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Chapter 2

2D Tsunami Analysis Model

2.1 Introduction

Tsunamis occur mainly by the significant displacement of sea floor due to earthquakes
or volcanic eruptions. By the distance of propagation, tsunamis can be classified into
near-field tsunami and trans-ocean tsunami [37]-[40].

For a near-field tsunami in deep sea until it arrives at a water depth of about
50m [40], the linear long-wave theory gives satisfactory results. When the water
depth is shallower than 50m, the nonlinear effects become important, and the non-
linear long-wave theory including the bottom friction term is needed. However, due
to the nonlinearity, the front of wave becomes steepen and breaking. And as the
approximation of the horizontal velocity is constant throughout the depth of the sea,
the breaking cannot be reproduced by the nonlinear long-wave theory. Therefore, in
practical numerical simulation, the Gibbs oscillations may be occurred [37]. In this
case, the nonlinear dispersion wave theory sometimes can help to improve this issue,
because the dispersibility can draw back the steep wave crest. In addition, because
the nonlinear dispersion wave theory also cannot reproduce the wave breaking, when
the wave height is amplified into breaking wave due to the soliton fission, the nonlin-
ear dispersion wave theory cannot be satisfactory, a special breaking wave model (for
example, [41],[42]) is needed to be introduced.

A trans-ocean tsunami is a tsunami that travels from the source more than

1,000km and 3 hours tsunami travel time [43], such as 2004 Indian Ocean tsunami.



2.1 Introduction 13

For this kind of tsunami, the propagation in deep ocean, the linear dispersion wave
theory with the Coriolis force, expressed in the latitude-longitude coordinate system,
is satisfactorily used [39],[44],[45].

Timely prediction of tsunami runup for issuing tsunami warnings is the best way
to save human lives, provided the tsunami simulation is a powerful tool to make
prediction. To determine the wave arrival time, the coastal wave height and the inun-
dation area for tsunamis, simulations of the 2D shallow water equations can be useful
because they take short computational time and get satisfactory results. Numerous
numerical methods have been proposed to solve the equations based on the wave
theories mentioned above and the effectiveness has been shown, such as the finite
difference method based on staggered Leap-Frog scheme [46],[47], the finite element
method [48]-[50].

In this chapter, the general procedure of the stabilized finite element method
[48] is introduced to solve the 2D linear/nonlinear shallow water equations and lin-
ear /nonlinear Boussinesq equations. For the numerical examples, the propagation
of solitary wave problem and the wave-making problem are simulated for the model
verification and validation. Finally, the applicability of the present 2D models are
demonstrated by simulating the large-scale tsunami runup due to the 2011 Great

East Japan Earthquake.
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2.2 Governing Equations

Figure 2.1 Coordinate system

In order to investigate the characteristic of the wave forms during wave propagation,
the governing equations based on the linear long-wave theory, the nonlinear long-wave
theory, the linear dispersion wave theory, the nonlinear dispersion wave theory [51]

are employed. The coordinate system is shown in Figure 2.1.

2.2.1 Linear Shallow Water Equations

The linear shallow water equations (L-SWE) based on the linear long-wave theory
are given by,
ou ou

— 4+ A,— =R, 2.1
ar g, (2.1)
where the matrix terms can be expressed as,
H 0
U=| wh | ,R=| -2 |,

ush —0288—;2

0 1 0 0 0 1

A1 = 02 0 0 ,AQ = 0 0 0 s
0 0 O 2 00

where u; is the average velocity in x;(i = 1,2) directions. H is the total water depth,

h is the static water depth, c¢ is the wave speed (= +/gh), g is the gravitational
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acceleration and z is the height of bottom. U, R, and A; are the unknown matrix,

source term vector, and advection matrix, respectively.

2.2.2 Nonlinear Shallow Water Equations

The nonlinear shallow water equations (N-SWE) based on the nonlinear long-wave

theory are given by,

ou ou 0 (N ou

A 2N —R, 2.2
o Mok oxg Jaxj)+GU R (22)

where the matrix terms can be expressed as,

H 0
U=| wwH | R= —02;—;1 ,
. 2 0z
LLQH —C Dy
0 1 0 0 0 1
A1= C2 — u% 2u1 0 ,A2= —U1U Ug U1 y
—UiUs Uy U 2 — u% 0 2ug
0 0 0 0 0 0]
Nll = Ve —2u1 2 0 7N12 = U, 0 0 0 y
| —UuU 0 (5] —U1 1 0 i
0 0 0 0 0 0]
N21 = Ve —U 0 1 s N22 = Ve —UuU1 1 0 s
0 0 0 ~2uy 0 2 |
0 0 0
G=|o0 SV 0 ,
Cr/u+u3
0 0 : 7

where v, is the eddy viscosity coefficient, n is the Manning’s roughness coefficient
and 7 is the water level variation. Njj, G arc the diffusion and friction matrices,

respectively.
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2.2.3 Linear Boussinesq Equations
The linear Boussinesq equations (L-BE) based on the linear dispersion wave theory

are given by,

: 92
ou A ou 0

> i— = —(K)+R, 2.3
o T A = arors, T (2:3)
where,
H 0 0
U=| wh | ,R= 2P | K= | Bouh
28_25 h2 8ulh
U2h Oxo ? Oxo
0 1 0 0 0 1
Al = 62 0 0 7A-2 - 0 0 0 5
0 0 O 2 0 0

where K is the dispersion matrix.

2.2.4 Nonlinear Boussinesq Equations
The nonlinear Boussinesq equations (N-BE) based on the nonlinear dispersion wave

theory are given by,

82

ou ou 0 ou
— + A, — N;; GU = K)+R, 2.4
ot + 6Xi 8Xi ( J (9Xj ) * 6t8XZ‘ ( ) + ( )
where the matrix terms can be expressed as:
H U 0
U= [ wn | K= | ot | o | e
h? duH — 20z
UQH 3 01, C D24
0 1 0 0 0 1
A=|c2—u? 2uy 0 [,As=| —ujus us uy |,
—uUiUy U U] 2 — u% 0  2us
[0 0 0 0 0 0]
Nll = Ve —2U1 2 0 ,ng — Ve 0 0 0 y
| —ue 0 up —u; 1 O ]
[ 0 0 0 0 0 0]
N21 = Ve — U9 0 1 5 N22 = Ve —Uu1 1 0 s
| 0 0 0 —2uy 0 2 |
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0 0 0 )
G=|0 Srvuite 0 o=
0o o  Cn/edrd =

H

The parameters can be refered to the former sections.
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2.3 Stabilized Finite Element Method
2.3.1 SUPG (Streamline Upwind/Petrov-Galerkin) Method

The shallow water equations and the Boussinesq equations are kinds of advection-
diffusion equations. In the case of discretizing the governing equations by the general
Galerkin finite element method, oscillation occurs when advection is dominant. In
order to resolve this issue, an Upwind Galerkin method has been proposed by adding
artificial diffusion to weight function in the flow direction for the finite element dis-
cretization. Furthermore, a stabilized finite element method has been developed based
on the Streamline-Upwind/Petrov-Galerkin (SUPG) method [52],[53] which adds an
appropriate amount of artificial diffusion only into the streamline direction of the
flow.

In the SUPG method, the weight function w; for the momentum equations is given
by:

Owh
~h h h h h i
8a:j

(2.5)

where 7, is a stabilization parameter with time dimension. Figures 2.2 and 2.3
show the case of one dimension primary element. By comparing to the general weight

function, the weight function is larger by § at the upwind side, and it is smaller by &

51 4] Li4+1

Figure 2.2  Weight function for Galerkin method

Tr;_1 x; Wﬂji—i—l

Figure 2.3  Weight function for SUPG method
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at the downwind side.

2.3.2 Shock-Capturing Term

The computation of the flows with shock waves is a difficult task because such kind
of flows are resulting in sharp and discontinuous changes in water surface. In order to
resolve the issues of overshoot and undershoot occurring at the discontinuous surface,
shock-capturing is needed. The shock-capturing term [54]-[56] is ‘a certain artificial
viscosity with viscosity coefficient depending (locally) on the residual of the finite
element solution, where the residual is obtained by inserting the finite element solution
into the given hyperbolic differential equation’ [57]. The main idea of the shock-
capturing is to add significant artificial viscosity to a discontinuity where the residual
is large, but little in smooth regions where the residual is small. The typical format

of the shock-capturing term can be written as Eq. (2.6) [1],

Nel

0P* 0P
) —df 2.6
; /Qe Ox 8md ’ (2:6)

where @ is a physical quantity and ®* is the weight function. ¢ is a shock-capturing

parameter which can be defined as [1],[58]:

[|®]|7e

6= 9 §(Ree)7 (27)
he
Re, = ”‘;“V : (2.8)
Ree Re. <3
— 3 e =
§(Ree) = { I, Re >3 (2.9)

where h, is a measure of element length, Re. is the Reynold number of an element,
and v is the dynamic viscosity.
Figure 2.4 shows the effectiveness of the stabilized terms (i.e., the SUPG and

shock-capturing terms).
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Overshoot

—
\ Shock-capturing term

I
1
1
L

Undershoot —

Figure 2.4  Effectiveness of stabilized terms [56]

Oscillations can be observed by using the Galerkin method (left), and can be
reduced by the SUPG term (center). Furthermore, the remaining overshoot and
undershoot at the discontinuous surface can be prevented by the shock-capturing

term.
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2.4 Spatial Discretization

To apply the stabilized finite element method based on the SUPG method to the
governing Eq. (2.4), the following weighted residual equations can be obtained,

. (90U 09U ASH AS
/U -(E—FAi@—){i—R)dSZ-I-/S)(aXZ_)'(Nz’j@_)cj"i'a(K)) ds?

= 8U ou ou
+Z/ 8Xj)'<at+Aiaxi+GU—R>dQ
< aU* dU )
+Z/ axz 8X1 dQ —/FU TdT, (2.10)

where the first and the second terms are the Galerkin terms, the third term is the
stabilized term based on the SUPG method and the fourth term is the shock capturing

term. 7, 0 are the stabilized parameters which can be written as follow [48],[59],

[N

1 1 -
T = + ) ,
( (tsvan1)?  (Tsuanz)?

& = Tsuoc (|[wnt])?,

where,
Nel 1
rsvant = (D (¢ 15 VNo |+ | u- VN, ])) .
a=1
At
TSUGN2 = o
] VH
J= o7
| VH |
Nen -1
TSHOC = (Z a ) ;
a=1
|[ine|| = [|ul],

where At is the time increment, N, is the shape function, and ¢ is the wave speed.
Using the first order triangle clement (see Figure 2.5) to make interpolation for

Eq. (2.10), the following finite element equations can be obtained.

(M +M, +D)U+ (K+K,)U +SU
+(F+F,)U+ (H+H,)R+TU =0, (2.11)
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O Velocity
X  Water Depth

Figure 2.5  First order triangle element (P1/P1 element)

where M, D, K, S, F, H, T are mass matrix, dispersion matrix, advection matrix,
diffusion matrix, friction matrix, gradient matrix, shock capturing matrix. Matrices

with subscript indicate them caused by the SUPG method.
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2.5 Temporal Discretization

A finite difference method is applied for the temporal discretization. For the time

step of n + 0,
. 1
n+0 n+1 n
= — — , 2.12
U = U -, (2.12)
U™’ = (1 - 9)U" + U™, (2.13)

Depending on the 6, the temporal discretization is divided into three cases,

. 0 = 0 explicit method, forward difference (first order accuracy)
. 6 = 0.5 implicit method, Crank-Nicolson method (second order accuracy)
. 0 = 1.0 implicit method, backward difference (first order accuracy)

In this study, the Crank-Nicolson method is applied to the equation (2.11), the

following equations can be obtained,

At
(M + M, +D)U"*! + 7(K +K, +F+F, +S+T)Uu"!

At
=M+M,+D)U"- —(K+K,+F+F,+S+T)U" - At(H+ H,)R.

2
(2.14)

To solve the simultaneous linear equations (2.14), the diagonal scaling prepro-
cessing method [60], the element-by-element processing [61], and the Bi-CGSTAB
(Bi-Conjugate Gradient STABilized) method [62],[63] are applied.
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2.6 Wetting and Drying Treatment

For the simulation of flood in river or tsunami, it is necessary to consider the behavior
of the shoreline. In this study, the Eulerian method [56],[64] which is excellent in
applicability to complex topography was applied. The algorithm is shown below.
Firstly, the area assumed to be flooded is divided into finite elements. Secondly,
comparing the water depth H™ of all nodes with a critical water depth e by every
time step to decide whether the elements should be computed. The comparison is

described as follow (refer to Figure 2.6):

3 0

< rle—pa—»!

1
' Dry element

Wet element
Shore element

Figure 2.6 Judgement for wet or dry element

e If H < ¢ for all the nodes of an element, the element is denoted as a dry element
(such as the elements (7) and (8) in Figure 2.6) which is not computed.

e If H > ¢ for all the nodes of an element, the element is denoted as a wet element
(such as the elements (1), (2), (3), (4) in Figure 2.6) which is computed.

e If H = ¢ for one or two nodes of an element, the element is denoted as a shore
element (such as the elements (5) and (6) in Figure 2.6) which is computed. And
for the nodes where H < e, the water depths of the nodes are set to be &, and

the velocities of the nodes are set to be 0.
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2.7 Numerical Examples
2.7.1 Propagation of Solitary Wave

0.12 [m] Wave gauge
g . O L
'_E =
_o.g 0.5 [m]
3 _ y
§ =LA ] z =41.6[m] !
. 0.5
Gradient 1:20 [m]
L | L 1 L I\ 4 .
20 30 40 50 60

X [m]

Figure 2.7 Computational model

In order to investigate the characteristic of the wave forms during propagation and the
effectiveness of the terms of the governing equations, the propagation of solitary wave
[65] is simulated (see Figure 2.7). For the physical constants, we set the gravitational
acceleration ¢ = 9.8m/s? and the Manning’s roughness coefficient n=0.01s/ m3. For
the computational condition, the mesh size is 0.1m and the time increment is 0.005s.

A comparison of the numerical results are shown in Figure 2.8. From the figure,
we can see: (1) the wave hight increase because of the wave shoaling but the wave
is symmetry for the L-SWE case. (2) the wave speed is the fastest because of the
wave bending forward in the N-SWE case. (3) dispersion waves can be observed in
the L-BE case. (4) For the N-BE case, the wave bending forward because of the
nonlinearity but it is less remarkable than the N-SWE. The wave is higher than the
N-SWE. Figure 2.9, Figure 2.10 show the comparison of the computational results
with the experimental results [65] at z/h = 30.0 and x/h = 41.6. We can see the
results of N-BE show the best agreement with the experimental results in all the

simulation results.
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W ater level variation [m]

T ' T ' ' T
LW =——plzBlH o :N-SWE —— N-BE

X [m]

Figure 2.8 Comparison of the results by different equations

0.15

n/h

0.05]

0.1}

tv/g/h

Figure 2.9  Comparison of time series results at z/h = 30.0
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02 T T T T T T T |

0.15

¢/h

0.05+

Figure 2.10 Comparison of time series results at z/h = 41.6
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2.7.2 Wave-Making Problem

Y
Y
§ 0.ImX>*X0.1m
¥ e T DL
[q»] y
6.95m| | =g 01?;'3/ 5.85m
o.
=
&
¥
4 0.20111
— Pl B2 P3 P4 |
| | L
0.6m ‘ ‘ 0.57m 0.62m
A A Y
- -] -] - -]
3.83m 1.75m ' 1.81m 3.70m
Figure 2.11 Wave-making problem
o
[}]
W
—
E
=
=
Q
e}
Q
=
>
-0.05 L ' .
0 10 20

Time[sec]

Figure 2.12  Velocity of the wave paddle

In order to evaluate effectiveness and applicability of the 2D N-SWE and N-BE mod-
els, a wave-making problem [66] is simulated. The computational model is shown in

Figure 2.11. In this model, a wave paddle is located at the left side to make waves.
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Figure 2.12 shows the velocity of the wave paddle. For the analysis conditions, un-
structured mesh (nodes: 44,991, elements: 89,313, see Figure 2.13) is used. The time
increment is 0.001s and the critical water depth is 0.005m. The Manning’s roughness
coefficient is set to be 0.01s/ m?3. Water elevations are observed at P1 (x = —3.80m),
P2 (x = —2.30m), P3 (x = —1.25m), and P4 (z = —0.75m).

Comparisons for the time history of the water elevations between the simulated
results and the experimental results are shown in Figure 2.14 and Figure 2.15.
From the Figure 2.14, we can see the peak value of N-BE agree with the experimen-
tal results better than that of the N-SWE, but the results are almost the same in the
Figure 2.15. And both the N-BE and the N-SWE can simulate the deformation of

the waves well comparing to the experimental results.
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Figure 2.13 Computational mesh
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Figure 2.14  Results at P1 and P2
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Figure 2.15  Results at P3 and P4
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2.7.3 Large-Scale Tsunami Runup Simulation by a 2D Model

Figure 2.16  Target area for tsunami runup simulation (from GoogleEarth)

Time = 0.0sec
Time = 0.0sec

A

1

/

,l

Figure 2.17  Computational domain and initial condition

To investigate applicability to tsunami simulation over real terrain by the 2D N-SWE
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and BE models, the tsunami inundation in Onagawa District (see Figure 2.16) due
to the 2011 Great East Japan Earthquake is simulated. The computational domain
and the initial condition are shown in Figure 2.17. The initial condition is computed
by the Mansinha and Smylie method [67], and the fault model of Ver. 8.0 by Satake
et al. [68] is used. For the boundary conditions, the shoreline is non-slip condition,
and the ABCD boundary is an open boundary condition. In this study, the open
boundary condition [69] is governed by the following equations using the water depth

H and the water level variation 7,

e Boundary A-B:

uy; =0, (2.15)
uz =nv/g/H, (2.16)

Corner node B:

uy =nv/g/H X %
us =n\/g/H X %, (2.18)

Boundary B-C:

s = 0, (2.20)

Corner node C:

1
uy = —n\/g/H x —, 2.21
1 W a/ 7 (2.21)

1
Uy = — Hx —, 2.22
2= —1\/g/ 7 (2.22)

e Boundary C-D:

up =0, (2.23)

up = —n\/g/H. (2.24)

The computational mesh is generated by the modified Delaunay method [70] based
on a constant Courant number for cach clement [69],[71], as the result, the width of

element is large in the deep water region and it becomes smaller as the water depth
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becomes shallow. The mesh size in the land is about 8m, and the number of nodes
is 557,252 and the element is 1,103,938. The time increment is 0.1s. The Manning’s
roughness coefficient is set to be 0.0255/m%.

The analysis results of wave propagation at t=700s, 1400s, 2700s, 3600s are shown
in Figure 2.18, Figure 2.19. We can see the waves dispersing obviously in the
results by using N-BE than the N-SWE. Figure 2.20 shows the inundation areas of
the computational results at t=2500s when the highest waves reach the hill. We can
see the runup height is quite similar to the observed data shown in Figure 2.21 *!.
The largest inundation areas are shown in Figure 2.22 by the computations. We
can see the inundation areas by using the N-SWE are almost the same as that by the
N-BE. And the inundation areas are in agreement with the observation data shown in
Figure 2.23*!. However, some differences can be found in the front of the inundation
area. This is probably due to the mesh size or the buildings. To investigate about the
differences by using a finer mesh or computing the urban area in 3D can be a future

work.

*1 http://133.6.118.74/map/map/7mid=10&cid=2&gid=0&lon=141.97198&1lat=39.73765&scale=150000
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Time = 700.0sec

Time = 1400.0sec

N-SWE

Figure 2.18

Time = 700.0sec

Time = 1400.0sec

N-BE

The wave propagation at t=700s, 1400s



2.7 Numerical Examples 36

Time = 2700.0sec Time = 2700.0sec

Time = 3600.0sec Time = 3600.0sec

N-SWE N-BE

Figure 2.19  The wave propagation at t=2700s, 3600s
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Time = 2500.0sec 4 Time = 2500.0sec

N-SWE N-BE

Figure 2.20 Inundation areas of computational results at t=2500s
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Figure 2.21 Runup height by observation*'
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Time = 2700.0sec Time = 2700.0sec

N-SWE N-BE

Figure 2.22 Inundation area by analysis at t=2700s

Figurc 2.23  Inundation area by observation*'
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2.7.4 Visualization Using AR Technology

£ Visualization area =SB
TS g

o

agawa Bay

&7

w/

Figure 2.24  Visualization area by AR technology

In this study, in order to help improving the quality of education for tsunami disaster
prevention, we have used the AR (Augmented Reality) technology to visualize the
numerical results of the tsunami caused by the 2011 Great East Japan Earthquake
in a local area of Onagawa Town (see Figure 2.24). The numerical results are got
from the former section.

The visualized results are shown in the Figure 2.25. We can see the numerical

results are combined with the real space, which can help us to feel the tsunami coming.
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(a) Showing terrain CG model
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(b) Hiding terrain CG model

Figure 2.25  Visualized result by AR technology
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2.8 Chapter Summary

In this chapter, the 2D numerical models using the shallow water equations and
the Boussinesq equations were developed. The stabilized finite element method
was applied to the spatial discretization. Comparisons were made between the lin-
ear /nonlinear shallow water equations and Boussinesq equations. By simulating the

numerical examples, the following remarks can be concluded:

e In the investigation of the characteristic for the wave propagating in a slope, the
wave attenuation of N-BE is the least, and the result is the best in agreement
with the experimental results in the numerical results.

e For the application to the wave-making problem, both of the N-SWE and the N-
BE can get good results on the water elevations in comparison to the experiment,
even though the N-BE shows less wave attenuation.

e From the large-scale tsunami runup simulation caused by the 2011 Great East
Japan Earthquake, the inundation depth and the inundation area of the simula-

tions by using N-SWE and N-BE have shown quite similar to the survey maps.

From the above remarks, the effectiveness and the applicability of the present 2D

numerical models using the N-SWE or the N-BE have been confirmed.



