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Chapter 1

Introduction

1.1 Metamaterials

A basic material classification can be established regarding signs of permittivity ¢ and
permeability p of materials. This common classification is divided into four parts of

positive and negative values in Fig. 1.1 as follows:
e Double Positive (DPS): e > 0, u > 0
e Double Negative (DNG): e <0, u <0
e Mu Negative (MNG): € >0, u <0

e Epsilon Negative (ENG): ¢ <0, p >0

W (Permeability)
Epsilon Negative (ENG) Double Positive (DPS)

Plasma
wire structure
e<0,u>0
No transmission

Conventional (RHMs)

e>0,p>0
o
> &
(Permittivity)
ferries
split rings structure
air e>0,u<0

No transmission

Double Negative (DNG) Mu Negative (MNG)

Figure 1.1: Basic classification of materials in € and p plane.



Conventional materials exhibit Double Positive (DPS) signs of the permittivity ¢ and
the permeability 1 and follow a right handed triad rule as shown in Fig. 1.2 (a). So, these
materials are called by Right Handed Materials (RHMs).

The ancient Greek prefix “Meta” means “Beyond”. Terminology “Metamaterial” has
been used to describe a composite material in form of effective medium which can have
negative permittivity € and/or negative permeability . Metamaterials include Double
Negative (DNG), Mu Negative (MNG) and Epsilon Negative (ENG) materials. In ad-
dition, Double Negative (DNG) materials are called by Left Handed Materials (LHMs)
since the electric field, magnetic field, and phase constant propagation vectors follow left
handed triad rule in the LHMs as shown in Fig. 1.2 (b). The theoretical speculation of
electromagnetic metamaterials was first presented by Veselago [1]. He proposed the ex-
istence of “substances with simultaneously negative permittivity € and permeability p”.
As the result, LHMs support electromagnetic waves with anti-parallel phase and group
velocities that are also known as backward waves. Compared with RHMs, this unique
electromagnetic property induces different phenomena, such as reversals of Snell’s law
(negative index of refraction), the Doppler effect, and the Cerenkov effect. An example
for backward waves and negative index of refraction is shown in Fig. 1.3.

With the non-existence in nature and lack of experimental verification, metamaterials
attract few attention over 30 years in science community. In 1998, thin wire structures
(TWs) exhibit a negative value of effective permittivity which was first demonstrated by
Pendry [2]. In 1999, he presented split ring resonator structures (SRRs) with a negative
value of effective permeability [3]. Shelby and Smith verified a negative index of refraction
of negative ¢ and negative u by constituting TWs and SRRs in 2001 [4]. Then metama-
terials have attracted much attention in theoretical exploration as well as experimental

study for their unique electromagnetic properties.

P P

(a) (b)

Figure 1.2: (a) Right handed triad. (b) Left handed triad.



RH medium 1 e=10 RH medium 1 e=10
Source u=1 p=1

Figure 1.3: The HFSS simulated result of negative refraction (left) and positive refraction
(right) at 10 GHz.

Later, a transmission line approach for metamaterials was first introduced approxi-
mately at the same time in June 2002 by three different groups, Eleftheriades [5], Oliner
[6], and Caloz [7]. The proposed structures consist simply of L-C elements loaded-
transmission line networks and are called by left-handed transmission line (LH TL)
or negative-refractive-index transmission line (NRI TL). In 2006, composite right/left-
handed transmission line (CRLH TL) and dual composite right/left-handed transmission
line (D-CRLH L) are presented by Caloz [8, 9]. The CRLH TL exhibits a LH band at
low frequency, a RH band at high frequency, and is of pass-band while D-CRLH TL is
in opposition. More recently, an extended-composite right/left-handed transmission line
(E-CRLH TL) has been combined from CRLH and D-CRLH TLs to get more involved
band structures [10]. This TL is also known as a generalized negative refraction index
transmission line (NRI TL) [11].



1.2 Motivation

The rapid development of wireless communication systems is bringing new challenges.
Firstly, there is a trend towards the miniaturization of components associated with hand-
held devices. So the space left for the engineers to integrate all the necessary components
becomes smaller. When miniaturizing, the RF and microwave modules are very difficult
to reduce the size. This is mainly because the size of these devices is highly dependent
on the operational frequency. Secondly, manufacturers also require low cost in fabrication
while maintaining good performance.

Metamaterial technologies provide an opportunity to solve the new challenges. Meta-
materials have been applied to a large number of RF and microwave devices including
antennas, filters, power dividers and direction couplers with many advantages of multi-
band and small size. For example, metamaterials enable the antennas to be multiband
and sized on the order of one-tenth the operating wavelength and providing performance
better than conventional microstrip antennas sized of one-half the wavelength, thereby
providing a five times the size reduction. Moreover, metamaterials can also be used to
design absorbers [12], microwave lens [13], and metamaterial slabs for enhancing gain of
the antennas [14] and efficiency of wireless power transfers [15, 16, 17].

These reasons are my motivation to do research on metamaterials with metamaterial
transmission line approach as well as resonant metamaterial approach to utilize metama-

terial technologies for RF and microwave applications.

1.3 Objectives

An objective of this study is to bring new research results and applications for extended-
composite right /left handed transmission line (E-CRLH TL), the most recent metamate-
rial transmission lines. It paves the way for novel arbitrary dual-, tri- and quad-band RF
and microwave components.

Beside multiband applications, there is a growing demand for faster data transmission
of ultra wide band (UWB) applications. Antipodal Vivaldi antenna is a candidate for
UWRB applications. With resonant metamaterial approach, we improve gain of the an-
tipodal Vivaldi antenna by using nearly zero-index metamaterial (ZIM) unit cell. Before
combining with the ZIM unit cell, the single antipodal Vivaldi is designed to exhibit a
very good performance to compare the previous antipodal Vivaldi antenna. In addition,
a new estimation method for the operational low frequency end of the Vivaldi antenna is

presented in this study.



Summarily, this thesis has four highlight points as follows:
e Analysis and design of E-CRLH TL with new closed-form solutions.

e A compact metamaterial antenna based on E-CRLH unit cell for multiband appli-

cations.

e An antipodal Vivaldi antenna for UWB applications and new estimation method

for the operational low frequency end.

e Zero-index metamaterial (ZIM) unit cell for improving gain of antipodal Vivaldi

antennas.

1.4 Thesis outline

From above stated objectives, this thesis is divided into four chapters.

Chapter 2 will have three sections. Section 2.1 starts with the basic model for conven-
tional transmission line and is followed by the analysis of homogeneous CRLH, D-CRLH
and E-CRLH TLs. L-C loaded unit cell networks approached by Bloch-Floquet analysis
are introduced at the end of this section. New closed-form solutions are developed in Sec-
tion 2.2 and presented for deriving inductance and capacitance elements of the E-CRLH
unit cell from the cut-off frequencies of right-handed (RH) and left-handed (LH) bands.
The characteristics of the E-CRLH TL are calculated for unbalanced, balanced, and mixed
cases. The dispersion diagram, the Bloch impedance, S-parameters are also investigated.
The usefulness of our method has been shown in detail by designing the desired charac-
teristics for various cases. In Section 2.3, a compact quad-band antenna is designed from
an unit cell of asymmetric E-CRLH TL as the main resonator part and a 50 {2 coplanar
waveguide (CPW) as the feeding part. The design concept and the resonant frequencies
are analyzed and discussed. The results show that the proposed antenna exhibits four
frequency bands covering GSM810, WLAN 2.45/5.5 GHz and WiMAX 3.5 GHz bands.
The overall size of the fabricated antenna is only 57.2 mm x 31.2 mm x 1.6 mm and
is very small to compare with other proposed quad-band antennas. In addition, a good
agreement can be observed among the estimated resonant frequencies, HFSS simulated
and measured results.

Chapter 3 entitled as resonant metamaterials, will present a robust method to retrieve
effective parameters of resonant metamaterials in Section 3.1, and zero-index metamate-
rial (ZIM) unit cell for improving gain of antipodal Vivaldi antennas in Section 3.2. The
first section of this chapter, refractive index n, impedance z, permittivity € and perme-
ability p of resonant metamaterials are retrieve from S-parameters. This method is very

useful for designing resonant metamaterial unit cells. In Section 3.2, a simple approach is



presented for designing antipodal Vivaldi antennas. A new and better estimation of the
low frequency end of the operational range is shown. Final dimensions of the antenna
parameters are determined by using the commercially available simulation software (High
Frequency Structure Simulator, HFSS). The proposed antenna has simple configuration
but exhibits low return loss, good radiation characteristics, high and flat gain in the op-
erating ultra wideband frequency range (3.1-10.6 GHz). The fabrication has been done
along with the specification to confirm the properties by measurements. Then, the gain of
the designed antipodal Vivaldi antenna is enhanced by arranging zero-index metamaterial
(ZIM) unit cells in the aperture of the antenna. The effective parameters of the proposed
ZIM unit cell are calculated from the robust method in Section 3.1. With an optimized
configuration, an improved gain to compare conventional methods is observed.

Finally, conclusions are made in Chapter 4.

In the following discussion, the time harmonic factor e/“! is assumed and suppressed

throughout the context.



Chapter 2

Metamaterial transmission lines

2.1 Metamaterial transmission line theory

2.1.1 Introduction

Transmission line theory has a significant important in RF and microwave circuits since
it is the gap between field analysis and circuit theory. In this section, we will see the
phenomenon of wave propagation on a conventional transmission line and metamaterial
transmission lines which are approached from an extension of circuit theory.

Firstly, basic model for a conventional transmission line is presented Section 2.1.2.
Composite right/left-handed transmission line (CRLH TL) is outlined in Section 2.1.3.
The CRLH TL exhibits a LH band at low frequency, a RH band at high frequency, and
is of pass-band [8]. In opposition to the CRLH TL, D-CRLH TL exhibits a LH band
at high frequency, a RH band at low frequency, and is of stop-band nature [9]. These
characteristics of the D-CRLH TL are shown in Section 2.1.4. As a consequence, the
E-CRLH TL has been combined from CRLH and D-CRLH TLs to get more involved
band structures [10]. This TL also known as a generalized negative refraction index
transmission line (NRI TL) [11]. The E-CRLH TL exhibits two LH and two RH bands
and is presented in Section 2.1.5. Any practical implementation of these metamaterial
transmission line must be periodic structure. Hence, analysis of periodic L-C loaded unit

cell networks are presented in Section 2.1.6.

2.1.2 Basic model for a conventional transmission line

A conventional transmission line is often schematically represented as a two-conductor line
in Fig. 2.1 (a). The piece of infinitesimal length Az of transmission line can be modeled
as shown in Fig.2.1 (b), where R, L,C, and G are per-unit-length quantities defined as

follows:
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Figure 2.1: (a) Voltage and current distribution in a conventional transmission line. (b)
Its equivalent circuit [18].

R = series resistance per unit length in [©2/m].
L = series inductance per unit length in [H/m)].
C' = shunt capacitance per unit length in [F/m)].

G = shunt conductance per unit length in [S/m].

Applying Kirchhoff’s voltage and current laws for equivalent circuit in Fig. 2.1 (b), we

have

v(z,t) — RAzi(z,t) — LAZ% —v(z+ Az, t) =0, (2.1)

v(z+ At)

i(z,t) — GAzv(z + Az, t) — CAz 5

—i(z+ Az t) =0, (2.2)

Then dividing Egs. (2.1) and (2.2) by Az and taking the limit as Az — 0 gives the

following differential equations

Gvgz, t) _ Ri(t) Lf%(azt, t)’ (2.3)
ai(z,t) . 8U(Z,t)
5 = —Gu(z,t) - C 5 (2.4)

Two equation above are called “Telegrapher equations”. For the sinusoidal steady-state

condition, with cosine-based phasors, Equations (2.3) and (2.4) simplify to

VE _ (r+ jwnia), (2.5)
dgj) = —(G + jwO)V(2). (2.6)



Wave equations for V(z) and I(z) can be solved from Egs. (2.5) and (2.6) as

deVZg@ — 2V (2) =0, 2.7)
d*I(z) ) _
i I(z) =0, (2.8)
where
y=a+j8=+(R+ jwL)(G + jwC), (2.9)

is the complex propagation constant. One gets travelling wave solution from Egs. (2.7)
and (2.8) as

Vi(z)=Vyte 7 + Vy e, (2.10)
I(z) = Ife " + Iy e, (2.11)

where e™7* is the wave propagation in the +z direction, and e?* is the wave propagation
in the —z direction. Applying Eq. (2.5) to voltage of Eq. (2.10) gives the current on the

line

g —vz - vz
](Z) = m(%+€ 7F ‘/0 67 ) (212)

Comparison Eq. (2.12) with Eq. (2.11), impedance characteristic Z, can be defined as

Zozv%z ‘@ - Atel M. (2.13)
I I Y G+ jwC

The wave length on the line is

2m
A= —, 2.14
3 (2.14)
and the phase velocity is
w 2nf
v, =—=—==\[. 2.15

The above solution includes loss effects, and it can be seen that the propagation constant
and characteristic impedance are complex. In many practical cases, the loss of the line is

very small and so can be neglected [18], resulting in a simplification of the results.
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Figure 2.2: Purely RH TL (a) Equivalent circuit (b) Dispersion diagram.

Setting R = G = 0 in Eq. (2.9) gives the propagation constant as
vy=a+jp = jwVLC, (2.16)
or

B =wVLC, (2.17)
a=0 (2.18)

The conventional transmission line become purely RH transmission line as shown in
Fig.2.2.

2.1.3 Composite right/left handed transmission line

Metamaterials are effective homogeneous materials that under certain assumption can be
modeled as a transmission line. To consider them as a homogeneous material the key
assumption is that a effective homogeneous TL has an incremental length Az and the

following restriction has to be applied

Az < A, (at least Az < %), (2.19)
where )\, represents the guided wavelength.

As presented in [8], a purely left-handed transmission line (LH TL) as shown in Fig. 2.3
can not exist physically because parasitic series inductance and shunt capacitance effects,
increasing with increasing frequency, will avoidably occur due to current flowing in the
metallization and voltage gradients developing between the metal patterns of the trace and

the ground plane. Therefore, the composite right/left-handed transmission line (CRLH

TL) model is the most possible metmaterial transmission line structure.

10
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Figure 2.4: Equivalent circuit for a homogeneous CRLH TL [8].

The incremental model for a homogeneous CRLH TL is shown in Fig.2.4. The model
consists of a impedance per unit length Z,[Q/m] constituted by a inductance RH per-
unit-length Lp[H/m] in series with a LH capacitance times-unit-length C} [F-m], and a
admittance per unit length Y}; [S/m]| constituted by a capacitance RH per unit length
C[F/m] in parallel with a LH inductance times unit length L) [H-m]:

/ ' 1

Z, =j|wLy, — — |, 2.20
h=1J <W R wC’L) ( )
’ ! 1

Y =9 c,— ——|. 2.21

The fundamental characteristics of the CRLH TL has been presented in Ref. [8]. At low
frequencies (w — 0), Z}% — 0, Yziz — 0, so that the CRLH TL becomes equivalent to
a purely LH TL. At high frequencies (w — o), Z; — 0, Y; — 0, so that the CRLH
TL becomes equivalent to a purely RH TL. At other frequencies, the TL characteristics

11



depend on the combination of LH and RH contributions. To further analysis of the CRLH
TL, applying telegrapher equations for this case, one gets

dV / / 1
— =—-ZT=—j|wly——]), 2.22
dz h ](w R wCL) ( )
dl / / 1

=Y ] =—4 C - . 2.23

Then by solving simultaneously two above equations and associated with the +z/ — z
propagating traveling wave solutions, the wave equations for V and I of CRLH TL can

be obtained as

V(z) =V e 7+ Vy e, (2.24)
[(2) = Ife " + I; e = ; (Vite™ — Vime?), (2.25)

>

where
y=a+jB=1/2Y,.

For convenience, the following variables are introduced

/ 1

W=~ (2.26)
LyCh
/ 1
Wy = —F=—= (2'27)
VLCp
and the series and shunt resonance frequencies are
1
Wse = —F——> (229)
LpCy
1
Wsh = —F7/—=—r> (230)
L Cp

respectively.

Now the complex propagation constant can be expressed as following

v=a+if=/7Y = js<w>\/ (i) n (“’—) CRn (231)

Wr w

where s(w) is the sign function, s(w) = —1 if w < min(wse, ws,) LH range, and s(w) = +1
if w > max(wse,ws,) RH range. The propagation constant v is purely imaginary v = j/3

in pass band and purely real v = a in stop band at some ranges of frequency.

12
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Figure 2.5: Dispersion diagram of a homogeneous CRLH TL

The sign function is explained by considering phase velocity (v, = w/f3) and group
velocity (v, = dw/df). When w < min(ws.,ws,), the phase velocity and group velocity
are anti-parallel since they have opposite signs meaning. There the TL is LH and (3 is
negative. When w > max(wse, wsp), the phase and group velocities are parallel since they
have the same sign. The TL is RH and [ is positive. A typical dispersion diagram of

CRLH TL for propagation of energy v, in the +z direction is shown in Fig. 2.5
The frequency of maximum attenuation wy can be found by solving the following equa-

tion:
d 2 2 3
9 _ js(w W[k — /v =0, (2.32)
dw V(W/wR)? + (W] [w)? — kWP

yielding
1
(2.33)

Wy = \/w/ (,UI = VWseWsh = ——F7—F——77—-
’ o ' VLpLCrCy
The CRLH characteristic impedance is calculated from Eq. (2.25)
o=V L
Ze="0 "N _ = w/wse (2.34)

The other fundamental transmission line quantities, guided wavelength \;, phase velocity
vp, and group velocity v, of the CRLH TL are derived from Eq. (2.31):

13



2T 21

T8 T wfw)? + (W Jw)? — R
w w

VI(W/wp)? + (W Jw)? = hwp

vy = (ﬁ) L 7 o/ Zwi/] (2.37)

dw w/wp)? + (W /w)? — KW

(2.35)

v, = 5= s(w) (2.36)

Now we discuss interesting characteristics of the CRLH TL in a balanced case when

the series and shunt resonant frequencies in Egs. (2.29) and (2.30) are equal
Wse = Wshs (2.38)

or L;ZC}J = LILC;%. As a consequence, the gap closes up and the impedance characteristic

becomes a frequency-independent quantity

L/ /
Zo =22 =2 =27 (2.39)
L R

h

Q

This means that the balanced condition allows matching over broad bandwidth. Since
a = 0, the simplified propagation constant [ is purely real at all frequencies from w = 0

to w = o0,
f=—F—-—, (2.40)

exhibiting the root

wo = \/WrW = Wse = Wgp- (2.41)

This indicates that the frequency of maximum attenuation of the unbalanced CRLH TL
becomes transition frequency between LH and RH ranges if the TL is in balanced case.
Examples for the dispersion diagram of a homogeneous CRLH TL in an unbalanced
and a balanced cases are shown in Figs. 2.6 and 2.7, respectively. While the impedance
characteristics for these cases are plotted in Figs.2.8 and 2.9. From Fig. 2.6, the unbal-
anced case has a stop band between 3.55 GHz and 5.03 GHz and « # 0 in this band. For
the balanced case, the gap of the stop band is closed in Fig.2.7 and o = 0. In addition,

we have a constant impedance as expected in Fig.2.9.

14



Frequency [GHZz]

3 -2 1 0 1 2 3 [Rad]

Figure 2.6: Dispersion diagram of a homogeneous CRLH TL in an unbalanced case with
L'p=2 nH/mm, Cr=1 pF/mm, L; =1 nH-mm and C;=1 pF-mm

Frequency [GHZz]
12
10+
8l
— BAz
64
24
-3 -2 -1 0 1 2 3 [Rad]

Figure 2.7: Dispersion diagram of a homogeneous CRLH TL in a balanced case with
Lz=1 nH/mm, Cr=1.2 pF/mm, L;=1 nH-mm and C;=1.2 pF-mm
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Figure 2.8: Impedance characteristic of a homogeneous CRLH TL in an unbalanced case
with L',=2 nH/mm, Cr=1 pF/mm, L, =1 nH-mm and C;=1 pF-mm
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Figure 2.9: Impedance characteristic of a homogeneous CRLH TL in a balanced case with
L'y=1 nH/mm, C,=1.2 pF/mm, L}, =1 nH-mm and C};=1.2 pF-mm
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Figure 2.10: Equivalent circuit for a homogeneous dual-composite right /left handed trans-
mission line (D-CRLH TL) [9]

2.1.4 Dual-composite right/left handed transmission line

The equivalent circuit model for a dual-composite right /left handed transmission line (D-
CRLH TL) is shown in Fig. 2.10. The most fundamental property of the D-CRLH TL can
be inferred from the observation with the impedances Zj, = jwlLy, Z, = 1/(jwC}) and
the admittance Yy = jwC, Y; = 1/(jwL}). From Ref.[9], at low frequencies 75 < Z;
and Y, < Y, therefore the dominant components are Ly and Cj and the TL becomes
equivalent to RH TL. At high frequencies, Z;% > 7, and Yziz > Y, therefore the dominant
components are L; and C; and the TL becomes equivalent to LH TL.

The horizontal impedance Z,/l, the vertical admittance YU/, are obtained by

’

wlp

Z =R 2.42
h 1 — (w/wse)?’ ( )

’ CUC,
Y =j— "8 2.43
Syt (2.43)

where
1

Wge = ) (244)
Wshp = % (2.45)

17



The complex propagation constant «, and the characteristic impedance Z. for a homo-
geneous D-CRLH TL are calculated as

. ww
vy=a+jf = js(w) L (2.46)
\/(.U4 (w2 + Wsh)(.UZ + wse sh
/ 1
Wy, = 7 70
. C
Z

C\

1 — (w/wsn)? 1 — (w/wsh)?
=g\ ———————= 2.47
\/ \/1 — (w/wge)? AT = (w/wge)? (247)
where s(w) the sign function, s(w) = —1 at a high frequency LH range, and s(w) = +1
at a low frequency RH range.
The balanced case of the D-CRLH TL can be obtained when w,. = ws, = wy or

LIRC'L = L'LC;%. It leads to @ = 0 and the expression of the propagation constant § and

the characteristic impedance Z. simplify to

wwL

_ _ 2.48
B = p (2.48)
Ze = Zn. (2.49)

One can seen that [ has a pole at the transition frequency wy between the RH and LH
bands.

Figures 2.11 and 2.13 show the dispersion diagram and the impedance characteristic of a
homogeneous D-CRLH TL in an unbalanced with L=2 nH/mm, C=1 pF/mm, L} =20
nH-mm and C; =2 pF-mm, respectively. As inference from the beginning of this section,
D-CRLH TL exhibits a LH band at high frequencies, a RH band at low frequencies in
Fig.2.11. This is opposite to the CRLH TL behavior. The value of a at the stop-band
between the LH and RH band is is higher than the CRLH TL. Figures 2.12 and 2.14 show
the dispersion diagram and the impedance characteristic of a homogeneous D-CRLH TL
in a balanced case with L,=2 nH/mm, Cr=1 pF/mm, L;=2 nH-mm and C;=1 pF-mm.
In this case, the stop-band between the RH and LH band is not delimited and this is in
contrast with the balanced case of the CRLH TL. Similarly, we have a = 0 and a constant

impedance which allows a broadband matching.
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Frequency [GHZ]

Figure 2.11: Dispersion diagram of a homogeneous D-CRLH TL in an unbalanced case
with L;,=2 nH/mm, Cr=1 pF/mm, L; =20 nH-mm and C; =2 pF-mm

Frequency [GHZz]

— BAz

3 2 4 0 1 2 3 [Rad

Figure 2.12: Dispersion diagram of a homogeneous D-CRLH TL in a balanced case with
L'z=2 nH/mm, Cp=1 pF/mm, L;=2 nH-mm and C};=1 pF-mm
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Figure 2.13: Impedance characteristic of a homogeneous D-CRLH TL in an unbalanced
case with L',=2 nH/mm, Cr=1 pF/mm, L; =20 nH-mm and C;=2 pF-mm
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Figure 2.14: Impedance characteristic of a homogeneous D-CRLH TL in a balanced case
with Lp=2 nH/mm, Cp=1 pF/mm, L; =2 nH-mm and C; =1 pF-mm
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Figure 2.15: Equivalent circuit for a homogeneous extended-composite right /left handed
transmission line (E-CRLH TL) [10]

2.1.5 Extended-composite right/left handed transmission line

Figure 2.15 shows the incremental circuit model of a homogeneous extended-composite
right/left handed transmission tine (E-CRLH TL) which is combined from the CRLH and
the D-CRLH TLs [10]. The superscripts “c” and “d” stands for the CRLH and D-CRLH
TLs, respectively. The impedance Z,; of the horizontal branch and the admittance Yv' of

the vertical branch are given by

c 2 : d
/ ’ ’ . c wse ij
Z, =4.+ Z; = jwLy [1— < " ) +T/fzd)2’ (2.50)
1 d 1
(J.J‘S:e =, Wy, = —FV—, (2.51)
VL:CS Vv LECY
c 2 ; d
/ / / . c wsh jCL)OR
}/;]:}/;+Yd:]OJCR 1—<w) —I—TW, (2.52)
1 d 1
=, W= 25
NI JIicd

The complex propagation constant v, and the characteristic impedance Zs for the E-
CRLH TL are obtained by

v=a+jB=\/(Z+ Z)(Y, +Y;), (2.54)

17z + 7
Zo = ¢ d 2.55
¢ Y. +Y, ( )
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The balanced condition for the E-CRLH TL is

Wee = Waps (2.56)
We = Wi (2.57)
Ly Cf
= R (2.58)
LR CR

If this condition is fulfilled, &« = 0 and Equation (2.54) reduces to purely real expression

w? —w? wwé
= — 2.59
pozth _od (2.5
where
‘ ! (2.60)
W = ———, .

" VEIRC
o L (2.61)

L /—L%Cg’

1 1 1 1

wo - — . (2.62)

RN/ AN Yor NG e N7 Ter

The characteristic impedance Z¢ is purely real and frequency independent,

| L L5 L% LY
7., = R _ L _ R _ L _ 7 2.63
‘ Cs, Cy C4 cg —°F (2.63)

The two balanced transition frequencies wg o2 can be calculated by setting Eq. (2.59) to

zero, which yields

d d

whHw whHwW
WOLOQ = \/wg + R4 L Zl: \/ PZ_L L, (264)

VWo1wo2 = Wo- (2.65)

Firgures 2.16 and 2.17 show the dispersion diagram of a homogeneous E-CRLH TL in
an unbalanced and a balanced cases, respectively. While the impedance characteristic of
these cases are shown in Figs.2.18 and 2.19. The E-CRLH TL exhibits a richer behavior,
with two LH bands and two RH bands to compare with the CRLH and D-CRLH TLs.
At the unbalanced case, we have four pass-bands and three stop-bands. For instance, this
case can be applied to design multiband applications. At the balanced case, there is an
unavoidable intermediate gap due to the stop-band nature of the D-CRLH TL in Section
2.1.4. The impedance is also purely real and frequency independent. Therefore, we can

impedance matching at a broadband.
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Frequency [GHZ]

3 2 41 0 1 2 3 [Rad

Figure 2.16: Dispersion diagram of a homogeneous E-CRLH TL in an unbalanced case
with L%=2 nH/mm, C$=3 pF-mm, L4=0.5 nH/mm, C¢=4.5 pF-mm, L$=3.25 nH-mm,
C%=0.5 pF/mm, L¢=10 pF-mm, and ¢4=0.3 pF/mm

1 Frequency [GHZz]

10

3 2 -1 o 1 2 3 [Rad

Figure 2.17: Dispersion diagram of a homogeneous E-CRLH TL in a balanced case with
L%=2nH/mm, C¢=3 pF-mm, L%=1.2 nH/mm, C¢=4.5 pF-mm, L$=12 nH-mm, C4=0.5
pF/mm, L¢=18 pF-mm, and ¢4=0.3 pF/mm
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Figure 2.18: Dispersion diagram of a homogeneous E-CRLH TL in an unbalanced case
with L%=2 nH/mm, C¢=3 pF-mm, L%=0.5 nH/mm, C{=4.5 pF-mm, L$=3.25 nH-mm,
C%=0.5 pF/mm, L¢=10 pF-mm, and ¢%4=0.3 pF/mm
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Figure 2.19: Dispersion diagram of a homogeneous E-CRLH TL in a balanced case with
L$=2 nH/mm, C¢=3 pF-mm, L%=1.2 nH/mm, C¢=4.5 pF-mm, L5=12 nH-mm, C4=0.5
pF/mm, L¢=18 pF-mm, and ¢4=0.3 pF/mm
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2.1.6 Periodic L-C loaded unit cell networks

Previously, the metamaterial transmission lines (CRLH, D-CRLH and E-CRLH TLs) were
mapped to the circuit expressions obtained from Kirchhoff’s laws in order to show its gen-
eral characteristics and to confirm backward propagation waves. However, this approach
may not be realized. Any practical implementation of these metamaterial transmission
lines must be periodic L-C loaded unit cell network. As the circuit theory, the physical
dimensions of the unit cells need to be much smaller than the wavelength, such that each
section can be considered as a lumped-element equivalent circuit. When the circuit model
with finite-dimension is periodically cascaded, a band structure is considerably developed
on the corresponding dispersion relation by conducting periodic Bloch-Floquet analysis

which is the standard procedure for 1-D periodic of microwave networks.

lﬁ In+l
1[4 B 5 A B — A B| ——
C D v, C D Vi C D
Unit cell Unit cell - Unit cell

Figure 2.20: Periodically unit cell network

According to the periodic Bloch-Floquet theorem with a forward propagation in z
direction as shown in Fig.2.20, the voltage and current at the terminal (n) unit cell are
related to the voltage and current at the terminal (n + 1) unit cell by propagation e=7%.
Thus

Vn+1 = Vne—’yd’ (266)
L = Lie (2.67)
Using the ABCD matrix, one gets
Vi, A B Vi,
= “ (2.68)
I, C D Iy

Then, from Egs. (2.66),(2.67) and (2.68), we have

Vn+1€7d _ A B Vot (2 69)
[n+1€7d C D| | Lt .
or
A— e B Vi
‘ =0 (2.70)
C D — e_Vd -[n+1
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For a nontrivial solution, the determinant of the above matrix must vanish:
AD — BC + &% — (A + D) = 0. (2.71)

In addition, AD — BC =1 as required for reciprocal networks

14+ e — (A+ D) =0 (2.72)
e te=A4+D (2.73)
A+ D
= coshyd = ; . (2.74)
If v =a+ j8, we have
A+ D

cosh ad cos Bd + j sinh ad sin Bd = (2.75)

2 Y
As presented in [18], the right hand side of Equation 2.75 purely real, we must have either
a =0or § =0. For the case a« # 0 and § = 0/w, the wave is attenuated along the
line, this defines the stop band of the structure. For the case a = 0 and 3 # 0, this case
corresponds to a nonattenuated propagating wave on the periodic structure, and defines

the pass band of the structure. Equation (2.75) reduces to

A+ D

cos fd = (2.76)

2 )

Figure 2.21: (a) Asymmetric, (b) Symmetric T-shape, (¢) Symmetric m-shape
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ABCD matrixes for asymmetric, symmetric T-shape and symmetric 7w-shape unit cells

are calculated from the following equations:

A B AN
C R
asymmetric -
1+ 2y, Z
_ |t " (2.77)
Y, 1
A B [tz o[t 2
C D . o 1]y, 1]]o 1
symmetric T-shape L
1+ Z,Y, 27, + Z%Y,
R 2t (2.78)
Y, 1+ 2,Y,
A B v oot 2] oo
C D , oy, 1o 1|y, 1
symmetric m-shape L
1+ Z4Y, Z
_ | e s (2.79)
2Y, + 2,Y} 1+ Z,Y,
Therefore, the dispersion relations from Eq. (2.76) can be obtained as
ZnY, .
cosffd =1+ h2 for asymmetric unit cell, (2.80)
cosBd =1+ Z,Y, for symmetric T-shape unit cell, (2.81)
cosfd =1+ Z,,Y, for asymmetric m-shape unit cell. (2.82)

Alternatively, the metamaterial transmission lines can be modeled as a general asymmet-
ric, symmetric T-shape and 7-shape as shown in Figs.2.21 (a), (b) and (c), respectively.
Now we apply the analysis of periodic L-C loaded unit cell networks for the asymmetric
unit cells of the CRLH, D-CRLH and E-CRLH TLs in Figs.2.4, 2.10 and 2.15, respec-
tively. The dispersion relations of these TL are calculated for its balanced cases which
the values of L-C elements are similar with Figs.2.7,2.12,2.17.

Then the comparison of propagation constant 8 between the homogeneous transmission
lines by incremental circuit analysis and the periodic L-C loaded unit cell networks by
the Bloch-Floquet analysis is shown in Fig.2.22. In the same manner, the incremental
transmission line model approached by Telegrapher’s equations exhibit a continuous dis-
persion at high and low frequencies. This imply that there are no cut-off frequencies at
B = m. However, the lumped-element periodic unit cell approached by Bloch-Floquet

analysis exhibit cut-off frequencies at g = 7.
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Figure 2.22: Comparison between the homogeneous TLs and Bloch-Floquet analysis (a)
CRLH TL in Fig.2.7, (b) D-CRLH TL in Fig2.12, (¢) E-CRLH TL in Fig. 2.17.
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2.2 Analysis and design of E-CRLH TL with new

closed-form solutions

2.2.1 Introduction

Most microwave application design with the E-CRLH TL are based on the controllabil-
ity of the dispersion diagram, and the impedance matching consideration of the Bloch
impedance. Therefore, it is important to find appropriate L-C elements to match the re-
quirements. Previous studies for designing E-CRLH TL have presented for balanced cases
and have seldom mentioned about unbalanced cases. Reference [19] presented a possible
solution for a balanced case to achieve a desired phase at four specified frequencies. A bal-
anced E-CRLH TL with arbitrary phase shifts at four arbitrary frequencies is reported in
Ref. [20] by using the results of homogeneous E-CRLH medium. Homogeneous E-CRLH
medium may be useful for idealization, but not for the case of a practical E-CRLH TL
lumped implementation, since the unit-cells would sometimes cascaded periodically to
build effectively the corresponding uniform TL structure [10].

This section shows a novel procedure for analysis and design of the E-CRLH TL in
unbalanced, balanced, mixed and special cases. By solving a set of equations explicitly,
one can design easily a desired dispersion diagram and control the Bloch impedance. In
addition, scattering parameters of a periodic E-CRLH TL unit-cells network have been

investigated carefully to show a complete view about the applicability of E-CRLH TLs.

2.2.2 E-CRLH TL analysis

The equivalent circuit of an E-CRLH TL unit cell [10, 11] is shown in Fig.2.23. For
convenience, we use numbering subscripts (1,2,3,4) for L-C elements. In the horizontal
branch, a series L;—C' resonator connects in series with a parallel Lo—C5 resonator. The

vertical branch contains a parallel L3—C'5 resonator in shunt with a series L,—C) resonator.

S

Figure 2.23: Equivalent circuit of an E-CRLH TL unit cell [10, 11].
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From this equivalent circuit model, the fundamental characteristics of this transmis-
sion line are straight forwardly analyzed by a standard TL and circuit theories. The
impedance Zj, of the horizontal branch and the admittance Y, of the vertical branch are

given respectively by

7, = le(W2 - W%m)(“ﬂ - W%OQ)

2.83
w(w2 - w%oo) , ( )
Y, = ]CB(WQ - W12/01)((;2 - W%/OQ)7 (2.84)

W(WQ - wYoo)

where
1 1

2 _ 2 _ _ 2.85
wZoo L C 7wYoo L 047 ( )

2 Bl+\/ —4A1 Bl—\/B%—ZIAl (2 86)

Wzo1 = WZOQ 5 )
2 BQ+\/ —4A2 BQ—\/B%—4A2
Wyo1 = WY02 9 ) (2.87)
1 1 1 1
Ay =—— B, = 2.88
LT Oy T I T TGy T ey (2:88)
1 1 1 1
A= ————— By = . 2.89
2= LGy 2 T IaCs | LaCh T TaGh (2.:89)

By using the results for the T-shape unit cell in Section 2.1.6, the dispersion relation is
obtained as
cos(fd) =1+ Z,Y,, (2.90)

where 3 is the propagation constant for the Bloch waves and d is the length of the unit
cell. The possible bands of the E-CRLH TL are shown by the dispersion diagram, which
can be plotted from Eq. (2.90). An example of the dispersion diagram of the unbalanced
E-CRLH TL is depicted in Fig.2.24. The dispersion diagram shows two RH bands ( fcs,
fea), (fes, fo2), two LH bands (fe1, fes), (fos, fer). The balanced E-CRLH TL is
obtained when fos = feog and for = fos. The cut-off frequencies foi~ fos are calculated
from the conditions: cos(fd) = +1.

The Bloch impedance is a quantity to use for the impedance matching. The Bloch
impedance of the proposed metamaterial transmission line may be approximately calcu-
lated by the expression [11], [21]:

Zy = / 2L (w? — WZ(n)(W; - WQ%OQ)(W; - sz%oo)' (2.91)

Cs(w? — wig) (W? — wig) (W? — wh,)
In this study, a different approach is proposed to determine lumped elements of the
equivalent circuit. Required L—C elements of the E-CRLH TL unit cell are calculated
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Figure 2.24: A typical dispersion diagram of E-CRLH TL in an unbalanced case.

from the cut-off frequencies foi~fcg of a desired dispersion diagram. So the proposed
procedure can be used for both an unbalanced case and a balanced case.

Let us begin from a general unbalanced case. From the condition cos(f8d) = 1, Eq. (2.90)
becomes Z,Y, = 0, then the cut-off frequencies fos~ fcs are determined from wzg1, wzgo,

Wyo1, Wyo2. Accordingly, six cases are available:

Wzo2 < Wyo2 < Wzor < Wyol, (2.92)
wz02 < wzor < Wyoz < Wyor, (2.93)
Wzo2 < Wyo2 < Wyor < Wzot, (2.94)
Wy < wzoe < Wyor < Wzot, (2.95)
Wwyo2 < wyor < wzo2 < Wzot, (2.96)
wWyo2 < wzo2 < Wzor < Wyol, (2.97)
provided Al = B% - 4/41 Z 0, and AQ = B% - 4A2 Z 0.
From the condition cos(3d) = —1, the cut-off frequencies foi1~ fey are calculated from:
ZnY, +2 =0, (2.98)

which is a fourth order equation with respect to w?, and has four roots (w2, wis, Wes, we,).
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From the relation between these roots and the coefficients of Eq. (2.98), one gets:

Wh01W G0y 1 Wi = Wi WenWEsWe, (2.99)
W%m + W%OQ + %2/01 + u’12/02 + m = W%1 + W%Q + W?)s + Wém (2.100)
W%m‘*}%m + W)Qf01w)2/02 + (W%m + W%m)(wg/m + C“’12/02) + %(W%m + w)%oo)

= w%‘l“%? + Wé2°~%3 + Wé3wé4 + "‘%4“%1 + W%&U%z + wélw%?n (2.101)

2
2 2 2 2 2 2 2 2 2 2
(WZ01 + Wz02)Wy01Wyo2 + (Wyor + Wyg2)wWz01Wzee + .Cs WZooWy oo

_ 2 2 2 2 2 2 2 2 2 2 2 2
= WeWeoeWeg + WoaWosWey T WesWeuWen + Weawen Wes- (2.102)

From the magnitude relations in Eqs. (2.92)~(2.97), one gets respectively, as

Wes = Wzo2, Wee = Wyo2, Wor = Wzo1, Wes = Wyol, (2.103)
Wes = Wzo2, Woe = Wzo1, Wor = Wyo2, Wes = Wyot, (2.104)
Wes = Wzo2, Woe = Wyo2, Wor = Wyol, Wes = Wzol, (2.105)
Wes = Wy2, Woe = Wzo2, Wor = Wyol, Wes = Wzol, (2.106)
Wes = Wyo2, Wee = Wyol, Wor = Wzo2, Wes = Wzot, (2.107)
Wes = Wy2, Wee = Wzo2, Wer = Wzol, Wes = Wyol- (2.108)

From Egs. (2.85)~(2.87), (2.99)~(2.102), one gets two solutions in the case of Eq. (2.103)
for L-C elements, if L; is given.

Solution 1:

o _ B+ VB 14
e 237533'7[41 ’ 1
21‘51’7 B + v B? —4A -
02 = Ty + Ty — - Ll )
B+VB%—-4A 2

Ly = ,
2T (B+VBE—4A)Cy
2
Cs = , 2.109
3 [(ZE1+CL’2+ZE3+CL’4)—(I5+ZE6+JI7+ZE8>]L1 ( )
I B —+vB?—-4A
3= )

2{L‘61‘803 1
2$6$8 B — vV B? —4A B
Ly= || 26+ w5 — — Cs )
B —+/B?%—-4A 2

(B—+/B? —4A)L;’

Cy =
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Solution 2:

B —+VB?—4A
Cl = )
233'51’7[11

Vs B—+BZ_ 4A) . ]‘1
1 )

Cy — ¥z, — _
2 sz T B B 1A 2

Ly = ,
2T (B- VB —1A)C,
2
C3 = , 2.110
° 7 {(wr + 22+ 25+ 24) — (5 + 26 + 27 + 75)] Ly ( )
I — B+ +vVB?—4A
P 21’6113803 ’ 1
21’61'8 B+ V B? —4A
Ly= ||ws+ w3 — — Cs|
B+ +vB%—4A 2
C - )
Y B+ VBT —4A)L,
where A and B are calculated as follows:
A _ D — [ZL‘51’7(1‘6 —|— I’g) —f- l’ﬁ[Eg(l’g) + ZE7)] 7 (2111)
({L‘1+172+ZE3+CL’4) — ((L‘5+ZL’6+(L‘7+ZL’8)
B— E — [ZE5$7 + Tgxg + (.CE5 + 237)(.2136 + 378)] , (2.112)
(21 + 29 + 23+ 24) — (v5 + 26 + T7 + 238)
D = 112013 + ToX3T4 + T1XoTy + T123T4, (2.113)
E= T1T2 + ToZ3 + T3xg + T4T1 + X123 + T224, (2114)
T =wi; = 2nfei)? i =1,2,...,8. (2.115)
In addition, the following conditions should be satisfied:
A=DB?—4A>0, (2.116)
Ly, Ch, Ly, Cy, L3, C3, Ly, Cy > 0. (2.117)

When A = 0, two solutions degenerate. Possible solutions for other cases of Egs. (2.104)~(2.108)
are shown in Appendix A.
In order to design an E-CRLH TL, cut-off frequencies fo1~ fcs, and inductance L are

set as design parameters. From Eq. (2.99), one gets for positive cut-off frequencies

fC’lfCQfCSfC4 = fCSfCGfC’?fCS- (2'118>

Accordingly, the cut-off frequencies foi~fcs are not independent. Our design method
can be described in the following steps:

1) Select seven of eight cut-off frequencies, the other is determined from Eq. (2.118).
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2) By setting inductance L;, other elements will be calculated from Egs. (2.109) and
(2.110).

3) Test the conditions in Egs. (2.116), (2.117).

In a balanced case, two solutions for Egs. (2.105), (2.106) and (2.108) are the same with
two solutions for Eq. (2.103) since x5 = x¢ and z7 = xg. Thus one may get maximum
6 solutions for a balanced case, and maximum 12 solutions for an unbalanced case with
fixed design parameters (fc1~fcs, L1). The variety of the solutions gives a chance to
choose suitable L-C elements. From Egs. (2.91), (2.109) and (2.110), the Bloch impedance
becomes a function of L; with fixed cut-off frequencies fo1~ feog. So the Bloch impedance
level is controlled by changing the value of L;. Therefore the desired dispersion diagram
and the Bloch impedance are designed easily by using the proposed closed-form solutions.

In next section, some numerical examples will be presented for various cases.

2.2.3 Unbalanced case, balanced case, and mixed case

a. Unbalanced case

In order to check the validity of our method, let us first start an unbalanced case, where
two sets of the short-circuited frequencies of the horizontal branch and the open-circuited
frequencies of the vertical branch are different. For example, let us find a desired dispersion
diagram in an unbalanced case with design frequencies: foo = 3.000 GHz, fo3 = 4.000
GHz, fca = 10.00 GHz, fcs = 2.000 GHz, fce = 2.500 GHz, for = 4.500 GHz, fes =
5.000 GHz. Then from Eq. (2.118), one gets fc1 = 0.9375 GHz.

Table 2.1: The solutions in an unbalanced case with fo; = 0.9375 GHz, fco = 3.000 GHz,
fos = 4.000 GHz, fou = 10.00 GHz, fos = 2.000 GHz, fog = 2.500 GHz, for = 4.500
GHz, fos = 5.000 GHz.

Eqgs. Sol. | Iy 1 Cy Lo Cs Ls Ly Cy
] | [pF] | [pF] | (B | [pF] | (o) | B | (R

(2.103) | 1 | 1.50 | 3.21 | 4.68 | 0.352 | 0.480 | 3.25 | 9.80 | 0.269
2 1.50 | 2.00 | 2.72 | 0.969 | 0.480 | 5.20 | 9.24 | 0.178

(2.105) 1 1.50 | 2.60 | 2.37 | 0.694 | 0.480 | 4.01 | 14.2 | 0.186
2 | 1.50 | 1.62 | 1.88 | 1.40 | 0.480 | 6.41 | 18.3 | 0.0902

(2.106) | 1 | 1.50 | 1.66 | 2.96 | 0.557 | 0.480 | 6.26 | 8.50 | 0.310
2 1.50 | 1.04 | 3.14 | 0.840 | 0.480 | 10.0 | 14.6 | 0.112

(2.108) | 1 | 1.50 | 2.05 | 5.84 | 0.282 | 0.480 | 5.07 | 5.88 | 0.448
2 | 1.50 | 1.28 | 4.54 | 0.581 | 0.480 | 8.12 | 7.41 | 0.222
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Figure 2.25: Dispersion diagram in an unbalanced case with the L-C elements in Table 2.1.

By setting L; = 1.50 nH and applying our closed-form solutions, totally eight solu-
tions for Egs. (2.103), (2.105), (2.106), and (2.108) are listed in Table 2.1. Solutions for
Egs. (2.104) and (2.107) do not satisfy the condition in Eq. (2.117) because Cy, Lo, Cy, and
L, are found to be negative. Eight solutions have exactly the same dispersion diagram
characteristic in Fig.2.25. Curves connect smoothly the desired cut-off frequencies, as
expected. From the dispersion diagram of the unbalanced case, one may able to design
four pass-band (two RH and two LH bands) characteristics. Three gaps exist between
these RH and LH bands. The Bloch impedances for Egs. (2.103), (2.105), (2.106), and
(2.108) are plotted in Figs.2.26 (a), (b), (c), and (d), respectively. These figures show
three stop-bands corresponding to three gaps in the dispersion diagram at (2.000~2.500
GHz), (3.000~4.000 GHz), and (4.500~5.000 GHz). At the high-frequency band (>
5.000 GHz) or the low-frequency band (< 2.000 GHz), impedance matching may be fa-
cilitated. However, the Bloch impedances change dramatically at the middle-frequency
bands (2.500~3.000 GHz) and (4.000~4.500 GHz). In these bands, it is not easy for the
impedance matching.

While a proper method for deriving the parameters of the unbalanced E-CRLH TL
is not yet reported, our closed-form solutions clearly have effectiveness for deriving this
case. In addition, the ability to select flexibly the cut-off frequencies foq1~ fcs is beneficial
for designing the resonant frequencies of a multi-band antenna, and building the pass- or

stop-bands of a filter.
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Figure 2.26: Bloch impedances in an unbalanced case with the L-C elements in Table 2.1.
(a) Bloch impedance for Eq.(2.103). (b) Bloch impedance for Eq.(2.105). (c) Bloch
impedance for Eq. (2.106). (d) Bloch impedance for Eq. (2.108).

(d)

b. Mixed case
Tri-pass band characteristics can also be realizable by choosing fos = fos or for = fes.

This means that the one set of the short-circuited frequencies of the horizontal branch
and the open-circuited frequencies of the vertical branch is equal (balanced case) while
the another set of those is different (unbalanced case). This mixed case of the E-CRLH
TL has not been mentioned in previous papers. A numerical example for fos = fog is
presented for this case. Design parameters are set to be fo; = 0.7500 GHz, feo = 3.000
GHz, fe3 = 4.000 GHz, fcy = 10.00 GHz, fos = fog = 2.000 GHz, for = 4.500 GHz,
fes = 5.000 GHz, and L; = 1.50 nH. Possible meaningful solutions are listed in Table 2.2.
The dispersion diagram of these solutions is plotted in Fig. 2.27. The Bloch impedances
are calculated in Fig. 2.28 (a) for Egs. (2.103) and (2.108), and in Fig. 2.28 (b) for Egs. (2.105)
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and (2.106). Two stop-bands at (3.000~4.000 GHz) and (4.500~5.000 GHz) are shown in
these figures. At the middle-frequency band (4.000~4.500 GHz) and the high-frequency
band (> 5.000 GHz), the Bloch impedances of two solutions show similar frequency be-
haviors with the unbalanced case in Figs. 2.26 (a) and (b). On the other hand, the Bloch
impedances exhibit a complementary behavior at the low-frequency band (< 3.000 GHz).
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Figure 2.27: Dispersion diagram in an mixed case with the L-C elements in Table 2.2.
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Figure 2.28: Bloch impedances in a mixed case with the L-C elements in Table2.2. (a)
Bloch impedance for Egs. (2.103) and (2.108). (b) Bloch impedance for Egs. (2.105) and

(2.106).
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Table 2.2: The solutions in a mixed case with foq = 0.7500 GHz, foo = 3.000 GHz, fo3 =
4.000 GHz, fcq = 10.00 GHz, feos = fee = 2.000 GHz, for = 4.500 GHz, feg = 5.000
GHz.

Eqs. Sol. | Ly | €y | Co | Ly | Cs5 | Ly | Ly | Cy

mH] | [pF] | [pF] | [H] | [pF] | nH] | [nH] | [pF]
1.50 | 3.17 | 4.53 | 0.368 | 0.467 | 5.49 | 6.03 | 0.415
1.50 | 2.11 | 2.76 | 0.908 | 0.467 | 8.24 | 7.51 | 0.222
1.50 | 2.57 | 2.34 | 0.714 | 0.467 | 6.77 | 8.85 | 0.283
1.50 | 1.71 | 1.88 | 1.33 | 0.467 | 10.2 | 14.6 | 0.115

(2.103), (2.108)

(2.105), (2.106)

N | = | N

c. Balanced case

For a balanced case with design parameters: fo; = 0.7500 GHz, foo = 3.000 GHz,
fes = 4.000 GHz, feu = 9.000 GHz, fos = fog = 2.000 GHz, for = fos = 4.500 GHz,
and L; = 1.50 nH, two solutions for Egs. (2.103), (2.105), (2.106), and (2.108) are shown in
Table 2.3. Physically meaningful solutions also do not exist for Eqs. (2.104) and (2.107).
Figures 2.29 and 2.30 present the dispersion diagram and the Bloch impedances for this
case. The dispersion diagram shows a dual-pass band characteristic at (0.7500~3.000
GHz) and (4.000~9.000 GHz). The Bloch impedance exhibits a complementary behavior,
and has one stop-band corresponding to one gap in the dispersion diagram at (3.000~4.000
GHz).

Table 2.3: The solutions in a balanced case with fo1 = 0.7500 GHz, foo = 3.000 GHz,
fcg = 4.000 GHZ, fc4 = 9.000 GHZ, fc5 = fCG = 2.000 GHZ, fc7 = fcg = 4.500 GHz.

Eqs. SO] L1 Cl CQ L2 Cg L3 L4 C4
mH] | [pF] | [pF] | [H] | [pF] | [H] | [H] | [pF]
(2.103),(2.105) | 1 | 1.50 | 3.24 | 4.83 | 0.338 | 0.582 | 5.34 | 7.07 | 0.361
(2.106), (2.108) 2 1.50 | 2.07 | 2.74 | 0.931 | 0.582 | 8.35 | 12.4 | 0.131
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Figure 2.29: Dispersion diagram in a balanced case with the L—C elements in Table 2.3.
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Figure 2.30: Bloch impedance in a balanced case with the L-C elements in Table 2.3.
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2.2.4 A special case for a constant Bloch impedance

A constant Bloch impedance allows us an easy broadband impedance matching with
other circuits, and is preferable for many practical applications. From Eq. (2.91), one gets

a constant Bloch impedance
Zp = \/2L1/Cs, (2.119)
by setting:
Wzolr = Wyol, Wzo2 = Wyo2, WZeo = WYoo- (2.120)

This is a special case of the balanced E-CRLH TL for Egs. (2.103), (2.105), (2.106), and
(2.108). It leads to A = 0 and two solutions degenerate. Thus L-C elements become

B
o 2.121
1 21’5[E7L17 ( )
21’51‘7 B !

_ _ _By\; 9122
Cy [(175 + x7 B 5 ) 1} ) ( )
P (2.123)

2 — BCQ’ :
2
Cy = , 9.124
5 (w1 4 ma + w3+ 14) — (25 + 26 + 27 + 28)] Lo ( )
B
I.— 2.125
2x¢T B !
L= Ka;G + 25 — ; s _ 5) 03] : (2.126)
= 2 (2.127)
4 — BL4 ) .

where

Ts = Tg, L7 =Ty, Ts5ly = Tely = /T1X2T3%y, T5+ x7=2x6+a83="1T, (2.128)

and T is calculated from the following equation:

T* — (12y/x1 090304 + 2E) T? + [8 (21 + m9 + 23 + 24) \/T1 090374 + SD| T
+ (E — 2\/T1222324)° — AD (1 + &5 + 23 + x4) = 0. (2.129)

In this case, cut-off frequencies fos~fcs are calculated from foi~fcy because of the
setting Wzeo = Wyeso- Equation (2.129) may have four possible roots. However, only the

real and positive roots are chosen to satisfy the condition in Eq. (2.117). From Egs. (2.119)
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and (2.124), the relation between L; and Zp is

7
L = b . (2.130)
\/($1+$2+$3+$4) — (25 + w6 + 27 + X3)

Inductance L; may be determined from a desired Zg for an impedance matching. For ex-
ample, let us design a desired dispersion diagram in a special case from design parameters:
Zp =50.00 2, fo1 = 0.7500 GHz, fco = 3.000 GHz, fe3 = 4.000 GHz, and fcq = 9.000
GHz. With these design parameters, one gets four roots of T' (T} = —3.435 x 102, Ty =
4.145 x 102, Ty = 1.954 x 10?2}, T} = 1.066 x 10*!) from Eq. (2.129). Only T = 1.066 x 10*!
satisfies the condition. Then L-C elements are calculated from Egs. (2.121)~(2.127),
and (2.130), and are shown in Table 2.4. The cut-off frequencies fos~fcs are given as
fos = fee = 1.854 GHz, for = fes = 4.854 GHz from Eq. (2.128).

Table 2.4: The solutions in a special case with Zg = 50.00 €, fo; = 0.7500 GHz,
foo = 3.000 GHz, fos3 = 4.000 GHz, foq = 9.000 GHz.

EqS. SOI L1 Cl 02 L2 03 L3 L4 04
mH] | [pF] | [pF] | [nH] | [pF] | [nH] | [nH] | [pF]

(2.103), (2.105), (2.106), (2.108) | 1,2 | 1.10 | 3.63 | 2.92 | 0.682 | 0.878 | 4.53 | 3.65 | 0.546

Figures 2.31 and 2.32 present dispersion diagram and Bloch impedance of the designed
E-CRLH TL in this special case. One should notice that the gap between foo and feog is
unavoidable due to the band-stop nature of the D-CRLH TL [10].
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Figure 2.31: Dispersion diagram in a special case with the L-C elements in Table 2.4.
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Figure 2.32: Bloch impedance in a special case with the L-C elements in Table 2.4.
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2.2.5 Scattering parameters

Scattering parameters of the E-CRLH TLs for various cases in the previous subsections
are calculated to check the impedance matching for a network connection. A periodic
E-CRLH TL unit cells network is shown in Fig. 2.33 with standard 50.00 €2 impedances
in two ports, and N is the number of unit cells. L-C elements in each cell are given from
Solution 1 of Eq. (2.103) in Tables 2.1, 2.2, and 2.3 for an unbalanced case, a mixed case,

and a balanced case, respectively, and in Table 2.4 for a special case.

1 2 N
E-CRLH E-CRLH E-CRLH
|_> unit cell unit cell unit cell 4_‘
50 Q d d d 50 Q

Figure 2.33: A periodic E-CRLH TL unit-cells network.

Important parameter in design process is the number of unit cells. Effect of the number
of unit cells is illustrated in Fig. 2.34 by calculating So; characteristic for different number
N. A similar effect with the investigation of the CRLH TL unit cells network in Ref. [8] can
be seen here. The small number of unit cells provides weak-slope edges of the bands, while
the cutoffs are sharp as the number of cells are increased. The balanced and special cases
have dual-band characteristics even designed with one cell. The highlight point occurs
at N = 1 in the unbalanced and mixed cases. These cases show dual-band properties.
One needs a larger number of the unit cells to accomplish the quad-band and tri-band
properties. From our calculation, N should be selected to be larger than 3 for better filter
performance.

With N = 10, calculated Si; and Ss; of these designed E-CRLH TLs are presented
in Fig.2.35. 511 and Sy, show the impedance matching and filtering characteristics. For
practical applications, pass-bands are determined at frequencies in which [Ss;| = —3
dB. These frequencies may slightly differ the cut-off frequencies fo1~fcs of RH and LH
bands. For example, the pass bands of the designed E-CRLH TL in the unbalanced case
are (0.954~1.915 GHz), (2.546 ~2.993 GHz), (4.001 ~4.517 GHz) and (5.361 ~9.884
GHz). Therefore, the bandwidth of RH and LH bands in the dispersion diagram should
be designed large enough to get desired pass-bands in S-parameters.

To avoid complexity, S-parameters of the E-CRLH TL in the unbalanced case have
not been characterized [10, 19, 20]. By using our closed-form solutions, Figure2.35 (a)
confirms that the E-CRLH TL in the unbalanced case can be applied easily for quad-
band applications while the mixed case is preferred for tri-band applications as can be

seen from Fig. 2.35 (b). On the other hand, this section presents the results for one solution
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of these case, while eight and four solutions for L—C elements are available from Tables 2.1
and 2.2. Since each solution has a distinct Bloch impedance for the impedance matching
consideration, one may choose a best solution depend on the performance of S-parameters.
Both the balanced case and the special case are suitable for dual-band applications from
Figs. 2.35 (c) and (d). The main difference between the balanced case and the special case
are the performance of S7; and the bandwidth of RH, LH bands.

With the constant Bloch impedance, the special case has better S7; characteristic than
the balanced case. However, the balanced case is easier to control the bandwidth of RH
and LH bands because of a flexibility of selecting fos~ fcs, while the cut-off frequencies
fos~fes of the special case are calculated from fo~foq in Egs. (2.128) and (2.129). The
bandwidth of RH and LH bands is useful for positive/negative index artificial lenses. In
order to evaluate our method for designing S-parameters of E-CRLH TL, one may compare
with previous results. Reference [10] already presented S-parameters of a balanced E-
CRLH TL consisting of 10 unit-cells. This case is similar to a special case with a constant
Bloch impedance, since the balanced case of homogeneous E-CRLH medium in Ref. [10]
associate with a constant characteristic impedance. Our closed-form solutions in the
special case can be used to calculate L-C elements from cut-off frequencies fo1~ foq and
Bloch impedance. The design parameters for this case are fo; = 0.726 GHz, foo =
1.953 GHz, fcs = 2.351 GHz, fey = 6.311 GHz (these cut-off frequencies are chosen
approximately from Fig. 6 of Ref.[10]), and Zp = 50.00 €.

Then one gets four roots of T' (T} = —1.558 x 10%, Ty = 2.744 x 10%°, T3 = 4.499 x
10%°, Ty = 8.335 x 10%°) from Eq. (2.129). Only T = 4.499 x 10?° satisfies the condition
in Eq.(2.117). L-C elements are calculated from Egs. (2.121)~(2.128), and (2.130) as
Ly = 1.534nH, ¢} = 3.604 pF, Cy = 7.428 pF, Ly = 0.7426 nH, C3 = 1.227 pF, L3 = 4.505
nH, L, = 9.284 nH, and C; = 0.5941 pF. The cut-off frequencies fos~fcs are given as
fos = foe = 1.522 GHz, and for = fos = 3.013 GHz from Eq. (2.128). Figure 2.36 shows
the S-parameters of the designed E-CRLH TL connected 10 cells in cascade. From the
calculated results, the proposed approach gives us the results comparable with those in
Fig. 6 of Ref. [10]. It confirms the good quality of our method for designing S-parameters
of E-CRLH TL circuit.
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Figure 2.34: Sy characteristic for different number N of unit cells, N = 1, 5, and 10, (a)
an unbalanced case with the L-C elements from Solution 1 of Eq.(2.103) in Table 2.1,
(b) a mixed case with the L-C elements from Solution 1 of Eq. (2.103) in Table 2.2, (c)
a balanced case with the L-C elements from Solution 1 of Eq. (2.103) in Table 2.3, (d) a
special case with the L-C elements in Table 2.4.
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Figure 2.36: Calculated S-parameters of E-CRLH TL for 10 cells network with L-C
elements: L; = 1.534 nH, C} = 3.604 pF, Cy = 7.428 pF, Ly = 0.7426 nH, C5 = 1.227
pF, L3 =4.505 nH, L, = 9.284 nH, and C; = 0.5941 pF.

2.2.6 Desired phase characteristic

This section presents for designing E-CRLH TL to achieve a desired phase characteristic
¢o = Bd (—¢p in two LH bands, +¢, in two RH bands) at four design frequencies fo1~ fcoy
as shown in Fig.2.37. It is useful for phase shift devices such as directional couplers and
power dividers. For this case, the design frequencies fo1~fcs are determined from the

equation:
ZpYy, + 1 —cos(¢g) = 0. (2.131)

Similarly, for Eq. (2.103), design equations for Cy, Cy, Lo, L3, L4, and Cy are retained as
shown in Egs. (2.109) and (2.110) except that Cj is given by

Cy = 1 — cos(¢) . (2.132)
(21 + 22+ 23+ 24) — (25 + 26 + 27 + 35)| L4

While the solutions for Egs. (2.104)~(2.108) are shown in Appendix A. For a constant
Bloch impedance of the special case, design equations of Cy, Cs, Lo, L3, Ly, and Cy are the
same with Eqgs. (2.121)~(2.123), (2.125)~(2.127), and Cj is calculated from Eq. (2.132).
The relation between L; and Zg becomes

B 1 — cos(¢y)
L= ZB\/2 q (2.133)

$1+$2+$3+$4)—(flf5+$6—|—$7+ﬂ78)]'
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Figure 2.38: Dispersion diagram in a special case with the L-C elements in Table 2.5
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For designing phase shift devices, it is important to achieve a desired phase characteristic
at four design frequencies fo1~fcs4 and to have good impedance matching. A numerical
example for designing 7/4 phase characteristic in a special case are listed in Table 2.5.

The design procedures in the previous sections are used for obtaining these L-C elements.

Table 2.5: An example of 7/4 phase characteristic.

(Z)O = 7T/4 at fCl = 1.500 GHZ, fcg = 2.500 GHZ, fcg = 4.000 GrHZ7
foa = 5.000 GHz, Zp = 50.00 Q. T = 8.981 x 10%°.
fos = foe = 2.000 GHz, for = fos = 4.330 GHz.

Eqs. SOI L1 Cl 02 L2 03 L3 L4 04
nH] | [pF] | [pF] | [nH] | [pF] | [nH] | [nH] | [pF]

(2.103), (2.105) (2.106),(2.108) | 1,2 | 1.52 | 2.63 | 3.65 | 0.584 | 1.22 | 3.29 | 4.56 | 0.468

Figures 2.38 shows the corresponding dispersion diagram calculated from the L-C ele-
ments in Table 2.5. The dispersion diagram presents correctly four designed frequencies,
Je1r = 1.500 GHz, fco = 2.500 GHz, fc3 = 4.000 GHz, and fcy = 5.000 GHz at the
desired phase characteristics ¢9 = 7/4. Our calculated result covers the result in Fig. 2
of Ref.[19], in which the balanced case with some specified conditions is a special case
in this paper. Therefore our design equations are in a general form and can be used for

many cases, while the design equations of Ref. [19] may only be used for a special case.
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2.3 A compact metamaterial antenna based on asym-
metric E-CRLH TL unit cell for multiband ap-

plications

2.3.1 Introduction

Nowadays, the development of modern wireless communication systems requires compact
devices to work at different standards. It leads to the necessary of designing small antennas
with a multiband operation [22]. Many studies on dual- and tri-band antennas have been
reported while quad-band antennas are seldom proposed. To compare with dual- and
tri-band antennas, quad-band antennas are more desirable for reducing the fabrication
cost. Some kinds of quad-band have been designed by using conventional methods such
as a monopole antenna [23], slot antennas [24]-[27], a fractal antenna [28], a pentangle-
loop antenna [29], and a Hilbert shaped antenna [30]. However, they still have large size
in corresponding to the wavelength at their operating frequencies. Other more compact
techniques have also been presented in the literature based on parasitic elements [31],
loops [32], and matching networks [33].

Metamaterials provide a conceptual way to reduce the size of the antennas for satis-
fying the requirements of modern wireless communication systems. Composite right/left
handed transmission line (CRLH TL) and dual-composite right/left handed transmission
line (D-CRLH TL) have been employed to design many compact dual- and tri-band an-
tennas for wireless communications [34]-[38]. Few antennas based on E-CRLH TL and
NRI-TL were proposed up to now. A dual-band leaky wave antenna comprising 10 NRI-
TL unit cells was simulated in Ref. [39]. Another dual-band leaky wave antenna has been
designed from 10 E-CRLH unit cells in Ref.[40]. These leaky wave antennas are used
in specific radar applications for their capability of beam scanning and high directivity.
Reference [41] presents a dual-band antenna based on a modified asymmetric NRI-TL
unit cell. This antenna has a compact size, but exhibits a very low gain at the operating
frequencies. More recently, a multiband antenna based on one asymmetric E-CRLH unit
cell is designed for quad-band [42]. However, the resonant frequencies are not analyzed
yet.

In our previous section, symmetric E-CRLH TL can be applied for quad-, dual-, and
tri-band application by selecting the cut-off frequencies of the dispersion diagram in un-
balanced, balanced, and mixed cases, respectively. In this section, the design scheme
is now extended to apply for asymmetric cases. By carefully choosing the L-C lumped

circuit elements, one can analyze the resonant frequencies of the E-CRLH antennas.
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Figure 2.39: Equivalent circuit of an asymmetric E-CRLH unit cell

In order to show the realizability of this design, a quad-band antenna has been made
from an unit cell of asymmetric E-CRLH TL on a co-planar printed circuit board. The
proposed antenna in this study has a compact size to compare with the previously pro-

posed quad-band antennas.

2.3.2 Antenna analysis and design

The equivalent circuit of an asymmetric E-CRLH unit cell is shown in Fig.2.39. In
the horizontal branch, a series L;—C4 resonator connects in series with a parallel Lo—C5
resonator. The vertical branch contains a parallel L3—C'3 resonator in shunt with a series
L,~Cy resonator. The impedance 7, of the horizontal branch and the admittance Y, of

the vertical branch are given respectively by

2

_ jLi(w? — W%m)(zj - W%OZ), (2.134)
w(w2 - wZoo)

Y, = jCO5(w? — W12/01)(W2 - W%02)

Y w(w2 - w%’oo)

Zn

: (2.135)

where

! 2 1 (2.136)
L,Cy Y T LiCy ‘

,  DBi+BP—44, , Bi—\/B— 14 (2157)

2 _
wZoo -

Wzo1 = 9 y Wzo2 = 9 )
9 By++/ B2 — 4A, 9 By—+/ B2 — 4A,
Wyo1r = 5 y Wyo2 = 5 ) (2.138)
1 1 1 1
Al = —— = 2.139
S N et e NI oy o N (2.139)
1 1 1 1
A, (2.140)

T.CLC 2 T TG T TG T TuCs
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By using the results for the asymmetric unit cell in Section 2.1.6, the dispersion relation

is obtained as
1Y,

2 9

where [ is the propagation constant for the Bloch waves, and d is the length of the unit

cos(fd) =1+ (2.141)

cell. To realize an antenna based on E-CRLH resonators in a general N unit cells, the

following resonant condition should be applied:
BdN = n, (2.142)

where the resonant modal index n can be positive integers for RH bands, zero and negative
integers for LH bands. Therefore, one may calculate the resonant frequencies of an antenna
based on N-asymmetric E-CRLH unit cell as:

ZnY, nmw

5 —cos(—) =0, n=0,+1,+2,...,+N, (2.143)

1
+ N

which is a fourth order equation with respect to w?. Since the proposed antenna has built
from one unit cell (N = 1), possible resonant frequencies are calculated for even integer

n from

2

(W - W%m)(WQ - W%O2)(W2 - W12/01)(W2 - w12/02) =0, (2-144>

and for odd integer n from

2 2
dwy o +4Awy o\ 4

64+ (A, + Ay + BB
)w —l—( 1+ Ag + b1Do + .G,

W — (B + By +

L,C5

4w%oow)2’oo 2
1V3

Figure 2.40: Equivalent circuit of a symmetric E-CRLH unit cell
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In this study, an asymmetric E-CRLH unit cell in Fig.2.39 is chosen to design the
antenna because of smaller configuration to compare with symmetric E-CRLH unit cell
in Fig.2.40. Closed-form solutions can still be derived for the asymmetric E-CRLH unit
cell by setting

Ly=2L,, C,=C}/2, Ly=2L,, Co=C4/2, Ls=Ly, Cs=Cy, Ly=L,, C4=C,, (2.146)
or
Li=Ly, Ci=C}, Lo=L,, Cy=C,, Ly=Ly/2, C5=2Cy, Ly=L,/2, Cy=2C,. (2.147)

These settings lead to Z,Y,, /2 = Z,’le', then one gets the same dispersion diagram between
asymmetric and symmetric E-CRLH unit cells.

The configuration of the proposed antenna has been built from one asymmetric E-CRLH
unit cell in Fig. 2.41. A CPW configuration with a FR4 substrate with dielectric constant
g, =4.4, tan 0 =0.02, 1.6 mm substrate thickness and 35 um copper layer thickness is used
in this study. As can be seen from this figure, the antenna structure can be expressed by
lumped elements. The capacitors C;, Cy, C5 and Cy are formed by interdigital capacitors
while the inductors Ly, Lo, L3 and L4 are realized by meander strip lines. The dimensions
of the proposed antenna are shown in Table2.6. The design equations to calculate the
capacitance value of the interdigital capacitors and the inductance value of the meander
strip lines can be found in [43]. Then we get L; = 25.9 nH, C} = 2.62 pF, Ly, =
22.3 nH, Cy; = 1.93 pF, Ly = 8.36 nH, C3 = 0.36 pF, Ly = 12.0 nH, C; = 0.12 pF.
Using Eq. (2.141), the dispersion diagram of the proposed asymmetric E-CRLH unit cell
is plotted in Fig.2.42. The dispersion diagram is in an unbalance case with two RH
and two LH bands. One may use the dispersion diagram to determine which resonant
modal index n corresponds to resonant frequencies of the proposed antenna. The possible
resonant frequencies of the proposed antenna are calculated from Eq.(2.144) for n = 0
as 0.41 GHz, 1.14 GHz, 2.38 GHz and 5.12 GHz. This corresponds to Sd = 0 in the
dispersion diagram. The other possible resonant frequencies of the proposed antennas
can get from Eq. (2.145) and Sd = 7 in the dispersion diagram as (3.29 GHz, 5.69 GHz)
for n = 41, and (0.32 GHz, 0.92 GHz) for n = —1.

The simulated return loss of the proposed antenna from 0.1 GHz to 6 GHz is presented
in Fig. 2.43. The resonant frequencies of the antenna are simulated to be 0.38 GHz, 0.81
GHz, 1.05 GHz, 2.43 GHz, 3.32 GHz, 5.20 GHz and 5.45 GHz. These simulated results
are to resemble with the theoretical calculations. It is noticed that 7 resonance frequencies
are appeared while one theoretically predicted resonant frequency 0.32 GHz of n = —1
mode is not observed. The difference between simulation and theoretical calculation

may come from the parasitic effects by the mutual coupling between the elements in the
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circuit. With S11 smaller than —6 dB, the proposed antenna exhibits four frequency
bands: 0.773-0.836 GHz, 2.35-2.55 GHz, 3.05-3.71 GHz and 4.88—5.81 GHz. These
frequency bands cover four standard bands including GSM810, WLAN 2.45/5.5 GHz and
WiIiMAX 3.5 GHz bands. The fractional bandwidth of the antenna are found to be 7.78%
for the first (0.81 GHz) band, 8.16% for the second (2.45 GHz) band, 18.86% for the third
(3.5 GHz) band and 16.91% for the fourth (5.5 GHz) band.

0.(;35 FR4 substrate Hl.é

Figure 2.41: The configuration of the proposed antenna

Table 2.6: The dimensions of the proposed antenna

Parameter | Dimension || Parameter | Dimension
l 57.2 mm Sc2 0.2 mm
w 31.2 mm lr1 8.8 mm
ly 9.0 mm W1 0.4 mm

lon 8.0 mm S11 0.4 mm
sc1 0.3 mm loo 8.0 mm
we1 0.3 mm wWeg 0.3 mm
W, 0.3 mm log 1.5 mm
hro 4.0 mm wWo4 0.4 mm
los 2.0 mm SC4 0.2 mm
wes 0.4 mm lr4 2.6 mm
SC3 0.2 mm Wr4 0.3 mm
lr3 4.3 mm wr3 0.4 mm
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Figure 2.42: Dispersion diagram of the proposed asymmetric E-CRLH unit cell
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Figure 2.43: S11 characteristics of the proposed antenna
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2.3.3 Fabrication, measurement results and discussions

A photograph of the fabricated antenna is shown in Fig.2.44. Figure 2.45 presents the
measured return loss S11 of the antenna from 0.5 to 6 GHz. The measurements are
executed by Agilent E8361A network analyzer in an anechoic chamber and compared
with the corresponding HFSS simulated results.

The first band (GSM810) and the second band (WLAN 2.45 GHz) have been shifted by
50 MHz and 120 MHz, respectively. At the third band (WiMAX 3.5 GHz) and the fourth
band (WLAN 5.5 GHz), the measured bandwidth is slightly wider than the simulated
bandwidth. The normalized radiation patterns of the antenna at different frequencies
are shown in Figs.2.46 and 2.47. As can be seen from Fig.2.46, the measured radiation
patterns at 0.81 GHz and 2.45 GHz are not so good to compare with the simulated
ones as a result of the shifting of the resonant frequency of GSM810 and WLAN 2.45
GHz bands. Nevertheless, the measured radiation patterns at these frequencies show
the omnidirectional radiation patterns which are suitable for wireless communications.
At WIMAX 3.5 GHz and WLAN 5.5 GHz bands, a better agreement can be observed
between the measured radiation patterns and the simulated ones at 3.5 GHz and 5.5 GHz
in Fig. 2.47. The shifting frequency in S11 and the difference between the simulated and
measured radiation patterns may come from the unstable FR4 substrate parameters and
the manufacturing tolerance of the antenna dimensions. In addition, the SMA connector
also affects to the measured results because of the connection loss between the board and
the SMA connector. The gains of the proposed antenna are estimated as 3.66 dBi at 5.5
GHz, 1.46 dBi at 3.5 GHz, —1.31 dBi at 2.45 GHz and —8.12 dBi at 0.81 GHz. Due to
the compact size, the gains of the antenna are quite low at low frequencies.

Table 2.7 summarizes the recently reported works about quad-band antennas including
our design. Our quad-band antenna has an electrical size 0.15\g x 0.08\g at the center
frequency (0.805 GHz) of the lowest band (GSM810) and its size is very small to compare
with the other antennas [23]-[30] which designed by conventional methods. Although
Reference [42] has made from the E-CRLH unit cell, our antenna can be designed by
roughly one half size. The antenna in Ref.[44] has a similar electrical size with the
proposed antenna, but that design used a thicker FR4 substrate.

It is found that the proposed antenna has low gain for low frequency bands. This
characteristic is typical for electrically small antennas. At the higher frequencies, the gains
of the antenna are enhanced and comparable with the previous quad-band antennas. In
addition, the proposed antenna has a better gain at the low frequencies than the reported
dual-band NRI-TL antenna (—17 dBi at 0.9 GHz and —8 dBi at 2.4 GHz) in Ref. [41].
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Figure 2.44: Fabricated antenna
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Figure 2.45: S11 characteristics of the fabricated antenna
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Table 2.7: The comparison with the previously proposed quad-band antennas

wur )=y ST 0V'C ‘66 T-TL'T
-oul] dLIsOdIN | ‘g00°0=¢ Ue) ‘¢ g="3 088 1-900'1 wut Gy g = 0y 6005
‘sodes 1I9qTH ‘9yeIIsqns Uo[Iy V/N ‘0L8°0-898°0 | ‘OYFT°0 X 9YST°0 67 xcs | [og]
oul] digsSomdIN | W gL 0=Y ‘LF="3 €LCL9°C ‘CTT8IC ww geg = 0y 1102
‘[e1oRI] TRMMSURION] ‘oyerysqns g 0F~0T | ‘€LT69T ‘€60-98°0 | ‘°Y6T°0 X °¥9z°0 29x98 | [87]
.@QS QﬂumOHoﬁZ “Taua @.HHQ
‘sdrrys j-j10auf ‘200=9ue) ‘FHF="3 | 86'¢ ‘89°¢ | 09°C-0LF 69°€0V'E ww Ty = 0y 1102
‘$30[S D-10AU] ‘fogenysqns P | ‘TP ‘TS0 | ‘0L TG 8STATT | ‘ONFT0 X OFT0 ogxog | [gg)
-out] dLsoIdIN wu Q=Y ¢y 0T | ¥6¢C0C LeThe
“J0[S 2ABIUO)) ‘T0’0=guey ‘L g="2 ‘6z’ ‘G61CCLET wu 06T = 0y 1102
‘S10[S TRNOIT) ‘oyerysqns g ‘01— ‘629 T-G2S'T | ‘O¢8z0 X %¥zg0 €6x09 | [¥e)
"MdD
“30[S IR[MSUROY w9 1=y ‘=13 6CTE | 68G60LC CEGSTS ww g1 = 0y z10%
‘q0[s padeys-] ‘ogenysqus g ‘0% 9 | ‘08°¢08¢ ‘LL5L0C | ‘°Y9T°0 X %Y0Z°0 0zxsz | [2T)
“out] dLpsoIdIN ww () 1=y ‘FH="2 | 08°C ‘€0C | ST9-CI'C ‘LLE0TE wu GRT = 0y 2102
‘S30[S 9P ‘oyenysqns A | ‘I8 T ‘P81 | ‘9LT8€T ‘0L T-FST | ‘O61°0 X °X¥€Z0 9exgy | [9g]
"MdD wur )=y | SL'T ¥8T
‘ojodouour mpuealy ‘T0'0=9 uey Frp=-=2 ‘T8T | 9T°9-€0°C ‘TRELTE wu 9gg = 0y €102
‘192 un HTHD ‘oyeIisqns g ‘87— | ‘€LCFV'C ‘8¢ T-SC' T | ‘“O¢60°0 X OYET'0 12X1¢ | [7¥)
wu Lz 0=Y
"MdD ‘103eIpRIl | ‘6000 0=9UeYZT="2 | 9¢'¢C ‘L6'T | 6TC€6F ‘TLE8CE wu )8z = 0y ¢10%
door-orsuejuog | ‘088G SIOSOY OIqIXA[ | ‘88°C ‘L¥'S | ‘€F'C€2C ‘0T T-¥6°0 | ‘O¢¥Tg 0 X 0Ygg 0 09%06 | [67]
-our] dL13SOIdIN 98°F ‘T0G | €6'GLT'S ‘L6'ELTE
‘sqnis padeys-i wur §°)="1 ‘€6°¢ ‘SYSTTT wur ggT = 0y ¢10%
‘squys padeys-T, | ‘p00’0=Q uey ‘G'g="3 ‘sg'g ‘G99 T-G28°T | ‘OYFE 0 X OY0£0 7rx9¢ | [gg)
W GLG =Y 8¢9 09¥7¥ ‘69°¢07¢
“out] dLrjsodIN | ‘6000°0=¢ ue) ‘g g="3 ‘e1 ‘69°G-CL'T ww gee = 0y L10%
‘[90 ytun YD ‘0886 s180Y ‘8¢'e— ‘T16°0-298°0 | ‘O¢CLT0 X Y610 95x¥9 | [a¥]
wuw 9=y | 99°¢ ‘Op'T | I8°G88F ‘TL'EC0E
"MdD ‘20 0=9 ue} Fp="3 Te1— ‘GC°GCLT ww g)e = 0y 2102
‘[P0 yun Y- ‘ogenysqus g ‘T1'8— ‘988'0-€22°0 | ‘°Y¥80°0 X OYGT'0 | &IEXELS | SO
s1ojourered [1gp] [zHO] pueq 9semof Aq | [wruxwu] | Iesag
Spoyjouw USISo(] ‘oreI1isqng urer) spueq suryeiad() 9ZIS [ROLIYSH 971G oY

60



Chapter 3

Resonant metamaterials

3.1 Robust method to retrieve effective parameters

of resonant metamaterials from S-parameters

3.1.1 Introduction

In frequency domain, all materials can be described by their complex electromagnetic
properties including refractive index n, impedance z, permittivity ¢ and permeability pu.
These electromagnetic properties are is very important for RF and microwave applica-
tions since they respond to electromagnetic radiation of materials. To determine unique
electromagnetic properties of metamaterials, a retrieval method based S-parameters is

used in this study.

L X
Free space | Metamaterials Free space
€ U n !
i \/\/\.» Szjoeik”d
R VAVAN |
Zf\ }
y;0 y=d

Figure 3.1: S-parameters on both sides of an 1D metamaterial slab
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A metamaterial slab is placed in free space as shown in Fig.3.1. A variety of reflec-
tion Sp; and transmission Sy results are given for the scattering of normally incident
plane waves from a material slab in free space. In order to retrieve the refractive index
n, impedance z, permittivity € and permeability g of this metamaterial slab, we need
to characterize it as an effective homogeneous slab. The data of S;; and Sy; will be ex-
tracted from HFSS, which is commercially Finite Element Method (FEM) based full wave
simulator. Before using simulated S-parameter data, normal incidence of plane wave on

a homogeneous slab in free space should be investigated.

3.1.2 Normal incidence of plane wave on a homogeneous slab in

free space

The problem geometry is depicted in Fig. 3.2. Let assume that a plane wave is traveling
in the +y direction. The incident electric field is assumed to be the 4z direction while
the incident magnetic field is in the —z direction. An infinite length homogeneous slab of

thickness d is placed between the z = 0 and z = d planes in free space.

TR
Medium 1 | Medium2 | Medium 3
Free space [Homogeneous slab; Free space
€ W, n
= :
E, E,  E,
ko l—' kz i_> k3
H, H, _ | H,
E, E,
kl <—l kl i
H, H,
Zf\ E y
y=0 y=d

Figure 3.2: A plane wave normally incident on a homogeneous slab

In Medium 1, the incident waves (E’, H") and the reflected waves (E", H") are

E' = Eyze™v, (3.1)
H = —%%koy, (3.2)
E" = Ejze v (3.3)
H = —%26—1"%@, (3.4)
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where kg denotes the wave number of the incident wave in free space.

In Medium 2, one gets the total electric and magnetic fields as

Em — E;-@eznkoy_’_Ez—,ge—mkoy,

E+ ) B> )
H™ = _—22 zelmhoy —Z2 ze koY

where n is the refractive index in the homogeneous slab.

In Medium 3, the transmitted wave are

E! = Ejzetoy,
By . .

H! = —2zehov,
Zy

By applying the boundary condition at y = 0 and y = d, we have

Ey+E = E; +E,

ke B E;“ Ey
Zo 7o A
E;Ginkoy + E;G_inkoy — E3eik:0y’
Eeinkoy _2€—ink0y — %eikoy‘
Z Z 2

For convenience, we introduce the variable z = Z/Z, which is the impedance relatively to

free space, then Egs. (3.10) and (3.12) become

ZEO—ZE1 = E;_—EQ_,

Efemkoy _ Eremitkoy — 5 [aetkov,
From Eq. (3.9) and Eq. (3.13), one gets

2Ef = (z+1)Ey— (2 —1)Ey,

From Eq. (3.11) and Eq. (3.14), we have

2EF ™Y = (24 1)Ese™,
2Fy e kv — (2 — 1) Eze™ov.
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From Egs. (3.15), (3.16), (3.17) and (3.18), one gets

(Ey — Ry Ey)e™ v = Eyeitoy, (3.19)
E, . . .
(Ey — R—l)e—mkoy = Egettov, (3.20)
01
where
z—1
Ry = — (3.21)

Finally, the reflection coeficient I' and the transmission coefficient T are calculated from
Egs. (3.19) and (3.20)

El R01(1 o ei2nkod)

D = B =T e (3.22)
E 1 — R2 i(n—1)kod

ro— B _ (= Foer .. (3.23)
EO 1— R(%leankod

3.1.3 Theoretical retrieval equations for resonant metamaterials

Since Sp; is equal to the reflection coefficient I', and Ss; is related to the transmission
coefficient T by So; = Te*0d the S-parameters are related to refractive index n and
impedance z by:
R01<1 _ ez’2nk0d)
Si1o= | — 2 ol (3.24)
(1-— Rgl)emkod

St = e (3.25)

By inverting Egs. (3.24) and (3.25), the impedance z and the refractive index n can be
directly applied in the case of a homogeneous slab. However, a metamaterial itself is not
homogeneous, the calculations for z and n should be carefully considered. As it has been

pointed out in [45], the refractive index n and impedance z are obtained as

(1+8u)* - S5
= 4+ , 3.26
) \/(1 —51)* — S (3:26)

, S
ginkod P21 (3.27)
g z—1
n 1



In fact, z and n are related so that their relation ship can be used to determine the correct
sign of z in Eq. (3.26). Two cases are distinguished in order to correctly find the sign of z.
The first case is for | Re[z]| > § where § is a positive number and for which Re[z] > 0. In
the second case, the sign of z is chosen so that the corresponding Im[n] > 0, or equivalent

|efkod| < 1. The value of refractive index n can be determined from Eq. (3.27) as

1

" hod

{Im[In(e™%)] + 2mr} — ﬁ{Re[ln(emkod)]}, (3.30)
where m is an integer related to the branch index of Re[n]. As can be seen from Eq. (3.30),
Im[n] can be calculated without any problems, but we must resolve the branching problem
to determine the correct Re[n]. To ensure the refractive index function is smooth and
continuous, one may use Taylor series to calculate the branch index of Re[n| as shown in
Ref. [45]. Finally, The permittivity ¢ and the permeability u are related to the refractive

index and impedance by the following expressions:

ISl =

|3

, (3.31)
L= nz. (3.32)

By using the retrieval equations, the electromagnetic properties (z, n, ¢ and p) of
a conventional Split Ring Resonator (SRR) and a thin wire as shown in Fig. 3.3 are
calculated to check the procedure. The copper SRR is placed in the top of the FR4-
substrate while the copper thin wire is positioned in the bottom of the FR4-substrate.
The dimensions of the sample is chosen similarly with Ref. [46] and shown in Table 3.1.

The proposed sample is to setup and simulate in HFSS simulator with frequency
range from 1 to 20 GHz. Figure 3.4 show the magnitude and phase of the simulated
S-parameters. The dip in the phase of S5; indicates the presence of a negative index
band. The retrieved index n and impedance z is shown in Fig. 3.5. It is observed that the
negative index band is between 9 and 12 GHz. In addition, Re[z] and Im[n] satisfy the
conditions in Egs. (3.28) and (3.29) to confirm the consideration of the passive medium.
Using Egs. (3.31) and (3.32), we find out the permittivity and the permeability from the
impedance and index as shown in Fig. 3.6.

In general, these calculated results are the same with those in Fig. 3 of Ref. [46].
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Top view

FR4 substrate h Side view

Figure 3.3: The configuration of a conventional SRR with a thin wire unit cell

Table 3.1: The dimensions of the proposed SRR unit cell

Parameter | Dimension
d 2.50 mm
h 0.25 mm
wq 0.30 mm
w1 0.20 mm
Wa 0.14 mm
Ly 1.50 mm
Lo 2.20 mm
g 0.25 mm
s 0.15 mm
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Figure 3.4: Simulated S-parameters for the proposed
Table3.1. (a) Magnitude (b) Phase.
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Figure 3.5: Retrieved parameters of the metamaterial unit cell (a) Impedance (b) Refrac-
tive index
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Figure 3.6: Retrieved parameters of the metamaterial unit
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3.2 Zero-index metamaterial (ZIM) unit cell for im-

proving gain of antipodal Vivaldi antenna

3.2.1 Introduction

Recently wireless communication using the ultra wideband (UWB) has expanded rapidly,
since the United States Federal Communication Commission nominated the frequency
band of 3.1 to 10.6 GHz for the UWB operation [47]. Many kinds of UWB antennas
have been designed such as bow-tie, conical, TEM horn, spiral, fractal, and log-periodic
antennas. The Vivaldi antenna is one of the classic UWB antennas with many advantages.
It was first investigated by P. Gibson in 1979 [48]. Many studies including two remarkable
improvements [49, 50] have been reported since then.

The antipodal type of Vivaldi antennas offers broad bandwidth, minimal signal distor-
tion, and high gain properties. However, the operation mechanism of the antipodal Vivaldi
antenna is not well understood. Previously, antipodal Vivaldi antennas have been mainly
designed by empirical methods without rigorous theory or formulas [51]-[56]. While the
operational upper frequency end of the antipodal Vivaldi antenna is theoretically infin-
ity, the low frequency end has not been predicted and explained clearly. Therefore, the
first objective of this study are to get better insight on the operation of the antipodal
Vivaldi antennas, and to develop an accurate estimation of the low frequency end of the
operational range.

In addition, the gain of the antipodal Vivaldi antenna is a very important parameter
for UWB applications. Therefore, there many studies have been carried out to enhance
the gain of the Vivaldi antenna. Some methods have been proposed to improve the gain
of Vivaldi antennas by making corrugated structure at the edges of the Vivaldi antenna
[57]-[63]. These improvements are obtained at the cost of the change in the antenna
configuration and at a narrow band of the enhanced gain. By adding a high permittivity
dielectric [64, 65, 66] and a parasitic elliptical patch [67] as a director in the aperture of the
Vivaldi antenna, a stronger radiation in the end-fire direction is observed. However, they
elongate the antenna length to much for some applications. Another research [68] loads a
hemisphere len in front of the antenna. This kind of lens increases the complexity and the
cost for fabrication and combination with the monolithic integrated circuits. Hence, the
second objective of this study is to enhance the gain of the antipodal Vivaldi antenna by
using resonant metamaterials. A simple symmetric zero-index metamaterial (ZIM) unit
cell is proposed. The ZIM unit cells are arranged to the aperture of antipodal Vivaldi

antenna to make a stronger end-fire radiation.
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This study content is organized as follows. Basic antipodal Vivaldi antenna design
has been analytically first in Section 3.2.2 and detail specification has been adjusted
by simulation software. New estimation for low frequency end of the antipodal Vivaldi
antenna will be discussed in Section 3.2.3. The antenna and its performance has been
presented in Section 3.2.4. Finally, gain improvement of the antipodal Vivaldi antenna

with ZIM unit cells are made in Section 3.2.5.

3.2.2 Antipodal Vivaldi antenna design

The geometry of the antipodal Vivaldi antenna is shown in Fig.3.7. This antenna is
constituted by two main parts: a feeding line and radiation flares. Previously proposed
Vivaldi antennas are mostly installed on the PEC grounded substrate with a microstrip
line. In order to have a smooth transition between the feeding line and radiation flares,
and to keep a symmetric structure, microstrip twin lines are chosen here for the feeder.
These twin lines apparently serve as an impedance matching circuit between an input
connector and the radiation flares, so that the characteristic impedance of twin lines may
not be 50 €.

The characteristic impedance Z; of twin lines may be calculated from the corresponding
characteristic impedance Z, of a single microstrip line on the PEC grounded structure.
Using the image theory, Zy(h,e,) on the substrate of the thickness h and the relative

dielectric constant ¢, can be obtained from Zy(h,¢,) as

Zo(h,e,) = 2Z0(h/2, &), (3.33)

where Zy(h, e,) may be found from the following approximation [18]:

— _1207T wy wy -1
Zollher) == [7+1.393+0.6671n<7+1.444>} (3.34)
for wy > h,
Zo(h,en) = ——1In [ 2 4 W .
o) = = n(wf + 4h) (3.35)

for wy < h, and the effective dielectric constant e, is given by

(3.36)

e+ 1 gr—1( 12h)1/2
€e = + 1+ .

2 2 ’LUf

To design radiation flares, many authors have used exponential curves [58]-[60], [69]-[72]

or Fermi-Dirac curves [57]. Here, somewhat simpler ellipse profiles are used for flare
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Figure 3.7: Antenna geometry

curves [51], [55], [73]-[75]. These curves are chosen here since the elliptical configuration
is simple and it presents the smooth transition between the feeding line and the radiation
flares. As shown in Fig. 3.7, each flare is composed by two ellipses of semi-major axis b,

as and semi-minor axis aj, be, respectively, and is connected to the feeder of the width

wf as
by = b+ wy, (3.37)
o= 2 (3.38)
by
ry = 2. (3.39)
by

The axial ratios r; and ry are used to describe the curvature of the antipodal structure.

Then the elliptical profile (x;, y;) and (z,, y,) of inner and outer lines for the upper surface
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employed in this design can be described by the following equations:

Yi = 7”2\/53— {$i+(bz—wf/2)}2, (3.40)

for —Wy/2 < z; <wy/2 and

Yo = rl\/b%—{:ro+(b1+wf/2)}2, (3.41)

for —W/2 <, < wy/2. Similar equations may be found for the axially symmetric curve
on the lower surface.

The antipodal Vivaldi antenna may be easily made from a low-cost double-sided copper
coated FR4 substrate with the thickness of the substrate h = 1.6 mm, the thickness of
the copper t = 18 pum. The relative dielectric constant €, and the dielectric loss tangent
0 of the utilized substrate could be frequency dispersive in general, but are found to be
almost constant as ¢, = 4.4 and tané = 0.03 for the designed UWB frequency range by
the measurement. First, the dimension of the antenna width W was initially selected to
be one wavelength (100 mm) of the low frequency end (3 GHz). Then the width w; (=3.2
mm) and length Ly (=18.54 mm) were chosen to get a better impedance matching with
the input impedance 50 Q by the High Frequency Structure Simulator (HFSS) for the
extended UWB frequency range (2—15 GHz). Simulated magnitude of Sy; with different
width W is plotted in Fig. 3.8.

PRS- 2

IS, [dB]
RAFEET

cecosssssSSIs

P O TR N (NS NP NI R N
7 8 9 10 11 12 13 14 15

Frequency [GHZz]

Figure 3.8: |S11]| for different W
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Figure 3.9: |Sy1] for different ry
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Figure 3.10: |Sy1]| for different ro
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The shading area in the following figures denotes the frequency range for the UWB
operation. The effect of the width W seems to be small, but the case W = 100 mm is the
best among the cases for W = 80, 100, 120 mm. One may define the operational frequency
range from |S1;| < —10 dB. While the antenna has the low frequency end f_ at 2.36 GHz
from Fig. 3.8, it works superbly for high frequency and does not have the high frequency
end f,. This characteristic is typical for Vivaldi antennas [48].

The simulated |S1;| with different curvatures of the outer curve are plotted in Fig. 3.9.
|S11] does not change much, even the outer curve is a straight line which connects between
points C and D for r; = 0.48. This suggests that the outer curve of the flares does not
affect too much for the S;; parameter. The significant change occurs for changing the
inner curve of the flares, and some results are shown in Fig.3.10. Rapid change of the
curvature prevents from smooth transition from the co-planar waveguide modes to the
traveling type waves at the near low frequency end. |Si| gets increased when the inner
curve becomes a straight line which connects points E and B for 7, = 1.67 due to a lack of
smoothness at point E. From this evaluation, one can determine that the inner curve is the
most important parameter to design frequency range of the antipodal Vivaldi antennas.

The proposed Vivaldi antenna belongs to a class of surface traveling wave antennas
on which the traveling wave propagates with a phase velocity less than or equals to the
speed of light. This propagation mechanism results in an endfire radiation. A smooth
transition from the slotline propagation modes to the radiating field is a key for better
antenna performance. In order to establish this transition for a wide frequency range,
one should avoid discontinuous points and elaborate matching circuits in the propagation
path. Mismatch may occur at the connections between the feeding line, the radiation flare
profile, and the antenna aperture. So these parts of the antenna are designed carefully to
satisfy the requirement of the UWB applications.

Firstly, basic dimensions of the antenna size (W) and feeding line (Wy, L) are deter-
mined first as initial values. To compare with the conventional microstrip feeding line
on the ground plane, the twin lines of the feeding area reduce discontinue points in the
antenna structure [53]. Secondly, the radiation flare profile (b1, by, 71,72) are chosen by
observing S;; parameter and the radiation pattern characteristics. This simple radia-
tion flare and smooth transition ensure a constant group delay. By making corrugated
structure at the edges of the antenna [71, 72, 74], extending and shaping radiation flares
[54], these modifications increase the discontinuous points in the antenna structures. It
leads to not only manufacturing complexities but also a large variation of the group delay.
From the endfire radiation mechanism of the antenna, the antenna gain depends on the
aperture lengths of the antenna end (W, W,) and the length of the antenna (L), as well
as the uniformity of the aperture field distribution. These antenna dimensions will be
optimized by using HFSS to get a flat gain in the UWB range. Thus final dimensions of

the proposed antenna have been determined and listed in Table 3.2.
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Table 3.2: The dimensions of the proposed antenna

Parameter Value Parameter Value
W 100.00 mm wy 3.20 mm
L 95.00 mm h 1.60 mm
Ly 76.46 mm b1 46.80 mm
Ly 18.54 mm by 50.00 mm
W 56.60 mm 1 0.48
W, 21.70 mm T 1.67

3.2.3 Estimation for the low frequency end f_

Estimation of the operational range is important, but it is not clear yet how to define the
low frequency end f_ for Vivaldi antennas. The previous formula for f_ may be calculated
from the width of the antenna, or the antenna aperture without detail explanation and
different estimation formulae are available. For example, f_ is given in terms of the

antenna width W in Refs. [49] and [58] as

(1)
= _— 3.42
= (3.42)
while others have defined as
(2) c 3) ¢ @ _ ¢ 2
1= W./e,’ I 2W . /e.’ I- W\ e +1 ( )

in Refs. [74], [70] and [75], respectively.

Here ¢, denotes the relative dielectric constant of the substrate and ¢, is the effective
dielectric constant defined in Eq. (3.36). In these formulae, the width of the antenna W is
the key to design low frequency f_. However, you can observe in Fig. 3.8 that the f_ does
not change for different W when the other parameters are fixed. As shown in Sect. 2.2,
the inner curve is found to be the most effective parameter to |Sy;|. The importance of
the inner curve has been pointed out by other authors [76]-[80], but none of the works
predicts well for the operational low frequency end f_.

Figures 3.11 and 3.12 show the current distribution on the upper copper sheet and the
electric field distribution at the center of the substrate at some frequencies. Standing wave
type oscillation at the microstrip co-planar waveguide shifts gradually to the aperture with
somewhat a longer oscillation period. One should note from the current distribution that
the distance between two conjugative antinodes of the standing wave is related to the
wavelength of the operating frequency. At higher operating frequency, we have more
antinodes and the distance between two conjugative antinodes become smaller. This is a
basic characteristic of traveling wave on the antenna structure. Below the low frequency

limit f_(=2.36 GHz), the current distribution in the vicinity of the aperture is very weak
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in Fig.3.11 (a), and the aperture electric field in Fig. 3.12 (a) is not uniform and becomes
weak in the middle. It is found that from these figures the current (or electric field),
which has a peak at the intersection point A, needs to oscillate along the flare curve at
least once to reach the flare end point B for the proper radiation.

Arai and Nakada examined optimum taper slot parameters to increase the FB ratio
for proximity coupled taper slot antennas, and concluded that radiation taper slot needs
multiple of half wavelength for strong forward radiation [79], [80]. As their tapered slot
antenna is designed for narrow band, and its radiation property is obtained at resonant
frequency, it is not clear how one can interpret the operational frequency range for wide
band antennas like Vivaldi antennas. In fact if one uses a straight flare (taper) for Vivaldi

antenna, |S1;| gets increased as shown in Fig. 3.10.
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By changing the curved flare length L; in Fig.3.13, the low frequency end f_ shifts
gradually. Based upon this observation and the current distribution in Fig.3.15 (a), we
made an empirical assumption that the arc length of the inner curve from A to B becomes
one half of the free space wavelength at the low frequency end. Namely, f_ can be

approximately given by
for=—=— (3.44)

where L_ denotes the arc length between A to B. The arc length L_ of the ellipse can
be derived analytically using the incomplete elliptic integrals of the second kind (see
Appendix A). In order to confirm the accuracy of our formula, f_ was calculated for our
final dimensions of the antenna in Table 3.2 and one gets f_ = 2.40 GHz (L_ = 62.63
mm). Reversely, if one wants f_ to be 4 GHz, one gets L_ = 37.50 mm from Eq. (3.44)
and then L; = 56.95 mm from Eq. (A.4). Figures 3.14 and 3.15 show the simulated |Si|
and the current distribution at low frequency end for these cases. As can be seen from
Fig. 3.14, the low frequency end f_ of the antenna is 2.36 GHz for L_ = 62.63 mm and
4.00 GHz for L_ = 37.50 mm, respectively. At this low frequency end, one can also find
very similar current distribution along the inner curve in Figs. 3.15 (a) and (b) with peaks
at point A and B.

Table 3.3 shows the comparison of the low frequency end estimations. Our estimated
f- in Eq.(3.44) for Figs.3.15(a) and (b) are very close to those obtained from HFSS
simulation and are far better than any previously proposed formulas in Egs. (3.42) and
(3.43). In this table, our estimation has been tested and compared for other Vivaldi
antennas designed by other authors. From these comparisons, our estimation always

gives good results.
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Table 3.3: Comparison of the low frequency end estimations
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