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Chapter 6

Conclusions

6.1 Conclusions

In this thesis, the 2D numerical simulation models using the shallow water equations
and the Boussinesq equations for tsunami wave were examined and validated, the
phase-field model (PFM) was developed for the 3D free surface flow analysis that the
accuracy and robustness have been examined. And then, a 2D-3D hybrid tsunami
numerical model using the overlap method based on an arbitrary grid was devel-
oped, and it was parallelized by using the MPI method for simulating efficiently the
large-scale tsunami. Numerical examples were examined to show the validity and the
effectiveness of the hybrid model by comparing with observation data. The tsunami

by the 2011 Great East Japan Earthquake was also simulated.
The findings obtained in this study is summarized in each chapter as follows:

In Chapter 1, the background of this study was reviewed. The features of each
method were summarized in the review of previous studies. The organization and the

objectives of this thesis have been provided.

In Chapter 2, the governing equations for 2D tsunami simulation were described,
the stabilized finite element method based on the SUPG method has been applied

in terms of the discretization forms. For the first numerical example, the charac-
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teristics of the propagation of solitary wave were investigated by comparing the lin-
ear /nonlinear shallow water equations and the linear /nonlinear Boussinesq equations,
the results of the nonlinear Boussinesq equations were in the best agreement with the
experimental results. By the numerical examples of the wave-making problem and
the large-scale tsunami run-up simulation, the applicability and effectiveness of the
nonlinear shallow equations and the nonlinear Boussinesq equations were confirmed.
The AR technology was also applied as a visualization method for the real terrain
tsunami, which was shown to be a useful technology to help people understand the

tsunami phenomenon and improve the quality of education for tsunami disaster.

In Chapter 3, the VOF method and the phase-field model (PFM) were intro-
duced as the interface-capturing method for the free surface flow simulation, the
Allen-Cahn equation which is one of the governing equation for the phase-field model
was solved by the stabilized finite element method. The efficiency and accuracy of the
VOF method and the PFM were investigated by several numerical examples. For the
rotating cylinder problem, the PFM was able to reproduce the interface better than
the VOF method. It was found that the overshoot/undershoot, observed by the VOF
method, can be reduced by the PFM. The width of the interface and the interface
energy for the PFM were investigated, and we found that the interface width can be
chosen as 2 or 3 times of the representative length of elements and the interface energy
with a large value may result in a shrink deformation. From the dambreak problem
with a structure, it was found that the shape of drag force acting on the structure by
using the PFM was in good agreement with the experimental result, and the mass
conservation by PFM was also better than the VOF method. We also introduced a
volume correction method for the free surface flow simulation, which was shown to be
an effective method to conserve the volume of the flow problem without inflow and
outflow. The efficiency and the applicability for the present method using the PFM

to compute the fluid force acting on the structure were confirmed.

In Chapter 4, the 2D-3D hybrid tsunami numerical model using an overlap
method based on an arbitrary grid was developed. The details of the 2D-3D overlap-
ping method were discussed by using a flowchart, and a switch model was proposed

to reduce the computational burden for the large-scale tsunami simulation. For the
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first numerical example of the dambreak with structures, the results showed that the
3D domain can be chosen arbitrary, the grids also can be arbitrary which were useful
to capture the complex geometry of structures or real terrains. Also, the robustness
of the present method has been confirmed. The second numerical example of the soli-
tary wave problem was used to test the 2D-3D hybrid model using structured mesh
and unstructured mesh, and the 2D-3D hybrid model using the VOF method and
the PFM. By comparing numerical results with experimental results, both numeri-
cal results by using structured mesh and unstructured mesh were in good agreement
with experimental results. Furthermore, the 2D-3D hybrid model using the PFM was
more stable than the VOF method, and the results of surface profile was also better
simulated. The third numerical example was to investigate the width for choosing
the overlap domain. By simulating the wave problem around a breakwater, it was
found that the width of about 4 elements of the overlap domain could give satisfactory

results.

In Chapter 5, the parallel 2D-3D overlapping method and the parallel wetting
and drying treatment for the 2D analysis model have been proposed. As a result,
the large-scale 2D-3D hybrid tsunami numerical model has been developed. As a
numerical example, the tsunami by the Great East Japan Earthquake was simulated,
the efficiency and the applicability of the present method for the large-scale terrain

was confirmed.

Based on the aforementioned facts, conclusions are given as follows:

e The phase-field model using the Allen-Cahn equation based on the stabilized
finite element method was developed to be an effective and robust method for
simulating free surface flows.

e The proposed 2D-3D hybrid tsunami numerical model using the overlap method
based on an arbitrary grid can compute effectively the wave propagation in ocean
by a 2D model and in the area with structures by a 3D model.

e The proposed large-scale 2D-3D hybrid tsunami numerical model is capable of

simulating efficiently tsunamis over a large-scale terrain.
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6.2 Recommendation for Future Work

Recommendation topics for improving and extending the current work are provided

as follows:

e To simulate tsunami propagation through the entire metropolitan area of a city
in 3D using the 2D-3D hybrid model, fine meshes in both 2D and 3D domains
are needed.

e To examine the tsunami simulation of real terrain with observed inundation data.

e To apply a volume correction method for the present 2D-3D hybrid model.

e The continuum surface force (CSF) model can be introduced into the PFM model
which may increase the accuracy of the free surface flow simulation.

e To apply the present 2D-3D hybrid model to the fluid structural interaction (FSI)
problems.

e To develop a 2D Boussinesq model solved by the DG method, which is expected
to increase the robustness of the 2D numerical model in comparison with the CG

method.



121

Appendix A

Boussinesq Equations (1D)
Solved by the DG Method

A.1 Introduction

In recent decades, great attention has been paid to use the discontinuous Galerkin
(DG) method [88] to solve the shallow water equations. Because the shallow water
equations are hyperbolic, a discontinuous solution may be generated that the DG
method is more suitable for the shallow water equations. However, as mentioned in
Chapter 2, the Boussinesq equations are also very useful in tsunami simulation.

In this study, the objective is to develop a 2D Boussinesq model using DG method
to instead the 2D continuous Galerkin (CG) model in the proposed 2D-3D hybrid
model. However, in this thesis, only the 1D Boussinesq model solved by the DG
method is developed. To eliminate numerical oscillations, slope limiter [89] based
on the water depth and flow rate is used. The thin water layer technique based
wetting and drying treatment [90] with fixed meshes is adopted. The total variation
diminishing (TVD) Runge-Kutta time scheme [91] is used to temporal discretization.
A numerical example of solitary wave propagation is simulated to demonstrate the

effectiveness of the presented methods.
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A.2 Governing Equations

The conservative form of one-dimensional Boussinesq equations are given by:

9,U+V-F+0,D=S8, (A1)

where U is the conservative variable vector, F is the flux vector, D is the dispersion

term, and S is the source vector. These terms can be expressed as:

_ 1 ¢ _ M q
U—{q}’F—[F@}—[qZ/H+g<H2—h2>/2}’

0 0
D=| , S =
[—%%ﬂv-w]’ lsﬁ%]’

where (, H, h, g, g are the elevation of the free surface measured from the geoid
(positive upwards), total height of the water column, static water depth, flow rate per
unit width, gravitational acceleration.

In order to solve Eq. (A.1), we seperate it into the following equations,

% B _8F(1)
ot or ’

dq oh  or® 9 1
gzzzgc———-————-———(—ZL (A.3)

where A and z are auxiliary parameters,

A= —3/h?, (A.4)
0 0q
- (Y =o. A5
*~ o0\ (8.5)
For Egs. (A.2), (A.3), two auxiliary parameters are applied, G(!) = —81;;1),
G2 = ggg—z — 61;;2), they can be rewritten as,
OF )
18 AR — A6
5z : (A.6)
oF® oh
G2 = q( =—. A7
T =9, (A7)
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Then the Eqgs. (A.2), (A.3) can be rewritten as,

¢

= =GO, (A.8)
dq 0 1 @)
5 +6LL‘()\Z)_G . (A.9)

Then substitute Eq. (A.9) into Eq. (A.5), we can get,

o Zw—G3) =
z+8$(>\w G'Y) =0, (A.10)

whrere w is an auxiliary variable defined as,

w + %(—z) = 0. (A.11)

The above Egs. (A.6)~(A.11) constitute the DG model of Boussinesq equations.

If 2 =0, the model will be change into the model of shallow water equations.
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A.3 Spatial Discretization by DG Method
Appling the DG method to the equations over a element €2, gives:
GV = A RN +BIEY - B R (A.12)
(2 _ (2 (2) — (2 8
G;” = AjF; —|—B;LFj — B, F;11 +C;5j, (A.13)
_ (21) + fo(z1) — p(z1)
zj = A7+ B F;TY - BUF
+A;F) 4 BYER BT ESY), (A.14)
w; =AF" +BHF™ B ™) (A.15)
J J7 7 i JjitD o
(= Cng'l)» (A.16)
i = A;F\Y + BYEY - BB+ C;6P. (A.17)

where, A; = M;'®ITW,, Bf = M'®* B = M;'®", C; = 4 M;'®IW,,.

M;, B;, W,,, ®,, h; are mass matrix, Legendre basis function, weight matrix, basis

function, element length. And F(*1), F(22) F) (@) are defined as follow,

1
F(Zl) — Xw7
P2 = _ GO,
FW = 7,

1



A.5 Numerical Flux Functions 125

A.4 Numerical Flux Functions

Since a discontinuity is allowed across the element interface, the numerical flux normal
to the element interface can be attained from the local Riemann solver given the left

and right states. The Local-Lax Friedrichs flux [92] is used, and it is defined as follow,

. 1 _ Amax _
) = 5 (F(U;) + F(U]) - 25207 - U), (a22)
)\max = max(|u+ - C+|7 |u_ - C_|’
lu™ +ct), Ju” + 7)), (A.23)
C+ — gH-i-’ ¢ = gH_ (A24)

For F(z1) (=) plw) F(q), the average numerical fluxes are applied,

BD = %(Fj“)‘ + R, (A.25)
) = %(Fj”)‘ + EFT, (A.26)
) = S(E 4 B, (A.27)
P = %(F}”‘ +FOT), (A.28)
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A.5 Temporal Discretization
A.5.1 Runge-Kutta Method

The TVD Runge-Kutta time integration scheme should be one order higher than the
space discretization as shown in the previous study [93]. In this paper, the second-
order TVD Runge-Kutta scheme [91] is used, because the p = 1 is used. Egs. (A.16),

(A.17) can be written into the following form:

U =Ry, (U), (A.29)

and the second-order TVD Runge-Kutta scheme is given by:

U* = U" 4 AtR,,(U"), (A.30)
n+1 1 n 1 * 1 *
Ut = JU" 4 JU 4 D ARy, (U7). (A.31)

The Courant-Friedrichs-Lewy (CFL) condition is given by [88]:

: he
At < mm((/\max)e@p n 1)) (A.32)

A.5.2 Computational Procedure

The computational procedure for solving the DG model of Boussinesq equations is as

follow,

e To compute G(g-l) and ng) by solving the Eq. (A.12) and Eq. (A.13).

e To substitute Eq. (A.15) into Eq. (A.14) to compute out z;. We should note
that the w; is not computed directly.

e To solve the Egs. (A.16), (A.17) by using TVD(Total Variation Diminishing)
Runge-Kutta method. {; and g; can be computed out.
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A.6 Slope Limiter

a+b

1
1
I
I
I 9
| 4
I
I
1
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Le—1,mp Le,mp Ze4+1,mp

EIB

Figure A.1 Slop limiter

For the shock wave, unphysical spurious oscillations are observed near shock discon-
tinuities by the DG methods. To overcome this drawback, the slope limiter [89] is
applied to the water level variation ¢ and the flow rate ¢ (Figure A.1).

In an element e, the slope limiter for a variable f can be written as:
f(T) :.f_€+($_xmp)gﬁa Tj—1 <z < Tj, (A33)
where f. is the average value of a variable over an element, Tmp is the midpoit of the

element. f can be ( or ¢, and here the monotonized central slope limiter is used, it

can be written as:

_ [sign(a) + sign(b)] min( la + b|

e . ,2|a|,2|b|>. (A.34)

The upwind slope a, the downwind slope b, and the central slope (a + b)/2 are given
by:

JFe — fe—l

a= , (A.35)
LTemp — Le—1,mp
po —Jenn = Je : (A.36)
Le41,mp — Le,mp
a’+b: f€+1_f€—1 (A37)
2 Let1,mp — xe—l,mp’

where ¢ mp is the midpoint of element e.
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A.7 Wetting and Drying Treatment for DG
Method

Casel):

Case 2):

Case 3):

Figure A2  Wetting and Drying Treatment

The shallow water equations are strictly hyperbolic for H > 0. To handle the dry bed
(H = 0) problem, the wetting and drying treatment of Bunya et al. [90] based on the
concept of the thin water layer technique is employed in this work. In this method, a
sufficiently small depth Hy and zero velocity are defined at the dry nodes.
Comparing H,y with the average water depth H; of an element I (jo1 < ax <
xj), the water depth of nodes (H;_1,H;), the wet nodes and the dry nodes can be
determined. Then the wetting and drying treatment can be defined as the following

three cases (Figure A.2):

1) If Hj—l 2 H(), Hj Z H(), then
H; y=H; , H; = Hj,
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dj—1 = ¢j—1, 4j = 4,
2). It H < Hy, then
f{j—l = I_{’/? f{j = F[],,
gji—-1=0,¢q; =0,
3). If H > Hy, H; < Hy, then
Hj 1= Hj 1 — (Ho — Hy), H; = Ho,
dj—1 = qj—1 +qj, ¢ = 0,

where H =1, H j» j—1, Gj are the updated water depth and flow rate of the nodes of

the element (.
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A.8 Numerical Example
A.8.1 Propagation of Solitary Wave Problem

_— 1.1 T T T T T T y

Z

3

g

=

B 1 L | 1 | L | L | L

0 20 40 60 80 100

Figure A.3  Computational model

In order to evaluate the performance of the Boussinesq equations, the propagation of
solitary wave problem shown in Figure A.3 is simulated. Two cases of mesh is used.
For the case A, Az = 1m, At = 0.02s. The case B, Az = 0.1m, At = 0.005s.

The surface elevation profiles at ¢ =bs, 10s, 15s, 20s are shown in Figure A.4,
Figure A.5. We can see the results by using Boussinesq equations are better agree

with the reference results [94] than the results of shallow water equations.
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1.15

H—— Eskilsson and Sherwin t=5s  t=10s t=15g t=20s

i{—=— shallow water eq.
{—— Boussinesq eq.

Water depth [m]
=
N

0 40 %0 %0100
X [m]
Figure A4  Results of case A (Az = 1m)
1.15

H i I J
H—— Eskilsson and Sherwin
- shallow water eq.
[|—— Boussinesq eq.

Water depth [m]
=
N

0 | 20 | 40 | 60 | 30 | 100
X [m]

Figure A5  Results of case B (Az = 0.1m)
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A.9 Summary

In this study, the Boussinesq model (1D) solved by the DG method has been devel-
oped. From the simulation of the propagation of solitary wave problem, the analysis

results are in good agreement with the reference results.
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