =
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Next, letm; = X\o. Then,A\; = 7 - 1, Ay = ;. Finally, the probability density function of the

posterior distribution ofr is

o o
f(m) = /0 f(r-mifai, br) - f(mi|az,ba) - @ % i
or  0m
_ /OO ﬂ(ﬂ-ﬂ ) exp(— (b - + bom)) - midn
 ere ) “ 17 Ty + by 1dmy

b(flbg%r“l_l /Oo ai1+as—1 ( (b —i—b))d

= == T exp(—m (b T
P(a)l(a) Jo P R em
birvs2m =t T(ay + ag)

[(a1)T(az) (bym + bg)arta2

. 1 b17T “ bg 2
~ wB(ay,a) \ by + by by + by )

Hence, the cumulative distribution function is

z 1 b17T a b2 @2
F = d 3.13
(z) /0 mB(ay, as) (b17T+b2> (b17T~|—b2) i ( )

Bblx/(b1x+b2)(a17 @2)
B(al, CLQ)

= [blm/(b1$+b2)(a17a2)'

From this, we can obtain the expressions for the generalized version of the Bayesian index.

Theorem 3.5(Doi (2016)) If the posterior distribution of\; is Ga(a;, b;) with a;,b; > 0 for

i = 1,2, then, the Bayesian indék= Pr(\,/\; < c¢| X1, X3) has the following three expressions:

Pr()\l/)\g < C‘Xl,XQ)
= Dyic/(bretbo) (a1, a2) (3.14)
blc/al
=[5, 24 7
2,202 < ba/as

1 bs “
= 1- coFy (a1 —ay; 1+ as;
agB(al,ag) (blC+b2> 2 1( 2 ! 2

by
blc + b2

Additionally, if botha;anda, are natural numbers, thethhas the following two additional expres-
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sions:

az—1 r aitaz—1-r
—1 b b
PI’()\l/)\2<c|X1,X2) _ (a1+a2 ) ( 2 ) ( 1€ >

—o r b10—|—b2 b16+b2

. i a,+r— 1 blc “ bg "
N —0 a] — 1 b1€ + bg b10 + bg ’

Proof. (3.14) can be shown as follows

[y

Pr()\l/Ag < C|X1,X2) = Pr(/\l/)\g < C‘ X17X2)
= Pr(’ﬂ' < C| Xl,X2>
= F(c)

- ]blc/(b10+b2)(a17 a2) ('.' (314))

The remainder of the proof is almost the same as that of Theorem 3.1. O

On the other hand, the one-sidgdalue of the conditional test with/y : A\; /A2 > ¢ versus
Hy : \i/Xy < ¢ (Przyborowski and Wilenski (1940); Krishnamoorthy and Thomson (2004)) is

defined as

p = Pr(X1 Slﬁ’Xl—i—Xg:kl—i‘kQ,)\l/)\Q:C)

_ i k1 + ko nic " Ng Patha—r
N r nic 4+ no nic + no )

r=0

Then, we can obtain the following lemma.

Lemma 3.6 (Doi (2016)) If &, > 0, then the one-sideg-value of the conditional test with, :

A1/A2 > cvs. Hy : A\1/A2 < ¢ has the following expressions:

p = Ing/(nchrng)(kZakl_"l)

F n2/k‘2
2k2,2(k1+1) m

1 N9 k2 Mo
k’gB(k’g,k‘l+1) (nlc+n2) 2 ( 2 b + 2’n10+n2)
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If ko =0, thenp = 1.
Proof. The proof is almost the same as Lemma 3.2. O
Finally, we can obtain the generalization of Theorem 3.3.

Theorem 3.7(Doi (2016)) (1) If k; > 0, then betweeld = Pr(\; /)y < ¢| Xy, X3) given X, =
k1 + 1, Xo = ky and the one-sideg-value of the conditional test witlif, : A;/A2 > ¢ vs.

Hy: A/ < cgivenX; = ki, Xy = ko, the following relation holds

lim Pri\i/ A <c| X1, X5)=1—p.
(a1,02,81,82)—(0,0,0,0) ( 1/ 2 | 1 2) D

Heren, andn, are the same fat andp.

(2) Suppose that the prior of is Ga(«, 5;) with o, §; € Nfori = 1,2, and letm, ms € N. Then,
betweerf = Pr(>\1/>\2 <c ’ Xl,XQ) giVGnXl =k —o1+ 1,X2 = ko — g, N1 = My — 61,712 =
ms — [, and the one-sideghvalue of the conditional test with : A\; /Ay > cVS. Hy : A\ /XAy < ¢

given X = ky, Xs = ko, ny = mq, ny = mo, the following relation holds

Pr(>\1//\2 < C|X17X2) =1 — P.

Proof. (1) From Lemma 3.6, thg-value givenX; = ky, X5 = ks IS

p = Ing/(n1c+n2)(k27k1+]-)‘

Therefore, from the relatioh, (a,b) =1 — I, _,(b, a),

1—p = In1c/(nlc+n2)(k1 + 1, /{32) (315)

On the other hand, from (3.14), the Bayesian index gi¥en= k; + 1, X = k5 can be expressed

as

Pr(Al/)‘Q <c ’ Xl> X2) = IblC/(blC+bZ)(al7 a?)

= I  unpe (a1 + ki + 1,00 + ko). (3.16)

(B1+n1)ct+(Ba+n2)
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(Car =01+ ki +1,a0 =00+ ko, by = B + 11,0 = Po+ o)
Finally, from (3.16) and (3.15),

lim Pridi /A <c| X1, X5)=1—p.
(a1,22,81,82)—(0,0,0,0) ( 1/ 2 | 1 2) P

holds. We have completed the proof of (1).

(2) From Lemma 3.6, thg-value givenX; = ki, Xo = ko, ny = mq,ny = mo IS

b= mz/(mlc+m2)(k2? kl + 1)

Therefore,

L —p = Lnic/tmictms) (k1 + 1, k). (3.17)

On the other hand, giVEJXl =k —a; + 1,X2 = ko — o, M1 = My — ﬁl,ng = Mo — 52,
andGa(ay, ;) as the prior for\; for i = 1,2, the posterior of\; and A, areGa(k; + 1,m,) and

Ga(kqy, my), respectively. Then, the Bayesian index is
PriA /s < ] X1, Xa) = Lve/tmucrms) (k1 + 1, ko) (3.18)
From (3.17) and (3.18),
Pridvi /A < c| X1, Xo)=1—p

holds. We have completed the proof of (2). ]

Remark2. (i) For the conditional power prior, if both;z? anda;m; are natural numbers far=

1,2, then (2) of Theorem 3.7 can be applied.

(i) For the conditional power prior, if at least one @fz! anda,z, is not an integer, then at least

one ofa; 2% + k; anda,a + ks is not a natural number. Therefote= 1 (aymy+ny)e (a2 +

(aymi+ny)c+(agmo+ng)

k1, aszy + ko) does not equal — p. Similarly, for the Jeffreys prior, since + 1/2 andk, + 1/2
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are not natural number8,= I, c/(n,c4n.) (k1 + 1/2, ks + 1/2) does not equal — p.

3.5 Plot ofé and p-value

In this section, we plot and compare the Bayesian irtl@rd1 — p of the conditional test.

3.5.1 Plotofd = Pr(A\; < A2 | X3, X5) and the p-value of the conditional test
with Hy: M > X VS.Hy: A\ < Ay

First, we calculat¢) = Pr(\; < Xy| X3, X2) and the one-sideg-value of the conditional test
with Hy : Ay > Ay vs. Hy @ A < A for all pairs of (X, X;) satisfyingl < X; < 2n; and

1 < X5 < 2n,, forny = ny = 10, 20, 50, and 100, respectively. Here, we consider four types of
prior distribution: (i) non-informative prior for both; and \,, (ii) Jeffreys prior for both\; and

Ao, (iii) Ga(20,20) for both \; and \,, (iv) Ga(20,20) for A; andGa(30,20) for \e. (iii) is the

prior supportingH, : Ay > Ao, and (iv) is the prior supportingf; : A\; < \,. Figure 3.1 to 3.4 are

the results with the prior (i) to (iv), respectively, where the horizontal axises show the differences
between sample rate%l — XQ whereX- = X;/n;, and the vertical axises show the differences

0 — (1 — p). Figure 3.1 and 3.2 show that the result with the non-informative prior and Jeffreys
prior are similar. Figure 3.3 shows thtatay be less thah — p when\; — \, is negative and near

0. This indicates that the prior supportifify may decreasé = Pr(\; < X2 | X1, X5), which is the
posterior probability of/; being true. Figure 3.4 shows thatvith the prior supporting?; may

tend to be much more than— p WhenX — XQ Is positive and small. Figure 3.1 to 3.4 show that

f and1 — p are similar wherﬁl — X2| are large. Furthermore, as largerandn, are, the more

similarg and1 — p are for moderaté\; — A|.
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Figure 3.1: The comparison 6f— (1 — p) anXm — Xg for
0 = Pr(A; < Ao| X1, X5) with the non-informative prior
and thep-value of the conditional test withhly : \; > X\,
VS. Hy : Ay < Ay (vertical axis:0 — (1 — p). horizontal axis:
A= A2).
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Figure 3.2: The comparison &f — (1 — p) anXm — Xz
for 6 = Pr(\; < Ay | Xy, Xy) with Jeffreys prior and the

p-value of the conditional test withl, : A\; > Ay vs. H; :

A1 < A (vertical axis:d — (1 — p). horizontal axisﬁl — /)\\2

).
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Figure 3.3: The comparison 6f— (1 — p) anXm — Xg for
0 = Pr(\ < Ao | X1, X3) with Ga(20, 20) as the prior for

both A\; and A\, and thep-value of the conditional test with

Ho: A > Mo vs. Hy @ A\ < g (vertical axis:f — (1 — p).

horizontal axisﬁl - /)\\2 ).
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Figure 3.4: The comparison ¢f — (1 — p) anXm — Xz
for 0 = Pr(A\; < A2| X1, X2) with Ga(20,20) as the prior
for A\; andGa(30, 20) as the prior for\, and thep-value of
the conditional test withily : Ay > Ao VS, H; : A\] < Ay

(vertical axis:0 — (1 — p). horizontal axisﬁl — /)\\2 ).

Figure 3.5 to 3.8 are the results with the prior (i) to (iv), respectively, where the horizontal
axises showt — p, and the vertical axises shal Figure 3.5 and 3.6 show that the result with non-
informative prior and Jeffreys prior are similar. Figure 3.7 shows éhaith the prior supporting
H, can be less thah — p when both off and1 — p are near 1. Figure 3.8 shows tltavith the

prior supportingH; tends to be much more than- p.

36



1.0+

0.8 1

0.6

0.4

0.2 4

0047
:

(a)n1 =no =10 (b) ny =ng = 20

1.0+

0.8 1

0.6 -

0.4

0.2 4

0.0

(C) n1 = ng = 50 (d) ni1 = ng = 100

Figure 3.5: The comparison &f given X; = k;, Xy =
ke and1l — p given Xy = ki, Xo = ko for 6 = Pr()\; <
Ao | X1, X3) with the non-informative prior and thevalue
of the conditional test withi, : \; > Ay vS. Hy : A\ < Aa.

(vertical axis:f. horizontal axis:1 — p).
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Figure 3.6: The comparison éfgiven X; = ki, Xs = ko
and1l —pgiven X; = ki, Xy = ky for 0 = Pr()\ <
X | X1, X3) with Jeffreys prior and the-value of the con-
ditional test withHy : Ay > Xy VS Hy @ A\ < Aq (vertical

axis: 0. horizontal axis1 — p).
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Figure 3.7: The comparison &f given X; = k;, Xy, =
ke and1l — p given Xy = ki, Xo = ko for 6 = Pr()\; <
Ao | X1, Xo) with Ga (20, 20) as the prior for both\; and,,
and thep-value of the conditional test withl, : Ay > X\»

vs. Hy : \; < )\ (vertical axis:f. horizontal axis1 — p).
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Figure 3.8: The comparison &f given X; = k;, Xy =
ko and 1 — p given Xy = ki, Xy = ky for 0 =
Pr(\ < Ao | X3, X3) with Ga(20,20) as the prior for\;
and Ga(30,20) as the prior for\,, and thep-value of the
conditional test withHy : Ay > X VS, H; 1 A\ < As

(vertical axis:f. horizontal axis:1 — p).
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3.5.2 Plot ofd = Pr(\;/X2 < c| X3, X5) and the p-value of the conditional
test with Hy: )\1/)\2 > cVS. Hy /\1/)\2 <cC

Next, we calculaté = Pr(\; /)y < ¢| X7, X5) and the one-sideg-value of the conditional test
with Hy : A\y/Ay > cVvs. Hy @ A /X2 < ¢ for all pairs of (X3, X3) satisfyingl < X; < 2n,
andl < X, < 2n,, forn; = ny = 10,20,50, and 100, respectively. Then, we take= 1.5

and consider four types of the prior distribution: (i) non-informative prior for batland \,, (ii)
Jeffreys prior for both\; and\., (iii) Ga(30,20) for A\; andGa(20, 20) for Ay, (iv) Ga(20,20) for

both A\; and .. Here, (iii) is the prior supportingl, : A\;/X\> > ¢, and (iv) is the prior supporting

Hy : M\ /)y < c. Figure 3.9 to 3.12 are the results with the prior (i) to (iv), respectively, where the
horizontal axises show the differences between sample XatesXQ whereXi = X;/n;, and the
vertical axises show the differencés- (1 — p). Figure 3.9 to 3.12 are similar to Figure 3.1 to 3.4,

respectively, but they show more asymmetry.
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Figure 3.9: The comparison &f — (1 — p) anXm — Xz
for 0 = Pr(A; /)y < 1.5| X3, X5) with the non-informative
prior and thep-value of the conditional test withH,
A1/Ae > 1.5vs. Hy @ A\ /Ae < 1.5 (vertical axis:—(1—p).

horizontal axisﬁl - /)\\2 ).
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Figure 3.10: The comparison é6f— (1 — p) anXm — Xz
for 6 = Pr(\ /A2 < 1.5| Xy, Xy) with Jeffreys prior and
the p-value of the conditional test withhly : A\ /A2 > 1.5
Vs Hy : A\ /Ay < 1.5 (vertical axis:0 — (1 — p). horizontal

axis:Xl — X2 ).
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Figure 3.11: The comparison é6f— (1 — p) anXm — Xz
for 6 = Pr(A\1/Xs < 1.5| X7, Xy) with Ga(30,20) as the
prior for A\; and G'a(20, 20) as the prior for\, and thep-
value of the conditional test wittk/, : A;/Xs > 1.5 vs
Hy : M\/Xy < 1.5 (vertical axis: ¢ — (1 — p). horizontal

axis: /)\\1 — /)\\2 )
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Figure 3.12: The comparison 6f (1 — p) anXm — //\\2 for
0 = Pr(\1 /Xy < 1.5] X1, X5) with Ga(20,20) as the prior
for both A\; and A\, and thep-value of the conditional test
with Hy : A\j /Ay > 1.5Vs. Hy : A\;/Ay < 1.5 (vertical axis:

0 — (1 — p). horizontal axis§1 — X2 ).

Figure 3.13 to 3.16 show the results with the prior (i) to (iv), respectively, where the horizontal
axises showl — p, and the vertical axises shov The results are similar to Figure 3.5 to 3.8,

respectively.

45



1.0+

0.8 1

0.6

0.4 4

0.2 4

0047
:

(a)n1 =no =10 (b) ny =ng = 20

1.0+

0.8 1

0.6 -

0.4

0.2 4

0.0

(C) n1 = ng = 50 (d) ni1 = ng = 100

Figure 3.13: The comparison éfgiven X; = ki, X5 = ko
andl — p given X; = ki, Xo = ky for 0 = Pr(A; /s <
1.5| X1, X5) with the non-informative prior and thevalue
of the conditional test withH, : \;/A\s > 1.5 vs. H; :

A1/Ag < 1.5 (vertical axis:f. horizontal axis1 — p).
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Figure 3.14: The comparison éfgiven X; = ki, X5 = ko
andl — p given X; = ki, Xo = ky for 0 = Pr(A; /s <
1.5] X1, X5) with Jeffreys prior and thg-value of the con-
ditional test withHy : A\; /Ay > 1.5vsS. Hy : A\j/As < 1.5

(vertical axis:f. horizontal axis:1 — p).
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Figure 3.15: The comparison éfgiven X; = k;, X, =
ko and 1 — p given Xy = ki, Xy = ky for 0 =
Pr(Ai/Xe < 1.5| Xy, X5) with Ga(30,20) as the prior for
A1 andGa(20, 20) as the prior for\s, and thep-value of the
conditional test withH, : A\; /Ao > 1.5 Vs, Hy : A\ /Ay <

1.5 (vertical axis:f. horizontal axis1 — p).
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Figure 3.16: The comparison éfgiven X; = ki, X5 = ko
andl — p given X; = ki, Xo = ky for 0 = Pr(A; /s <
1.5] Xy, X») with Ga(20,20) as the prior for both\; and
A2, and thep-value of the conditional test withH,

A/Ae > 1.5vs. Hy @ Aj/Ae < 1.5 (vertical axis:6. hori-

zontal axis:1 — p).

49



3.6 Application

In this section, we apply the Bayesian index to real epidemiology and clinical trial data and compare

it to the one-sideg-value of the conditional test.
Example 4 (Breast cancer study)

Table 3.1 shows the result of a breast cancer study reported in Rothman et al. (2008) . The
rates of breast cancer between two groups of women are compared. One group is composed of the
women with tuberculosis who are repeatedly exposed to multiple x-ray fluoroscopies and the other

group is composed of unexposed women with tuberculosis.

Table 3.1: Breast cancer study data

cases of breast canceX;) person-years at risl;)

Received x-ray fluoroscopy = 1) 41 28,010
Control (i = 2) 15 19,017

Let X7, X, be the independent Poisson processes indicating the numbers of cases of breast
cancer, andv;, n, be person-years at risk. Here, we suppﬁ'se%i Po(n;\;) for i = 1,2. From
Table 3.1,X; = 41,n; = 28,010 and X, = 15,n, = 19,017. First, we consider the conditional
test with the null hypothesifl, : \; < )\, versus the alternativel, : A\; > )\, and the Bayesian
indexd = Pr(\; > A2 | X1, X5, n1,n9) with the non-informative and Jeffreys priors. Table 3.2
shows the results. Hereé,— p = 0.976. Hence,0 — (1 — p) = 0.009 and0.007 with the non-

informative and Jeffreys priors, respectively.

Table 3.2:p-value withH, : A} < Ay vS. Hy : A\ > )y and Bayesian index Px; > A\, | Xy, X»)

for the breast cancer study data

p-value with Bayesian index PA; > A\ | X1, X5)

Hy: A\ < X\vs.Hy: A\ > Xy non-informative prior Jeffreys prior
0.024 0.985 0.983

Next, as in Gu et al. (2008), we consider the test with the null hypotti&sis\; /Ay < 1.5
versus the alternativél; : \;/\s > 1.5 and the Bayesian index Pf /A > 1.5| X3, X5) with

the non-informative and Jeffreys priors. Table 3.3 shows the results. In thislcase~= 0.709.
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Henced — (1 — p) = 0.067 and0.048 with the non-informative and Jeffreys priors, respectively.

Table 3.3:p-value withHy : A1 /X < 1.5vs. Hy : A\;/X\2 > 1.5 and Bayesian index Px; /Ay >
1.5] X1, X5) for the breast cancer study data

p-value with Bayesian index P, /X > 1.5 | X3, X»)

Ho: M/Xs < 1.5vs. Hy : \1/X2 > 1.5 non-informative prior Jeffreys prior
0.291 0.776 0.757

Example 5(Hypertension trials)

Table 3.4 shows the result of the two selected hypertension clinical trials in Table Il in Arends
et al. (2000) . We assume that the trial 1 is of interest and we utilize the trial 2 data to specify the
conditional power priors described in section 3.2.2 Ket X, be the independent Poisson process
indicating the number of deaths, and n, be the number of the person-year in trial 1, and{et:$
be the independent Poisson process indicating the number of deaths; ang be the number of
the person-year in trial 2. Here we suppdsg~ Po(n;)\;), ¥ ~ Po(m;)\;), and Xy, X», 29, 9
are independent. From Table 3X; = 54,n; = 5,635, Xy = 70,ny = 5,600, 20 = 47,m; =
5,135, 25 = 63, my = 4, 960.

Table 3.4: Hypertension trials data

Treatment group Control group

death number of person-year death number of person-year
Triall 54 5,635 70 5,600
Trial2 47 5,135 63 4,960

We consider the test with the null hypothesig : \; > ), versus the alternativel; : \; < X,
and the Bayesian index = Pr(\; < )\ | X3, X5) with the non-informative prior and the con-
ditional power priors. For the conditional power prior, we assume= ay(=: a) and take
a = 0.1,0.5, and1.0. Table 3.5 shows the result. Hete— p = 0.917 and # with the non-
informative prior is 0.930. Additionallyd with the conditional power priors are greater than that

with the non-informative prior. Moreover, whenncreases also increases.
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Table 3.5:p-value and Bayesian index for the hypertension trials data ¢; = a-)

p-value with Bayesian index R, < Ay | X3, X»)
Hy: A\ > X vS. Hy - Ay < Ay non-informative prior conditional power prior
a=01 a=05 a=10
0.083 0.930 0.942 0.971 0.988

Here, we treat that > 0.975 andp < 0.025 show the superiority of treatment from the
Bayesian and frequentist perspective, respectively. Both of them equal to each otherwherd.
Here, the result frond with the non-informative prior and the result of the conditional test are
similar becausé is similar tol — p. On the other hand, with the conditional power prior with
a1 = ag = 1.0, the result fron¥ shows the superiority of treatment although the result from the
conditional test does not. In this case, by borrowing strength from the historical data, the Bayesian
index leads the conclusion that differs from the conditional test. Table 3.6 shows the result of two
clinical trials of teriflunomide in Multiple Sclerosis (TEMSO and TOWER trials) in HAS (2014).
i = 1 indicates the teriflunomide 7mg group, anhg 2 indicates the placebo group. We compare
the relapse rata; and )\, for each group. Similar to example 5, we assume that TOWER trial is
of interest and we utilize the TEMSO trial data to specify the conditional power priorsX{,eY,
be the independent Poisson process indicating the total number of relapsesante the total
number of patient-years for each group of the TOWER trial, and:{et) be the independent
Poisson process indicating the total number of relapsesranth, be the total number of patient-
years for each group of the TEMSO trial. From Table 3X6,= 235,n; = 614, X5 = 296, ny =
608, 2% = 233,m; = 634,25 = 335,m, = 628. For simplicity, we roundh,, ns, m;, ms to the

nearest integer.

Table 3.6: MS trials data
Teriflunomide 7mg group Placebo group

relapse number of person-year relapse number of person-year
TOWER 235 614 296 608
TEMSO 233 634 335 628

We consider the conditional test with the null hypothédsjs: \; /A, > ¢ versus the alternative

Hi : \1/)\y < c and the Bayesian indek= Pr(\; /)y < ¢| X1, X3) with the non-informative prior
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and the conditional power priors for= 1.0, 0.9, 0.8. For the conditional power prior, we assume

a; = as(=: a) and takex = 0.1,0.5, 1.0. Table 3.7 shows the result.

Table 3.7:p-value and Bayesian index for the MS trials data=(a; = as)

p-value with Bayesian index R, /\; < ¢| X1, X5)
Hy: M\/Ay > cVvs. Hy : A\ /X2 < ¢ non-informative prior conditional power prior
c a=01 a=05 a=1.0
1.0 0.003 0.997 0.999 1.000 1.000
0.9 0.066 0.940 0.963 0.995  1.000
0.8 0.439 0.580 0.643 0.815 0.920

Here, same as example 5, we treat that 0.975 andp < 0.025 show the superiority of
treatment from the Bayesian and frequentist perspective, respectively. éher), \; /), < cis
shown for both methods. When= 0.9, p > 0.025, buté > 0.975 whena = 0.5, 1.0. In this case,
the Bayesian index shows /\, < ¢ by borrowing strength from the historical data, although the

conditional test does not. When= 0.8, \; /A, < ¢ cannot be shown for both methods.

3.7 Conclusion

In this chapter, we provided the cumulative distribution function expressions for the Bayesian index
0 = Pr(\; < A\2| X1, X») for the Poisson parameters, which can be more easily calculated than the
hypergeometric series expression in Kawasaki and Miyaoka (2012a) . Next, we showed the rela-
tionship between the Bayesian index with the non-informative prior and the onegsiddae of the
conditional test withH, : A\; > A\; versusH; : \; < \,. This relationship can be considered as the
Poisson distribution counterpart of the relationship between the Bayesian index for binomial pro-
portions and the one-sideevalue of Fisher’s exact test in Kawasaki et al. (2014). Additionally, we
generalized the Bayesian index@o= Pr(\;/)\s < ¢| X3, X5), expressed it using the cumulative
distribution functions and hypergeometric series, and investigated the relationship béteamen

the one-sideg-value of the conditional test with, : A; /)y > c versusH; : A\;/\y < c. By the
analysis of hypertension trials data, we showed that the BayesianndeRr(\; < Xy | X;, X»)

with the non-informative prior is similar td — p of the conditional test, and the Bayesian index
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0 with the conditional power prior witlh = 1.0 is greater than 0.975 although> 0.025. This
indicates that when we treat< 0.025 andf > 0.975 as superiority of treatment from the frequen-
tist and Bayesian perspective, respectively, the Bayesian ifideth the non-informative prior
showed the similar result as the conditional test, and the Bayesian éng@k informative prior

can potentially improve the efficiency of inference. By the analysis of MS trials, we showed the
similar result as the analysis of the hypertension data bet@eerPr(\; /A < 0.9] X;, X,) and

the conditional test withtly : \; /Ay > 0.9 versusH; : A\;/Xs < 0.9. Further studies are needed for

choosing the suitable historical data and suitable values af, for conditional power prior.
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Chapter 4

Exact Bayesian non-inferiority test for
Poisson rate parameters and switching to

superiority

4.1 Introduction

Non-inferiority trials have gained increasing attention for drug and medical device development,
and most statistical analysis methods are based on frequentist approaches. Currently, however,
Bayesian approaches have gained attention based on two FDA guidances. The first is the “Non-
Inferiority Clinical Trials to Establish Effectiveness” (US Food and Drug Administration and others
(2016)), which states that “Bayesian methods that incorporate historical information from past ac-
tive control studies through the use of prior distributions of model parameters provide an alternative
approach to evaluating non-inferiority in the NI trial itself”. The other one is the “Guidance for the
Use of Bayesian Statistics in Medical Device Clinical Trials”(US Food and Drug Administration
and others (2010)), which states that “An adaptive Bayesian clinical trial can invol@svitching

the hypothesis of non-inferiority to superiority or vice-versa” and “For Bayesian hypothesis test-
ing, you may use the posterior distribution to calculate the probability that a particular hypothesis
Is true, given the observed data”. As this type of Bayesian hypothesis testing, Gamalo et al. (2016),
Gamalo-Siebers et al. (2016), and Ghosh et al. (2016) considered the Bayesian non-inferiority test

for the normal mean, while Gamalo et al. (2011), Zaslavsky (2013), Kawasaki and Miyaoka (2013),
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Kawasaki et al. (2016), and Doi et al. (2017b) considered it for the binomial probability.

In line with this framework, Bayesian hypothesis testing for Poisson rate parameters can be
considered. For the superiority test, Kawasaki and Miyaoka (2012a) evaluated the posterior proba-
bility Pr(A; < A2 | X;, X») for the Poisson rate parametersand )\, given the dataX,, X,. They
expressed the posterior probability by using the hypergeometric series, and Doi (2016) showed the
relationship between this posterior probability and the one-giealue of the conditional test.

Similarly, the Bayesian non-inferiority test can be considered based on the probalfikity<Pr
X + A | X1, X5) with non-inferiority marginA. Kawasaki et al. (2016) evaluated this posterior
probability by the normal approximation and Monte Carlo integral. However, the normal approxi-
mation is not accurate and the Monte Carlo integral is not deterministic.

Here, we first derive the exact expression fofXPr< X\, + A | X, X5) under mild condi-
tions. The expression is not only exact but also simple and easily computable. Then, we derive an
approach that flexibly incorporates prior information. Next, we show the relationship between the
Bayesian non-inferiority probability and superiority probability, and the relationship between the
posterior probability and the one-sideeialue of the superiority conditional test. Based on this
relationship, after we show the non-inferiority, we can naturally consider the superiority test which
is consistent with the frequentist test. For this type of study, EMA “Points to consider on switching
between superiority and non-inferiority” Committee for Proprietary Medicinal Products (CPMP)
and others (2000) states that switching the objective of a trial from non-inferiority to superiority is
feasible provided that certain conditions are met.

This chapter is organized as follows. In Section 4.2, we briefly summarize the Bayesian non-
inferiority test, Bayesian superiority test, and frequentist superiority conditional test. In Section 4.3,
first, we derive the exact formula for the Bayesian non-inferiority probability. Next, we show
the relationship between the Bayesian non-inferiority probability and superiority probability, and
show the relationship between the Bayesian non-inferiority probability and the onepsiddule
of the superiority conditional test. In Section 4.4, we describe the operating characteristics of the
Bayesian non-inferiority test based on Monte Carlo simulations. In Section 4.5, we provide an
analysis of the real non-inferiority trial data for the relapsing-remitting multiple sclerosis trials in
the switching from the non-inferiority to superiority framework. Finally, we provide concluding

remarks in Section 4.6.
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4.2 Bayesian and frequentist test for Poisson parameters

In this chapter, we consider two situations. In each case4et be the test drug group arid= 2

be the active control group. For the first situation, Agf be the outcome of thgth subject in the
ith group fori = 1,2 andj =1, ..., n;. SupposeX;; independently follows a Poisson distribution
Po()\;) fori =1,2,and letX; = Z?;l X,;. For the second case, I&t be the independent Poisson
process with Poisson rate and letn; be the total person-years at risk for thie group for; = 1, 2.

In each caseX; ~ Po(n;)\;). In the following, letn, n, be the fixed integers for simplicity, and

we suppose that smaller values)gfare preferable.

4.2.1 Bayesian non-inferiority test

First, we consider the Bayesian non-inferiority test. For the moment, we suppose that the prior
distribution of \; is a gamma distributiotiza(«;, 5;) for i = 1,2. Next, givenX; = k;, the
posterior distribution of\; is Ga(a;, b;) wherea; = a; + ki, b; = [B; + n;. In this setting, we
evaluate R\, < A2 + A | X3, X5) with a pre-specified non-inferiority margifs(> 0). This can

be considered as the Bayesian hypothesis testing stated in the FDA guidance US Food and Drug
Administration and others (2010), as it states that “For Bayesian hypothesis testing, you may use
the posterior distribution to calculate the probability that a particular hypothesis is true, given the
observed data”, and for the frequentist null and alternative hypotliésis \; > A\, + A and

Hy - M\ < Mo+ A, the posterior probability above is the probability/f being true givenX,, Xs.

4.2.2 Bayesian and frequentist superiority test

For the frequentist superiority test, we consider the conditional test discussed in Chapter 3. Then,
for the relationship between Bayesian and frequentist superiority test, Theorem 3.3 and Corol-

lary 3.4 are important.
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4.3 Exactformula and the relationship between superiority and

non-inferiority test

4.3.1 Exactformulafor posterior probability and relationship between Bayesian

non-inferiority and superiority probability

To evaluate the posterior probability(Rf < X\, + A | X;, X»), Kawasaki et al. (2016) utilized
the normal approximation and the Monte Carlo integral. However, normal approximation is not
accurate and Monte Carlo integral is not deterministic. Here, under mild conditions, we derive the

exact expression.

Theorem 4.1.1f a,, a; € N, the following relationship holds:

Prid < Ao+ A | Xy, Xo)

a1—1 i aj—1—j a r
(blA)] F(T + CLQ) bg 2 bl
=1- - - A
;0 T exp(=hiA) ; - T(az) \bi+b2) \bi+by
=1 — fpoi * Fnp(ar — 1), (4.1)
where
0 (r=-1,-2,...)

fPoi(x) = (blA)z

~exp(—b1A) (x=0,1,2,...)

z!

is the probability function of the Poisson distributiéla (b, A),

0 (x=-1,-2,...)
FNB(?L’> = T P b az b r
> '(HGQ)( 2 ) (—1 ) (x=0,1,2,...)
r=0 T " F(ag) bl + bg b1 + bg

is the cumulative distribution function of the negative binomial distribuf\oB (as, b1/ (b, + b)),

and x indicates the convolution of sequences, i.e., for two sefies and g(n), f * g(n) =

Y im=oo [ (n=m) - g(m).
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Proof. Since)\; ~ Ga(a;, b;) anda; € Nfori =1, 2,

Pr()\l < Ao+ A | Xl,Xg)

) Aa+A btlu .
= AT ex bi A )d)\
/ (/ () op(=hd) ) )

['(a
:/OO (1 — /oo bil“ /\UL1 16Xp bl)\l ) b /\azi1 eXp(-bg)\Q)d/\Q
0 A2+A N

:1_/ (/ g A exp(—bi A )dA )\a2_lexp(—b2>\2)d)\2- (4.2)
0 Ao+A P(ar)™

First, from 8.352-4 Zwillinger (2014)f > e~ 'dt = (n—1)-e~* 3" 2™ /mlforn € N,z €
R,

eXp( bg )\2)(1/\2

[e's} ba1
A\ exp(—by A )dA
/A2+A F((ll) p( 1 1) 1

 {by( /\2+A g

=2

exp(—by(Ay + A))

r1=0
a1— lbrl 1 r
— exp(— Z Z ( 1>xw1 "2 exp(—bi Ao). (4.3)
ri= 0 . ro=0

Next, from (4.3),

az

oo 0o bal b
== AT exp(—biA d)\) 2252 exp(—bara)dA
/0 (/Az—f—A [(a)"™ p(=biAs)dAs T(ag) 2 P(—b2A2)dAs

a1—1 ;90 71 a 00
b ' 1 AT b22 rat+az—1
=exp(— E EZ (7‘2> 1=T2 m/0 A5 exp(—(by + ba)Aa)dNs.  (4.4)

r10

Here, let\ := (b; + b2) s, then

ai—1 4p; 71
(4.4) =exp(— Z b Z <T1>A” "2

7’10 " ro=0

bSQ /OO A ro+az—1 d)\
X —A) -
['(az) Jo (bl + b2> exp(=A) b1 + by

a;—1 7«1 1 ' b(l2 1 r2+a2
. b Arl T2 . F
eXp ! Z 7‘1 Z T’Q 7’1 —7”2)' F(CLQ) (b1 +b2> (T2+CL2)

r1=0
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a1—1 71 a r

bl Tl 2 F 7"2 —+ 0/2) bg 2 b1 2
= —b A ) 4.5
eXp ! Z Z 7’1 — 7”2 TQ' F(CZQ) (bl + bg) bl + b2 ( )

r1=0 ro=0

Furthermore, lej = r; — ro, then

a1—1a1— 1]

] F ’]”2 + 0,2) b2 a bl T2
45) =
(4.5) =exp(=hid) 3 Z 7ol - T(az) (b1+b2> <b1+b2>

7=0 1r2=0

. exp(—blA) . FNB(al —1 —j)

o
<.

j=

=fpoi * Fyp(ar — 1).
Finally, from (4.2),
Pr(/\1 < )\2 + A | Xl,Xg) =1 - fPoi * FNB(al — 1)

O

In this expression, we can easily calculate the exact value of the posterior probability. A sample
SAS program is provided in 4.6.
Next, consider the relationship between the Bayesian non-inferiority and superiority probabil-

ity.

Corollary 4.2. For the above setting, if;, a; € N, then the following relationship holds

lim Pr()\1 <X+ A ’ Xl,X2> = Pr()\l < Ao ‘ Xl,XQ).
A—+0

Proof. Since
a1—1 -
(1A) :
Pr()\l < )\2 + A ’ Xl,XQ) =1- j' . exp(—blA) . FNB(a1 —1- ])
j=0 '
is the continuous function ok,
lim Pr(>\1 <X+ A ‘ Xl,XQ) =1- FNB(al — 1) (46)
A—+0
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_1_a11Fr+a2( by ) ( by )
N r! b1+b2 b1+bQ

) ((3.3),(3.6))
=1y, /(b1 +bo) (a1, a2) (" 26.5.2 Abramowitz and Stegun (1964)
)-

(. (3:3))

=1 - Ibz/(leer (CL27 aq

—Pr()\1 < )\2 | Xl,XQ

4.3.2 Relationship between Bayesian non-inferiority test and frequentist su-

periority test

Next, we consider the relationship between the Bayesian non-inferiority probability and the one-
sidedp-value of the superiority conditional test. In this section, we suppose that historical data
exist for both treatment groups as the general situation.

Fori = 1,2, let ny; be the sample size or the total person-years of the historical trial, and let
Xo; ~ Po(ng;\;) be the historical trial data. Additionally, considering Corollary 3.4 flgt\;) o
1, foa(X2) o< A\, ! be the priors for the historical trial. Then the conditional power priors proposed

by Ibrahim and Chen (2000) can be derived as follows

fN()\l) X L()\l ‘ Xm)a01 ) f01()\1)

(ap1 Xo1+1)—1
X Ay exp(—ao1no1 A1),

f()\Q) o< L(A1 | X02)™2 - foa(A2)
XX )\SOQXmil eXp(—aogngg)\g),

where) < ag1, age < 1 are fixed parameters. Then, the conditional power priow @ Ga(ag; Xo1+

1, a01n01) if apingr > 0, and that Of/\g is GG(CLOQXQQ, aognog) if agaXga > 0 andaognog > 0, oth-

[aozXo?]—l

erwisef () o< Ay ' exp(—aganoaa) OF o< Ay . However, as we cannot apply Theorem 4.1

for general gamma priors, we modify these gamma priors. We let

a1 = [anXo1] + 1, B1 = ap1nor,
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Qg = [a02X02]752 = Qp2Mp2-

Further, ifaging; > 0 and[ageXo2] > 0, we suppose the prior of; is Ga(w;, 5;) fori = 1,2 for
the present trial.
Next, we show the relationship between the Bayesian posterior non-inferiority probability and

the one-sideg-value of the superiority conditional test.
Theorem 4.3.

(i) In the above setting, iX, > 0, then the following relationship holds

lim Priv < e+ A Xy, Xo)=1—p,

ao1,a02,A—+0

wherep is the one-sideg-value of the conditional test withy : Ay > Ay vS. Hy : A\ < Ao

(i) Suppose that the prior of; is Ga(a;, ;) with «;, 8; € Nfori = 1,2, and letm;, my € N. Then
between F{D\l < Ao+ A | Xl,XQ) giVGnXl =k —a + 1,X2 = kg — 9, M1 = My — ﬁl,ng =
mo — (o and the one-sideg-value of the conditional test withly : A\ > Ay vs. Hy 1 A < A

given X, = k1, Xs = ko, ny = myq, ny = mao, the following relationship holds
Ah_}IEl_O Pridi < Ao+ A | Xq,Xe)=1—p.

Proof. (i) First, it is obvious that

Pr<>\1 < )\2 + A | Xl,XQ)

a1—1 i
(b A) :
-1 — Z (b:14) ~exp(=b1A) - Fxglag — 1 —7)

= 7

is the continuous function afy, by, as, by, A, and

a1 = ay + ki = [anXo1] + 1+ k1,01 = 81 + 1 = apino + na,

as = g + ko = [apaXo2] + k2, b2 = B2 + na = aganos + no.
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Therefore,

lim ((11, bl) = (kl + lanl)a

ap1—+0

lim (CLQ, bg) = (k’g,ng).

ap2—+0

The right handed sides are the parameters of the posteriais bf, where the priors ar¢(\;)

1, f(X2) o A1, respectively.

Therefore,
lim Pr()\1 < Ay + A | Xl,XQ)
ao1,a02,A—+0
= 1 1—F —1 (4.6
o dim {1 = Fyplar —1)} (. (4.6)
a;—1 a r
. . F(?“ -+ ag) bg 2 bl
=1- 1
a01,a10r21L+0 z; rl- F(CLQ) (b1 + bz) bl + bg
B Z (r + ko) No k2 n "
rl- Fk’Q ni + neg Ny + no
-1 _ Z (lﬁ +k2> < n )r ( N2 )kl+k2_r
p— r ni + ng ny + ng
(. (3.6))
=1-—p. (.(3.8)
(ii) The proof directly follows from Theorem 3.3 (ii), Theorem 4.1 and (3.8). O

Using this theorem, we can consider our Bayesian non-inferiority test as the non-inferiority
extension of the frequentist superiority conditional test. Combining this relationship with Corol-
lary 4.2, we can consider switching from the non-inferiority to superiority test, which is consistent

with the frequentist conditional test. The switching procedure is as follows:
(i) FPr(A; < X+ A | Xy, X2) > 0.975 holds, non-inferiority is demonstrated.
(i) Furthermore, if PfA; < Ay | X3, X2) > 0.975 holds, superiority is also demonstrated.

Step (ii) is consistent with the one-sided superiority conditional test with 2.5% confidence level

when the priors aré¢(\;) oc 1, f(X) oc AL
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4.4 Simulations

In this section, we evaluate the operating characteristics of our Bayesian non-inferiority test via
Monte Carlo simulations. Here, following FDA guidance US Food and Drug Administration and
others (2016), which states “Bayesian methods that incorporate historical information from past
active control studies through the use of prior distributions of model parameters provide an alterna-
tive approach to evaluating non-inferiority in the NI trial itself”, we suppose that the historical trial
data exist only for the active control group.

We treat)\;, )\, as random variables from the Bayesian viewpoint, and\, as the fixed pa-
rameters for generating simulated data. The null and alternative hypothedés :ake > X\, + A
andH, : A\, < X\ + A, respectively, with fixed\. Next, we define the type | error rate as the
probability satisfying P\, < Ao + A | X3, X5) > 0.975 under); = X, + A, which is included
in Hy, and the power as the probability satisfyind Br< X\, + A | X3, X5) > 0.975 under some
situations included irf;.

The simulation procedure is as follows:
1. Specify the number of iteratiaN, A, (ng2, 71, 12), a2, and(A1, Xo). Set COUNT = 0.
2. Generate the historical trial dat&, ~ Po(ng)2).

3. Foras = [agaXo2] and Sy = agange, let the prior distribution of\, be Ga(as, 52) if ag, 52 >
0, else let it be proportional t83> ! or A\; ' exp(—/3);). Let the prior of\; be proportional
to 1.

4. Generate the present trial daXa ~ Po(n;);) and X, ~ Po(ny)\;) independently, and

derive the posterior distribution of, and\,, respectively. In the following, supposg > 0.

5. From the posterior distribution of; and )., calculate the posterior probability Rg <
Ao+ A | X, Xo).

6. IfPr(A; < Xy + A | Xy, Xy) > 0.975, then increase the COUNT by 1; otherwise, by 0.
7. Go back to step 2. and repeat the simulation¥armes.

8. Calculate type | error rate or power by COUNT&
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The parameters are as follows:
e N =10,000,A = 0.10.
e agpy =0,0.1,0.25,0.5,0.75, 1.
e Sample sizes or total person-years:

— Balanced {ny = ny): (ngz, n1, na) = (100, 100, 100), (200, 200, 200), (500, 500, 500),
(1000, 1000, 1000).

— Balanced 2ny = ns): (ngz, n1,n2) = (50, 100, 100), (100, 200, 200), (250, 500, 500),
(500, 1000, 1000).

— Unbalancedn; > n,): (no2, n1, n2) = (100, 100, 50), (200, 200, 100), (500, 500, 250),
(1000, 1000, 500).

¢ Poisson rate parameters:

— (Type | error rate\; = 0.4 and), = 0.3.

— (Power)\; = 0.3 and)\, = 0.3.

Table 4.1: Type | error rate of the Bayesian method undet= X, + Ain Hy : A; < Ay + A
()\1 == 04, )\2 = 03, A - 01)

aop2

Scenario  ng ny N9 00 01 025 05 075 1.0
100 100 100 198 1.64 159 170 1.76 2.00
200 200 200 2.07 181 168 1.80 1.84 2.17
500 500 500 226 202 198 207 219 243
1000 1000 1000 2.37 2.16 2.07 2.15 2.25 250

50 100 100 199 169 167 172 179 2.02
100 200 200 2.04 183 1.75 1.78 1.84 2.05
250 500 500 2.28 2.09 2.04 207 214 234
500 1000 1000 2.29 2.13 2.11 2.16 2.19 2.36
100 100 50 1.79 132 133 1.40 1.57 1.99
200 200 100 199 144 136 151 171 2.14
500 500 250 2.22 172 157 1.78 2.02 2.35
1000 1000 500 2.23 1.75 161 176 198 2.36

Balaneced 1

Balanced 2

Unbalanced
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Table 4.1 presents the results of the type | error rate simulations. For all scenarios, type | error
rates are controlled as tests with a significance level of 2.5%. In particular, Wkemyp, < 1,
they are more conservative than those whgn= 0 or 1. A similar tendency was observed for the

binomial distribution case Doi et al. (2017b).

Table 4.2: Power of the Bayesian method unHer A, < Ao + A (A = 0.3, )\, = 0.3, A = 0.1).
ap2
Scenario  ng ny o 0.0 0.1 0.25 0.5 0.75 1.0

100 100 100 16.91 1595 16.58 18.07 19.01 20.70
200 200 200 31.79 31.72 33.36 35.94 37.38 39.84
500 500 500 6857 70.04 72.68 75.78 77.46 79.09
1000 1000 1000 93.78 94.70 95.92 97.01 97.49 97.79
50 100 100 16.94 1594 16.40 17.23 17.71 19.26
100 200 200 32.16 31.59 32.60 34.11 35.17 37.03

Balanced 1

Balanced 2,0y 500 500 68.74 69.13 70.68 72.84 73.89 75.64
500 1000 1000 93.85 94.30 95.05 9592 96.38 96.74
100 100 50 1259 11.73 13.14 1532 16.84 19.54
200 200 100 23.70 23.48 26.11 30.32 33.48 36.76
Unbalanced

500 500 250 58.12 56.66 62.45 69.10 72.58 75.32
1000 1000 500 82.89 87.23 91.62 94.70 96.04 96.68

Table 4.2 shows the results of the power simulations. Whemnuy; < 0.25 andngs, ny, no are
small, powers are less than those &gy = 0. This may be related to the conservativeness of the
type | error rates shown in Table 4.1. In contrast, whgn> 0.5 or ng,, n1, ny are large, powers
increased monotonically withy;. Therefore, with an adequate historical trial size or suitable
amount of borrowed information, the powers of our Bayesian method can be improved by historical

data.

4.5 Real data analysis

Massacesi et al. (2014) performed a multicenter, randomized, controlled, single-blinded, non-
inferiority trial in which patients with relapsing-remitting multiple sclerosis received azathioprine
(AZA) or interferon beta (IFN3). We refer to this trial as the present trial. The primary objective

of this trial was to demonstrate that the annualized relapse rate (RR) over two years of AZA was not

inferior to that of IFNS. Here, we consider two-sided 95% CI of RR instead of one-sided 95% ClI
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in Massacesi et al. (2014) because two-sided 95% CI or one-sided 97.5% CI is more conventional
in the pharmaceutical industry after ICH E9 (ICH E9 Expert Working Group (1999)) was issued.
The results for the annualized relapse rate are presented in Table 4.3. The two-sided 95% CI of
RR was [0.43, 1.03], demonstrating the non-inferiority under the non-inferiority margin of 1.23
with a significance level of 2.5%. Next, switching to superiority, it was not demonstrated with a

significance level of 2.5% because the upper limit of the Cl exceeded 1.00.

Table 4.3: Annualized relapse rates of the present trial Massacesi et al. (2014).

AZA IFN- 3 Rate Ratio
(n=62) (n=65) [two-sided 95% CI]
Total person-years 126 132
Total number of relapses 33 52
Annualized relapse rate 0.26 0.39 0.67[0.43, 1.03]

Next, we apply our Bayesian method. We borrow information for the B~roup from the
trial in Cohen et al. (2012), which is the trial of alemtuzumab vs interfgrda (IFN-3-1a). Cohen
et al. (2012) and Massacesi et al. (2014) showed similar relapse rates for gFdyp. We refer to
this trial Cohen et al. (2012) as the historical trial.

Table 4.4: Annualized relapse rates of the historical trial Cohen et al. (2012).
IFN-5-1a  Alemtuzumab
(n = 187) (n = 376)
Total number of relapses 122 119
Annualized relapse rate 0.39 0.18

Table 4.4 presents the results of the annualized relapse rate of the historical trial Cohen et al.
(2012). Because total person-years in each group was not explicitly stated, we estimated this infor-
mation from the total number of relapses and annualized relapse rate.

We let \; and \, be the relapse rates of the AZA and IFNgroups, respectively. First, we
construct the prior of\, based on the historical trial data. From Table 4.4, the total person-
years of the IFN5-1a group is estimated a422/0.39] = 312. Next, we let the prior of\, be
Ga([122a02], 312a92). Because this historical trial does not include an AZA group, we let the prior
distribution of AZA group be\; 1.

Table 4.5 shows the results with, = 0,0.1,0.2,0.3,0.5 andA = 0,0.05,0.10. A > 0

andA = 0 indicates the non-inferiority and superiority test, respectively. Here, ESS is the prior
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Table 4.5: Result of the MS data analysis.

prior posterior A
ap2 ESS GCL(O&Q, 62) Ga(al, bl) GCL((IQ, bg) 0 0.05 0.1
0 (0 Ay Ga(34,126.0) Ga(52,132.0) 0.959 0.993 0.999
0.1 12 (Ga(12,31.2) Ga(34,126.0) Ga(64,163.2) 0.965 0.994 0.999
0.2 24 (Ga(24,62.4) Ga(34,126.0) Ga(76,194.4) 0.968 0.995 0.999
0.3 36 (Ga(36,93.6) Ga(34,126.0) Ga(88,225.6) 0.971 0.996 1.000
0.5 61 Ga(61,156.0) Ga(34,126.0) Ga(113,288.0) 0.978 0.997 1.000

effective sample size defined by Morita et al. (2008), which characterize the amount of information
contained in the prior distribution. In eaak, andA, non-inferiority is demonstrated. Furthermore,

the superiority is also shown wheg, > 0.5. This shows that our Bayesian method may be more
efficient than the frequentist method when we want to switch the objective from non-inferiority to

superiority and sufficient quality and quantity of the historical data.

4.6 Conclusion

In this chapter, we considered the Bayesian framework of the non-inferiority test and switching to
the superiority test. First, we derived the exact expression for the posterior probability of the alter-
native hypothesis being true, and provided a sample SAS program. Next, we gave the framework
cooperating the historical information flexibly. After that, we showed the relationship between the
Bayesian non-inferiority and superiority tests and that between the Bayesian non-inferiority prob-
ability and superiority conditional test. We can naturally apply our method to trials switching from
non-inferiority to superiority.

From the Monte Carlo simulations, the type | error rates were controlled for all planned sce-
narios. Additionally, based on the real data analysis, our Bayesian method can improve the power
with a suitable amount of borrowed information. However, when a(, < 1, it tended to be too

conservative. This property will need to be improved in the future work.
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Appendix: Sample SAS code for P(A; < A2 + A | X3, X»)

WhenA = 1 and the posterior distributions akg ~ Beta(120,100) and\; ~ Beta(50,200), the
probability P\, < A2 + A | X3, X5) can be calculated by the following code based on (4.1).

%let al =120; %let bl =100:;
%let a2 =50; %let b2 = 200;
%let delta=1;

data d1,;
al = &al; b1=&bl; a2=&a2; b2=&b2; delta=&delta;
p_NB = b2/(b1+b2);
p0 =0;
do j=0to al-1;
p0 = p0 + pdf(’Poisson’, j , delta*bl)
* cdfC(NEGBINOMIAL, al-1-j, p_NB, a2);
end,
proh Bayes = 1- p0;
drop j po;

run;
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Chapter 5

Bayesian superiority and equivalence
hypothesis testings and the-value of the
F-test for the variance of normal

distributions

5.1 Introduction

In biomedical studies, we encounter occasions to compare the variances in variables of interest
across different conditions. Such occasions may be divided into two different situations. The first
situation is when we mainly focus on comparing the variances. For example, test-retest variabilities
(TRV) of visual acuity measurements are compared across different degrees of optical defocus in
Rosser et al. (2004) and across different methods of scoring in Bosch and Wall (1997). The second
situation is when we mainly focus on the location parameters (e.g., mean), and we want to check
the assumption about the variances in the statistical method for comparing them. In many clinical
trials with continuous outcomes, linear (mixed) models includitgst, ANOVA, and ANCOVA

are used as the method of the primary analysis. Based on whether the variances are equal or not, we
may change the statistical method (e.g., Studertest or Welch’g-test) because an inappropriate

choice of the method may lead to incorrect conclusions. See, for example, Welch (1938) and
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Glass et al. (1972). Therefore, to choose the correct method is important. However, for many
clinical trials in this situation, the tests comparing the variances are known to have lower power
than expected. See, for example, Markowski and Markowski (1990) and Wilcox (1995). This may
occur because the sample sizes are calculated for comparing location parameters, which reduces
the power of the test for comparing variances.

For a general two-group comparison of parameters, Bayesian approaches have gained increas-
ing attention for their potential superiority in decision making compared to conventional frequentist
methods, because a Bayesian approach can borrow strength from the historical data. For example,
with a binomial distributionB(n;, p;), Altham (1969), Kawasaki and Miyaoka (2012b), Zaslavsky
(2013), and Kawasaki et al. (2014) considered the posterior probabilipy Br p; | X1, X5).

For the Poisson distributioRo()\;), Kawasaki and Miyaoka (2012a) and Doi (2016) considered
Pridv < A2 | Xp, Xo). Kawasaki and Miyaoka (2012b) referred to these types of probabilities

as Bayesian indexes. For both distributions, the Bayesian indexes were shown to be expressed by
the hypergeometric series, and the relationship between the Bayesian indexes jandlties of
conventional frequentist tests were investigated.

In this chapter, we consider the problem of comparing the variances of two normal populations.
F-test is most frequently used in this situation. To achieve a more effective decision than possible
with the F-test by borrowing strength from the historical data, we propose a Bayesian index of
superiority and equivalence for comparing the variances of two groups of normally distributed
data.

The remainder of this chapter is structured as follows. In Section 5.2, we propose Bayesian
indexes of superiority for three situations, express these indexes by the hypergeometric series and
the cumulative distribution functions of well-known distributions, and investigate their relationship
with the p-values of thef'-test. In Section 5.3, we propose the Bayesian index of equivalence,
which is also expressed by the hypergeometric series and the cumulative distributions functions.
In Section 5.4, we present the results of a Monte Carlo simulation to investigate the properties of
0.(A) > ~ for severalA and~ values used in the Bayesian index of equivalence. In Section 5.5,
we apply the Bayesian indexes to analyses of real data from actual clinical trials. Finally, we offer

concluding remarks and highlight the prospects of these indexes in Section 5.6.
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5.2 Bayesian Index of Superiority

5.2.1 Definition and the Funhdamental Theorem

Fori =1,2,andn;,n, € N, let X, ..., X, be independent normal random variables with mean
w; and variancer?. Let the realized values of;y, - - - , X;,,, be denoted bx; = (z;1,...,Zin,)-
For Bayesian analysis, let the prior distributionsgfbe the scaled inversg® distributionScaled-

inv-x*(v;, 77) for v;, 72 > 0, whose probability density function is

T2/2 vi/2 vi/2—1 72
10 oy = P2 o (20,

I (v;/2) 207

1

This is equivalent to the inverse gamma distribution-Ga (v;/2, v;77/2). To compare the vari-

ances of two groups, we propose the Bayesian index of superiority as follows:
0 = Pr(o} > 05 | X1,%2).

In the following description, we first consider the case wherand ., are known, and next con-

sider the case where both means are unknown. In each case, the following theorem is crucial.

Theorem 5.1(Doi et al. (2017a)) If the (marginal) posterior distribution ef? is Inv-Ga(a;, b;)

fori = 1,2, then the Bayesian indek= Pr(c? > o2 | x;, x») has the following three expressions:

1 b 2 b
Pr(o? > o2 =1-— <o P} 1—aq;1 :
(07 > 05 | x1,%3) a2 B(ay, a) <b1 +b2) 24" (Cl2, ap; L+ ag; by +b2)
:I by (CLl,CLQ)
b1 +ba
bl/al
:Fa a 5
2a1,2a2 (b2/a2)
where
Fi(a,b; = E il — <1
2 Fi(a,b;c; 2) 2 ©); ! (|| )

is the hypergeometric series, afid; = k(k+1)---(k+t — 1) fort € Nand(k), = 1 is the
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Pochhammer symbol,

V1 Vo

’ 1 V12 2 2 2
F, . = d

is the cumulative distribution function of theé distribution F'(v4, 1), and

1

I.(a,b) = Bl /Ox t N1 — ) tat

is the cumulative distribution function of the beta distributiBeta(a, b), also known as the regu-

larized incomplete beta function.

Proof. Let \; = 1/0? be the precision, then

0 = Pr(o} > 05 | x1,X2)

= Pr()\l < )\2 | Xl,Xg). (51)

When the (marginal) posterior distribution ef is Inv-Ga (a;,b;), the (marginal) posterior dis-
tribution of \; is Ga(a;, b;), whose probability density function i§(\; | a;,b;) = b /I'(a;) -

A Lexp(—b;\;). Hence, (5.1) is the Bayesian index for the Poisson parameters defined in Kawasaki
and Miyaoka (2012a). Therefore, Theorem 5.1 follows from Kawasaki and Miyaoka (2012a) and
Theorem 1 of Doi (2016). O]

From the cumulative distribution function expressions in Theorem 5(b2Pr o3 | x1,X>)

can be quite easily calculated using standard statistical software.

Remark3. For Theorem 5.1, since only the (marginal) posterior distributionZdf supposed as
the inverse gamma distribution, the prior distributiomdinay be improper as long as the posterior

Is the inverse gamma.
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5.2.2 Case 1y, and uy are Known
5.2.2.1 Calculation of the Bayesian Index of Superiority

In this case, we denote the likelihood®f by L(o? | x;, ;). Since we suppose that the prior dis-

tribution of o2 is Scaled-inv-x?(v;, 77), the posterior distribution of? can be derived as follows:

7

f(JZQ ‘ Xialuhyi?Tz?)
Lo} | xi, pii) - f(07 | v, 77)
1 i i — 1) 72/2 vif2 [ 2\—u;/2-1 72
:—2 eXp _Z (.T] 2:“) . (V Tz/ ) (Uz) eXp _VTZQ
(2mo2)nil? = 207 [ (v;/2) 20}
2)~bn)/2 (_ vt 4 - Tf) |

x (o7
' 202

where

nq

1
T} = n Z(% — )”.
K3 j:1

Hence, the posterior distribution of is Inv-Ga((v; +n;)/2, (v;72 + n; - T?)/2). Therefore, from

Theorem 5.1, we have

(nr +ny -T2/ (i + "1)) _ (5.2)

Pr(o; > 03 | X1,%X2) = Fyytnywstns (<V27_2 s 12)/(vs + o)
5 2

5.2.2.2 The Relationship between the Bayesian Index of Superiority and thevalue of the

one-sided/’-test

Here, we consider th&-test with H,, : 0 = o3 versusH, : o} > o2 wheny; andu, are known.

Under Hy, the test statisticg? /T7 follow F'(ny,n,). Hence, the-value is calculated as

ni U2

p:/m ! me N2 me Y2
Tf/@zB(%,%) niz + ng n1z + ng
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Then, the following theorem holds.

Theorem 5.2 (Doi et al. (2017a)) If x; and u, are known and the prior distribution of? is

Scaled-inv-x*(v;, 77) for i = 1,2, then the following relation holds between the Bayesian index

0 = Pr(c? > o} | x1,%2) and the one-sideg-value of theF-test with H, : 0} = o3 versus

.2 2.
Hl . Ul > 0-2.

lim  Pro? > 02| x;,%x2) =1—p.
(12} (0.0) (o1 5 | x1,%2) p

Proof. From (5.2) and (5.3),

lim PI’(O%>U§ |X17X2):Fn17n2(T12/T22):1_p
(111,1/2)—>(0,0)

holds. ]

Remarkd. For the prior distribution,

2 Jo\Vil2 [ 2\—v;/2—1 2
20 ., 2\ _ (vt /2)""" (07) _UiT;
floi|vm) = T (13/2) S\ 202

v /2 I/Z"TZ»2
o (03) i/2—1 exp (_ 202)

2\—1
i—0 (Uz) ’

when the prior distribution of? is f(c?) o« (¢?)~!, which is improper, the posterior distribution
of o7 is Inv-Ga(n;/2,n; - T?/2). Therefore, as stated in Remark 3, the Bayesian index can be

expressed by Theorem 5.1 as
Pr(o? > 03 | x1,%2) = Fyy n, (T7/T5) -

Then, the following theorem holds.

Theorem 5.3 (Doi et al. (2017a)) If x; and u, are known and the prior distribution of? is
f(o?) o< (¢2)~ fori = 1,2, then

7

Pr(af > a% | x1,%X2)=1—p
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holds.

Sincev; is the prior effective sample size 6taled-inv-x?(v;, 77) as defined in Morita et al.
(2008), Theorem 5.3 can be interpreted as follows: the Bayesian index with prior effective sample
size O for both groups is equal ta@ — p) of the one-sided"-test. Furthermore, with the prior
Scaled-inv-x*(v;, 77), the Bayesian index can be interpreted as equal td-tiest with the prior

information ofa; additional samples.

5.2.3 Case 2y, and uy are Unknown

In this case, we consider two types of the prior distributiong@fc?). In each type, we denote the
likelihood of (u;, o?) by L(u;, 07 | x;). Furthermore, in the following, we denote the probability
density function of the normal inverse gamma distributhonG (p, k, o, 5) for pg € R, k, o, 8 >

0 by

F11,0% | o,k B) = | oy exp (_W—MO)2> x Do) e <_£)-

2mo? 202

When(u, o?) follows NIG(uo, k, o, 3), the marginal distribution of? is Inv-Ga(a, 3).

5.2.3.1 Calculation of the Bayesian index of superiority for the scaled inversg? variance

prior

We first suppose that the prior distribution ofis non-informative, i.e.f(x;) o 1, and the prior
distribution ofo? is Scaled-inv-x*(v;, 72). Then, the prior distribution ofy.;, 0?) is Scaled-inv-

x%(v;, 77). Here, the posterior distribution ¢fi;, #?) can be derived as

f(:ubo-z |XZ7VZ7 12)

ocL(pi, 07 | ;) - (Mza 0; ‘sz 77)

v;i/2 v
_ z> w2 ety v
27T0' [ (v;/2) 207
l/l—|—7’LZ—1

_ R — 2 _1).92
. (0_7:2)—1/2 exp < (ILL;O- 2) ) . (0-12) 2 1eXp (_ ViT; + (;L;Z ]') Sl) ,

i
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where

Ti = %;xijﬁ? Ry 1_ 1 ;(Iij — ;)%
Therefore, the posterior distribution gf;, o?) is

NIG (%, ni, (vi +n; — 1)/2, (v + (n; — 1) - S?)/2), and the marginal posterior distribution of
o?is Inv-Ga((v; +n; —1)/2, (v;73 + (n; — 1) - S?)/2). Then, the Bayesian index can be expressed
by Theorem 5.1 as

2 —1). 52 —1
Pr(a% > ag | X1,X2) = Fotny—1wstno—1 <(V17—1 + (7 )50/ + )> . (5.4)

(1/27'22 + (TLQ — 1) . S%)/(VQ “+ ng — 1)
5.2.3.2 The relationship between the Bayesian index of superiority for the scaled invergé

variance prior and the p-value of the one-sided-test

Here, we consider thE-test withH, : 0? = o3 versusH, : o2 > o3 wheny; and, are unknown.
Under H,, the test statistic§? /53 follow F'(n; — 1,n, — 1). Therefore, the-value is calculated

as

> 1
=

2 7 2
ny — 1 Ny — 1
(ny —1)z ) 2 ( ng — 1 ) 2 4
X <(n1—1)z+(n2—1) (1 — 1)z + (2 — 1)
=1 - FN1—1,TL2—1(512/S22)' (5.5)

Then, the following theorem holds.

Theorem 5.4(Doi et al. (2017a)) If the prior distribution ofy; is non-informative, i.e.f (u;) o« 1,
and that ofs? is Scaled-inv-x*(v;, 77) for i = 1,2, respectively, then the following relation holds
between the Bayesian indéx= Pr(c? > o3 | x1, x2) and the one-sidegrvalue of theF-test with
Hy : 0} = 03 versusH, : 0% > 3.

lim  Prio} > 05 | x1,%2) =1 —p.

(I/l ,1/2)—>(0,0)
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Proof. From (5.4) and (5.5),

lim  Pr(o} > 05 | x1,%X2) = Fy1ny-1(57/53) =1—p
(1/1,112)—}(0,0)

holds. O

Remarks. For the prior distribution,

2 /o9\Vi/2 [ _2\—v;/2—1 2
o2 2y (vt /2)™"" (o)™ Ty
f(,ula Ui ‘ 1/27 T; ) - F (V1/2) eXp 20_22
2
2\—v;/2-1 _UiT;
oty ey (-5 )
2\—1
v;—0 <O-Z) ’

when the prior distribution ofy;, 0?) is f(u, 0?) o< (6?)7!, the posterior distribution ofy;, o?)
is NIG(z;,n;, (n; — 1)/2,(n; — 1) - S?/2) and the marginal posterior distribution @f is Inv-
Ga((n; —1)/2, (n; — 1) - S2/2). Therefore, the Bayesian index can be expressed by Theorem 5.1

as
Pr(U% > O'g | X1,X2) = Fn1717n272 (512/522) .

Then, the following theorem holds.

Theorem 5.5(Doi et al. (2017a)) If the prior distribution of(u;, 0?) is f(ui, 02) o< (o2)~! for
i =1,2, then

Pr(af > a% | x1,%X2) =1—p
holds.

5.2.3.3 Calculation of the Bayesian index of superiority for the normal inverse gamma prior

We next suppose that the prior distributionuds | o? ~ N(ug;,0?/k;) ando? ~ Scaled-inv-

X2(vi, 7?) = Inv-Ga(v;/2,v;7/2). Then, the prior distribution ofy;, 0?) is the normal inverse

78



gamma distributionVIG (p, ki, vi/2, v;77/2). Hence, the posterior distribution ¢fi;, 7) can

i

be derived as

f(/iz‘a‘fi2 | Xy H0,i5 kial/iaTiQ)

o<L(pi, 07 | i)+ [ 07 | pogs ki, vis 77)

_ 1 - (zij — ,Ui>2 k; 12 ki — Mo,i)2
~ (2mo?)nal2 P < Z 202 2o} P 207

Jj=1 i
(vir?[2)""” (o7) /2!
exp [ —
I (v;/2) P\ 7202
2\~1/2 (ki ) (s — fini)”
x (07) exp < 207
king(po; — )2
Vit vir? + (s — 1) - 52 4 Fimilitos — %)
X (0'-2)_ 2 ! -exp | — kl+nz :
' 207
where
Kiptoi + ni;
ni = = kni = ki + 1,
H ki + 1 +n
. . 72 —1)-5%  Ekni(ue, —7.)2
i = M’ bm — ViT; + (nl ) Sz + znz(MO,z xz) '
2 2 2(k; 4 n4)

Then, the posterior distribution &fi;, 02) is NIG (pini, kni, ani, bni). Hence, the marginal poste-

rior distribution of? is Inv-Ga(a.;, bn;). Therefore, the Bayesian index can be expressed from

Theorem 5.1 as

V17'12 + (n1 — 1) . 512 k:lnl(um — j1)2
vy +ny (Vl + nl)(k‘l + nl)

V27'22 + (ng — 1) . 522 kQﬂg(/JJ()’Q - f2)2
Vo + No (Vz + ng)(kg + ng)

(5.6)

0 - F2an1a2an2

5.2.3.4 The relationship between the Bayesian index of superiority for the normal inverse

gamma prior and the p-value of the one-sidedF'-test

Then, the following theorem holds.
Theorem 5.6(Doi et al. (2017a)) If the prior distribution of(.;, 07) is NIG (o4, ki, vi /2, vi? /2)
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fori = 1,2, then the following relation holds between the Bayesian irfdexPr(o? > o3 | x;,X2)

and the one-sidegivalue of theF-test withH, : 07 = o3 versusH, : 0% > o3:

lim Pr(o? > 05 | x1,%2) =1 —p.
(v1,k1,7¢ v k2,73)—(—1,0,0,—1,0,0)

Proof. From (5.6) and (5.5),

. 2 2 _ 2 /a2
) lim Prio} > 03 | x1,%X2) = Fiy —1,n,-1(51/53)
(v1,k1,7¢,v2,k2,75)—(—1,0,0,—1,0,0)

holds. O]

Remarks. For the prior distribution,

F s o7 | pogs kiy vis 77)

1223 2
_ k; exp _@'(Mi - Mo,i)Q ] (ViTz'2/2) / (02)—ui/2—1 exp _ViTz'z
2mo? 202 I'(v;/2) ' 2072

2)_(Vi+1)/2_1 exp (_Vﬂi? + K — Mo,i)2>

x (Ji 2012

(vi,72 ki) —(—1,0,0) (o7)~"
As already shown in Theorem 5.5, if the prior distribution( pf, 02) is f (i, 0?) o (¢2)~1, then
Prio? > 02 | x1,%2) = 1 — p
holds.

5.2.4 Remark on the Prior Distribution

To utilize the historical data effectively, we here consider how to construct the prior distribution

of (p,0?). Fori = 1,2 andj = 1,---,ng;, let the historical data;;; independently follow
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N (i, 07), andxo; = (zo41, - - -, Tom,,)» and let

folps02) o (02) 7

Here, for0 < «; < 1, an example of the conditional power prior distribution, defined in Ibrahim
and Chen (2000), is

S 07) o<L(pi, 07 | %0,0)* - folpi, 07)

]_ 1 n0,i ) ; -
> {WQXP <_@ Z(l'o,ij — 14;) > } - (0?)

j=1
= )2
— () M oxp (-2l
X (O'Z‘Z)_(am()’i_l)m_l exp <_ai(n07i2_ai21> : 53,1) 7 (5.7)
where
) 1 , 1 & o,
Zo,i = nos ;Z’O,ij, Spi = o ;(x(m — Zo,i)°

Then, the prior distribution of;, o?) is the normal inverse gamma distribution
NIG(Zo;, ainoi, (aimo; — 1)/2, a(ng; — 1) - 5371./2) whena;ng; > 1. Hence, the marginal prior
distribution ofo? is Inv-Ga((aing; —1)/2, a;(ng,; — 1) - S5 ,;/2) whena;ng; > 1. In this situation,

the next corollary directly follows from Theorem 5.6.

Corollary 5.7 (Doi et al. (2017a)) If the prior distribution of{;.;, o?) is the conditional power prior

described above far= 1, 2, then
lim  Pro} > 05| x1,%x2) =1—p

(a1,002)—(0,0)

holds.
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5.3 Bayesian Index of Equivalence

Next, we propose the Bayesian index of equivalence¥aatisfyingl < A as follows:
QE(A) = Pr(l/A < 0'1/0'2 <A | X1,X2) .

Here, we comparé and1/A not to the ratio of the variances but rather to the ratio of the standard

deviations. Then, the following theorem holds.

Theorem 5.8(Doi et al. (2017a)) If the (marginal) posterior distribution ef? is Inv-Ga(a;, b;)

fori =1,2, then

bi/a bi/a 1
PI’(l/A < 01/02 <A ’ X1,X2) :F2a172a2 (b;;a: Az) o F2a1,2a2 (b:?CL; ‘ P)

=/ by-A2 (alaaz)_[ by /A2 (a17a2)
b1-AZ4by by /AZ4by

1 bo 2 ba
= o F 1—aq1 —
agB(al,ag) (bl/AQ +b2> 2l (CLQ, ar; 1+ ag; bl/A2 —1—62)

1 by 2 by
_ oFy (a1 — a1+ ag; —2—— .
CL2B(CL17CL2> (bl 'A2+b2) 2471 (a27 Qa1; +a27b1_A2+b2>

Proof. Since Pfo, /0y = A) =0,

Pr(l/A < 0'1/0'2 <A ‘ X1,X2) = Pr(O'l/O'Q <A ’ Xl,Xg) — Pr(01/02 < 1/A | X1,X2)

= Pr(a%/ag < A? | x1,%9) — Pr(af/ag < l/A2 | X1, X2).

Then, consider the posterior distributionaf/a3 = X,/ )\, where); = 1/07? is the precision for

i = 1,2. From Theorem 3 in Doi (2016) or (2.10) in Price and Bonett (2000),

ba/a
Pr()\g/)\l <c | Xl,Xg) = F2a2,2a1 (ﬁ . C> ,

therefore

Pr(l/A < 0'1/0'2 <A ’ X1,X2) :Pr()\g/)\l < A? | Xl,Xg) — Pr(>\2/)\1 < 1/A2 | Xl,XQ)

bg/ag 2 bg/CLQ 1
=TIy, a1 A - F a2,2a1 )
2a2,2 (bl/al 202,2 bl/al A2

82




bl/al 1 bl/al 2
=1 A P ey SRS
{ F2a1,2a2 <b2/(l2 A2> } { 2a1,2a9 <b2/a2 A

(o Fnn(l/7) = 1= Fom(2))
. b1 /CLl 2 bl/al 1
—F2a1,2a2 (62/a2 A ) F2CL]_,2(Z2 <62/a2 AQ .

The rest of the proof follows from Theorem 3 in Doi (2016). O

5.4 Simulation

We conducted a Monte Carlo simulation to investigate the property 9f\) > ~” for several
values of A and~y. We used the conditional power prior distribution. The historical dgta
independently followNV (0, 07?) for i = 1,2;5 = 1,...,nq,, and we considet; = a, = 1. The
present data:;; independently followN (0,¢7) for i = 1,2;5 = 1,...,n;. Here, leth = n; =
ny = 25,50, 100,200, andng = ng; = nos = 0,25,50, 100,200, with ng; < n; for i = 1,2.
Further, we take, = 0.90,0.95 andA = 1.10,1.25,1.50,2.00. We conducted 100,000 iterations
for each scenario. For the first scenario, wesset o, = 10; that is, the variances are equal. As
shown in Table 5.1, the percentage satisfying this condition heavily depended on the sample size.
For the second scenario, we sgt= 15 ando, = 10; that is,o; /0 = 1.5, so that the variances
of group 1 are greater than those of group 2. As shown in Table 5.2, the percentages satisfying
0.(1.50) > 0.90 andd,.(1.50) > 0.95 show minimal dependence on the sample size when50.

These results suggest that the decision of suitable valudsafly must be considered depend-
ing on the situation. For examplerif= 50 andn, > 25, thend.(1.50) > 0.90 or 6.(1.50) > 0.95

may be appropriate.

5.5 Application

The application of the Bayesian indexes of superiority and equivalence was evaluated using data
from actual clinical trials, as shown in Table 5.3. Trial (a) and (b) are two selected trials shown
in Table 1 of Gould (1991). Here, we supposed that trial (a) is a previous trial and trial (b) is

the present trial, and = 1, 2 indicate the placebo and drug A group, respectively. Therefore, we
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Table 5.1: The percentage satisfyiegA) = Pr(1/A < oy/0y < A | x1,%2) > 7 Wheno, =
09 = 10.

no n v = 0.90 v =0.95
0.(1.10) 0.(1.25) 6.(1.50) 6.(2.00) 0.(1.10) 6.(1.25) 6.(1.50) 6.(2.00)
0 25 0.00 0.00 48.03 95.92 0.00 0.00 0.00 90.87
25 25 0.00 0.00 87.31 99.94 0.00 0.00 76.07 99.82
0 50 0.00 0.00 87.53 99.95 0.00 0.00 75.81 99.81
25 50 0.00 45.08 97.06 100.00 0.00 0.00 93.19 100.00
50 50 0.00 64.46 99.31 100.00 0.00 41.04 98.16 100.00
0 100 0.00 64.56 99.37 100.00 0.00 49.84 98.23 100.00
25 100 0.00 76.76 99.88 100.00 0.00 59.48 99.57 100.00
50 100 0.00 84.82 99.97 100.00 0.00 71.66 99.89 100.00
100 100 0.00 93.67 100.00  100.00 0.00 86.49 100.00  100.00
0 200 0.00 93.70 100.00  100.00 0.00 86.48 100.00  100.00
25 200 0.00 95.86 100.00  100.00 0.00 90.93 100.00  100.00
50 200 0.00 97.50 100.00  100.00 0.00 93.95 100.00  100.00
100 200 5.09 98.93 100.00  100.00 0.00 97.26 100.00  100.00
200 200  43.87 99.84 100.00  100.00 0.00 99.46 100.00  100.00

utilized the data of trial (a) to specify the conditional power prior. We supposevtkaty; = as,
and taken = 0.0,0.2,0.5,0.8, 1.0. The prior distributions of;, o) were derived from (5.7) with

the following data
o ngy =47,T9; = 3.04, 53, = 9.20% = 84.64
® ngo = 44,79 = 8.43, 5372 = 8.17% = 66.75,
and are shown in Table 5.4 for eaehNext, using the following data of trial (b)
e ny = 53,7 = 3.75,5% = 7.07° = 49.98
o ny =54, Ty = 10.20, 52 = 9.39? = 88.17,

we derived the posterior distributions. The posterior distribution§u.@fo?) and the marginal
posterior distributions of?are shown in Table 5.5 and Table 5.6, respectively.

Finally, the Bayesian indexes are shown in Table 5.7.

For trial (a), the placebo grouf@g = 1) showed a larger standard deviation than the drug A
group (: = 2). By contrast, for trial (b), the drug A group showed a larger standard deviation.

According to the present data (trial (b)) only, that is, wher- 0, 6 is quite small, which makes
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Table 5.2: The percentage satisfyifidA) = Pr(1/A < 01/0y < A | x1,%2) > v Wheno; = 15,
ando, = 10.

ng n v =0.90 v =10.95
0.(1.10) 0.(1.25) 6.(1.50) 6.(2.00) 0.(1.10) 6.(1.25) 6.(1.50) 6.(2.00)
0 25 0.00 0.00 8.87 54.19 0.00 0.00 0.00 39.33
25 25 0.00 0.00 10.62 76.71 0.00 0.00 5.48 64.46
0 50 0.00 0.00 10.06 76.21 0.00 0.00 5.04 63.49
25 50 0.00 0.27 10.27 88.19 0.00 0.00 5.19 79.53
50 50 0.00 0.12 10.16 94.12 0.00 0.04 5.16 88.61
0 100 0.00 0.11 10.00 94.23 0.00 0.02 4.94 88.67
25 100 0.00 0.07 10.06 97.17 0.00 0.02 5.06 93.89
50 100 0.00 0.03 10.00 98.63 0.00 0.01 5.09 96.77
100 100 0.00 0.00 10.00 99.72 0.00 0.00 5.01 99.21
0 200 0.00 0.01 10.19 99.73 0.00 0.00 5.16 99.21
25 200 0.00 0.00 10.10 99.86 0.00 0.00 5.04 99.58
50 200 0.00 0.00 9.99 99.95 0.00 0.00 5.09 99.79
100 200 0.00 0.00 9.97 99.99 0.00 0.00 5.02 99.95
200 200 0.00 0.00 9.95 100.00 0.00 0.00 4.98 100.00

Table 5.3: Hypertention data in Gould (1991).
Placeboi = 1) Drug A (i = 2)
Trial n mean SD n mean SD
(@ 47 3.04 920 44 843 817
(b) 53 3.75 T7.07 54 10.20 9.39

the variance of the placebo group seem greater. However,iasreases, i.e., the weight of the
information of trial (a) increase$,increases monotonically, and is no longer small. Furthermore,
thep-value of theF-test withHy : 0? = o3 versusH, : 0% > 02 is 0.979, and, as shown in remark
6, is equal tal — 0 with a = 0.0. Next, we consider the situation f(A). Based on the result of
the simulation in section 5.4, we assume that.50) > 0.95 shows the equivalence, because the
sample size is about 50 for both groups and for both the historical and present data. Then, when
using only the present data & 0.0) anda = 0.2, the equivalence is not shown. By contrast, when
a = 0.5,0.8, 1.0, thatis, when the weight of the historical data is moderate to large, the equivalence
Is shown.

In order to apply these indexes to the real clinical trials, we have to consider whethend~y
can be pre-specified based on sufficiently reliable information. If we can pre-specify them suitably,

we can determine the statistical method for comparing the means based on whetep ~
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Table 5.4: Prior distributions dfu;, o?).
o Placebai = 1) Drug A (i = 2)
0.0 fp, of) o< (o)~ f(uz, 03) o (o)~
0.2 NIG(3.04,9.4,4.2,389.34) NIG(8.43,8.8,3.9,287.02)
0.5 NIG(3.04,23.5,11.3,973.36) NIG(8.43,22.0,10.5,717.55)
0.8 NIG(3.04,37.6,18.3,1557.38) NIG(8.43,35.2,17.1,1148.08)
1.0 NIG(3.04,47.0,23.0,1946.72) NIG(8.43,44.0,21.5,1435.10)

Table 5.5: Posterior distributions ¢fi;, o7).
a Placebai = 1) Drug A (i = 2)
0.0 NIG(3.75,53.0,26.0,1299.61) NIG(10.20,54.0,26.5,2336.56)
0.2 NIG(3.64,62.4,30.7,1692.98) NIG(9.95,62.8,30.9,2647.29)
0.5 NIG(3.53,76.5,37.8,2281.18) NIG(9.69,76.0,37.5,3103.08)
0.8 NIG(3.46,90.6,44.8,2868.07) NIG(9.50,89.2,44.1,3551.40)
1.0 NIG(3.42,100.0,49.5,3258.89) NIG(9.41,98.0,48.5,3847.62)

holds or not. On the other hand, if we cannot pre-specify them, it may be hard to determine the
statistical method for comparing the means based on whétfb&n > ~ or not because it depend

on the choice ofy, A and~. In such case, we have to determine the statistical method based only on
the present trial data, and we can utilz¢A)’s for severak’s to scrutinize the appropriateness of

the method. Depending on the value9gfA)’s, we may conduct sensitivity analysis by changing

the statistical method for comparing the means.

5.6 Conclusion

We have proposed the Bayesian index of superiority to make a more efficient decision for compar-
ing the variances between two groups than possible with the conventietest. This index was
expressed by the hypergeometric series and the cumulative distribution functions of well-known
distributions. Furthermore, we showed that as the amount of prior information decreases, the
Bayesian index of superiority approaches the- p) value of theF-test with Hy : 0? = o3
versusH, : o2 > o2. Moreover, if the prior distribution ofu;, 0?) is f(u;, 0?) < (02)~! for

i = 1,2, then Pfo? > o3 | x1,x3) = 1 — p holds. This indicates that the Bayesian index with a
“non-informative” prior or “zero prior effective sample size” can have the same statistical proper-

ties as thef'-test; however, with incorporation of suitable historical data, the Bayesian index can
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Table 5.6: Marginal posterior distributions of .

« Placebdi = 1) Drug A (i = 2)
0.0 Inv-Ga(26.0,1299.61) Inv-Ga(26.5,2336.56)
0.2 Inv-Ga(30.7,1692.98) Inv-Ga(30.9,2647.29)
0.5 Inv-Ga(37.8,2281.18) Inv-Ga(37.5,3103.08)
0.8 Inv-Ga(44.8,2868.07) Inv-Ga(44.1,3551.40)
1.0 Inv-Ga(49.5,3258.89) Inv-Ga(48.5,3847.62)

Table 5.7: Bayesian index of superiority and equivalence.

Superiority Equivalence
oY 0 1-6  0,1.10) 6.(1.25) 6.(1.50) 6,(2.00)
0.0 0.021 0.979 0.084 0.331 0.810 0.998
0.2 0.043 0.957 0.158 0.509 0.926 1.000
0.5 0.087 0.913 0.281 0.715 0.984 1.000
0.8 0.140 0.860 0.403 0.845 0.997 1.000
1.0 0.179 0.821 0.476 0.899 0.999 1.000

potentially be used to make a more efficient decision. In addition, we proposed the Bayesian index
of equivalencé,.(A), which was evaluated with a Monte Carlo simulation. The results showed that
the percentage satisfyirtg(A) > ~ heavily depends on the sample size. Therefore, the appropriate
values ofA and~ must be decided on a case-by-case basis. If we mainly focus on comparing the
variances, we can utilize the index of superiority and equivalence based on the objectives of trials.
If we want to check the assumption about the variances in some statistical method, we can utilize
the index of equivalence. In any case, in order to use these indexes for the confirmatory purpose,
it is crucial to pre-specifyy;, ap, A, and~y suitably based on the sufficiently reliable information
becausé and whethef.(A) > ~ or not depend on them. Therefore, the important future work

is to develop a suitable method for constructing the prior distributions, including selecting suitable

historical data, and deciding;, a», for the conditional power prior.
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Chapter 6

Bayesian non-inferiority test for two
binomial probabilities as the extension of

Fisher's exact test

6.1 Introduction

When approved treatments exist for some diseases or symptoms, non-inferiority trials are planned
to show that the new treatment is not worse than an approved treatment by more than a speci-
fied margin. Such trials have gained importance in drug and medical device development in re-
cent years. In order to show the non-inferiority, frequentist methods have often been used with
Hy: 0, < 60,— AversusH, : #, > 0, — A for some parametersy, 6, (e.g., means of normal distri-
butions, probabilities of binomial distributions, rate parameters of Poisson distributions, etc.) and
non-inferiority marginA > 0. Recently, on the other hand, Bayesian methods have been studied
Gamalo et al. (2011, 2016, 2014); Gamalo-Siebers et al. (2016); Ghosh et al. (2016); Kawasaki and
Miyaoka (2013); Kawasaki et al. (2016). While the frequentist methods usually use the historical
data only for specifying the non-inferiority margik, Bayesian methods can utilize the historical
data to specify the prior distributions, thereby enabling more efficient decision making. Bayesian
methods often evaluate the posterior probabilityffbeing true, i.e., Rf; > 0, — A | X1, X5)
where X, X, are data of the trial treatment group and the active control group, respectively, in

present study. The FDA guidance ( US Food and Drug Administration and others (2010)) states
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that “For Bayesian hypothesis testing, you may use the posterior distribution to calculate the prob-
ability that a particular hypothesis is true, given the observed data.” in "5.2 Hypothesis testing”.
Therefore, the above procedure can be interpreted as the Bayesian non-inferiority test. For bino-
mial dataX; ~ Bin(ny,m) and X, ~ Bin(ny, m2), Gamalo et al. (2011) evaluated the posterior
probability P{m; > m — A | X3, X5) to demonstrate the non-inferiority. However, their calcu-
lation method includes the normal approximation and Monte Carlo approximation which are not
accurate. Alternatively, Kawasaki and Miyaoka (2013) calculated the integral analytically and ex-
pressed it by using the integral of the Appell hypergeometric series, which is quite complicated to
calculate. In addition, the relationship between the method in Gamalo et al. (2011) and the fre-
guentist method is not clear. For the superiority test, Kawasaki et al. (2014), Altham (1969) and
Howard (1998) derived a clear relationship between the posterior probability ape/éhee of the
Fisher's exact test. In this chapter, we extend the method proposed by Gamalo et al. (2011) to the
case where the non-inferiority margik is fixed and the historical data can be utilized. First, we
derive the exact representation of the posterior probabiliti/ obeing true under mild conditions.
Then, we propose a framework that is more flexible than the method proposed by Gamalo et al.
(2011). In our framework, we can incorporate the historical data flexibly by utilizing the condi-
tional power prior and the prior effective sample size. Further, we show the relationship between
the posterior probability and thevalue of Fisher’s exact test. From this relationship, we can han-
dle both superiority and non-inferiority in the same framework. We evaluate the proposed method
by using Monte Carlo simulations. Additionally, we apply our methods to two HIV clinical trials.
Cuffe (2011) stated that these two trials are similar based on the six criteria suggested by Pocock
(1976). We treat one of the trials as the historical trial and the other as the present trial. For these
trials, however, there are almost four times as much historical data as present data. Therefore, the
method proposed in Gamalo et al. (2011) seems to borrow too much information from the historical
trial. On the other hand, our method can control the quantity of information borrowed. Finally, we
conduct the sample size calculation utilizing the historical data to reduce the sample size of the new
trial.

The remainder of this chapter is organized as follows. In Section 6.2, we introduce the Bayesian
non-inferiority test with a fixed margin. Next, we describe the proposed method in Section 6.3.

Subsequently, we describe the simulations conducted for evaluating the operating characteristics in
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Section 6.4. Then, we present a real data analysis and sample size simulations based on the real

historical data in Section 6.5. Finally, in Section 6.6, we present our concluding remarks.

6.2 Bayesian non-inferiority test

6.2.1 General configuration

Let Xy, Xoy be the random variables corresponding to the responses of trial treatment and the
active control group in the past trial, respectively. Ferf 1,2, let X,y ~ Bin(n;y, m;5), and, for

the moment, let the prior distribution af; be Beta(ay;, Bo;). Later, we allow for some improper
priors. Next, in the present trial, l1&f;, X, be the random variables corresponding to the responses
of trial treatment and the active control group, respectively, and supfipse Bin(n;, ;) for

i=1,2.

6.2.2 Gamalo’s fully Bayesian method with fixed margin

Here, we introduce the modified version of Gamalo’s fully Bayesian method proposed in Gamalo
et al. (2011) to the situation where the non-inferiority mardims pre-specified, and the posterior

probability is calculated using the Monte Carlo approximation. This method utilizes the data of the
active control group from the past trial to construct the prior distribution of the same group in the

present trial. Here, the posterior distributionmef; is given as
Ton | Xow ~ Beta(aps + Xom, Boz + nor — Xon).

Then, let the prior distribution af, be Beta(ags + Xom, fo2 + nog — Xom). There are no data of
the trial treatment in the past trial. Therefore, let the prior distribution dfe Beta(aq, 5;). Then,

the posterior distributions of; andr, are given as follows:

T ’ X1 ~ Beta(a1 + Xl,ﬁl +ny — Xl),

7y | Xo ~ Beta(apy + Xog + Xo, Bo2 + nog — Xog + 1o — Xo).
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For the simulation and modified data analysis section in Gamalo et al. (2011), thay,use6, =

ap2 = Po2 = 1. Then, the posterior probability is calculated using the Monte Carlo approximation

as follows:
N 1 &
P(’iTl Z T —A | X17X2) e lel(ﬂu Z 7T27Z' —A)
wherer; ; andm,,; fori = 1,..., M are the independent random samples from the posterior dis-

tributions of r; and m,, respectively. Here, define the Bayesian decision criterion that the trial

treatment is non-inferior to the active control if

~

P(m > m— A | X, X5) >p7,

wherep* is the pre-specified value. In the simulation section in Gamalo et al. (2p1i%)assigned

a value of 0.81, such that it provides sufficient control of type | error that is not too conservative.
In this method, (i) the probability calculation is based on the Monte Carlo approximation, (ii)

past trial dataX,y has the same weight as the present thal and (iii) p* is determined in a

heuristic way. We investigates these points in the following.

6.3 Proposed method

Similar to Gammalo’s fully Bayesian method described earlier and the method proposed in Kawasaki
and Miyaoka (2013), we evaluate the posterior probabilityrPr> m — A | X1, X5) with pre-
specified fixed non-inferiority margia. This can be considered as the Bayesian hypothesis testing
described in FDA guidance (US Food and Drug Administration and others (2010)). Here, we claim
that the trial treatment is non-inferior to the active control if/Rr> m — A | X1, Xy) > p*

with pre-specifieg*. In this section, (i) we give the exact expression for the posterior probability
Pr(my > m — A | X3, X5) under some mild conditions, and (ii) we propose the Bayesian non-
inferiority test that can flexibly incorporate the historical data and can be seen as the extension of

Fisher’s exact test by constructing the prior distributions and deciding the thresholgvalue
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6.3.1 Exact calculation of the posterior probability

First, we consider the exact calculation of the posterior probability,Pr 7 — A | X7, X5).

Gamalo et al. (2011) used the Monte Carlo simulation or normal approximation, and Kawasaki
and Miyaoka (2013) used the normal approximation or the integral of the Appell hypergeometric
function. These methods seem insufficient because Monte Carlo simulation is not deterministic,
normal approximation is not accurate, and the integral of the Appell hypergeometric function is

quite complicated. Here, we derive the simple exact formula.

Theorem 6.1.Suppose that far= 1, 2, the posterior distribution; ~ Beta(a;, b;) with a;, b; € N,

then
Pr(ﬂ'l > Ty — A | Xl,XQ)
=Ia(az, by)
a1—1b1—1
G1+b1—1 a1+b1—31—82—2 a1 o
S(=1)ns ,Aa1+b1 1—s1—s9
(201 G| G e N
S1 + 8o B(CLQ + S1, b2 + 82)
- Li_A(b
X ( S1 ) B(a2’b2) 1 A( 2+327a2+31>
_i_alz_:l(a1+bl_1)B(a2+81,bz+a1+bl—1—sl)
s1=0 S1 B(a27 b2)
X Li_a(by+ a1+ by — 1 —s1,as + 51), (6.1)
where
L(a,b) = o /w 1= at
’ B(a7b) 0

is a regularized incomplete beta function foK = < 1 and0 < a, b.
Here, the conditiom, b, as, bs € N is crucial when applying equation (6.2), which relates the
beta distribution and binomial distribution.

Proof. We apply the following formula

k—1

)y ner 1 ' -1 e
Z<7’)p A=p) = B(k,n—k+1)/p 21— 2)" e (6.2)

r=0
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for0 < p <1andn,k € N. Here,

PI’(7r1 > Ty — A | X17X2)
_/1 /1 1 a1—1(1 . >b1—1 ](0 < < 1)d 1 a2_1(1 B )bQ—ld
o s Blapy ™ IO S S i ) ()
N 0 m2—A B(alvbl)ﬂl 7T1 == ™ B(as, ()2)7T2 2 up)

1 1
- 1 a;—1 by—1 1 . b1
Tl ) 0 < m < Ddmy | - =722 (1 — )2
+/A (/ﬂz—A Blar, b)) =) W=m=l) 7Tl) Blas,bs) (L= m)* dm,

where!(-) is the indicator function. When, < A,

! 1
_1 a1—1 bi—1 / 1 w1 -
1 1— 1 LJ(0 < < 1dm = I 3| 1— R
/7r2—A B(alabl)wl (1=m) (0<m < L)dm 0 B(a1,b1)7T1 (1—m) s}

Therefore,

A 1
_1 ai—1 bi—1 1 . _—
! 1 - ! . _[ < < ]_ d - 2 1 _ 2 d
/0 (/ﬂz—A Blarb) " =) O=m=1) 7T1) Blas, b) 2 (L= m)™ drm,

° 1 1 ba—1
e - @ ga2— 1 _ 12— d
/0 B(ag,bg),/b ( 7T2) Uy

:IA<CL2, bg)
Next, whenmy, > A,
! 1
/ ——— a1 =) 10 € mp < 1)dm

1
1
= —7-‘-‘11_1 1—1 bl_ldﬂ'
/,r A Blay™ (Lo m)tdm

S (T i Ay (- e

r1=0
a1—1 T1

a1+b1—1){z<rl) 51 ri—8

= ’/TQ (_A) ! !
r1=0 < " 51=0 51
a1+bi—1—r1
by —1—
y { Z (a1 + 182 7’1) (1 . 7{_2)32Aa1+b1—1—r1—82}
$20=0
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_“12—:1 Z ‘“*blz‘l‘” <a1 +by - 1) (7“1) (a1 +b —1— m)
r1=0s1=0 s2=0 & o1 %2
% (_1)1“1731Aa1+b1*1*81*52 . ﬂ-;l<1 _ 7-‘-2)32.

Here,

1 1
1 -1 bi—1 )
— "1 =) 10 < 71 < Ddm
/A(/WZ_A Bl o)™ =™ (0<m <1)dm

1
X — . 7Tl212—1(1 . 7T2)b271d71'2

B(a27b2)
ai—1 7 a1+bi—1—r
— 121 Zl 1+121 1 (al + by — 1) <T1> <a1 +b—1-— 7’1) (_1)7”1—31Aa1+b1_1_51_82
r1=0 s1=0 s59=0 1 S1 52

1 1
X — az+s1—1 1 — bz+82—1d
B(as,by) /A 2 (1= m) 2

a1—1 7r1 a1+bi—1-r
= 1—1 Zl 1+1zl 1 a;+b —1 T a+b—1—m (—1)”751A“1+b1*1*51*32
= = 1 S1 S9

r1=0 s1=0 s2=0
B(az + 51,02 + s2)
B(a'27b2)

al— r1 aj+bi—1—r
- 121 Zl 1+1ZI 1 atb—l & ap+by—1—m (_1)T1—51Aa1+b1—1—51—32
r1 51 S

r1=0 s1=0 82=0

(1 = 1Ia(ag + 51,00 + s2))

% B(ay + 51,0y + s2)
B<a’27b2)

. [1,A(b2 + S92, 9 + 81)
From the above, we get

Prim, > m — A| X1, Xo)

ai—1 r1 ar+bi—1-r1
ay + b1 —1 ™ ap + bl —1-r r1—81 A a1+b1—1—s1—s2
SRS 35 S i St [ SR

r1=0 51=0 s2=0
Bl(az + 51,02 + s2)
3(02752)

a1—1 a1—1 a1+b1—1—r1
ar +br —1 r ar+b—1-—mr T1I—S1 A G —1-s1—s5
:]A<(12, bg) + Z Z Z ( ! rll ) (31) ( 1 5 (_1) 1-S1 A 1+b1—1-s1—52

s1=07r1=51 $2=0

- L1_A(by + S2,a9 + 51)

Bl(ag + 51,02 + s2)
B(CLQ’Z)Q)

~L1_a(bg + 52,02 + 51)
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51=0 s2=017r1=51
B(as + s1,b2 + s2)
B(a’27 b?)

a1—1a1+b1—1—s1 a1+b1—1—s2
a1+b1—1 1 Cl1—|—b1—1—7“1 _ e
—1)t 81Aa1+b1 1-s1—s2
XX X (T e

s1=0 so2=b1 ri=s1

LA (b2 + 52,02 + 51)

B(ag + s1,by + s2)

: ]1—A(b2 + S92, Q9 + 81)

B(a2762)
a1—1b1—1 (a1—1 a; by — 1 , G b — 1
:]A(CLQ,bQ) + Z Z { Z ( 1 rl > (81> < 1 18 1) (_1)7‘1—$1Aa1+b1—1—51—32}
$1=0 s2=0 \ri=s1 1 1 2
B(ay + s1,by + 9)
¥ ARUN{Y
B(a27b2> 1 A( 2+527a2+51)
a1—1
a1+ by — 1\ B(as + s1,bs + a1 + by — 1 — 1)
I A(b by — 1 —
+SZ=0< 51 ) B(ag,bg) 1 A( 2+ a1+ 0 817a2+31>
a1—1b1—1 a b — 1 a1+ b — 51 — 59— 9
:[ a 7b -+ 1 1 )( 1 1 1 2 ) (=1 a;—s1—1 Aa1+b1717‘91752
a0, ) zz( o AP RIS
S1+ S2 B(a2+31,b2+82)
~Ii_A(b
X ( . ) Blas, by) 1-a(b + 89, a2 + s1)
a1—1
al_l_bl_l B(a2+817b2+a1+b1—1—81)
~Li_A(b by — 1 —
+ Z ( $1 ) B(az, by) 1-a(ba 4+ ay + by S1, a2 + S1)

s1=0

O]
From the formula 6.1, we obtain the following relations:
Corollary 6.2. If aq, b1, a0, by € N, then
lim PI’(7T1 > Ty — A | X17X2) = PI’(7T1 > Ty | X17X2). (63)
A—+40
Proof. From Altham (1969), the right hand side can be expressed as follows:
a1—1
a1+b1—1 B(a2+7‘1,b2+a1+b1—1—7‘1)
Pr X1, X3) = .
(7Tl > o ‘ 1, 2) TIZ:O ( r ) B(CLQ, bg)
The rest of the proof follows from the direct calculations from formula (6.1). O

Corollary 6.3.
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If ay,b1,a2,bo € NandA € Q, then
Pr(7T1 > Ty — A | Xl,XQ) S Q (64)

Proof. In (6.1), sinceauy, by, a2,b2 € N, 51,5 € {0} UN,0<s; <a; —1and0d < s, <b —1,
(al—i-bl—l) (a1+b1—51—32—2) (31+32> (a1+b1—1)
) b ) G Q'
51+ S9 a; —s; — 1 S1 S1
SinceB(z,y) = I'(z) - I'(y)/T'(x +y) and forx € N, I'(z) = (z — 1)! € N, therefore

B((Ig + Sl,bg + SQ),B(CZQ,bQ),B(CZQ =+ S1,b2 +a; + bl —1- 81) € Q

Finally, from 26.5.4 in Abramowitz and Stegun (1964), éon € N withn > ¢ and0 < p < 1,

Lan—a+1)= i (Z>pr(1 — )

r=a

Then, wheru,, by € N, s1, s € {0} UN andA € Q,
A@FTbrImsms2 T (a,by), I a(by + 89,09 4+ 81), [i_a(by + a1 + b1 — 1 — 81,05 + 51) € Q.
From the above, all the terms in (6.1) areQntherefore
Pr(m > m — A | X1, X5) € Q.

]

The term "exact” expression is sometimes controversial. However, our expression is no doubt
"exact” because, from the proof of the relation (6.4), the right hand side of (6.1) is the finite sum of
the rational numbers.

Our exact expression is useful for decision making in actual clinical trials because the posterior
probabilities are accurate and uniquely determined, and the decision making does not depend on

the random seeds. However, it takes a little long time to calculate the exact value shown in section
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6.4.1. Therefore, in the following, we also use the Monte Carlo approximation when we conduct

the Monte Carlo simulations, which, in nature, depend on the random seeds.

6.3.2 Bayesian non-inferiority test as the extension of Fisherexact test

Next, we construct the framework of the Bayesian non-inferiority test which can be seen as the
extension of Fisher’'s exact test. In order to construct suitable prior distributions afd 7,

we first refer to the following theorem shown, at least in a modified form, in Kawasaki et al.
(2014), Altham (1969), and Howard (1998). This theorem investigates the relationship between the

probability of Bayesian superiority test and {healue of Fisher’s exact test.

Theorem 6.4( Kawasaki et al. (2014), Altham (1969), Howard (1998puppose that the priors
of m, and, are f(m;) o m; " and f(m2) o (1 — m,)~}, respectively, and(; > 0, X, < n,, then
between the Bayesian posterior probabilitf7Rr > w5 | X, X5) and the one sideg-value of

Fisher’s exact test witltl, : m; < 7y versusH, : m; > w9, the following relation holds
Pr(7r1 > Ty | Xl,XQ) =1 —P.

Proof. See Kawasaki et al. (2014), Altham (1969), or Howard (1998). O

Next, we consider the conditional power prior discussed by Ibrahim and Chen Ibrahim and
Chen (2000). Let us denote the likelihoodmf; as L(m;y | X;x) and the probability density
function of the prior ofr;; as fo;(mx). Then, the "posterior” distribution of;; is constructed

based on the conditional power prioraf; as
f(mim | Xim) o< L(mig | Xom)™ foi(mim),

wherea; is a parameter that weighs the historical data relative to the likelihood of the present trial.

Then, by replacingr;z by 7;, we can construct the conditional power priorfas
f(mi | Xim) o< Ly | Xim )™ foi(m3).

Similar to Theorem 6.4, we defing, (7)) o« 7' and fpo(m) o (1 — m)~'. WhenX,y >
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0, Xog < may, the conditional power prior of; andn, are Beta(ag X1g, ao1(nig — Xag) + 1)
andBeta(ape Xog+1, ap2(nag — Xom)), respectively. However, we cannot use the exact expression
for the posterior probability (6.1) for the general beta prior. Therefore, we modify the priors and

let all the parameters of beta distribution be natural numbers. Hence, we let

oy = lanX1a), B = a1 (mm — Xum)] + 1,

Qg 1= [CLOQXQH] + 1,5y = [CLOQ(n2H - X2H)]?

where[ ] is the floor function. Finally, we assume the priormfto be Beta(ay, 1) if a; > 0,
otherwise it is proportional ta;*(1 — m;)%~!, and assume the prior af, to be Beta(as, 3,)
if 55 > 0, otherwise it is proportional tm§‘2‘1(1 — my)~t.  After the present trial, let; :=
a; + X, b = B+ (ny — X;) fori = 1,2, If X3 > 0,X, < no, then the posterior of; is

Beta(a;, b;) fori = 1, 2. Hence, the following theorem holds.

Theorem 6.5. (i) If X; > 0, X5 < ng, then between Pr; > m — A | X3, X,) and the one
sidedp-value of Fisher’s exact test witH,, : m < m, VersusH; : m; > my, the following

relation holds

lim Pr(7T1>7T2—A’X1,X2):1—p.

ao1,002,A—+0

(i) Supposeny, 1, as, Ba,mi,me € N, 0 < by < my and0 < ky < mo — 2. Then between
Primy > m — A | X1, Xo) givenXy = ky —ag,ng = mqg — (q + F1) + 1, Xy = ky —
az + 1,my = me — (ag + (2) + 1, and the one-sideg-value of Fisher’s exact test with

X1 = k1, Xo = ko, ny = myq, ny = me, the following relation holds
Algl}ro Primy > 7 — A | X1, X)) =1—p.

Proof. (i) When X; > 0, X5 < na,

a; = a1 + Xy = [a Xamg) + X1 €N,

by =61+ (n1 — X1) = [aon(nmig — Xum)] + 1+ (n1 — Xy) €N,

98



as = ag + Xo = [apeXom] + 1+ Xo € N,

by = Ba + (ne — Xo) = [ao2(nem — Xom)] + (ne — Xo) € N.
Then,

hHl (al, bla asg, b2) = (Xl, (n1 — Xl) + 1,X2 + 1, Ng — Xg)

ao1,a02—>+0

The right hand side corresponds to the set of parameters of the posterior beta distributions for the
priors f(m1) o< ;b andf () o (1—m,)~L. Then, the rest of the proof follows from equation (6.3)
and Theorem 6.4.

(i) When0 < k1 < my and0 < ky < ma,

CL1:Oé1+X1:Oél+(k‘1—CY1):]€1EN,
bh=F+m—-X)=F%+{m—(aa+p)+1} = (b —1) =mi — ki +1€N,
CL22042+X22012+(/{32—062+1):k2+1€N,

by = Po+ (g — Xo) = o +{ma — (ag + B2) + 1} — (kg —ax + 1) =my — ky € N.

The rest of the proof is almost the same as (i). O

From Theorem 6.5, we can consider the Bayesian non-inferiority test basedmnPrr, —
A | X, X,) as the extension of Fisher's exact test. Therefore, in the following, we claim that
the non-inferiority of the trial treatment holds when(®r > m — A | X, X5) > 0.975, i.e.,
p* = 0.975. This corresponds to the one sided Fisher’s exact test at significance IeieivRén
ao1, ag2, A — +0. Therefore, we can switch between superiority and non-inferiority in the same
framework byA — +0. Further, if we chooseq, = 1, our method reduces to the Gamalo’s
fully Bayesian method with fixed margin. However, it may borrow too much information from
the historical data by, = 1 when the historical trial is larger than the present trial or when the
historical trial is not significantly similar to the present trial. For example, see the real data analysis
in Section 6.5.1.
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6.4 Simulations

In this section, we describe two types of simulations that were conducted. First, we evaluate the
accuracy and the computation time of the Monte Carlo approximation. Second, we evaluate the type
| error rate and the power of the proposed Bayesian non-inferiority test. In this section, we suppose
that historical data exist only for the active control group like that in Gamalo et al. (2011). In the
following, let N be the number of iterationg/ be the number of the Monte Carlo sampling points,

agz be the parameter of the conditional power prias,, no, no57) be sample sizes, angh, po, parr)

be the probabilities of the binomial distributions. Here,detr, be the random variables from

the Bayesian viewpoint, and, p, be the fixed parameters for generating the simulation data and

expressing the hypotheses.

6.4.1 The accuracy of the Monte Carlo approximation and computation time

First, we evaluate the accuracy of the Monte Carlo approximation using the following procedures:
1. SpecifyN, M, andA.
2. Generater, ; ~ Beta(75,25), my; ~ Beta(75,25) fori =1,..., M, independently.

3. Calculate the estimated probability

~

P(m >m—A| Xy, Xy) = —Z[(Wu > Mo — A)

=]~

where!(-) is the indicator function.
4. Go back to step 2. and repeat the simulation’¥drmes.

Table 6.1 shows the summary statistics of the Monte Carlo approximations for 0, 000, M =
10%,10%,10%,105,107, andA = 0.1. Here, from the exact expression (6.1)(Rr> m, — A |
X1, Xo) = 0.94962.
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Table 6.1: Summary of the result of the Monte Carlo approximations.

Number of sampling N Mean SD Min Q1 Median Q3 Max
103 10,000 0.94951 0.00692 0.92000 0.94500 0.95000 0.95400 0.97200
10 10,000 0.94961 0.00219 0.94090 0.94810 0.94970 0.95110 0.95860
10° 10,000 0.94963 0.00070 0.94710 0.94916 0.94961 0.95010 0.95218
106 10,000 0.94962 0.00022 0.94883 0.94947 0.94962 0.94977 0.95050
107 10,000 0.94962 0.00007 0.94936 0.94957 0.94962 0.94967 0.94989

Next, we consider the computation time to calculate the posterior probability. We performed the
simulations using R 3.2.3 on Intel(R) Core(TM) i5-6200U CPU @ 2.30 GHz; RAM 4.00 GB and
64 bit operating system machine. In order to calculate the exact expression, we utilized R package
Rmpfr. Table 6.2 shows the computation time required to calculate the posterior probability by
the Monte Carlo approximation faV = 1 and M = 103,10%,10%,10%, 107, and by the exact

expression (6.1).

Table 6.2: Summary of the calculation time.

Number of sampling of Exact
the Monte Carlo approximations
103 104 10° 108 107
Time to calculate one probability (sec) 0.017 0.020 0.081 1.261 7.527 17.698

Taking the accuracy and computation time into consideration, we chbse 10° for the

following Monte Carlo simulations.

6.4.2 Operating characteristics of the Bayesian non-inferiority test (setting)

Here, we evaluate the type | error rate and the power of our proposed method. As stated above, we
suppose that historical data exist only for the active control group. The following procedures are

used.

The simulation procedure is as follows:

1. SpeCiny, M, A, (n2H7 nl,ng), ag2, and(ng,pl,pQ). Set COUNT = 0.
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2. Generate the data of the historical ttdy ~ Bin(nay, pag)-

3. Foras := [ageXoy| + 1 @and By := [ag2(nay — Xog)], let the prior distribution ofr, be
Beta(ay, B5) if B, > 0, else let it be proportional t052 (1 — ) ~'. Let the prior ofr, be

proportional tor; *.

4. Generate the data of the present tfigl ~ Bin(ny,p;), and Xy ~ Bin(ng, ps). In the

following supposeX; > 0 and X, < na.

5. Generate the independent samplesQf o, for i = 1,..., M from the posterior distribu-

tions ofm; andms:
771,1' ~ Beta(al, b1)7 7T2,i ~ Beta(ag, bg),

Wherea1 = Xl,bl = (n1 — Xl) +1,a9 := g + X27b2 = ﬁg + (ng — Xg)

6. Calculate the estimated posterior probability

M
~ 1
P(Tfl >7T2—A|X1,X2) :MZI(Wl,i>7T2,i_A)'

=1

7. If ]3(7r1 >y — A | Xy, X5) > 0.975, then increase the COUNT by 1; otherwise, by 0.
8. Go back to step 2. and repeat the simulation¥aimes.
9. Calculate type | error rate or power by COUNTG&

In each iteration above, we also consider the frequentist non-inferiority test whose null and alter-
native hypotheses at, : p; < p, — A andH; : p; > p; — A, respectively. We calculate the
proportion by which the lower limits of the two sided ®3NVald confidence intervals of; — p-

exceed-A.

The parameters are as follows:

e N = 10,000, M = 10%, A = 0.10.
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e ap; =0,0.1,0.25,0.5,0.75, 1.
e For the type | error rate,

— Sample sizes:
« Balancedn, = ny) case(nqm,n1,n2) = (100, 100, 100), (200, 200, 200), (300, 200, 200),
(400, 200, 200), (300, 300, 300), (400, 400, 400).
x Unbalancedn; > ny) case(nsy, ni, ny) = (100, 100, 50), (200, 200, 100), (300, 200, 100),
(400, 200, 100), (300, 300, 100), (300, 300, 150), (400, 400, 100), (400, 400, 200).
— Probabillities:

x p1 = 0.60, py = 0.70 andpyy = 0.65,0.70, 0.75.
e For the power,

— Sample sizes:
x Balancedn; = ny) case(nqy, n1,n2) = (100, 100, 100), (200, 200, 200), (400, 200, 200),
(300, 300, 300), (400, 400, 400).
x Unbalancedn; > ny) case{nsy,ni,ny) = (100, 100, 50), (200, 200, 100), (400, 200, 100),
(300, 300, 150), (400, 400, 100).
— Probabilities:

x (Scenario 1p,5 = p, = 0.70, andp; are from 0.62 to 0.80 by increments of 0.02.

x (Scenario 2pyy = 0.75 > py = 0.70, andp, are from 0.62 to 0.80 by increments
of 0.02.

x (Scenario 3pyy = 0.65 < py = 0.70, andp, are from 0.62 to 0.80 by increments
of 0.02.

6.4.3 Operating characteristics of the Bayesian non-inferiority test (result)

The results of the type | error rate simulations are shown in Table 6.3. First, for the frequentist and
Bayesian methods witly,, = 0, type | error rates are almost always less than 0.025. Next, consider

the Bayesian methods with, > 0. When the distribution of the historical data is the same as that
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of the present ongp,y = po, = 0.70), the type | error rates are almost less than 0.025. Further, for
many situations especially < ag> < 1, they are more conservative than the frequentist method.
For fixedagy, Ssample size and imbalance do not significantly affect the type | error rate. When the
response rate of the historical data is less than that of the presepbane 0.65 < p, = 0.70), the

type | error rates of the Bayesian method (we call the Bayesian type | error rates, in the following)
often exceed 0.025. Inflations tend to be large whgror n,y are large. Further, by comparing,

for example(nqp, n1,n2) = (300, 300, 100), (300, 300, 150), (300, 300, 300), inflation tends to be
greater whems, is small, i.e., when the weight of the historical trial is large. Conversely, when the
response rate of the historical data is more than that of the presefygne- 0.75 > p, = 0.70),

the Bayesian type | error rates tend to be too conservative. In particular, they tend to be more

conservative when the sample sizes of the historicaltrialare large.
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Table 6.3: Type | error rate of the Bayesian and frequentist method at different leyels ahd
sample sizegp; = 0.60, p, = 0.70, A = 0.10).
poy Moy M1 no  Frequentist Bayesian method
age =0 0.1 0.25 0.50 0.75 1.0

100 100 100 0.0246 0.0176 0.0156 0.0152 0.0156 0.0159 0.0180

200 200 200 0.0250 0.0206 0.0173 0.0158 0.0172 0.0186 0.0204

300 200 200 0.0232 0.0189 0.0156 0.0147 0.0161 0.0178 0.0208

400 200 200 0.0257 0.0201 0.0169 0.0159 0.0168 0.0187 0.0207

300 300 300 0.0235 0.0201 0.0170 0.0161 0.0164 0.0169 0.0185

400 400 400 0.0232 0.0197 0.0184 0.0180 0.0186 0.0203 0.0231

0.70 100 100 50 0.0230 0.0165 0.0118 0.0116 0.0143 0.0165 0.0198

) 200 200 100 0.0232 0.0189 0.0146 0.0126 0.0134 0.0153 0.0187

300 200 100 0.0254 0.0204 0.0139 0.0120 0.0140 0.0171 0.0214

400 200 100 0.0204 0.0168 0.0105 0.0102 0.0121 0.0152 0.0181

300 300 100 0.0214 0.0181 0.0123 0.0116 0.0145 0.0180 0.0221

300 300 150 0.0211 0.0178 0.0146 0.0123 0.0153 0.0186 0.0205

400 400 100 0.0242 0.0214 0.0118 0.0118 0.0135 0.0172 0.0226

400 400 200 0.0299 0.0271 0.0188 0.0172 0.0175 0.0198 0.0241

100 100 100 0.0266 0.0178 0.0195 0.0230 0.0310 0.0399 0.0516

200 200 200 0.0235 0.0185 0.0204 0.0268 0.0409 0.0573 0.0742

300 200 200 0.0304 0.0242 0.0282 0.0383 0.0574 0.0757 0.0978

400 200 200 0.0255 0.0210 0.0275 0.0412 0.0656 0.0915 0.1136

300 300 300 0.0247 0.0214 0.0242 0.0318 0.0503 0.0748 0.0993

400 400 400 0.0244 0.0210 0.0257 0.0356 0.0577 0.0846 0.1152

0.65 100 100 50 0.0283 0.0213 0.0197 0.0229 0.0349 0.0467 0.0630

) 200 200 100 0.0247 0.0209 0.0223 0.0334 0.0536 0.0758 0.1012

300 200 100 0.0244 0.0211 0.0239 0.0372 0.0680 0.0993 0.1260

400 200 100 0.0224 0.0186 0.0245 0.0413 0.0761 0.1061 0.1345

300 300 100 0.0202 0.0179 0.0219 0.0363 0.0766 0.1175 0.1545

300 300 150 0.0245 0.0212 0.0255 0.0377 0.0676 0.1001 0.1374

400 400 100 0.0210 0.0179 0.0233 0.0453 0.1030 0.1573 0.2089

400 400 200 0.0241 0.0212 0.0267 0.0430 0.0820 0.1266 0.1674

100 100 100 0.0255 0.0182 0.0135 0.0096 0.0082 0.0075 0.0073

200 200 200 0.0268 0.0214 0.0143 0.0099 0.0067 0.0053 0.0045

300 200 200 0.0227 0.0178 0.0101 0.0060 0.0037 0.0028 0.0023

400 200 200 0.0272 0.0210 0.0104 0.0056 0.0039 0.0024 0.0018

300 300 300 0.0257 0.0217 0.0149 0.0096 0.0053 0.0034 0.0029

400 400 400 0.0258 0.0216 0.0138 0.0088 0.0040 0.0025 0.0023

0.75 100 100 50 0.0236 0.0174 0.0108 0.0064 0.0049 0.0049 0.0050

' 200 200 100 0.0231 0.0188 0.0083 0.0041 0.0026 0.0022 0.0025

300 200 100 0.0236 0.0189 0.0065 0.0022 0.0019 0.0016 0.0018

400 200 100 0.0236 0.0191 0.0052 0.0022 0.0011 0.0008 0.0008

300 300 100 0.0208 0.0177 0.0055 0.0016 0.0010 0.0009 0.0013

300 300 150 0.0232 0.0214 0.0108 0.0052 0.0029 0.0017 0.0016

400 400 100 0.0232 0.0206 0.0046 0.0009 0.0005 0.0006 0.0005

400 400 200 0.0245 0.0215 0.0095 0.0034 0.0010 0.0006 0.0005

Tables 6.4 and 6.5 show the results of the power simulationswith p,y = 0.70 for the
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balancedn; = n») and unbalance@; > n,) case, respectively. When anda,, are small, the

powers of the our proposed method (also referred to as Bayesian powers) are less than the powers
of the frequentist method (also referred to as frequentist powers). On the other hand, when they
are large, the converse holds. For the unbalanced case, when compared to the balanced case, the

Bayesian powers tend to exceed the frequentist ones even with a smaller vaele of
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Table 6.4: Power of the Bayesian and frequentist method at different levejsaofd sample sizes

(scenario 1p,y = po = 0.70, A = 0.10, balanced).
P p1 nem  n1  ng Frequentist Bayesian method
age =0 0.1 0.25 0.50 0.75 1.0

0.62 100 100 100 0.0469 0.0356 0.0332 0.0330 0.0340 0.0357 0.0400
0.64 100 100 100 0.0866 0.0673 0.0641 0.0625 0.0671 0.0724 0.0804
0.66 100 100 100 0.1469 0.1149 0.1124 0.1136 0.1222 0.1280 0.1419
0.68 100 100 100 0.2420 0.1985 0.1953 0.2021 0.2144 0.2240 0.2433
0.70 100 100 100 0.3494 0.2965 0.2968 0.3079 0.3279 0.3472 0.3674
0.72 100 100 100 0.4777 0.4139 0.4194 0.4406 0.4722 0.4954 0.5172
0.74 100 100 100 0.6016 0.5366 0.5479 0.5764 0.6098 0.6368 0.6623
0.76 100 100 100 0.7198 0.6621 0.6768 0.7057 0.7392 0.7642 0.7799
0.78 100 100 100 0.8255 0.7825 0.7983 0.8251 0.8509 0.8714 0.8827
0.80 100 100 100 0.9093 0.8738 0.8880 0.9103 0.9285 0.9386 0.9438
0.62 200 200 200 0.0625 0.0505 0.0475 0.0452 0.0455 0.0481 0.0531
0.64 200 200 200 0.1322 0.1118 0.1083 0.1116 0.1192 0.1274 0.1382
0.66 200 200 200 0.2533 0.2233 0.2250 0.2349 0.2560 0.2685 0.2874
0.68 200 200 200 0.4098 0.3714 0.3778 0.3944 0.4239 0.4432 0.4664
0.70 200 200 200 0.5875 0.5525 0.5625 0.5837 0.6232 0.6454 0.6649
0.72 200 200 200 0.7519 0.7164 0.7340 0.7648 0.7975 0.8164 0.8297
0.74 200 200 200 0.8785 0.8526 0.8672 0.8929 0.9146 0.9249 0.9333
0.76 200 200 200 0.9537 0.9429 0.9529 0.9647 0.9749 0.9782 0.9808
0.78 200 200 200 0.9847 0.9807 0.9845 0.9892 0.9930 0.9943 0.9952
0.80 200 200 200 0.9955 0.9940 0.9963 0.9978 0.9984 0.9987 0.9990
0.62 400 200 200 0.0605 0.0501 0.0471 0.0477 0.0527 0.0581 0.0631
0.64 400 200 200 0.1340 0.1162 0.1136 0.1178 0.1301 0.1395 0.1519
0.66 400 200 200 0.2475 0.2183 0.2220 0.2388 0.2678 0.2909 0.3095
0.68 400 200 200 0.4127 0.3768 0.3973 0.4261 0.4692 0.4951 0.5162
0.70 0.70 400 200 200 0.5841 0.5462 0.5762 0.6212 0.6694 0.6929 0.7086
' 0.72 400 200 200 0.7541 0.7246 0.7574 0.7984 0.8379 0.8569 0.8699
0.74 400 200 200 0.8765 0.8559 0.8846 0.9159 0.9382 0.9487 0.9545
0.76 400 200 200 0.9522 0.9421 0.9595 0.9739 0.9841 0.9865 0.9877
0.78 400 200 200 0.9825 0.9783 0.9882 0.9934 0.9963 0.9977 0.9982
0.80 400 200 200 0.9967 0.9954 0.9983 0.9994 0.9996 0.9998 0.9998
0.62 300 300 300 0.0753 0.0653 0.0617 0.0620 0.0639 0.0673 0.0734
0.64 300 300 300 0.1800 0.1588 0.1576 0.1663 0.1751 0.1875 0.2004
0.66 300 300 300 0.3487 0.3189 0.3266 0.3449 0.3719 0.3923 0.4146
0.68 300 300 300 0.5653 0.5308 0.5449 0.5741 0.6061 0.6310 0.6509
0.70 300 300 300 0.7684 0.7411 0.7619 0.7884 0.8150 0.8348 0.8484
0.72 300 300 300 0.9074 0.8909 0.9064 0.9228 0.9399 0.9482 0.9545
0.74 300 300 300 0.9704 0.9638 0.9704 0.9783 0.9841 0.9865 0.9887
0.76 300 300 300 0.9913 0.9892 0.9922 0.9961 0.9979 0.9984 0.9986
0.78 300 300 300 0.9982 0.9980 0.9985 0.9991 0.9995 0.9999 0.9999
0.80 300 300 300 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.62 400 400 400 0.0863 0.0736 0.0714 0.0736 0.0780 0.0840 0.0907
0.64 400 400 400 0.2297 0.2100 0.2109 0.2157 0.2307 0.2444 0.2602
0.66 400 400 400 0.4422 0.4149 0.4225 0.4475 0.4769 0.4987 0.5181
0.68 400 400 400 0.6884 0.6620 0.6788 0.7075 0.7382 0.7581 0.7747
0.70 400 400 400 0.8710 0.8550 0.8715 0.8921 0.9135 0.9257 0.9338
0.72 400 400 400 0.9623 0.9561 0.9646 0.9735 0.9815 0.9844 0.9862
0.74 400 400 400 0.9943 0.9930 0.9951 0.9971 0.9984 0.9989 0.9992
0.76 400 400 400 0.9992 0.9990 0.9994 0.9998 0.9999 0.9999 0.9999
0.78 400 400 400 0.9999 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000
0.80 400 400 400 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Table 6.5: Power of the Bayesian and frequentist method at different levejsaofd sample sizes

(scenario 1p,y = po = 0.70, A = 0.10, unbalanced).
P p1 nem  n1  ng Frequentist Bayesian method
ap =0 0.1 025 050  0.75 1.0
0.62 100 100 50  0.0375 0.0290 0.0250 0.0241 0.0278 0.0318 0.0392
0.64 100 100 50  0.0687  0.0550 0.0505 0.0498 0.0580 0.0639 0.0777
0.66 100 100 50  0.1044 0.0884 0.0835 0.0876 0.1031 0.1175 0.1355
0.68 100 100 50  0.1679  0.1436 0.1418 0.1499 0.1845 0.2072 0.2362
0.70 100 100 50  0.2298  0.2021 0.2073 0.2286 0.2723 0.3039 0.3385
0.72 100 100 50  0.3293  0.2937 0.3095 0.3451 0.4018 0.4418 0.4760
0.74 100 100 50  0.4253  0.3908 0.4130 0.4650 0.5310 0.5728 0.6106
0.76 100 100 50  0.5526  0.5125 0.5490 0.6055 0.6713 0.7105 0.7428
0.78 100 100 50  0.6637  0.6278 0.6698 0.7295 0.7964 0.8314 0.8547
0.80 100 100 50 0.7639  0.7331 0.7776 0.8330 0.8868 0.9098 0.9233
0.62 200 200 100 0.0514 0.0437 0.0365 0.0347 0.0378 0.0433 0.0541
0.64 200 200 100 0.0999  0.0871 0.0817 0.0877 0.1009 0.1140 0.1304
0.66 200 200 100 0.1708  0.1533 0.1516 0.1696 0.1998 0.2266 0.2530
0.68 200 200 100 0.2904  0.2655 0.2734 0.3088 0.3604 0.3969 0.4355
0.70 200 200 100 0.4220 0.3948 0.4186 0.4809 0.5520 0.5874 0.6209
0.72 200 200 100 0.5808  0.5525 0.5910 0.6646 0.7357 0.7700 0.7982
0.74 200 200 100 0.7151  0.6947 0.7385 0.8073 0.8616 0.8880 0.9041
0.76 200 200 100 0.8434  0.8292 0.8699 0.9205 0.9507 0.9623 0.9683
0.78 200 200 100 0.9219  0.9129 0.9452 0.9717 0.9867 0.9905 0.9925
0.80 200 200 100 0.9676  0.9628 0.9810 0.9913 0.9959 0.9974 0.9983
0.62 400 200 100 0.0457 0.0378 0.0309 0.0320 0.0402 0.0483 0.0552
0.64 400 200 100 0.0948  0.0796 0.0735 0.0837 0.1094 0.1256 0.1421
0.66 400 200 100 0.1709  0.1514 0.1592 0.1948 0.2456 0.2793 0.3026
0.68 400 200 100 0.2819  0.2571 0.2898 0.3514 0.4249 0.4627 0.4905
070 070 400 200 100 04294  0.4017 0.4673 0.5472 0.6276 0.6675 0.6926
0.72 400 200 100 0.5705 0.5446 0.6335 0.7325 0.8031 0.8316 0.8501
0.74 400 200 100 0.7255  0.7026 0.8005 0.8750 0.9214 0.9376 0.9473
0.76 400 200 100 0.8441  0.8294 0.9053 0.9523 0.9753 0.9822 0.9851
0.78 400 200 100 0.9223  0.9140 0.9676 0.9873 0.9956 0.9977 0.9982
0.80 400 200 100 0.9656  0.9610 0.9886 0.9973 0.9990 0.9993 0.9996
0.62 300 300 150 0.0595 0.0520 0.0476 0.0453 0.0533 0.0623 0.0723
0.64 300 300 150 0.1287  0.1168 0.1126 0.1167 0.1346 0.1611 0.1835
0.66 300 300 150 0.2497  0.2323 0.2383 0.2623 0.3117 0.3498 0.3832
0.68 300 300 150 0.4054  0.3854 0.4157 0.4664 0.5361 0.5783 0.6093
0.70 300 300 150 0.5812  0.5636 0.6026 0.6706 0.7420 0.7803 0.8047
0.72 300 300 150 0.7532  0.7397 0.7849 0.8453 0.8963 0.9171 0.9290
0.74 300 300 150 0.8927 0.8825 0.9173 0.9509 0.9708 0.9788 0.9822
0.76 300 300 150 0.9567  0.9520 0.9724 0.9882 0.9952 0.9972 0.9981
0.78 300 300 150 0.9853  0.9837 0.9918 0.9979 0.9992 0.9994 0.9998
0.80 300 300 150 0.9966  0.9964 0.9987 0.9994 0.9999 1.0000 1.0000
0.62 400 400 100 0.0525 0.0483 0.0371 0.0389 0.0546 0.0692 0.0822
0.64 400 400 100 0.1075  0.1005 0.0965 0.1173 0.1580 0.1931 0.2254
0.66 400 400 100 0.2060  0.1989 0.2151 0.2692 0.3553 0.4129 0.4549
0.68 400 400 100 0.3352  0.3284 0.3856 0.4887 0.6099 0.6681 0.7077
0.70 400 400 100 0.4980  0.4934 0.5947 0.7213 0.8192 0.8646 0.8878
0.72 400 400 100 0.6576  0.6552 0.7738 0.8845 0.9471 0.9650 0.9714
0.74 400 400 100 0.8037  0.8043 0.9100 0.9688 0.9892 0.9940 0.9956
0.76 400 400 100 0.9037  0.9056 0.9730 0.9939 0.9993 0.9998 0.9998
0.78 400 400 100 0.9657  0.9663 0.9936 0.9997 1.0000 1.0000 1.0000
0.80 400 400 100 0.9878  0.9884 0.9994 1.0000 1.0000 1.0000 1.0000
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Tables 6.6 and 6.7 show the results of the power simulationspwith= 0.75 > p, = 0.70 for
the balancedn, = n,) and unbalancefh, > n,) case, respectively. In these cases, the frequentist
powers are almost always more than the Bayesian powers for all valug&of p; < 0.80. For the

unbalanced case, the Bayesian powers sometimes exceed the frequentist powelsiwhkeyg.
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Table 6.6: Power of the Bayesian and frequentist method at different levejsaofd sample sizes

(scenario 2p,y = 0.75 > py = 0.70, A = 0.10, balanced).
P p1 nem  n1  ng Frequentist Bayesian method
age =0 0.1 0.25 0.50 0.75 1.0

0.62 100 100 100 0.0514 0.0376 0.0277 0.0239 0.0173 0.0144 0.0140
0.64 100 100 100 0.0933 0.0741 0.0605 0.0504 0.0417 0.0376 0.0363
0.66 100 100 100 0.1484 0.1153 0.1007 0.0855 0.0757 0.0697 0.0697
0.68 100 100 100 0.2346 0.1909 0.1708 0.1572 0.1410 0.1332 0.1328
0.70 100 100 100 0.3456 0.2965 0.2697 0.2522 0.2354 0.2274 0.2247
0.72 100 100 100 0.4699 0.4100 0.3885 0.3769 0.3628 0.3525 0.3487
0.74 100 100 100 0.6024 0.5441 0.5285 0.5163 0.5039 0.4974 0.4927
0.76 100 100 100 0.7253 0.6700 0.6620 0.6589 0.6513 0.6482 0.6426
0.78 100 100 100 0.8366 0.7912 0.7864 0.7895 0.7862 0.7831 0.7803
0.80 100 100 100 0.9107 0.8813 0.8820 0.8906 0.8915 0.8940 0.8916
0.62 200 200 200 0.0645 0.0525 0.0405 0.0302 0.0208 0.0161 0.0139
0.64 200 200 200 0.1338 0.1109 0.0936 0.0751 0.0615 0.0521 0.0462
0.66 200 200 200 0.2479 0.2182 0.1912 0.1659 0.1399 0.1239 0.1145
0.68 200 200 200 0.3994 0.3672 0.3364 0.3085 0.2763 0.2550 0.2444
0.70 200 200 200 0.5900 0.5519 0.5272 0.5013 0.4723 0.4466 0.4326
0.72 200 200 200 0.7597 0.7286 0.7125 0.6995 0.6766 0.6574 0.6465
0.74 200 200 200 0.8807 0.8596 0.8527 0.8500 0.8411 0.8292 0.8209
0.76 200 200 200 0.9485 0.9369 0.9353 0.9365 0.9338 0.9275 0.9254
0.78 200 200 200 0.9856 0.9812 0.9819 0.9832 0.9834 0.9823 0.9809
0.80 200 200 200 0.9961 0.9948 0.9953 0.9957 0.9957 0.9957 0.9957
0.62 400 200 200 0.0607 0.0508 0.0309 0.0195 0.0132 0.0098 0.0087
0.64 400 200 200 0.1329 0.1142 0.0799 0.0556 0.0405 0.0336 0.0308
0.66 400 200 200 0.2558 0.2232 0.1779 0.1389 0.1094 0.0942 0.0872
0.68 400 200 200 0.4132 0.3793 0.3225 0.2757 0.2363 0.2128 0.2023
075 0.70 400 200 200 0.5941 0.5535 0.5114 0.4692 0.4278 0.4070 0.3920
' 0.72 400 200 200 0.7556 0.7246 0.6977 0.6761 0.6453 0.6198 0.6069
0.74 400 200 200 0.8769 0.8548 0.8423 0.8345 0.8198 0.8054 0.7959
0.76 400 200 200 0.9500 0.9386 0.9372 0.9365 0.9315 0.9263 0.9206
0.78 400 200 200 0.9851 0.9804 0.9806 0.9815 0.9799 0.9780 0.9758
0.80 400 200 200 0.9963 0.9948 0.9958 0.9963 0.9963 0.9961 0.9963
0.62 300 300 300 0.0772 0.0664 0.0469 0.0329 0.0224 0.0167 0.0148
0.64 300 300 300 0.1796 0.1583 0.1304 0.1049 0.0793 0.0641 0.0571
0.66 300 300 300 0.3540 0.3239 0.2869 0.2517 0.2120 0.1816 0.1671
0.68 300 300 300 0.5643 0.5286 0.4942 0.4582 0.4119 0.3790 0.3614
0.70 300 300 300 0.7500 0.7240 0.7039 0.6847 0.6487 0.6175 0.5985
0.72 300 300 300 0.8984 0.8818 0.8724 0.8642 0.8472 0.8307 0.8191
0.74 300 300 300 0.9674 0.9610 0.9599 0.9570 0.9524 0.9468 0.9422
0.76 300 300 300 0.9920 0.9890 0.9894 0.9895 0.9895 0.9884 0.9862
0.78 300 300 300 0.9989 0.9987 0.9988 0.9989 0.9990 0.9990 0.9988
0.80 300 300 300 1.0000 1.0000 0.9999 0.9999 0.9999 0.9999 0.9999
0.62 400 400 400 0.0820 0.0724 0.0555 0.0399 0.0255 0.0185 0.0144
0.64 400 400 400 0.2330 0.2116 0.1706 0.1341 0.0965 0.0766 0.0671
0.66 400 400 400 0.4499 0.4230 0.3770 0.3286 0.2755 0.2349 0.2142
0.68 400 400 400 0.6944 0.6678 0.6311 0.5922 0.5416 0.4977 0.4691
0.70 400 400 400 0.8633 0.8473 0.8324 0.8124 0.7857 0.7557 0.7347
0.72 400 400 400 0.9647 0.9589 0.9551 0.9487 0.9398 0.9292 0.9186
0.74 400 400 400 0.9931 0.9915 0.9914 0.9919 0.9902 0.9884 0.9862
0.76 400 400 400 0.9988 0.9983 0.9984 0.9984 0.9983 0.9983 0.9981
0.78 400 400 400 0.9999 0.9998 0.9999 0.9999 1.0000 1.0000 1.0000
0.80 400 400 400 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Table 6.7: Power of the Bayesian and frequentist method at different levejsaofd sample sizes

(scenario 2p,y = 0.75 > p, = 0.70, A = 0.10, unbalanced)
P p1 nem  n1  ng Frequentist Bayesian method
ape =0 0.1 0.25 0.50 0.75 1.0

0.62 100 100 50 0.0396 0.0306 0.0213 0.0143 0.0113 0.0104 0.0114
0.64 100 100 50 0.0681 0.0558 0.0391 0.0277 0.0235 0.0229 0.0241
0.66 100 100 50 0.1013 0.0846 0.0658 0.0545 0.0493 0.0479 0.0520
0.68 100 100 50 0.1576 0.1344 0.1116 0.0942 0.0895 0.0893 0.0942
0.70 100 100 50 0.2238 0.1970 0.1684 0.1574 0.1569 0.1595 0.1697
0.72 100 100 50 0.3146 0.2802 0.2548 0.2503 0.2539 0.2573 0.2713
0.74 100 100 50 0.4255 0.3871 0.3685 0.3694 0.3769 0.3852 0.4028
0.76 100 100 50 0.5453 0.5070 0.4962 0.5042 0.5205 0.5326 0.5489
0.78 100 100 50 0.6625 0.6282 0.6294 0.6475 0.6775 0.6893 0.7057
0.80 100 100 50 0.7683 0.7389 0.7488 0.7675 0.8012 0.8139 0.8248
0.62 200 200 100 0.0458 0.0380 0.0241 0.0161 0.0105 0.0091 0.0095
0.64 200 200 100 0.0993 0.0878 0.0607 0.0422 0.0313 0.0276 0.0282
0.66 200 200 100 0.1754 0.1552 0.1201 0.0985 0.0856 0.0778 0.0791
0.68 200 200 100 0.2907 0.2610 0.2184 0.1960 0.1776 0.1693 0.1733
0.70 200 200 100 0.4235 0.3948 0.3571 0.3432 0.3272 0.3176 0.3207
0.72 200 200 100 0.5820 0.5566 0.5311 0.5300 0.5238 0.5154 0.5206
0.74 200 200 100 0.7259 0.7040 0.6946 0.7084 0.7120 0.7090 0.7169
0.76 200 200 100 0.8367 0.8204 0.8253 0.8437 0.8521 0.8542 0.8590
0.78 200 200 100 0.9238 0.9143 0.9244 0.9393 0.9491 0.9499 0.9516
0.80 200 200 100 0.9680 0.9626 0.9707 0.9817 0.9869 0.9873 0.9880
0.62 400 200 100 0.0477 0.0398 0.0166 0.0091 0.0065 0.0051 0.0058
0.64 400 200 100 0.1017 0.0876 0.0470 0.0309 0.0235 0.0235 0.0235
0.66 400 200 100 0.1766 0.1562 0.1032 0.0735 0.0634 0.0609 0.0613
0.68 400 200 100 0.2840 0.2587 0.2005 0.1720 0.1603 0.1556 0.1588
0.75 0.70 400 200 100 0.4259 0.3949 0.3501 0.3265 0.3203 0.3180 0.3200
) 0.72 400 200 100 0.5821 0.5523 0.5313 0.5257 0.5257 0.5211 0.5255
0.74 400 200 100 0.7329 0.7114 0.7092 0.7209 0.7287 0.7293 0.7342
0.76 400 200 100 0.8412 0.8279 0.8442 0.8644 0.8757 0.8757 0.8794
0.78 400 200 100 0.9202 0.9118 0.9349 0.9519 0.9607 0.9614 0.9627
0.80 400 200 100 0.9710 0.9665 0.9806 0.9885 0.9907 0.9915 0.9916
0.62 300 300 150 0.0609 0.0549 0.0325 0.0187 0.0119 0.0098 0.0086
0.64 300 300 150 0.1290 0.1169 0.0812 0.0550 0.0387 0.0327 0.0301
0.66 300 300 150 0.2485 0.2315 0.1829 0.1443 0.1221 0.1083 0.1030
0.68 300 300 150 0.4025 0.3848 0.3363 0.3015 0.2710 0.2573 0.2520
0.70 300 300 150 0.5935 0.5747 0.5433 0.5208 0.4994 0.4838 0.4806
0.72 300 300 150 0.7551 0.7392 0.7255 0.7257 0.7158 0.7087 0.7073
0.74 300 300 150 0.8760 0.8644 0.8661 0.8781 0.8800 0.8784 0.8787
0.76 300 300 150 0.9554 0.9512 0.9566 0.9637 0.9668 0.9663 0.9657
0.78 300 300 150 0.9840 0.9828 0.9863 0.9903 0.9932 0.9932 0.9936
0.80 300 300 150 0.9966 0.9964 0.9975 0.9983 0.9989 0.9991 0.9990
0.62 400 400 100 0.0522 0.0476 0.0172 0.0068 0.0048 0.0043 0.0046
0.64 400 400 100 0.1056 0.0991 0.0494 0.0286 0.0200 0.0177 0.0192
0.66 400 400 100 0.1963 0.1879 0.1233 0.0918 0.0813 0.0801 0.0846
0.68 400 400 100 0.3278 0.3212 0.2558 0.2281 0.2217 0.2249 0.2324
0.70 400 400 100 0.4926 0.4881 0.4519 0.4485 0.4594 0.4676 0.4780
0.72 400 400 100 0.6524 0.6500 0.6583 0.6904 0.7159 0.7272 0.7384
0.74 400 400 100 0.8054 0.8055 0.8351 0.8709 0.8955 0.9035 0.9093
0.76 400 400 100 0.9045 0.9062 0.9385 0.9626 0.9764 0.9781 0.9805
0.78 400 400 100 0.9573 0.9580 0.9811 0.9929 0.9964 0.9971 0.9969
0.80 400 400 100 0.9882 0.9887 0.9965 0.9993 0.9996 0.9996 0.9996

111



Tables 6.8 and 6.9 show the results of the power simulationg,for= 0.65 < p, = 0.70 for
the balancedn; = ny) and unbalanceth; > n,) case, respectively. In these cases, the Bayesian

powers exceed the frequentist powers for almost every scenario where0.10.
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Table 6.8: Power of the Bayesian and frequentist method at different levejsaofd sample sizes

(scenario 3p,y = 0.65 < py = 0.70, A = 0.10, balanced).
P p1 nem  n1  ng Frequentist Bayesian method
age =0 0.1 0.25 0.50 0.75 1.0

0.62 100 100 100 0.0466 0.0353 0.0379 0.0464 0.0615 0.0792 0.0990
0.64 100 100 100 0.0890 0.0668 0.0730 0.0873 0.1143 0.1369 0.1653
0.66 100 100 100 0.1538 0.1183 0.1288 0.1531 0.1949 0.2254 0.2648
0.68 100 100 100 0.2372 0.1918 0.2089 0.2426 0.3002 0.3463 0.3893
0.70 100 100 100 0.3518 0.2976 0.3215 0.3669 0.4356 0.4859 0.5330
0.72 100 100 100 0.4687 0.4068 0.4381 0.4945 0.5719 0.6260 0.6711
0.74 100 100 100 0.6070 0.5476 0.5804 0.6430 0.7155 0.7599 0.7945
0.76 100 100 100 0.7372 0.6802 0.7208 0.7742 0.8353 0.8711 0.8928
0.78 100 100 100 0.8381 0.7907 0.8251 0.8715 0.9149 0.9366 0.9486
0.80 100 100 100 0.9150 0.8859 0.9093 0.9381 0.9618 0.9726 0.9797
0.62 200 200 200 0.0605 0.0493 0.0549 0.0672 0.0980 0.1289 0.1613
0.64 200 200 200 0.1365 0.1151 0.1320 0.1628 0.2210 0.2648 0.3126
0.66 200 200 200 0.2428 0.2142 0.2441 0.3003 0.3848 0.4522 0.5082
0.68 200 200 200 0.4105 0.3734 0.4186 0.4837 0.5738 0.6384 0.6872
0.70 200 200 200 0.5922 0.5520 0.6045 0.6754 0.7626 0.8158 0.8500
0.72 200 200 200 0.7544 0.7207 0.7706 0.8284 0.8897 0.9193 0.9377
0.74 200 200 200 0.8781 0.8556 0.8919 0.9281 0.9602 0.9748 0.9817
0.76 200 200 200 0.9519 0.9410 0.9604 0.9777 0.9908 0.9954 0.9969
0.78 200 200 200 0.9837 0.9793 0.9879 0.9941 0.9977 0.9987 0.9990
0.80 200 200 200 0.9956 0.9949 0.9968 0.9986 0.9994 0.9996 0.9998
0.62 400 200 200 0.0623 0.0519 0.0694 0.1015 0.1535 0.1995 0.2368
0.64 400 200 200 0.1308 0.1111 0.1462 0.2123 0.3113 0.3770 0.4311
0.66 400 200 200 0.2422 0.2141 0.2796 0.3771 0.4947 0.5689 0.6257
0.68 400 200 200 0.4107 0.3711 0.4605 0.5770 0.7005 0.7625 0.8017
065 0.70 400 200 200 0.5848 0.5472 0.6512 0.7610 0.8518 0.8935 0.9171
' 0.72 400 200 200 0.7513 0.7194 0.8104 0.8892 0.9444 0.9644 0.9744
0.74 400 200 200 0.8766 0.8566 0.9181 0.9608 0.9846 0.9903 0.9942
0.76 400 200 200 0.9526 0.9400 0.9744 0.9906 0.9966 0.9985 0.9993
0.78 400 200 200 0.9846 0.9800 0.9941 0.9987 0.9997 1.0000 1.0000
0.80 400 200 200 0.9967 0.9950 0.9987 0.9998 1.0000 1.0000 1.0000
0.62 300 300 300 0.0767 0.0663 0.0770 0.1020 0.1493 0.1929 0.2351
0.64 300 300 300 0.1879 0.1672 0.1972 0.2506 0.3299 0.3967 0.4604
0.66 300 300 300 0.3519 0.3228 0.3727 0.4482 0.5524 0.6294 0.6851
0.68 300 300 300 0.5667 0.5341 0.5923 0.6775 0.7716 0.8284 0.8675
0.70 300 300 300 0.7618 0.7375 0.7913 0.8587 0.9159 0.9432 0.9591
0.72 300 300 300 0.9054 0.8872 0.9215 0.9529 0.9775 0.9878 0.9910
0.74 300 300 300 0.9724 0.9675 0.9785 0.9908 0.9970 0.9986 0.9994
0.76 300 300 300 0.9920 0.9902 0.9949 0.9980 0.9997 0.9998 0.9999
0.78 300 300 300 0.9986 0.9982 0.9990 0.9999 1.0000 1.0000 1.0000
0.80 300 300 300 0.9999 0.9999 0.9999 1.0000 1.0000 1.0000 1.0000
0.62 400 400 400 0.0847 0.0754 0.0924 0.1274 0.1879 0.2468 0.3031
0.64 400 400 400 0.2300 0.2095 0.2544 0.3239 0.4275 0.5118 0.5759
0.66 400 400 400 0.4489 0.4198 0.4870 0.5818 0.6954 0.7686 0.8142
0.68 400 400 400 0.6905 0.6666 0.7316 0.8129 0.8856 0.9266 0.9476
0.70 400 400 400 0.8732 0.8566 0.9013 0.9418 0.9731 0.9843 0.9892
0.72 400 400 400 0.9636 0.9589 0.9759 0.9884 0.9958 0.9980 0.9993
0.74 400 400 400 0.9925 0.9914 0.9959 0.9989 0.9996 0.9998 1.0000
0.76 400 400 400 0.9994 0.9993 0.9996 0.9999 1.0000 1.0000 1.0000
0.78 400 400 400 0.9999 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000
0.80 400 400 400 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

113



6.5 Real data analysis and sample size simulations

6.5.1 Real data analysis

Eron et al. (2006) and Carosi et al. (2009) present the non-inferiority clinical trials in HIV patients
conducted by the same sponsor. They used the same primary endpoint, which is the proportion
of treatment success patients, defined as the proportion satisfying HIV-1 RNA concentrations of
< 400 copies/mL at 48 weeks. The objective of the trial by Eron et al. (2006) is to show the non-
inferior antiviral activity of fosamprenavir/ritonavir (FPV/r) 700mg/100mg twice daily (BID) rel-
ative to lopinavir/ritonavir (LPV/r) 400mg/100mg BID, each with the co-formulation of abacavir-
lamivudine (ABC/3TC) 600mg/300mg once daily (QD). On the other hand, the objective of the trial
by Carosi et al. (2009) is to show the non-inferior antiviral activity of FPV/r 1400mg/100mg QD
relative to FPV/r 700mg/100mg BID, each with the co-formulation of ABC/3TC 600mg/300mg
QD. In addition, the trial byet al. Eron et al. (2006) finished not so long before Carosi et al.
(2009) began. Based on the six criteria by Pocock (1976), Cuffe (2011) stated that the two trials
are similar. Then, we apply our proposed method by treating Carosi et al. (2009) as the present
trial and Eron et al. (2006) as the historical trial. Here, we utilize the historical data of the FPV/r
700mg/100mg BID group in Eron et al. (2006) to construct the prior distribution of the same group
of the present trial. In the following, let; andm, be the treatment success probabilities of the

FPV/r 1400mg/100mg QD group and the FPV/r 700mg/100mg BID group, respectively.

Table 6.10: Historical trial data.
HIV-1 RNA-1 HIV-1 RNA-1

<400 copies/mL >400 copies/mL total
FPV/r 700mg/100mg BID 315 (72%) 119 (27.40) 434
LPV/r 400mg/100mg BID 317 (71%) 127 (28.6%) 444

Table 6.10 shows the result of the historical trial. Non-inferiority of the FPV/r 700mg/100mg
BID relative to LPV/r 400mg/100mg BID is confirmed based on the frequentist two sided Wald
95% CI (—0.0484,0.0705) with non-inferiority marginA = 0.12 stated in Eron et al. (2006). Our
main interest in this trial is, however, not the confirmation of non-inferiority, but the proportion of

treatment success patients of the FPV/r 700mg/100mg BID group. Here, we construct the prior
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distribution of the FPV/r 700mg/100mg BID group for the present trial. First, we construct the
conditional power prior from the historical trial data in Table 6.10 gpdm,) o< (1 — m3)~! as

follows:

f(ma | Xom, anz) o< L(mg | Xopg)®? - foa(ma)

— 7T§>15a02(1 _ 7T2)119a02 . (1 _ 7_‘_2)71

315a02+1)—1 _
— 7Té 02+1) (1 _ 71_2)119a()2 1.

Then, we let the prior of, be Beta([315a02] + 1, [119a¢2]). However, because we do not have any

prior information for the FPV/r 1400mg/100mg QD group, we let the priar,dbe

f(m) o<t

Table 6.11 shows the examples of the parameters of the prior distributions with sgystatere,

ESS is the prior effective sample size defined in the study by Morita et al. (2008). It characterizes
the information contained in the prior distributions. For the beta distribufietu(a, §), ESS=

a+ 3.

Table 6.11: Prior distribution of the FPV/r 700mg/100mg BID group constructed from the historical

trial.

ao as P ESS
o @ O @
001 4 1 5
0025 8 2 10
01 32 11 43
025 79 29 108
0.5 158 59 217

Table 6.12 shows the result of the present trial. The two sidétl Wald confidence interval
for the differencer; — m was(—0.114,0.095) from the frequentist perspective stated in Carosi
et al. (2009). Therefore, non-inferiority was established with the non-inferiority maxgin0.12

without using the historical data. Then, we consider the caseAvith 0.10, which is the second
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most frequently used margin in the recent HIV non-inferiority trials in Flandre (2011). In this case,

non-inferiority could not be demonstrated from the frequentist perspective. Here, we compare the
result of our Bayesian methods to both valueg\of

Table 6.12: Present trial data.
HIV-1 RNA-1 HIV-1 RNA-1

<400 copies/mL >400 copies/mL total
FPV/r 1400mg/100mg QD 87 (824) 19 (17.9%) 106
FPV/r 700mg/100mg BID 86 (819) 20 (18.%%) 106

Table 6.13 lists the posterior probabilities tgs = 0,0.01,0.025, 0.1, 0.25 (we have not shown
the result ofag, = 0.5 because ESS exceeded the sample size of the control gepuplere, we
used the exact expression (6.1). Whgn = 0, non-inferiority was established with = 0.12
and not established with = 0.10. The results were identical to those of the frequentist method.
On the other hand, whem,; > 0.1, non-inferiority was established even with = 0.1 from the

Bayesian perspective. This showed the feasibility of our Bayesian non-inferiority test.

Table 6.13: Bayesian posterior probability of the present trial.
A

a» ESS 012  0.10
0 (1) 0.9879 0.9701
001 5 0.9894 0.9735
0.025 10 0.9901 0.9749
0.1 43 0.9969 0.9910
0.25 108 0.9994 0.9979

6.5.2 Sample size calculation

Next, we consider sample size calculation by utilizing the historical data to reduce the sample
size of the new trial. In the present study Carosi et al. (2009), it is stated that "assumifig a 72
success rate in both treatment arms, a total of 364 subjects per arm would pro¥ige@er to
assess the non-inferiority of the once-daily regimen compared with the twice-daily regimen at the

one-sided 0.025 level of significance. Non-inferiority was defined as the lower bound of the two
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sided 95; confidence interval (Cl) for the treatment difference being abev2%”. However,
our calculations based on the following formula for the non-inferiority test for the hypotheses
Hy : pp < ps — AversusH; : p; > p; — A in Chowet al. Chow et al. (2007) withh =
0.025,p1 = po = 0.72, A = 0.12 (n is the number of subjects per arm for balanced allocation)

(za + 28){P1(1 — p1) + p2(1 — p2)}

n = )
(p1 — p2 + A)?

show that a total of 295 subjects per arm would providg& $@wer, wherez, is the lower100 - «
percentile of the standard normal distribution. Hence, we treat 295 subjects per arm (total 590
subjects) as the frequentist sample size in the above setting. We conduct the sample size simulation
based on our method providing®@@®ower withp, = p, = 0.72. Here, we let the prior distributions

of 7, be the ones shown in Table 6.11, and thatobe proportional tor; .
Simulation procedure:

1. SpecifyN, M, and adequately smdlh, n). Set COUNT= 0.

2. From the historical data, construct the prior distributionroshown in Table 6.11, and let

the prior distribution ofr; be f(m;) oc ;.

3. GenerateX; ~ Bin(ny,p1), Xa ~ Bin(ng, p2), independently. In the following, suppose
Xy > 0.

4. Generater, ;, mo; fori = 1,..., M independently from the posterior distributionsmgfand

o
771,1' ~ Beta(al, b1)7 7T2’i ~ Beta(ag, bg),

Wherea1 = Xl,bl = (n1 — Xl) +1,as := g + X27b2 = /62 + (ng — Xg)

5. Calculate the estimated posterior probability

M

~ 1

P(7T1 > Ty — A ‘ Xl,XQ) = MZI(T@J > T2 — A)
=1
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6. If 13(7r1 >m — A | Xy, Xy) > 0.975, then increase the COUNT by 1; otherwise, by 0.

7. Go back to step 3. and repéattimes.
8. Calculate the power by COUN/IV.

9. Increasén,,n,) and set COUNT= 0, go back to step 3.,
0.90.

Parameter settings:
e N=10,000,M = 10%, A = 0.12.
e age = 0,0.01,0.025,0.1,0.25, 0.5.
e py =py =0.72.
e Scenarios:

(a) Balanced allocation.

and repeat until the power exceeds

% (n1,ns) = (200,200), (210, 210), . .., (390, 390).

(b) 2 : 1 allocation.
x Foragy < 0.5, (ng,ne) = (300, 150), (310, 155),
« Foragy = 0.5, (ny,ng) = (200,100), (210, 105),
() apz = 0.1,0.25 andn; ~ ESS+ n.
« Foragy = 0.1, (ny, n) = (300,250), (310, 260),
« Forags = 0.25, (n1,ns) = (250, 150), (260, 160)
(d) ag2 = 0.5 andn, = 220.

% (n1,ns) = (150,220), (160,220), . .., (300, 220)

Table 6.14 shows the obtained results. Egy < 0.025 (E

..., (490, 245).
..., (390,195).

..., (400, 350). (ESS= 43)
..., (350,250). (ESS= 108)

. (ESS= 217)

SS< 10), sample sizes changed

slightly and some changes would be caused by the Monte Carlo erroigfer0.1 (ESS= 43),

the total sample size was 590 from scenario (c) and was less than that f010.025. However, the

frequentist total sample size was 590. Therefore, in these situations, our method could not decrease
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the total sample size as compared to the frequentist method. On the other handowheh25

(ESS= 108), total sample sizes were smaller than the frequentist one. Especially for scenario (b), it
was 495. Therefore, our method could decrease 95 patients as compared to the frequentist method.
Whenag, = 0.5 (ESS= 217), the total sample size was 405 when, n,) = (270, 135). However,

ESS, which could be interpreted as the sample size of the historical trial, was more than 1.5 times
asn, (sample size of the present trial). It seems that this borrows too much information from the
historical trial. Therefore, from scenario (d), i.es = 220 ~ ESS= 217, we consider that the

total sample size 470 would be the minimum. Consequently, we could decrease 120 patients in this
situation.

Table 6.14: Sample size at different scenarios and different levelg.ofp; = ps = poy =
0.72, A = 0.12).

(a) balanced (b)2:1 (c) age = 0.1,0.25, and (d)age = 0.5, and
n; ~ ESS+ ny ny = 220
ap2 ESS (nl, TLQ) total (nl, TLQ) total (nl, ng) total (nl, TLQ) total

0 (1) (320,320) 640  (440,220) 660 - - - -
0.0l 5 (310,310) 620  (440,220) 660  — - - -
0.025 10 (320,320) 640  (440,220) 660  — - - -
0.1 43 (300,300) 600  (400,200) 600  (320,270) 590 - -
0.25 108 (280,280) 560  (330,165) 495  (300,200) 500 - -
0.5 217 (250,250) 500  (270,135) 405  — - (250, 220) 470

Additionally, in order to investigate the minimum sample sizedgr= 0.25 (ESS= 108), we
conducted simulations wherg are from 250 to 400 by increments of 10 angdare from(ESS<
)110 to 250 by increments of 10. Table 6.15 shows the result. The powers do not monotonically
increase witm; andn,. This might be because of the Monte Carlo error. Here, total sample size
would be 490 whelfn,, ny) = (340, 150), (300, 190), 500 when(n,, ny) = (350, 150), (340, 160),
(330, 170), (320, 180), (300, 200), and 510 whertn,, ny) = (400, 110), (390, 120), . . ., (300, 210)
except(320, 190).
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Table 6.9: Power of the Bayesian and frequentist method at different levejsaofd sample sizes

(scenario 3p,y = 0.65 < p, = 0.70, A = 0.10, unbalanced).
P p1 nem  ny  ng Frequentist Bayesian method
ape =0 0.1 0.25 0.50 0.75 1.0

0.62 100 100 50 0.0393 0.0297 0.0309 0.0377 0.0612 0.0827 0.1102
0.64 100 100 50 0.0657 0.0546 0.0593 0.0759 0.1154 0.1502 0.1846
0.66 100 100 50 0.1058 0.0884 0.1022 0.1331 0.1940 0.2433 0.2900
0.68 100 100 50 0.1626 0.1398 0.1619 0.2039 0.2863 0.3444 0.3986
0.70 100 100 50 0.2284 0.2005 0.2367 0.3027 0.4117 0.4825 0.5430
0.72 100 100 50 0.3204 0.2874 0.3376 0.4240 0.5463 0.6199 0.6745
0.74 100 100 50 0.4250 0.3872 0.4554 0.5557 0.6799 0.7488 0.7925
0.76 100 100 50 0.5409 0.5043 0.5739 0.6812 0.7919 0.8424 0.8785
0.78 100 100 50 0.6593 0.6262 0.7009 0.8009 0.8840 0.9202 0.9403
0.80 100 100 50 0.7610 0.7315 0.8055 0.8880 0.9454 0.9672 0.9766
0.62 200 200 100 0.0511 0.0426 0.0507 0.0703 0.1150 0.1587 0.1997
0.64 200 200 100 0.0950 0.0830 0.0999 0.1490 0.2317 0.3013 0.3607
0.66 200 200 100 0.1779 0.1607 0.1965 0.2748 0.3914 0.4716 0.5385
0.68 200 200 100 0.2853 0.2609 0.3225 0.4372 0.5766 0.6589 0.7156
0.70 200 200 100 0.4318 0.4034 0.4905 0.6197 0.7513 0.8128 0.8582
0.72 200 200 100 0.5734 0.5473 0.6485 0.7804 0.8820 0.9208 0.9423
0.74 200 200 100 0.7205 0.6980 0.7930 0.8881 0.9486 0.9686 0.9791
0.76 200 200 100 0.8430 0.8295 0.9014 0.9568 0.9867 0.9935 0.9960
0.78 200 200 100 0.9227 0.9123 0.9593 0.9875 0.9962 0.9981 0.9992
0.80 200 200 100 0.9692 0.9655 0.9884 0.9974 0.9994 0.9997 0.9997
0.62 400 200 100 0.0453 0.0395 0.0578 0.1019 0.1784 0.2368 0.2793
0.64 400 200 100 0.1020 0.0889 0.1369 0.2256 0.3422 0.4227 0.4755
0.66 400 200 100 0.1816 0.1604 0.2488 0.3903 0.5450 0.6264 0.6745
0.68 400 200 100 0.2851 0.2609 0.3997 0.5751 0.7305 0.7940 0.8321
0.65 0.70 400 200 100 0.4233 0.3968 0.5791 0.7577 0.8734 0.9137 0.9336
) 0.72 400 200 100 0.5789 0.5525 0.7434 0.8905 0.9541 0.9713 0.9779
0.74 400 200 100 0.7225 0.6986 0.8699 0.9570 0.9849 0.9925 0.9946
0.76 400 200 100 0.8438 0.8280 0.9491 0.9886 0.9970 0.9982 0.9992
0.78 400 200 100 0.9212 0.9120 0.9824 0.9981 0.9996 0.9998 0.9999
0.80 400 200 100 0.9645 0.9596 0.9946 0.9999 1.0000 1.0000 1.0000
0.62 300 300 150 0.0569 0.0503 0.0659 0.1000 0.1679 0.2282 0.2875
0.64 300 300 150 0.1305 0.1211 0.1549 0.2257 0.3464 0.4358 0.5037
0.66 300 300 150 0.2442 0.2285 0.2997 0.4135 0.5737 0.6670 0.7261
0.68 300 300 150 0.4029 0.3820 0.4882 0.6250 0.7693 0.8412 0.8780
0.70 300 300 150 0.5848 0.5652 0.6805 0.8106 0.9105 0.9445 0.9643
0.72 300 300 150 0.7591 0.7436 0.8432 0.9288 0.9744 0.9864 0.9916
0.74 300 300 150 0.8832 0.8733 0.9380 0.9795 0.9944 0.9976 0.9985
0.76 300 300 150 0.9523 0.9482 0.9808 0.9966 0.9996 0.9997 0.9999
0.78 300 300 150 0.9872 0.9851 0.9965 0.9995 0.9998 0.9999 0.9999
0.80 300 300 150 0.9960 0.9955 0.9994 0.9999 1.0000 1.0000 1.0000
0.62 400 400 100 0.0529 0.0488 0.0717 0.1367 0.2638 0.3582 0.4341
0.64 400 400 100 0.1063 0.1009 0.1626 0.3022 0.4941 0.6079 0.6845
0.66 400 400 100 0.2047 0.1976 0.3271 0.5399 0.7368 0.8237 0.8665
0.68 400 400 100 0.3400 0.3323 0.5192 0.7491 0.8992 0.9404 0.9587
0.70 400 400 100 0.4894 0.4844 0.7154 0.9000 0.9753 0.9889 0.9939
0.72 400 400 100 0.6580 0.6563 0.8658 0.9703 0.9957 0.9991 0.9996
0.74 400 400 100 0.7971 0.7981 0.9514 0.9954 0.9997 0.9998 0.9999
0.76 400 400 100 0.9039 0.9051 0.9887 0.9996 0.9999 1.0000 1.0000
0.78 400 400 100 0.9604 0.9615 0.9963 1.0000 1.0000 1.0000 1.0000
0.80 400 400 100 0.9882 0.9887 0.9996 1.0000 1.0000 1.0000 1.0000
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Therefore, we could decrease the total sample size to 490. Moreover, if we want to increase the
sample size of the trial treatment group with the fixed total sample size, for example, 510, we
can achieve more than ¥0power when(n,, ny) = (400, 110) for ESS= 108.

6.6 Discussion

In this chapter, we extended the fully Bayesian method in Gamalo et al. (2011) with pre-specified
margin, and constructed the Bayesian framework which can be interpreted as an extension of
Fisher's exact test. We showed the limiting relationship betweén,Pe m, — A | X3, X5)

and the one sideg-value of Fisher’s exact test, and derived the exact expression for the posterior
probability P{m; > m — A | X1, X5) under mild conditions. We also evaluated the accuracy of
the Monte Carlo approximation for the calculation ofRr> m — A | X1, X5), and the operating
characteristics for the Monte Carlo simulations. The results showed that the type | error rates were
almost always controlled when the distribution of the historical data of the active control group
was the same as that of the present data. From the simulations for the power and real data anal-
ysis, we showed that our methods can realize more efficient decision making when compared to
the frequentist method with suitable historical data and parameierin the real data analysis,

with adequate historical data and non-inferiority margin, our method demonstrated non-inferiority
while the frequentist method could not. Further, by sample size calculation with adequate amount
of historical data, the sample size could be reduced using our method. Further, we could flexibly
change the allocation proportion with the (not minimum but nearly minimum) fixed sample size.

In the real data analysis and sample size calculations, we mainly focused on the situation where
ne > ESS in order to ensure that too much information was not borrowed from the historical
trial. However, for example, for cases where the historical and present trial were almost identical,
emergency situations, clinical trials for rare diseases, or pediatric trials borrowing strength from
previous adult trials, this condition could be relaxed.

It should be noted that if the success probability in the historical data is lower than in the
present data, type | error rates are inflated. Conversely, if the success probability in the historical
data was higher than that in the present data, type | error rates were over-conservative. Similar

tendencies were also reported in Gamalo et al. (2011) and Gamalo-Siebers et al. (2016), which
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could be naturally interpreted. In these situations, we may change the threshold for regarding
m > m — A as true(p*) from 0.975 to another value. However, whghwas changed, the
limiting relationship between our Bayesian decision making and the one sided Fisher’s exact test
with significance level 2% also changed.

In future work, we will investigate the selection of suitable historical data with more mild
conditions than the Pocock criteria, in order to make better decision criteria when the present data
and the prior distributions are in significant conflict, to construct the prior distribution from two or

more historical trials, and calculate the exact probability in a shorter time.
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Chapter 7

Concluding remarks

In this chapter, we summarize this thesis, and present some ideas for the future studies.

In Chapter 2, we summarized the literature of the Bayesian decision making mainly focused on
the posterior probabilities of some hypotheses being true. In Chapter 3, we evaluated the posterior
probabilities of the superiority hypotheses being true for Poisson rate pararket®ss First, we
expressed the posterior probability Ry < X\, | X, X5) as the cumulative distribution function
of well known distributions. Next, we investigate the relationship between the Bayesian posterior
probability and they-value of the frequentist conditional test. Then we considered the probability
Pr(A\1 /Ay < ¢ | X1, X3) which corresponds to a more generalized hypothHsis \; /A, < c. In
Chapter 4, we evaluated the posterior probability of non-inferiority hypothesis being {rtie€r
Xy + A | Xj,X5) under mild conditions. First, we derived a simple expression, and then we
considered a natural framework with switching from non-inferiority test to superiority which, under
some conditions, corresponds to the conditional test discussed in Chapter 3. In Chapter 5, we first
evaluated the posterior probability of superiority hypothesis being true for the variances of normal
distributions Pfo? > o3 | x1,x2) for several situations. We derived quite simple expressions and
showed the relationship to thevalue of the frequentisk’-test. Next, we considered the Bayesian
posterior probability of equivalence By A < o, /09 < A | x1,x2) and also derived quite simple
expressions. In Chapter 6, we derived the exact expression for the posterior probability for the
non-inferiority hypothesis being true for the binomial probability/Rr> m — A | X7, X5) under
mild conditions, and derived a framework which can be considered as the Bayesian non-inferiority

extension of Fisher’'s exact test.
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In this thesis, we considered decision making in quite simple situations. For future work, we
will investigate more complicated situations, such as where the parameters are affected by some
covariates. Furthermore, in order to apply Bayesian decision making, how to choose suitable prior
distributions is the crucial problem. In this thesis, we applied the conditional power prior for fixed
parameters. However, as discussed in Chapter 6, when the distributions of the data of historical and
present trials differ, type | and type Il error rates would be strongly affected. In order to prevent
such “prior-data conflict”, for example, Gravestock and Held (2017) estimated parameters of the
prior distributions by empirical Bayes methods. Including this approach, we need to investigate
how to choose the suitable prior. Further, we considered utilizing only the data of one historical
trial. We should investigate constructing the prior when the data of more than two historical trials
can be utilized.

Sample size calculation is also an important problem. We discussed this for one situation in
Chapter 6, but the sample size is also affected by the prior-data conflict. We have to consider

appropriate methods which take the prior-data conflict into consideration.
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