3.2.4 Fabrication and measurement results for the antipodal Vi-

valdi antenna

Based on the antenna dimensions (Table 3.2) tuned by the HFSS simulation, the antenna
has been carved for UWB usage from a copper coated FR4 board. A photograph of
the fabricated antenna is shown in Fig. 3.16. The measurements are executed by Agilent
E8361A network analyzer in an anechoic chamber and compared with the corresponding
simulated values. Figure 3.17 presents the measured and simulated |Si;| from 2 to 15
GHz. The measured line closely resembles the simulated one. This design exhibits low
|S11] < —10 dB for the UWB application range. As seen in Fig.3.18, the actual gain of
the antenna is high and nearly constant (7 dB) in the UWB range. Figures 3.19 show
the far-field radiation patterns of the proposed antenna in H and E planes at 5 and 7
GHz. Co- and Cross-polarizations are also included. From these figures, it is found that
the measured radiation patterns agree well with simulated ones. In addition, the cross
polarization levels in the maximum radiation direction are investigated and shown in

Fig.3.20. The proposed antenna has a good cross polarization level (less than —15 dB).

Figure 3.16: Fabricated antipodal Vivaldi antenna

Another important parameter for an antenna operating in UWB systems is group de-
lay. Since group delay is calculated as the rate of change of the total phase shift with
respect to angular frequency, this parameter has an influence upon the system perfor-
mance. The larger group delay variation would cause more signal distortion. Figure
3.21 shows the group delay of the proposed antenna. Two identical Vivaldi antennas are
placed face to face to measure the group delay at distance of 300 mm. As presented in
Fig.3.21 (a), the proposed antenna shows almost constant group delay from 2 to 15 GHz.
From Fig.3.21 (b), one can estimate that the group delay variation is less than £0.2 ns in
the UWB range. This result indicates that the transmitted signal will not be distorted by
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this antenna. Difference from the simulation results may come from the connection loss
at the SMA connector as well as the dispersive nature of the electric property of the FR4
substrate. The antenna performance has been compared with previous antipodal Vivaldi
antennas in Table3.4. This table contains important characteristics of UWB antennas.
The proposed antenna shows constant group delay, flat gain and good cross-polarization

levels at the designed UWB range to compare with the previous ones.
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Figure 3.17: |S11| of the fabricated antenna
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Figure 3.18: Gain of the fabricated antenna
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Figure 3.19: Far-field radiation patterns of the proposed antenna. H-plane radiation
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Table 3.4: Comparison with previous antipodal Vivaldi antennas

wu 79°0= Y

‘T01="3 IR
V/N V/N 9P 7°6~G'¢ | ZHD GLg | oul dusomdiy eondirg | ‘0T09.LY S50y | 6'65%9°6S | [S2] 7Y
98po rUULIUR B ww Ge9'0= Y
UOIjeLIBA SU ' [F UOT)RSNILIOD O[S ‘cor="3 (e)z 81
jue)suod ALreaN V/N Igp L'6~8'C | ZHD 0L'F | dur dinsordry Teondiig | ‘0T09.LY S1080Y | 0°07%0'6s | [72] 3o4
98po rUULIUR B wu $9°0) = Y
SU G'gF 108 [eryuLUOdxX ‘CT9="2 (1819
uoTyeLIeA 93IeT] V/N Igp 6~ | ZHD 80'¢ | dur dinsodry Tenueuodxy | ‘90geQY S50y | 8'65x€9¢ | (L] YU
98po rUULIUR B
UOIJRLIRA SU ()’ [F UOT)RSNIIOD O[S wwy = Yy (9)1 81
Jue|suoD ATresN V/N gp 01~L'¢ | ZHD ¥'g | dul] disomdiy ‘Teryuonodxyy ‘97="3 p¥d | 0°09x08% | [12] Y
98pe euuLjue v
uo1pe3NII0d 407§ wuw 7 =Y (0)1 819
V/N V/N 1qgp 8~¢ ZHD ¥ | dul[ durjsomiy ‘Teryuouodxy] ‘ep="3 | $'99x00S | [09] Y
popeo[ j0[§ |  WW 670 =Y
qap 61— ‘Iemor ‘€'c="2 '088¢ (q)g 9q
V/N ST XRIN qgp L~1 ZHO ¥ | aul[ durjsomiy pue fenueuodxy | prom(g swsoy | 0°09%0F9 | [8¢] U
08pe euuojue e
UOT)RSINILIOD J0[G wuw ) =Y 181
V/N dp 61— > | 1gp 01~¢ | ZHD 9L°G | dull dugsomry | ‘1ode) oer(-1uLia ‘ee="3 | 0g1x0cy | [L8] oY
wur ¢18°0 = Y
SUT'TF 1qp 8~L oueld eg ‘6gre="2 €9
juejsuod A[reaN | gp 0g— > | 1ep A[IedN ZHD 9 | oul[ disomdI Tenuouodxy | ‘€00FOY S1S0Y | 0°¢xg 1e | [9¢] oYU
wur ¢18°0= 1
O[OID-TUIdG ‘Rere="3 18
uotyerreA o3e | gp 0g— > | P 8~F | ZHD G€'¢ | AUl diysomry Teondig | ‘€00FOY 81050y | 0°08%0°08 | [¥S] U
(q)1-31q
V/N ap ¢1— > V/N ZHD € SOUIT UIM T, [eryueuodxy WG =Y | GOIX0'GL | [69] oY
wur 18¢°() = Y
‘T'c="2 ‘088¢ 19
V/N dapgi— > | 1gp 01~¢ ZHD 8 | dul[ durjsomIy [eryuauodxyy Promq/ Iy | 0°29%x¥°6g | [eS] U
UOTYeLIRA SU g'(0F eqp L ww 9] =Y 9T°¢ "SI
Jue)suod A[resN | gp GT— > | eg A[IeeN | ZHD 9€°C SouI[ UIM T, reondiyg Tr="2 ‘744 | 0°96%001 samQ
amn [oA9] amn ~f puo orerysqns | (puw)
ur Arjep dnoix) ‘10d ssox)) ur urexr) ‘baxy morp oul[ SUIpo9q u3Isop oIe[q OLIYOdTAI(T 971G "spoY

87



3.2.5 Zero-index metamaterial (ZIM) unit cell for improving

gain of the antipodal Vivaldi antenna
a. ZIM unit cell design

Recently, some kinds of ZIM unit cell has been introduced in Refs. [82, 83, 84]. A somewhat
different ZIM unit cell configuration is shown in Fig.3.22. The proposed ZIM unit cell
has symmetric structure and been design on the low-cost FR4 substrate with the same
substrate parameters which used to design the antipodal Vivaldi antenna in Section 3.2.2.
The dimensions of the proposed unit cell is presented in Table 3.5.

The ZIM unit cell is simulated by HFSS 14. Then the characteristics of the ZIM unit cell
are calculated from HFSS simulated S-parameters by using the method in Section 3.1.3.
In addition, different polarizations are imposed and analyzed for the consideration of
anisotropic metamaterials. The first case is when a wave propagation is along y direction
and the electric polarization is in x direction. The second case is when a wave propagation
is along x direction and the electric polarization is in y direction. As can be seen from
Fig.3.23, Si; small than —10 dB for whole UWB from 3.1 to 10.6 GHz. Therefore, wave

propagation can pass with a low loss in along y direction.

Figure 3.22: The proposed ZIM unit cell

Table 3.5: The dimensions of the proposed unit cell

Parameter | Dimension
aq 5.00 mm
a9 1.75 mm
w1 0.30 mm
S1 0.80 mm
S9 0.80 mm
h 1.60 mm
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The effective characteristics of the proposed ZIM unit cell along this direction are
plotted in Fig.3.25. The unit cell exhibits positive refractive index, permittivity and
permeability as a normal material.

Figure 3.24 show the simulated S-parameter for the second case. A broad stop-band
from 4.1 to 7.5 GHz can be observed in this figure. In x direction, the unit cell shows
nearly zero refractive index from 6.1 to 8.3 GHz and negative permittivity from 5.0 to
8.3 GHz in Fig.3.26. The different between wave propagation along y direction and =

direction presents anisotropic metamaterial characteristic of the designed unit cell.
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Figure 3.23: Simulated S-parameters of the ZIM unit cell for the first case.
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Figure 3.24: Simulated S-parameters of the ZIM unit cell for the second case.
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Figure 3.25: Retrieved parameters of the proposed unit cell for the first case: (a) Refrac-
tive index n, (b) Permittivity e, (c) Permeability p.
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b. Gain improvement of the designed antipodal Vivaldi antenna by using ZIM

unit cells

Three configurations for the antipodal Vivaldi antenna (AVA) loaded with ZIM unit cells
are shown in Figs.3.27, 3.28 and 3.29. The proposed ZIM unit cells are placed and
arranged in the upper layer of the printed circuit board. The configuration A has two
columns of ZIM unit cells while the configuration B has three columns. The configuration
C has a different arrangement to compare with the configurations A and B. The numbers
(1,3,5,7,9,11,15,19) means the corresponding numbers of the ZIM unit cell on each
columns.

To estimate which configuration has a better performance, we design the same length
for these ones. The simulated return loss S7; and gain of the proposed configurations
are presented in Figs. 3.30 and 3.31. Even the antipodal Vivaldi antenna adds the ZIM
unit cells, the Si; is smaller than —10 dB in entire frequencies of UWB. It confirm
that the proposed structures have a very good impedance matching. About gain, the
configuration C has higher gain to compare with the configurations A and B. Therefore,
the configuration C is chosen for improving the gain of the antipodal Vivaldi antenna.

The performance of the configuration C has been compared to the single antipodal
Vivaldi antenna in Figs. 3.32 and 3.33. As can be observed that the maximum improved-
gain band is correct with the stop-band of the ZIM unit cell (4.1 to 7.5 GHz) when wave
propagating along x direction. At these frequencies, very few waves will propagate along
x direction. Hence the energy will concentrate in y direction. In general, the gain of the
designed antipodal Vivaldi antenna has been improved roughly 2 dB in a broadband from
3.0 to 7.5 GHz.

Figures 3.34 and 3.35 show the E field distribution at 5 GHz for the single antipodal
Vivaldi antenna without and with ZIM unit cells, respectively. The antipodal Vivaldi
antenna with ZIM unit cells has a strong and unniform field distribution while the single
antipodal Vivaldi antenna has a weak and not uniform field distribution. Finally, we
can conclude that by using ZIM unit cell to drive the wave propagation, the gain of the

antipodal Vivaldi antenna can be enhanced.
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Figure 3.27: The configuration A

Figure 3.28: The configuration B
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Figure 3.29: The configuration C
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Figure 3.30: Simulated S11 for different configurations

Gain [dBI]

12

10

T T T T T
----- The configuration A |
----=- The configuration B

—— The configuration C

6 7 8 9 10 11

Frequency [GHZz]
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Figure 3.33: Simulated gain S-parameters for the antipodal Vivaldi antenna without and
with ZIM unit cell (The configuration C)
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Figure 3.34: E field distribution at 5 GHz of the antipodal Vivaldi antenna.
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Chapter 4

Conclusions and future works

4.1 Conclusions

This thesis has presented a new way for analysis and design of the E-CRLH TLs. All
possible values of L-C elements to achieve the desired characteristics of the E-CRLH TLs
are shown by using new closed-form solutions. Unlikely the previous methods, our method
is helpful for various cases. The numerical results have demonstrated the usefulness of
the method. Thus this study contributes to the theory and applications of the E-CRLH
TLs, and its results can be applied to design dual-, tri- and quad-band RF and microwave
devices. Then a compact quad-antenna has been designed from one E-CRLH TL unit
cell. The resonant frequencies of the proposed antenna have been predicted from the
theoretical L-C lumped elements and compared with simulated values. The proposed
antenna shows advantages of small size, omnidirectional radiation characteristics, and
easy fabrication of single copper layer on the low cost of FR4 substrate. Consequently,
this antenna could be a candidate for multiband wireless communications.

Furthermore, an antipodal Vivaldi antenna has been designed for UWB applications.
The antenna has been fabricated on the standard FR4 substrate, and various antenna
properties have been measured. Then the measured results have been compared with those
done by the HFSS, and good agreements show the validity and the quality of this antenna
design method. The estimation formula of the low frequency end of the operational range
is proposed and tested for various antennas designed by other authors. Our estimation
formula has been found to give the best prediction among the other formulae. Lastly,
the gain of the antipodal Vivaldi antenna has been improved in a broadband by using

zero-index metamaterial (ZIM) unit cell to compare with the conventional methods.
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4.2 Future works

Some innovative ideas were comprehensively explored in this research. Representative
results from both simulations and experiments were presented. However additional work
is needed to improve the current designs and to get more benefit from using metamaterials.

The research work presented in this thesis can be further extended in following ways.

e Our current closed-form solutions for E-CRLH TL can be applied to design other
devices such as filters, power dividers and directional couplers. In fact, the E-CRLH
antenna can be redesigned in a better dielectric substrate than the low cost FR4

substrate to improve the current gain at 0.81 GHz.

e Knowledge from researched on CRLH, D-CRLH and E-CRLH TLs will be used to
study a new metamaterial transmission line. And it is expected to become a useful

transmission line for RF and microwave applications.

e The antipodal Vivaldi antenna loaded ZIM unit cell should be fabricated and mea-

sured to compare with the simulated results.

e A metamaterial slab with new resonant metamaterial unit cell will be developed
for enhancing the efficiency of wireless power transfer systems. The concept of this
metamaterial slab is to work as a microwave lens between the transmitting antenna
and the receiving antenna of wireless power transfer systems. On the other hand,

this is similar to improve the gain of the transmitting antenna.
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Appendix A

A.1 Arc length of ellipses

From Fig.3.7, the curve of the inner flare on the upper surface is given by Eq.(3.40),

which may be written with a parameter t as
Yi = asV'1 — cos?t = apsint = roby sint. (A.1)

The intersection point A is given by setting z = 0 to get

by —wp/2\°
yA:ag\/1—<2b—wf/) = agsinty, (A.2)
2

where t4 = arccos {1 — wy/(2by)}. The flare end point B(zp,ys = L1) may be obtained

from

rp = bycosty — (bg — %) , (A.3)

where tp = arcsin (L;/ay). Then the arc length L_ between points A and B becomes

2 _ p2 2 _p2
5 5

where E(t, k) denotes the incomplete elliptic integral of the second kind [81]:

t
E(t, k) :/ V1 — k2?sintdt. (A.4)
0
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A.2 Possible solutions for other cases

Two solutions for Eq. (2.104)

Solution 1:
o _ Bo+ V/Bf — 44
e 2235£E6L1 ’ .
233'5.%6 BO + v/ Bg — 4A0
CQ = X5+ Tg — - Ll )
Bo + /B2 — 44, 2
2

L2 = )

(Bo+ /BE — 44,)Cy )
Cs =

(21 + 22 + 23 + 24) — (25 + w6 + 27 + x5)| L1

L~ b= VB2 — 44,

2337517803 ’ 1
2.1'71'8 BQ — 1/ Bg — 4A0
Ly= || 27 +a5— - Cs ;
By — \/BZ — 44, 2
2
04 - )
(Bo — v/ B3 — 4A¢) Ly
Solution 2:
o _ Bo— V/BE 44
! 233'51’6[11 ’ .
C i 23351‘6 BO — 1/ Bg — 4140 I
= T Tg — — y
2 5 6 By — —Bg 1A, 5 1
2
Ly = ,
L (By— /B2 — 440)Ch )
Ol —
3 [((E1+Z’2+LL’3—|—JI4>—($5+LU6+$7+$8)]L1’
I By + /B2 — 44,
5 233'71'803 ’ 1
21’7I8 BO + Bg — 4140
Ly= || 27 +25— - Cs 5
Bo + /B — 44, 2
2
C4 = )
(Bo+ /B2 —4A0) L4

where Ay and By are calculated as follows:

D — [xsxe(x7 + x8) + T728(T5 + X6)]
(21 + 22 + x5 + x4) — (@5 + 26 + 27 + 25)
E — [x526 + 728 + (x5 + 26) (27 + 23)]
({B1 +$2+.’L‘3+$4) — (.CE5—|—IE5—§—.CE7—|—1138)7

Ay =

By =

and other parameters D, E, x; are the same as in Eqgs. (2.113)~(2.115).
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Two solutions for Eq. (2.105)

Solution 1:
Bz + \/B? — 4A;3
Cl = 9
2(1]5([‘8[/1 ,
21’51‘8 B3 + v/ Bg - 4143
CQ = TIs + rg — - Ll 3
B3 + /B2 — 443 2
2
L= ,
2 (By+ /Bl — 443)C; )
Cs = , A9
’ [(#1 + 29 + 73 4+ 24) — (5 + 26 + 77 + 28)] Ly (A.9)
I._ Bs — \/Bg —4A5
5 2x6x703 ’ .
21’61'7 B3 -\ 332, - 4A3
Ly = Te + x7 — - Cs ;
Bs — \/Bg —4A5 2
2
C - )
Y (By— /B2 — 4Ay) L,
Solution 2:
Cr — Bs — \/Bg — 4A;
e 2$5$8L1 ’ .
21’51’8 B3 — 1/ Bg — 4A3
CQ = s + rg — - Ll )
Bs — \/Bg —4A5 2
2
L2 - )
(Bg — 1/ Bg — 4A3)CQ 2
Cy = , (A.10)

[(1’1 +ZL‘2 —|-£L’3 +ZL‘4) — (%5 +£U6 +$7+IB8)] Ll
I B3 + /B2 — 44;
3= )

21‘61'703

-1
I + 2[1361’7 B3 + B§ - 4A3 C
= €T X7 — - I
! T By + /B2 - 44, 2 ’
2
Cy

(B3 + /B2 —44A;)L,
where A3 and Bs are calculated as follows:

4y — D= lwsws(@s +an) + zrrlas +a9)] (A.11)
(21 + 29 + 23 + 24) — (25 + T6 + 7 + T3)

B _ E—[I5l’8—|—l‘6$7+(I5+ZE8)<I6+ZL’7)] (A 12)
3 <$1+$2+I3+$4)—(ZE5+I6+I’7+JI8>7 ’

and other parameters D, E, x; are the same as in Egs. (2.113)~(2.115).
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Two solutions for Eq. (2.106)

Solution 1:
o - By ++/Bi — 44,
! 2(1,’6(['8[/1 ’ ,
21673 By +\/B? — 44,
CQ = Tg + rg — - Ll 3
By+ /B? —4A, 2
2
L - ’
2 (By+ /Bl —1A,)C; )
Cs = ) A.13
’ [(#1 + 29 + 73 4+ 24) — (5 + 26 + 77 + 28)] Ly ( )
I By — /B2 —4A,
T 2x5x703 ’ .
2517 By — /B? —4A,
Ly=||25+ 27— — Cs ;
By — /B3 —4A, 2
2
C - )
Y (Bi— /B2 —4Ay) L,
Solution 2:
o By — /B2 —4A,
e 2x6I8L1 ’ .
21’61'8 B4 -\ BZ - 4"44
Cy = Te + Tg — - Ly ;
By — /B3 —4A, 2
2
L2 - )
(B4 — 1/ Bz — 4A4)CQ 5
C3 = ) (A.14)

[(1’1 +ZL‘2—|—ZL’3+ZL'4) — ($5+$6+$7+£B8)] Ll
;. _ Bit VBl — 44,
3= )

21‘51'703

-1
I + 2[1351’7 B4 + Bi - 4A4 C
= €T X7 — - I
! T B+ /B - 44, 2 ’
2
Cy

 (Bi+ /B2 —4A)L,
where A, and B, are calculated as follows:

A4 _ D — [.’1,’6568(375 + $7> -+ 376368(&35 -+ LE7)] 7 (A15)
(1 4+ 2o+ 23+ x4) — (5 + 26 + 27 + 28)

B4 _ E — [l‘@l’g —|— 57 —f- (IG + ZE8><I5 —|— ZL’7)] : (A16>
<$1+$2+I3+$4) — (ZL’5+I6+$7+JI8>

and other parameters D, E, x; are the same as in Egs. (2.113)~(2.115).
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Two solutions for Eq. (2.107)

Solution 1:
Bs + /B2 — 4 A5
Cl = 9
2(1]7([‘8[/1 ,
21’71‘8 B5 + AV Bg - 4145
Co= |27+ 25 — — Ly )
Bs + /B2 — 4 A5 2
2
L - ’
2 (Bs + /B — 44,)C; )
Cs = ) A.17
’ [(#1 + 29 + 73 4+ 24) — (5 + 26 + 77 + 28)] Ly ( )
L. — By — \/Bg — 4 A5
T 2x5x603 ’ .
21’51’6 B5 -\ Bg - 4A5
Ly=||25+ 26— — Cs ;
Bs — /B2 — 445 2
2
C - )
Y (Bs — /B2 —4A,) L,
Solution 2:
Cr— Bs — \/Bg — 445
e 2$7$8L1 ’ .
21’71’8 B5 — 1/ B52 — 4A5
Cy = T7+ Ty — - Ly ;
Bs — /B2 — 445 2
2
L2 - )
(B5 — 1/ Bg — 4A5)CQ 5
C3 = ) (A.18)

[(1’1 +ZL‘2 —|-£L’3 +ZL‘4) — (%5 +£U6 +$7+IB8)] Ll
I Bs + /B2 — 4A;
3= )

21‘51'603

-1
I + 2[1351’6 B5 + Bg - 4A5 C
= €T T — - I
! P By + /B2 — 44, 2 ’
2
Cy

 (Bs+ /B2 —44;5)L,
where As and Bs are calculated as follows:

A5 _ D — [l’7$€g($5 + x(;) -+ 377368(&35 -+ LEG)] 7 (A19)
(1 4+ 2o+ 23+ x4) — (5 + 26 + 27 + 28)

B5 _ E — [l"y.l’g —|— T5Tg —f- (I7 + ZE8><I5 —|— ZL’@)] : (A20>
<$1+$2+I3+$4) — (ZL’5+I6+$7+JI8>

and other parameters D, E, x; are the same as in Egs. (2.113)~(2.115).
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Two solutions for Eq. (2.108)

Solution 1:
Bg + /B2% — 4 A4
Cl = 9
2(1,’6(['7[/1 ,
21’61‘7 B(j + AV Bg - 4A6
CQ = Tg + Ty — - Ll 3
Bg + /B2 — 44 2
2
Ly = ,
* (B + /B2 — 444)Cs )
Cs = , A21
’ [(#1 + 29 + 73 4+ 24) — (5 + 26 + 77 + 28)] Ly ( )
I._ Bg — \/BEQi — 4Aq
5 2x5x803 ’ .
21’51’8 B6 -\ Bg - 4A6
Ly = Ts + xg — - Cs ;
Bg — \/Bg —4Aq 2
2
C - )
Y (Bs — /B2 — 4A44) Ly
Solution 2:
Cr — Bg — \/Bg — 4Aq
e 2$6$7L1 ’ .
21’61'7 B6 — 1/ Bg — 4A6
CQ = Tg + Ty — - Ll )
Bg — \/Bg —4Aq 2
2
L2 - )
(Bs — /B2 — 444)C; )
Cy = , (A.22)

[(1’1 +ZL‘2 —|-£L’3 +ZL‘4) — (%5 +£U6 +$7+IB8)] Ll
I Bs + /B2 — 44
3= )

21‘51'803

-1
I + 2[1351’8 BG + Bg - 4A6 C
= €T rg — - I
! P Be+ /B2 — 44, 2 ’
2
Cy

 (Bs+ /B2 —44¢)Ls
where Ag and Bg are calculated as follows:

Aﬁ _ D — [$6$C7($5 + $8> -+ 375368(&36 -+ LE7)] 7 (A23)
(1 4+ 2o+ 23+ x4) — (5 + 26 + 27 + 28)

B _ E — [l‘6177 —|—I5ZE8 —f- (IG +ZL’7)<I5 —f—[L’g)] (A 24>
6 <$1+$2+I3+$4)—(ZE5+I6+I’7+JI8>7 ’

and other parameters D, E, x; are the same as in Egs. (2.113)~(2.115).
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