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Chapter 3

3D Tsunami Analysis Model

3.1 Introduction

In this study, the VOF method [8] which is one of the robust interface-capturing
methods is introduced. Furthermore, the phase-field model [15],[16] is also introduced
to compare with the VOF method.

3.1.1 VOF Method
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Figure 3.1 Definition for the color function ¢ of VOF

liquid

The VOF method is an Eulerian method that uses a scalar function ¢ (often referred
as a color function) to determine the location of the interface between two different

phases in all fixed cells of a computational domain. For the definition of the color
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function ¢, ¢ = 1.0 indicates the liquid phase, ¢ = 0.0 indicates the gas phase,
¢ = 0.5 indicates the interface (see Figure 3.1). The advection equation is used as
the governing equation of the free surface.

According to the definition, the value of ¢ should vary from 0.0 to 1.0. However,
overshoot and undershoot will occur during the computation of ¢. In that case,
the cut-off process is done, for ¢ < 0.0, ¢ is set to be 0.0, while ¢ > 1.0, ¢ is
set to be 1.0. Therefore, the volume will increase or decrease comparing to the
initial volume. What’s more, the sharpness of the interface cannot be kept as the
computation progressing. To deal with these problems, volume correction method

and interface-sharpening technique can be applied.

3.1.2 Phase-Field Model
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Figure 3.2  Definition for the color function ¢ of PFM

The phase-field model PFM [15]-[19] has been widely used to many interfacial prob-
lems, such as solidification dynamics problem, fracture dynamics problem, etc. Re-
cently, the PFM is increasingly used for modeling two phase flow. For the PFM, the
sharp interface is replaced by thin transition regions where the interfacial forces are
smoothly distributed. The definition of the color function is as the same as the VOF
method. However, the PFM can keep the width of the interface (see Figure 3.2)
that can reduce the overshoot and undershoot of the color function. In the PFM, the
Allen-Cahn equation [1],[15],[16] or the Cahn-Hilliard equation [1] is normally used
as the governing equation. In this study, the Allen-Cahn equation is applied.



3.2 Flowchart of Free Surface Flow in 3D Domain 44

3.2 Flowchart of Free Surface Flow in 3D Do-
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Figure 3.3  Flowchart of free surface flow in 3D domain

The flowchart of free surface flow is shown in Figure 3.3. Firstly, it reads input data,
such as, the mesh, the time increment, the boundary condition, the initial condition,
etc. Secondly, it computes the density p and the viscosity coefficient p using the color
function. Thirdly, it computes the flow field for the velocity u; and the pressure p.
Fourthly, it computes the free surface for the color function ¢. Finally, it computes

the fluid force if it is needed. The details are introduced in the following sections.
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3.3 Computation of Density and Viscosity Co-
efficients

For the VOF method, the density p and viscosity coefficient p are defined as,

p=po+ps(1—09), (3.1)

f= e+ pg(l— ). (32)

For the phase-field model, the density p and viscosity coefficient p are defined as
continuous functions of ¢ [73],[74],[75],

e, PP, [ (0, +,)/2
P="7 + 5 Sln[ Py 7T:|, (3.3)
- - 2
ot ﬂ;ug L . My Sm[qﬁ g(bqlﬁl:rqjjg)/ 7]7 (3.4)

where p,, p,, p;, 1, are density and viscosity coefficient of liquid and gas phases, re-

spectively.
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3.4 Computation of Flow Field

3.4.1 Governing Equations of Flow

The incompressible viscous fluid is considered in this study. The Navier-Stokes equa-

tions (3.5) and the continuity equation (3.6) are written as

ou; ou; op 0 (Ou;  Ouj B
p(@ + u]%j B fz) + or; 'uaxj <8$j + 8%-) =0, (3.5)
aui .
o, 0. (3.6)

where p, u;, f, p, p are the density, velocity, body force, pressure, viscosity coefficient,
respectively.

The Dirichlet boundary condition and the Neumann boundary are given by
ui=g; on I, (3.7)

[ p(s”ﬂf(g“” +ZZJ)]n —h; on T, (3.8)

where n; is the outward unit normal vector of boundary, I'y is Dirichlet boundary
(basic boundary), I'j, is Neumann boundary (natural boundary), g;, h; are the flow

velocity and traction defined on the boundary. d;; is the Kronecker’s delta.

3.4.2 Spatial Discretization

The governing equations (3.5) and (3.6) can be discretized by the stabilized finite
element method based on the SUPG (Streamline Upwind/Petrov-Galerkin)/PSPG
(Pressure Stabilizing/Petrov-Galerkin) method [32],[72]. The following weighted

residual equations can be obtained.

h
/wlh-p(%—i— p O —fz-)dQ— Ot phdo
Q

ot Y Ox; 8
oul 8wh oul 3uh
h i dQ i, i J dQ
* Q or; 8l‘j 'u(c?xj + ox z)

MNel 18 h
+ Z/ TSUPGU, +TPSPG;8x_>
K3

(G e )+ g Yoo
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Tel

h a
+Z / Ou; “J Lo
= / wih;dl'y, (3.9)
'y

where w;, q are the weight functions of flow velocity and pressure, and n.; is the
number of elements. The first to the fourth terms are the Galerkin terms, the fifth
term is the SUPG term, the sixth term is the PSPG term, the seventh term is the
shock-capturing term. 7supa, Tpspa, Tcont are the stabilized parameters, they are

decided by the following equations,

22 2wl N2 sdvn2y 3
TSUPG = {<E> + (%) + (ﬁ) } , (3.10)
TSUPG = TPSPG» (3.11)
Tcont = o [ ug' [[2(Rew), (3.12)

where v is kinematic viscosity coefficient. h. is the element size decided by the

following equation,

Nen

he _2(231 M) , (3.13)

where n., is the number of nodes of an element, s; is the unit normal vector of flow
velocity. N, is the shape function. Re, is the Reynolds number and z is denoted as,

2(Rey) = z( (3.14)

3
2v

| ul Hhe)_ Rew  0<Re,<3,
)1 3 < Rey.

To apply the first order P1/P1 element with velocity and pressure for the equation

(3.9), the following equations can be derived,

du;
(M + Ms) ;t + (A + Ag)u; — (Gi — Gs;)p
+Djju; + Siju; = (F + Fg)fi, (3.15)
du,;
Cju; + M Iy Apju; + Gpp =F f;, (3.16)

p] dt



3.4 Computation of Flow Field 48

where u is flow velocity, p is pressure. M, A, G, D, S, F, C are coefficient matrices
for each term of time, advection, pressure, viscosity, shock-capturing, body force,
continuity. Matrices with subscript of S and P indicate them caused by SUPG and
PSPG method.

3.4.3 Temporal Discretization

The time derivative term can be written as,

du;  uTt—un

e S 2 1
dt At (3.17)

The Crank-Nicolson method with second order accuracy is applied for the velocity,

the pressure is treated implicitly for Egs. (3.15), (3.16), the following equations can
be obtained,

n+l _ ,n

(M + Ms)% LA+ AT (G — G )t
+Dyul T Syl = (F+F)f, (3.18)
nt+l _on L
Ciuf 4 My =t + Ay 4 Gop™ ! = B i, (3.19)
where u?+% is defined as
W= ), (3.20)

the advection velocity u; is approximated by the Adams-Bashforth method with a
second order accuracy. u; is defined as the following linearized equation,
3 n 1 n—1

uj = Gui U (3.21)

Then set the discretized equations (3.18), (3.19) by taking the unknown quantity

to left and the known quantity to right, and writing into matrix, we can get,

Al A Az Ay untl b,

Asr Az Az Ay vl _ | b2 (3.22)
Asi Az Asz Ay wntl bs |’ '
An A Ay Ay prtt by

To solve the simultaneous linear equations (3.22), the element-by-element Bi-
CGSTAB (Bi-Conjugate Gradient STABilized) method is applied, the unknown quan-

tities U1, yntl Wntl Pntl can be computed.
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3.5 Computation of Free Surface

3.5.1 Governing Equations for Free Surface

For the VOF method, the following advection equation is used as the governing equa-
tion for computing free surface,

99 D¢

. 2
e +ujaxj 0 (3.23)

For the phase-field model, the following Allen-Cahn equation [1],[15],[16] is em-
ployed,

99 0p _ 8%

8t +u Ja ]\I [5( ) ¢( (3'24)

‘Bxk‘

where u; is the advection velocity computed from flow field. ¢ is the color function,
¢ = 1 denotes fluid, ¢ = 0 denotes gas, ¢ = 0.5 denotes free surface. M,, £(¢), kg,

k are defined as,

M, = 2;22 M~, b=2tanh *(1 —2)\), § = ashs, (3.25)
0
o) = . 10 = 21— 07 (3.26)
52
Vo

k=V-n, n= (3.28)

Vel

where M, ~, 9, hs, k, n are interface mobility, interface energy, continuously chang-
ing gas-liquid interface width, representative length of element, interface curvature,

interface normal vector.
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3.5.2 Spatial Discretization

Applying the stabilized finite element method based on the SUPG method to Eq.
(3.23), the following weighted residual equations can be obtained,

/ﬂ fag;hdﬁnt/w &bh

h h 9 h
+Z/ TSUPGUgal/} <§1 +uj%)dﬂ
J

4 nz / 0 08" 1o o, (3.29)

TLSIC

where 1" is the weight function for ¢, Tsuypq, Tusic are the stabilized parameter for
the SUPG term and the shock capturing term defined as,

o= [(2)"+ ()] o

he
TLSIC = —||u6|| (3.31)

Applying the stabilized finite element method based on the SUPG method to Eq.
(3.24), the following weighted residual equations can be obtained,

‘% )dQ

ov (09
/Z/) M, k¢ dQ-i—Z/ TSUPGU; 8l’j (E

+ u; §¢ + M.£(¢) — Mykyr

P P
/ b (df + ujd—¢ 4 MaE(¢) — Mokgk

‘8—2 )dQ =0, (3.32)

where 1" is the weight function for ¢.
Using the first order tetrahedron element to make interpolation for Eq. (3.29),

the following equations can be derived,

(M + Ms)% +(A+As+S)p=0. (3.33)

For the Eq. (3.32), one can get,

do

M + M)~
(M + M) -,

+ (A + Ag)¢ + (M + M) Mo(¢) + Ko — (M + M Mkw‘axk‘_g'

(3.34)
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3.5.3 Temporal Discretization

For the temporal discretization, the following equations are applied.

d n—+1 n
df ¢ AT ¢ (3.35)
= (6 ). (3.36)

To substitute Egs. (3.35) and (3.36) into Eqgs. (3.33) and (3.34), the following

equations can be derived,

1 n 1 1 n+1 __ i n __ 1 n
At(M'i‘M)G5+ §(A+As+L>¢+ = M +Ms)¢” — S (A +As + L)g",
(3.37)
_ n+1 1 n+1 1 n+1
AL (M+M)¢ 2(A+As)qz5 +2K¢
1 n n+1
At(M+M Yo" — §(A+A Yo" — §Kq§ — (M 4+ Mg)M.&(p + )
8¢n+1
+ (M + M) M,k k™! —‘ (3.38)
(9£I?k

To solve the simultaneous linear Eqs. (3.37) and (3.38), the diagonal scaling
preprocessing method, the element-by-element processing, and the Bi-CGSTAB (Bi-
Conjugate Gradient STABilized) method are applied.
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3.6 Computation of Fluid Force

Fin

QO

Figure 3.4 Computational domain of the drag force

The fluid force which is the drag force by structure is computed by the boundary
integral term of the weak formulation derived from Egs. (3.5) and (3.6). For the
region Q0 which is constituted by the one layer of mesh around the structure in

Figure 3.4, the drag force can be computed by the following equations [48],

oul oul owh
h 7 h ) i h
o, L — f;)dQ — —p"dQ
/§2sz ( ot s ij ) /Qo ox;

oul owl  sout  oul
h i i 7 J

ds2 ds2
+ /S‘zoq 8371 + 0o 8.Tj M((?.’Ej T 8.TZ )

— / whtyd, (3.39)
Fin

where w! and ¢" are weight functions. T'y, is the boundary of structure. To substitute
the velocity and the pressure computed from the flow field into the left of Eq. (3.39),

the drag force of structure can be computed.
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3.7 Volume Correction Method

For the free surface flow, there are many volume correction methods have been pro-
posed, such as the interface-sharpening/mass-conservation method [76], the Yabe
and Xiao’s method [10]. In this study, the volume correction method proposed by
Sakuraba et al. [79] is applied. In this method, the color function is corrected near
the interface. The volume is corrected by the following steps.

Firstly, to compute the judgment function (3.40) and to find the nodes near the

interface.

D(¢) =1+ cos[2m(¢ — 0.5)], (3.40)

As shown in Figure 3.5, for the interface D(¢)=2, as the phase far from the interface,
D(¢) becomes smaller gradually.

Secondly, the volume A(t) of the nodes near the interface is computed by Eq.
(3.41),

A(t) = /QD(qb)dQ. (3.41)

Thirdly, the volume error ratio ¢e., is computed by the following equation,
‘/err(t) _ V(t) - ‘/init
A(t) A(t)

where Vi, V(t), Viniy are the volume error, the volume at ¢ and the initial volume.

¢err = (342)

Fourthly, to correct the volume by the following two cases using Eq. (3.43). (see
Figure 3.6)

e Case A (¢orr > 0): in this case, the volume of fluid increases, the volume of the
nodes that 0 < ¢ < 0.5 is corrected.
e Casc B (¢err < 0): in this case, the volume of fluid decreases, the volume of the

nodes that 0.5 < ¢ < 1 is corrected.

o) = 9(0) - 200 = { (52500 Ym0 (3.43)

Finally, for ¢ > 1 and ¢ < 1, the over amount is cut.

For the problems without inflow and outflow, it is easy to apply the above volume
correction method. However, for the 2D-3D hybrid model, the volume of the water
in a 3D region is changing because of the inflow and outflow, the volume correction

method is not used in this study.
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Figure 3.6  Conceptual diagram of the volume correction method
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3.8 Numerical Examples
3.8.1 Rotating Cylinder Problem
Y
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Figure 3.7 Rotating cylinder problem

To examine the effectiveness of the PFM based on the Allen-Cahn equation, we sim-
ulated a rotating cylinder problem showed in Figure 3.7. A comparison to the VOF
method based on the advection equation is made. The initial condition is set as ¢ =1
(r <0.25), ¢ =0 (r > 0.25), and r? = (z — 0.5)? + y?. The advection velocity is set
as uj = (—y,z). For the computational condition, the mesh size is Az = Ay = 1/48,
the time increment is At = 7/400. The parameters of the PFM are set as a5 = 3.0,
~v = 0.0001 for the comparison with the VOF method. Furthermore, in order to in-
vestigate the effects of a5 and ~, comparisons are made by changing the values of as
and 7.

Figure 3.8 and Figure 3.9 show the results after one cycle rotation. The over-
shoot and undershoot are observed in the results of the VOF method, while they can
be reduced by the PFM. And the results by the PFM keep the cylinder better agree
to the initial condition than the VOF method. Figure 3.10, Figure 3.11 show the
comparisons for the as when v = 0.0001. We can see when the value of as increases,

the width of the interface becomes larger, but when the a5 = 1, the shape of cylinder
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deforms. From Figure 3.11, we can see the results of as =2, 3 are close to the initial
shape. Figure 3.12 and Figure 3.13 show the comparisons for the v when a5 = 3.0,
we can see the cylinder becomes smaller when the value of v increases. From Figure
3.13, when v = 0.005 the shape of the cylinder deforms much smaller than the initial
shape, and the result of v = 0.0001 is the most agree to the initial shape. We should
note that when v = 0.0, the Allen-Cahn equation will become into the advection

equation, which will result in overshoot and undershoot.

—tl el

time=6.28319s time=6.28319s

1ime=6.28319s time=6.28319s

(a) VOF (Advection Eq.) (b) PFM (Allen-Cahn Eq.)

Figure 3.8 Computational results (after one cycle rotation)
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Cross section at y=0
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Figure 3.10  Comparison by changing a; (v = 0.0001)
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Figure 3.11 Cross section at y=0 (y = 0.0001, n = as)
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Figure 3.12  Comparison by changing v (as = 3.0)
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Figure 3.13  Cross section at y=0 (as = 3.0)
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3.8.2 Dambreak Problem (2D)

In order to test the effectiveness of the PFM by combining with the Navier-Stokes
equations, a benchmark problem for free surface flow is simulated (i.e. a dambreak
problem showed in Figure 3.14). The experimental results [77] and the results by
using the VOF method are used for comparison. For this test, a structural grid with
100x 75 divisions is used (see Figure 3.15). The number of nodes is 7,676 and the
number of elements is 15,000. The time increment is set to be 0.001s. The slip
condition is set on the walls of the tank. The parameters for the PFM are set as
as = 2.0 and v = 0.001.

Figure 3.16 shows the snapshots of free surface at t=0.01s, 0.20s, and 1.00s.
We can see the thickness of interface by the VOF method becomes wider and the
water diffusing into air. However, the thickness of interface is kept almost the same
and stable by the PFM. From Figure 3.17, we can see the water propagates faster
by using the VOF method, because the thickness of interface becomes wider. From
Figure 3.18, we can see the PFM can conserve the volume better than the VOF
method.
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£ i £ i 2 £
%31 1 | A s 5 * VA = L
. 3 a
& : 3 S
vl 5 ) V3 ien: i i Bt gk
Il ] 4 ] -
£ 2 3 £hkassatdatasuinshsina, 38%sadas 1 :
b e b o b K] i £l
£ 2 2
EERE fnEnat o P LEfinasiaien 2
K 1
g 1 BB B s 7 Ry K
hy g 4
T % X 1Tl 7 W E SE W 1O
< % & % 2 =
1 F
~ s - 2 4
% - & b
4 & = i1 & P 1 & & I
i 19 11
A GO Fa & F \ % k* 1 k* V5O Fi &>
A ] Pa) “r b 1
31 ¥ Y % | 2! L qa\l % § % 51 17y
Tl V%) o

Figure 3.15  Computational mesh for dambreak problem
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(a) VOF method (b) Phase-Field method

Figure 3.16

Snapshots at t=0.01s, 0.20s, and 1.00s
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Figure 3.18  Volume conservation ratio
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3.8.3 Dambreak With a Structure

To validate the 3D free surface flow analysis model using PFM, The dambreak with a
structure problem [78] shown in Figure 3.19 is simulated, and a comparison between
the PFM and the VOF method is made. For the initial conditions, a water column is
set on the left side of a rectangular aquarium, then release flow freely instantaneously
just as the same as the hydraulic experiment did. The density and viscosity coefficient
of water and air are set as, p,=998.0kg/m*, p =1.205kg/m*, p,=1.01x10 *Pa *s, and
pg:1.81><10_5Pa +s. For the computational conditions, as = 3.0, and v = 0.0005.
The computational mesh is showed in Figure 3.20, the minimum width is 0.005m,
the number of nodes is 998,071 and the number of elements is 5,757,462. The time
increment is set to be 0.001s and the slip condition is applied.

The surface profiles at ¢ = 1.50s are shown in Figure 3.21, we can see from
the free surface, the PFM keep the surface more stable than the VOF. Figure 3.22
shows the time history of the drag force acting in the x direction of the structure.
From the figure, we can see the maximum drag force of the analysis results are in
quite good agreement with the experimental result, though all the analysis results
are moving faster to the structure. We can also see that for the drag force caused by
the reflected wave, the PFM do better job than the VOF. And the PFM using the
volume correction method [79] gives the best result. The mass conservation ratio is
shown in Figure 3.23, we can see the PFM conserve the mass better than the VOF
by using the same discretization methods. One of the reason for why the mass is not

satisfied may due to overshoot and undershoot.
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Figure 3.19

Computational model

Figure 3.20

Computational mesh
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Figure 3.21 Comparision of free surface at ¢t = 1.50s
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3.9 Chapter Summary

In this chapter, the PFM using the Allen-Cahn equation has been introduced, and the
discretization of the Allen-Cahn equation using the stabilized finite element method
has been presented. By comparison to the VOF method based on the advection

equation, the following remarks can be concluded:

e [rom the rotating cylinder problem, the PFM can keep the interface for the two-
phase flow and reduce the overshoot and undershoot. The interface width for
PFM can be chosen as 2 or 3 times of the representative length of element. The
interface energy with a large value may result in the shrink deformation.

e The PFM conserves the mass better than the VOF method by using the same
finite element method.

e The drag force computed by the PFM is in a good agreement with the experi-

mental result.

From the above remarks, the effectiveness of the present 3D analysis models using
the PFM has been confirmed.



