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STRONG CONVERGENCE THEOREMS
FOR GENERALIZED EQUILIBRIUM PROBLEMS
AND RELATIVELY NONEXPANSIVE MAPPINGS

IN BANACH SPACES

YUKINO TOMIZAWA

ABSTRACT. The purpose of this paper is to prove strong convergence theorems
for finding a common element of the set of solutions of a generalized equilibrium
problem and the set of common fixed points of infinite relatively nonexpansive
mappings in Banach spaces.

1. INTRODUCTION

Throughout this paper, we denote by R the set of all real numbers. Let E be a
real Banach space with a norm ||-||, E* the dual space of E, (-, -) the pairing between
E and E* and C a nonempty closed convex subset of E. Let f: C x C — R be
a bifunction and A a nonlinear operator of C into E*. The generalized equilibrium
problem is finding u € C such that

for all y € C. The set of solutions of (1.1) is denoted by EP, that is,
EP={ueC: f(u,y) + (Au,y —u) > 0, Vy € C}.

If A =0, then the problem (1.1) is equivalent to that of finding a point v € C such
that
flu,y) =0 (1.2)
for all y € C which is called the equilibrium problem. The set of solutions of (1.2) is
denoted by EP(f). If f =0, then the problem (1.1) is equivalent to that of finding
a point u € C' such that
(Au,y —u) >0 (1.3)
for all y € C which is called the variational inequality. The set of solutions of (1.3) is
denoted by VI(C, A). The problem (1.1) is very general in the sense that it includes,
as special cases, optimization problems, variational inequalities, minimax problems,
numerous problems in physics, economics and others. Some methods have been
proposed for solving the generalized equilibrium problem, the equilibrium problem
and the variational inequality in Hilbert spaces (see [14, 15]) and in Banach spaces
([11, 19]).
Let C be a nonempty closed convex subset of a real Banach space E. A mapping
T of C into E is said to be nonezpansive if | Tz — Ty|| < ||z — y|| for all z,y € C.
A point p € C' is called a fized point of T if Tp = p. The set of fixed points of a
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2 Y. TOMIZAWA

mapping T is denoted by F(T). A point p € C is called an asymptotic fixed point
of T if there exists a sequence {z,} C C such that x,, — p and ||z, — T'z,| — 0.
We denote by F (T') the set of all asymptotic fixed points of T. A mapping T is said
to be relatively nonezpansive if F(T) = F(T) # 0 and ¢(u, Tx) < ¢(u,z) for all
u € F(T) and x € C. Let a > 0. A operator A of C into E* is said to be a-inverse
strongly monotone if

(x —y, Az — Ay) > af| Az — Ay|?

for all z,y € C. It is known that if A is an a-inverse strongly monotone operator,
then A is 1/a-Lipschitzian.

Example ([3]). Let E be a Banach space, f a continuously Fréchet differentiable,
convex functional on E and V f the gradient of f. If V f is 1 /a-Lipschitz continuous,
then Vf is a-inverse strongly monotone.

In 2008, Takahashi and Takahashi [15] proved a strong convergense theorem for
finding an element of F(S) N EP in a Hilbert space H, where S is a nonexpan-
sive mapping of a nonempty closed convex subset C' C H into itself and A is an
inverse strongly monotone operator of C' into H. Recently, Chang, Lee and Chan
[4] considered iterative methods for finding an element of F'(S) N F(T)N EP in a
certain Banach space F, where S and T are two relatively nonexpansive mappings
of a nonempty closed convex subset C' C F into itself and A is an inverse strongly
monotone operator of C into E*. On the other hand, Matsushita, Nakajo and Taka-
hashi [10] introduced iterative methods for finding an element of ;= F'(S;), where
S; is a relatively nonexpansive mapping of C' into itself for all ¢ > 0.

In this paper, motivated by Chang et al. [4] and Matsushita et al. [10], we
introduce new iterative methods for finding an element of ;2 F(S;) N EP, where
S; is a relatively nonexpansive mapping of C' into itself for all ¢ > 0 and A is an
inverse-strongly monotone operator of C'into E*. In the next section, we recall some
basic notions and give the definition of W-mappings and convex combinations of
mappings. We present and prove our main results which are strong convergence
theorems of W-mappings and convex combinations in Section 3 and Section 4,
respectively.

2. PRELIMINARIES

Throughout this paper, we assume that E is a real Banach space with a norm
I]l, E* is the dual space of E and (-, -) is the pairing between E and E*. We denote
strong convergence of a sequence {z,} to x by x, — 2 and weak convergence by
Ty — T.

Let U = {z € E : ||z|| = 1}. A Banach space E is said to be reflexive if the
natural mapping £ — E** is surjective and we write £ = E**. A Banach space F
is said to be strictly convex if ||z + y||/2 < 1 for all z,y € U with « # y. A Banach
space F is said to be uniformly convez if for each e € (0, 2], there exists 6 > 0 such
that, for any x,y € U,

A +
|z —yll > e implies szyH <1-4.

It is well known that a uniformly convex Banach space is reflexive and strictly
convex.
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A Banach space is said to have the Kadec-Klee property if, for every sequence
{zn} C E, v, = z and ||z,| — ||z| together imply |z, — x| — 0. It is known
that a uniformly convex Banach space has the Kadec-Klee property. Let G = {g :
[0,00) — [0,00) : g(0) = 0, g is continuous, strictly increasing and convex}. We
have the following theorem for a uniformly convex Banach space.

Proposition 2.1 ([20]). A Banach space E is uniformly convez if and only if, for
every bounded subset B of E, there exists gg € G such that

1Az + (1= Nyl* < AMlal® + (1= ]yl = A1 = Ngz (e - y])
forallz,ye B and ) <A< 1.
A Banach space E is said to be smooth if there exists

e+ tyl ]

t—0 t (2.1)

for all x,y € U. In this case, the norm of F is said to be Gateaux differentiable. A
Banach space F is said to be uniformly Gateaux differentiable if for each y € U,
the limit defined by (2.1) exists uniformly for x € U. It is also said to be uniformly
smooth if the limit is attained uniformly for all x,y € U. It is well known that
every uniformly smooth Banach space is reflexive and with uniformly Gateaux
differentiable norm. It is also known that E* is uniformly convex if F is uniformly
smooth.
The mapping J of E into 28" defined by

J(z) = {z* € E* : (z,2") = ||z* = ||2"||*}

for x € F is called the normalized duality mapping. By the Hahn-Banach theorem,
J(x) # 0 for each x € FE. The normalized duality mapping J has the following
properties:
(i) if F is smooth, then J is single-valued;

(ii) if E is strictly convex, then J is one-to-one and (z — y,z* — y*) > 0 holds

for all (x,2*), (y,y*) € J with z # y;
(iii) if E is reflexive, then J is surjective;
(iv) if E' is uniformly smooth, then J is uniformly norm-to-norm continuous

on each bounded subset of E.

Let E be a smooth, strictly convex and reflexive Banach space and C' a nonempty

closed convex subset of E. Throughout this paper, the Lyapunov functional ¢ :
E x E — R7 is defined by

$(z,y) = |lal|* = 2(z, Ty) + ||y

for all z,y € E; see [1, 7, 12]. Tt is obvious that
(i) ¢(z,y) = 0 if and only if x = y;
(i) (2l = llyl)? < é(z,y) < (2]l + llyl)? for all 2,y € E.

Proposition 2.2 ([7]). Let E be a smooth and uniformly convex Banach space
and {x,},{yn} C E two sequences. If ¢(xn,yn) — 0 and either {z,} or {yn} is
bounded, then ||z, — yn| — 0.

Let {x,} and {y,} be two bounded sequences in a smooth Banach space. It is
obvious from the definition of ¢ that ¢(z,,y,) — 0 whenever ||z, — y,|| — 0. By
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this fact and Proposition 2.2, if {x,} and {y,} are two bounded sequences in a
uniformly smooth and uniformly convex Banach space, then

|zn — ynll = 0 < || Jxn — Jynl|| = 0 < d(xn, yn) — 0.

Proposition 2.3 ([7]). Let E be a smooth, strictly conver and reflexive Banach
space, C a nonempty closed convex subset of E and x € E. Then there exists a
unique element xg € C such that ¢(xo, x) = mingec ¢(y, z).

Let E be a smooth, strictly convex and reflexive Banach space and C' a nonempty
closed convex subset of E. Following Alber [1], the generalized projection llg of E
onto C' is defined by

Mox = arg min ¢(y, x)
yeC

for all x € E. We have the following results for generalized projections.

Proposition 2.4 ([1, 7]). Let E be a smooth Banach space, C" a nonempty convex
subset of E, x € E and xg € C. Then xg = ez if and only if (y—xq, Jeo—Jz) >0
forally e C.

Proposition 2.5 ([1, 7]). Let E be a smooth, strictly convex and reflexive Banach
space, C' a nonempty closed convex subset of E and y € E. Then

oz, Mey) + ¢(Hcy,y) < d(z,y)
forallxz € C.

We denoted by F(T') the set of all fixed points of a mapping T

Proposition 2.6 ([11]). Let E be a smooth and strictly convex Banach space, C a
nonempty closed convex subset of E and T a relatively nonexpansive mapping of C
into itself. Then F(T) is closed and convez.

Let E be a smooth, strictly convex and reflexive Banach space, C' a nonempty
closed convex subset of E, {S;}52, a family of mappings of C into inself and {3, ; :
0 <i<n}y,Cl0,1] a sequence of real numbers. For any n > 0, let us define a
mapping W,, of C into itself as follows:

Un,n+1 - I7
Unm = HCJ_l (Bn,nJ(SnUn,nJrl) + (1 - Bn,n)J)a
Un,n—l - HCJ71 (Bn,n—lJ(Sn—lUn,n) + (]- - ﬂn,n—l)J)v

Un,i = IICJ_1 (ﬂan(SzUanrl) + (1 - ﬁn,z)'])v (22)

Un,l = HC’J71 (ﬁn,lJ(SIUn,Q) + (1 - /87L,1)J)a
Wn = Un,0 = J_l (Bn,OJ(SOUn,l) + (]- - ﬁn,O)J)v

where [ is the identity mapping on C. Such a mapping W, is called the W-
mapping generated by {S;}7_, and {5, ;}7—,. We have the following result for the
W-mappings; see [9, 10, 16, 18].
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Proposition 2.7 ([10]). Let E be a uniformly smooth and strictly convex Banach
space, C' a nonempty closed convexr subset of E and {S;}7, a family of relatively
nonezpansive mappings of C' into itself such that (\;_, F(S;) # 0. Let {B,:}7 be
a sequence of real numbers such that 0 < B,0 < 1 and 0 < B,,; < 1 for every
1 < i< n. Let {U, ;}4; be a sequence defined by (2.2) and W, the W-mapping
generated by {S;}7—, and {B,}7—o. Then the following hold:

(i) F(Wa) = Mg F(S0);

(ii) for every 0 <i<n, z € C and z € F(W,,), ¢(z,Upix) < ¢(z,x)

and ¢(z, SiUn,it17) < ¢(2, 7).

Let E be a smooth and uniformly convex, C' a nonempty closed convex subset
of E, {S;}2, a family of relatively nonexpansive mappings of C' into itself and
{An,i:0<i<n}e2, C[0,1] a sequence of real numbers. For any n > 0, let V,, be
a mapping of C into itself defined by

n
Vo=J7") A8 (2.3)
i=0
We have the following result for convex combinations of relatively nonexpansive
mappings.

Proposition 2.8 ([10]). Let E be a smooth and uniformly conver Banach space,
C' a nonempty closed convex subset of E and {S;}52, a family of relatively nonez-
pansive mappings of C into itself such that (Voo F(S;) # 0. Let {\, i} C [0,1]
such that Z?:o Ani =1 for alln > 0 and lim,,—,oc Ap s > 0 for each i > 0. Let V,,
be a mapping of C into itself defined by (2.3). Then the following hold:

() Mozo F(Va) = N2 F(Si);

(ii) for everyn >0, z € C and z € ;2o F(Si), ¢(z, Vaz) < ¢(z, ).

We denoted by E(T) the set of all asymptotic fixed points of a mapping 7. For
solving the equilibrium problem, let us assume that a bifunction f : C x C — R
satisfies the following conditions:

(A1) f(z,x) =0 for all z € C;

(Ag) f is monotone, that is, f(z,y) + f(y,z) <0 for all z,y € C;

(As3) f is upper-hemicontinuous, that is, limsup, o f(z +t(z — z),y) < f(x,y)
for all z,y,z € C;

(A4) the function y — f(x,y) is convex and lower semicontinuous.

Proposition 2.9 ([19]). Let E be a uniformly smooth and strictly convex Banach
space, C' a nonempty closed convex subset of E and f : C x C — R a bifunction
satisfying (A1)—(A4). For r > 0 and x € E, define a mapping T, of E into C as
follows:

1
T.(z)={uel: fluy)+ ;(y —u,Ju—Jz) >0, Yy € C} (2.4)
for all x € E. Then the following hold:
(i) T is single-valued;
(ii) T, is a firmly nonexpansive-type mapping, that is,
(Trx — Ty, JTox — JTvy) < {Trx — Ty, Jx — Jy)
for all T,y € E;
(i) F(T;) = F(T) = EP(f);
(iv) EP(f) is a closed convex set of C.
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Remark. It follows from Proposition 2.9 that the mapping T, defined by (2.4) is
relatively nonexpansive. Indeed, by Proposition 2.9 (ii), we have

(Trx = Try, JTrx — JTyy) < (T — Ty, Jo — Jy)
for all x,y € C. Moreover, we obtain
(T, Try) + o(Try, Trx)
= 2| Tyal|” — 2Ty, JTry) — 2ATry, JTra) + 2| Toyl)”
= 2qTyx, JTrx — JTry) + 2{Ty, JT,y — JT,x)
= AT,z — Ty, JTox — JToy)

and
o(Trx,y) + o(Try, x) — o(Trx, 2) — 9(Try, y)
= | Toa|® = 2T, Jy) + |y + | Toyll* — 2(Try, J) + |||
— | Tya|® + 2Ty, Jx) — ||| = 1Ty + 2(Toy, Ty) — |1yl
=2(T,x,Jx — Jy) — 2(T,y, Jx — Jy)
=2(T,x —T,y, Jx — Jy).
Hence

o(Tra, Try) + o(Try, ) < (Trw,y) + o(Try, x) — o(Trw, z) — ¢(Try, y)
< o(Trx,y) + o(Try, x)
for all 2,y € C. Taking y = p € F(T,), we obtain
o(p, Trx) < ¢(p, x).
Thus, by Proposition 2.9 (iii), this implies that T;. is relatively nonexpansive.
Proposition 2.10 ([19]). Let E be a smooth, strictly convex and reflexive Banach

space, C a nonempty closed convex subset of E, f : C x C — R a bifunction
satisfying (A1)—(A4) and r > 0. Let T, be the mapping defined by (2.4). Then

o(p, Trx) + ¢(Trx, ) < ¢(p, )
forallp e F(T,) and x € E.
For solving the generalized equilibrium problem, let us assume that a nonlinear

operator A of C into E* is an a-inverse strongly monotone and a bifunction f :
C x C — R satisfies the conditions (A1)—(A4).

Proposition 2.11 ([4]). Let E be a smooth, strictly convex and reflexive Banach
space, C' a nonempty closed convex subset of E and A an a-inverse strongly mono-
tone operator of C into E*. Let f : C'x C' — R be a bifunction satisfying (A1)—(A4)
and g : C' x C' = R a bifunction defined by

9(x,y) = f(z,y) + (Az,y — z)

forallz,y € C. Let v > 0 and x € E. Then g satisfies (A1)—(A4) and there exists
u € C such that

1
g(uay> + ;(y - U, Ju — JSL‘) >0
forally € C.

Propositions 2.9 and 2.10 can obtain the following proposition.
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Proposition 2.12 ([4]). Let E be a uniformly smooth and strictly convex Banach
space, C' a nonempty closed convex subset of E, A an a-inverse strongly monotone
operator of C into E* and f : C x C — R a bifunction satisfying (A1)—(A4). For
any r >0 and x € E, define a mapping K, of E into C as follows:

Kr(x):{ueC:f(u,y)+(Au,y—u>+%<y—u,Ju—Jx> >0, Vy € C}

for all x € E. Then the following hold:
(i) K, is single-valued;
(ii) K, is a firmly nonexpansive-type mapping, that is,

(Kyx — Ky, JK, o — JKy) < (Kyx — Ky, Jo — Jy)

for all ye ks
(iii) F(K,) = F(K,) = EP;
(iv) EP is a closed convex set of C;
(v) ¢(p, Krx) + (K, 2) < d(p, x) for all p € F(K;).
Moreover, the mapping K, is relatively nonexpansive.

3. STRONG CONVERGENCE THEOREMS OF W-MAPPINGS

In this section, we prove a strong convergence theorem of W-mappings for finding
a common element of the set of solutions for a generalized equilibrium problem and
the set of common fixed points of infinite relatively nonexpansive mappings in a
Banach space.

Theorem 3.1. Let E be a uniformly smooth and uniformly convexr Banach space,
C a nonempty closed convex subset of E. Let f : C x C — R a bifunction satisfying
(A1)-(A4) and {S;}2, an infinite family of relatively nonexpansive mappings of
C into itself such that F = ;2o F(S;) N EP(f) # 0. Let {B,,:}", C (0,1) be a
sequence real numbers such that lim infy, 500 Bni(1 — Bni) > 0, W, the W-mapping
generated by {S;}_y and {Bn.i}i . Let {x,} be the sequence generated by

xg € C,

Yn = Wnin,

Un, € Ty, Yn, that is, f(un,y)+ 71L (y — Up, Jup, — Jyn) >0 for all y € C,
Cpn={2€C:d(z,un) < d(z,2,)};

Qn=A{z€C:{xy, — 2 Jxg— Jzx,) >0}

Tn+1 = e, ng, To

(3.1)

for n > 0, where llg, g, is the generalized projection of E onto C, N Qy and
{n} C [r,00) for somer > 0. Then {x,} converges strongly to Il pxy, where g is
the generalized projection of E onto F.

Proof. First we prove that C\, N Q, C C is closed convex subset for all n > 0. In
fact, it is obvious that C), is closed, and @, is closed and convex for all n > 0. It
follows that C,, is convex for all n > 0 because ¢(z, u,) < ¢(z,x,) is equivalent to

2(z, Jon — Jup) < HanQ - Hun”2~

Thus C,, N @, is closed and convex for all n > 0.
Next we prove that F' C C,, N @, for all n > 0. Let w,, = T, y, for all n > 0
and u € F. It follows from Proposition 2.7 (i) that v € F(W,,) for all n > 0. We
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obtain 7', is relatively nonexpansive by Proposition 2.9. Since S; is also relatively
nonexpansive for all n > 0, by Proposition 2.7 (ii), we have

O, un) = ¢(u, Ty, yn) < d(u,yn) = ¢(u, Wyay)
= 6(w, T (Buo (SoUn 1) + (1 = Bu0)Jzn) )
= ||ull* = 2(u, Bn.0J (SoUn 1) + (1 = Bn0)JTn)
+ 11Bn.0d (SoUn 120) + (1 = Buo)Jan|?
< ull? = 280w, J(SoUnan)) — 2(1 = Br.o)(u, Ja,)
+ B0l SoUnaznll* + (1 = Bno)l|znl?
= Bn,0d(u, SoUn12n) + (1 — Bn0)p(u, 1)
< B0 (t, n) + (1= Bno)d(u, 20) = d(u, zp). (32)

This implies that v € C,, and so F' C C,, for all n > 0. By induction, now we prove
that FF C C,, N Q,, for all n > 0. In fact, since Qg = C, we have F' C Cy N Qp.
Suppose that FF C Cx N Qy, for some k > 0. Then there exists zp1 € Cx N Qy such
that 11 = ¢, ng,To. By the definition of 2,41, we have

(k41 — 2, Jxo — Jxpg1) >0 (3.3)

for all z € Cy N Q. Since F C Cy N Qy, we obtain (3.3) for all z € F. This shows
that z € Qky1, and so F' C Qg41. Therefore F' C C), N Q,, for all n > 0.

We prove that {z,} is bounded. By the definition of @, and Proposition 2.4,
we have z, = llg, 2o for all n > 0. Hence, by Proposition 2.5,

¢(.’[n,$0) = d)(HanOaxO) < (ZS(’LL,.’EQ) - ¢(U,Han0) < ¢(u,x0)

for all w € F C @, and n > 0. This implies that {¢(z,,z¢)} is bounded, and so
{z,} and {u,} are bounded in C.

Next we prove that ||z, — u,|| — 0 and ||Jz,, — Ju,| — 0. Since z,, = Iy, zo
and z,4+1 = ¢, ng, o, we have ¢(z,,, o) < ¢(Tn41,20) for all n > 0. This implies
that {¢(zn,x0)} is nondecreasing, and so there exists the limit lim,,—, o ¢(zn,x0).
By Proposition 2.5, we have

H(Tnt1,Tn) = ¢(Tnt1, g, o)

< ¢(Tnt1, o) — ¢(Ilg, w0, o)
= ¢(Tnt1,20) — G(Tn, T0)
for all n > 0. This implies that
nh_)rr;o d(Tpi1,Tn) = 0. (3.4)

Since zp41 = ¢, ng,xo € Cyn, by the definition of Cy,, we obtain
A(Tpy1,Un) < A(Tpyr, Tn)- (3.5)

Since E is smooth and uniformly convex, from (3.4), (3.5) and Proposition 2.2 we
have
lim ||zp41 — unll = Im ||@py1 —2n] =0
n—oo n—oo
and
lzn, — unl| = 0. (3.6)

lim
n—oo
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Since J is uniformly continuous on any bounded subset of E, we obtain
nh_)rrgo | Jzn — Ju,l = 0. (3.7

Next we prove that w({z,}) C F, where w({z,}) is the set consisting all of the
weak limits points of {x,}. In fact, for any p € w({z,}), there exists a subsequence
{zn,} C {x,} such that z,, — p. We shall prove that p € ;2 F(S;). We have

(u,2n) = d(uun) = [|an ]| = lJunl® +2{u, Jun — Jan)

< llaall = len [l | + 1) + 20| T — ]|

< lzn = wnl|([lenll + lunll) + 2l Jun = Jzoll - (3.8)
for all n > 0. From (3.6) and (3.7) we obtain

nh_}rr;o (o(u, zn) — d(u,up)) = 0. (3.9

By Proposition 2.7 (ii), we have
¢(U, Un,zxn) S ¢>(u, xn) and ¢(u7 SiUn,H—lxn) S ¢(u; Un,i+1xn) S ¢(U,$n)

for each 0 <4 < n. Thus {S;Uy i+1%n }rn>i and {Uy ;& }n>: are bounded sequences
in C for all ¢ > 0. By Propositions 2.1, 2.5 and 2.7 (ii), we have

O, Un i) < ¢(u, T (Brid (SiUni12n) + (1 — 5n,i)an))
. ¢(Un,,;a;n, T (Bid (iU ip12m) + (1 — m,,i)m))
= [lull® = 2(u, By i J(SiUnist12n) + (1 = Bui) Jn)
A 18T (SiUn i) + (1 = Bri) Tz
N ¢(Um-xn, T (Brid (SiUniazn) + (1 — 5,171-)an))
= [[ull® = 2(u, B i T (SiUn,i412n) + (1 = Bpi) Jn)
+ Bl SiUn i 12nl|* + (1 = Bui) |2l
= Bni(1 = Bni)g(|J(SiUn,it12n) — Jan||)
- ¢><Un,i$m I (Bn,id (SiUpig1n) + (1 — ﬁn,i)Jﬂ?n))
= Bn,id(u, SiUp it12n) + (1 = Byi)d(u, xy)
= Bri(1 = Bri)g(|J(SiUn,it12n) — Jan||)
= 0(Un i, I (Buid (SiUn,isrn) + (1= B i) Jn) )
< Bnid (U, Unjig12n) + (1 = Bni)o(u, z,)
= Bn,i(L = Bn,i)g([[J (SiUnis12n) — Janl|)
_ Qﬁ(Un,ixn, I (Bn,id (SiUpig12n) + (1 — ﬂm)an))
for some g € G and for all 1 < i < n. This implies that
O(u,un) < G(u,yn) = ¢(u, Wnzn) = ¢(u, Un,on)
= Jul® = 280w, J(SoUn 1)) — 2(1 = Br o) (u, Jz,,)
+ [1Bn0d (SoUni@n) + (1 — Bro)Jan
< B0, Un12n) + (1 = Bro)o(u, zn)
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= Bno(1 = Bno)g([J(SoUn12n) — Jaul|)
< ﬂn,O{Bn,l(b(uv Un22n) + (1 = Bn1)(u, 25)
= Bna(1 = Bp1)g([[J(S1Un,22n) — Jzal|)
- qs(Un,lxn, T (BuaJ (S1Un o) + (1 — Bn,l)an))}
+ (1= Bn0)o(t, 2n) = Bno(1 = Bn,0)g([[J(SoUn,17n) — Jan|)

P, xn) = Bro(1 = Bn0)g(1J (SoUn1@n) — Jaul])
= Bn,0Bn1 (1 = Bn1)g(|J(S1Un220) — Jap|[) — -+
= BnoBn1 - Ban(1 = Ban)g(|J(SnUn ny17n) — Ju||)
— Buo6(Un 1, I (Bu1 I ($1Un2wa) + (1= Bug)Jn) ) =+
— BnoBn,1 - Brn—1

x ¢(Un,n:cn, T (Bund (SuUn 1) + (1 — 5n7n)an)> (3.10)
for all n > 0. From (3.9), (3.10) and liminf,, o Bn,i(1 — Bn:) > 0 we obtain

Jim g([[J(SiUnis12n) = Jzn|]) = 0,

<
<

hm ¢(Un,i+1mna J_l (6n,i+1J(Si+1Un,i+2xn) + (1 - ﬁn,i-‘rl)*]xn)) - O

n—roo

for all ¢ > 0. By the definition of g and Proposition 2.2, we have
T ([ Uniazn = T (Buis1 I (Sis1Univaza) + (1= Buia)Jen) | = 0. (3.12)
From (3.11) we obtain
hm HBnJJ(SzUmH-lmn) + (1 - Bn,i)an - an”
n—oo

Since J~1 is also norm-to-norm continuous on bounded sets, from (3.11) and (3.13)
we have

li_>m |S:iUn it12n — x| =0, (3.14)
Jim | T (Bri d (SiUniy1n) + (1 = Bri)Jxy) — 2| =0 (3.15)
for all ¢ > 0. From (3.12) and (3.15) we obtain
n—oo

for all 4 > 0. Since x,,, — p, we have Uy, i+1%y, — p for all 4 > 0. From (3.14) and
(3.16) we obtain

1im HSiUn,i—&-lxn — Un,i—i—lxn” =0

n—roo
for each ¢ > 0. Since Uy, i+12n, — p and S; is relatively nonexpansive, we have
p € F(S;) = F(S;) for all i > 0. Hence p € (72, F(S;). Now we shall prove that
p € EP(f). From (3.2), (3.9) and Proposition 2.10 we have

(b(unv yn) = (ZS(T%Lyru yn) < ¢(u7 yn> - ¢(ua T’ynyn>
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It follows from Proposition 2.2 that

nhﬁrr;(} lun, — ynll = 0. (3.17)

Since z,, — p, it follows from (3.6) and (3.17) that w,, — p and y,, — ».
Since J is uniformly continuous on any bounded set of E, from (3.17) we obtain
[ Jun, — Jyn|| — 0. By the assumption that v, > r, we have

1
lim —||Ju, — Jy,| = 0. (3.18)

n—roo ’yn
Since uy, = 1%, Yn, We obtain
1
n
for all y € C. Replacing n by ny in (3.19), from (As) we deduce

Lyt Tty — Tyns) > — (s y) > F (5 (3.20)

Trg,
for all y € C. Since y — f(x,y) is convex and lower semicontinuous, it is also
weakly lower semicontinuous. Letting ny — oo in (3.20), from (3.18) and (A4) we
have f(y,p) <0 for all y € C. For t € (0,1] and y € C, letting y; = ty + (1 — t)p,
then y; € C and f(y,p) < 0. From (4;) and (A4) we obtain

0= f(yeye) <tf (e y) + (1 =) f(ye,p) < f (Y1, y)-

Dividing by ¢, we have f(y:,y) > 0 for all y € C. Letting ¢ | 0, from (A3) we obtain
f(p,y) > 0. Therefore p € EP(f), and so p € F. This shows that w({z,}) C F.

Finally, we have prove that w({z,}) is a singleton and z,, — Hpxg. Let w =
IIpzg. Since w € F C C, N Qy, and x,,41 = I, 0, xo, we have

A(Tpy1,20) < d(w, x0)
for all n > 0. Since the norm is weakly lower semicontinuous, this implies that
2 2
o(p,wo) = |Ipll” = 2(p, Jwo) + |20

< liminf(||zn, ||* — 2(@n, , Jo) + ||zo|*)
k— oo

= liminf ¢(zy, , o)
k— oo

< limsup @@y, , zo) < P(w, xp). (3.21)
k—o0
It follows from the definition of w and (3.21) that p = w. This implies that w({z,})
is a singleton and ¢(zy,, ,zo) = ¢(w, o). Therefore

0= kli{go (¢(xnkam0) - ¢(wa xo))

= lim (|zn, |* = w]® = 2(zn, —w, Jao))
k—o0
. 2 2
=t flz, |7 = flw]",
—00

that is,
2 2
[, |7 = Jlwl]”. (3.22)

lim
k—o00
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Since E is uniformly convex, it has the Kadec-Klee property. It follows from (3.22)
and z,, — w that z,, — w = Ipzy. Since w(z,) is a singleton, we have z, —
I pzo. O

The following theorems can be obtained by Theorem 3.1.

Theorem 3.2 ([19]). Let E be a uniformly smooth and uniformly convex Banach
space, C' a nonempty closed convex subset of E. Let f : C x C — R a bifunction
satisfying (A1)—(A4) and S a relatively nonexpansive mapping from C into itself
such that F := F(S)NEP(f) # 0. Let {a,} C [0,1] be a sequence real numbers
such that lim, o0 cty (1 — @) > 0. Let {x,,} be the sequence generated by

xg € C,

Yn = J HanJ Sz, + (1 — ay)Jxy,),

Uy, € C such that f(un,y) + ,%z(y — Up, JUup, — Jyn) >0 for ally € C, (3.23)
Cpn={2€C:¢(z,un) < d(z,2,)};

Qn={2€C:{xy—2Jrg— Jz,) >0}

Tn+1 = e, ng, To

for n > 0, where llg, g, is the generalized projection of E onto C, N Qy and
{n} C [r,00) for somer > 0. Then {x,} converges strongly to llpxy, where g is
the generalized projection of E onto F'.

Proof. Let S, = S, Bno = o, and {8y}, = {0} for all n > 0 in Theorem 3.1.
This shows that (3.1) is equivalent to (3.23). Therefore, the conclusion of Theorem
3.2 can be deduced from Theorem 3.1. (]

Theorem 3.3. Let E be a uniformly smooth and uniformly convexr Banach space,
C a nonempty closed convex subset of E. Let A be an a-inverse strongly monotone
operator of C' into E*, f : C x C — R a bifunction satisfying (A1)—(As) and
{8:}2, an infinite family of relatively nonexpansive mappings of C' into itself such
that F := (;2g F(S;) N EP # 0. Let {Bn,i}l—o be a sequence real numbers such
that iminf, o By i(1 — Brni) > 0, W, the W-mapping generated by {S;}7—, and
{Bn,iti o Let {x,} be the sequence generated by

xzo € C,
Yn = Way,
un € K, yn, that is,
fun,y) + (Aup,y — uy) + %ﬂ(y — U, Jup — Jyn) >0 for ally € C, (3.24)
Cp={2€C:¢(z,un) < d(z,2,)};
Qn={z€C:{xy,— 2 Jxg— Jzx,) > 0};

Tn+1 = e, g, To

for n > 0, where llc, g, is the generalized projection of E onto C, N Qy and
{n} C [r,00) for somer > 0. Then {x,} converges strongly to llpxy, where g is
the generalized projection of E onto F'.

Proof. Let g(un,y) = f(tn,y)+{At,, y—u,). By Propositions 2.11 and 2.12, (3.24)
is equivalent to (3.1) in Theorem 3.1. Therefore, the conclusion of Theorem 3.3 can
be deduced from Theorem 3.1. d
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4. STRONG CONVERGENCE THEOREMS OF CONVEX COMBINATIONS

In this section, we prove strong convergence theorems of convex combinations
for finding a common element of the set of solutions for a generalized equilibrium
problem and the set of common fixed points of infinite relatively nonexpansive
mappings in a Banach space.

Theorem 4.1. Let E be a uniformly smooth and uniformly convex Banach space, C
a nonempty closed convex subset of E. Let f : C x C' — R be a bifunction satisfying
(A1)—(Aq) and {S;:}2, an infinite family of relatively nonexpansive mappings of C
into itself such that F := ;oo F(S;) N EP(f) # 0. Let {\,;}— C [0,1) be a
sequence real numbers such that Z?:o Ani =1 for alln > 0 and limy, oo A\p; > 0
for each i > 0, and V,, the mapping defined by (2.3). Let {x,} be the sequence
generated by

xo € C,

Yn = Vnn,

Up, € Ty, Yn, that is, f(un,y)+ %(y — U, Jup — Jyn) >0 for ally € C, (41)
Cpn={z€C:d(z,un) < d(z,2,)};

Qn=1{2€C:{x,— 2z Jxg— Jx,) > 0};

Znt+1 = o, n@, %o

for n > 0, where llg, g, s the generalized projection of E onto C,, N Q, and
{n} C [r,00) for somer > 0. Then {z,} converges strongly to llpxzo, where Ilp is
the generalized projection of E onto F'.

Proof. First we prove that C\, N Q, C C is closed convex subset for all n > 0. In
fact, it is obvious that C), is closed, and @, is closed and convex for all n > 0. It
follows that C,, is convex for all n > 0 because ¢(z, u,) < ¢(z,x,) is equivalent to

2 2
2z, T — Ju) < 2l = Jun®

Thus C,, N @, is closed and convex for all n > 0.

Next we prove that F' C C,, N Qy, for all n > 0. Let w,, = T, y, for alln > 0
and u € F. Tt follows from Proposition 2.8 (i) and Proposition 2.9 (iii) that u €
Moo F(Vn) N F(T,,). We have T, is relatively nonexpansive by Proposition 2.9.

By Proposition 2.8 (ii), we have

¢(U,Un) = ¢(uanynyn) < ¢(U,yn) = (;5(11,, ann) < ¢(ua xn) (4'2)

This implies that v € C}, and so F' C C,, for all n > 0. By induction, now we prove
that FF C C, N Q,, for all n > 0. In fact, since Qg = C, we have F C Cy N Qq.
Suppose that F' C Cy N Qy for some k > 0. Then there exists xx41 € Cr N Qg such
that xp41 = llc,nQ,To. By the definition of x4, we have

(Ty1 — 2, Jxo — Jxpt1) > 0 (4.3)

for all z € C, N Q. Since F' C Cy, N Qk, we have (4.3) for all z € F. This shows
that z € Qgy1, and so F' C Q1. Therefore F' C Cp, N Q,, for all n > 0.

Next we prove that {z,} is bounded. By the definition of @,,, we have z, =
Ilg, zo for all n > 0. Hence, by Proposition 2.5,

d(xn, w0) = ¢(llg, w0, x0) < P(u,x0) — d(u, g, x0) < P(u, x0)
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for all w € F C @, and n > 0. This implies that {¢(z,,z)} is bounded, and so
{z,} and {u,} are bounded in C. Since z,,+1 = ¢, ng, 2o and z,, = g, zo, we
have

(Tn, 7o) < F(Tnt1,70)
for all n > 0. This implies that {¢(zn,x0)} is nondecreasing, and so there exists
the limit lim,, o ¢(z,, zo). By Proposition 2.5, we deduce
¢(xn+17 xn) = ¢(xn+17 HanO) < (b(anrlv {IJ()) - (ZS(HanOy .’L'())
= ¢(Tnt1,T0) — A(Tn, To)
for all n > 0. This implies that
lim ¢(xpy1,2,) =0. (4.4)

n—oo

Since xp41 = ¢, ng, To € Cy, by the definition of C,, we have
O(Tnt1,Un) < O(Tny1, Tn). (4.5)

Since E is smooth and uniformly convex, from (4.4), (4.5) and Proposition 2.2 we
obtain

nll_{rolo [@n41 — un = nh_{go [#n41 — anl =0
and
lim |l@, — u,| = 0. (4.6)
n—oo

Since J is uniformly norm-to-norm continuous on bounded subsets, we have
lim [|Jx, — Ju,| = 0. (4.7)
n—oo

Next we prove that [|S;z,, —x,|| — 0 for all I > 0. By the definition of A, ;,
we have 1 — Ayy = 30, o1 iz An,i- For large enough n > 0 and 0 < I < n,
Proposition 2.1 implies that

¢(U,Un) S d)(u,yn) = ¢(ua ann)

n

TS Xnad (Sizn)

=0

= llull® = 23" Anilu, J(Sixn)) +

=0

= llull® =23 Anilu, J(Sizn))
=0
Doi0.1,...mitt Anid (Sin) ?

+ 1- >\n,l

A (Sizyn) + (1 — Any)

<l =23 A, J(Sizn)) + Anal[Sizn)?

=0
D im01,.m i#l An,id (Sizy) ?
1-X, e
+( 2) 1= o
i — i )\nlJ van
o /\n,l(l . /\n,l)g<HJ(Sl$n) . 2170,1,...?,1_753\ lv ( ) ’)

= [l = 2> A ilu, J(Siwn)) + Y Anill Siwnl)?

=0 =0
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)

D im0, izt Mnid (SiTn)

- An,og(HJ(slxn) _

1— Ay
Zi: n.,i )‘n,iJ(SiiEn)
= (u, Siwn) — An(1 — An,l)g<HJ(sl:cn) - SR l ’
2im nyizt Anid (Sittn)
< d(u, ) = Ang(1 = Ant)g <HJ(5W) _ Lisblnigt l ‘

for some g € G. Thus

Zi:O,l,...,n,i7£l /\n,iJ(SiiUn)
1- )\n,l

’J(Slxn) -

)\n,l(l - )\n,l)g<

< P(u, zn) — d(u, un)

= ||xn||2 - ||un||2 + 2(u, Juy — Jzn)

< 2llull - [Jun — Jzn|l + (lznll + [unl)llzn — wnll-
This implies that, together with (4.6) and (4.7),

Z@_O,l,...,n,z;ﬁl ) ( ) =0 (48)
1-— )‘ml

for all [ > 0. From (4.2), (4.6), (4.7) and Proposition 2.10 we have

)

n—0o0

lim HJ(S[iEn) —

¢(un7yn) = ¢( Wnyruyn)
O(u, yn) — ¢(u, Ty, yn)
¢(

<
< d(u, ) — d(u, uy)
<zn = unll(|znll + [lynll) + 2[ull|Jun — Jzp|| — 0.

This implies that
li_)rn lun, — ynl| = 0. (4.9)

From (4.6) and (4.9) we obtain
i — |l < i - — =0.
1 e — yall < Tim (g — a4 — ]} =0
Since J is uniformly norm-to-norm continuous on bounded subsets, we have
lim ||Jz,, — Jy,|| = 0. (4.10)
n—oo
Since

[J2n — J(Sizn)ll < | J2n — J(Vazn)ll + T (Si2n) — J(Vaz,)||

=0
= |2 — Jynl|
i= 3 )\n,zJ Szxn
+ (1= X)) || (Siz) — El—O,l,...,{L,z;&l)\ ( )
— \n,l

for large enough n > 0, from (4.8) and (4.10) we obtain
lim || Jz, — J(Siz,)| = 0.
n—oQ
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Since J ! is also uniformly norm-to-norm continuous on bounded subsets, we have
lim |z, — Sizn| =0 (4.11)
n—oo

for all { > 0.

Next we prove that w({z,}) C F, where w({z,}) is the set consisting all of the
weak limits points of {z,}. In fact, for any p € w({z,}), there exists a subsequence
{zn,} C {xn} such that x,, — p. Since S; is relatively nonexpansive, (4.11) implies
p €Ny F(Si) = N2, F(Si). Now we prove that p € EP(f). Since z,, — p, it
follows from (4.6) and (4.9) that u,, — p and y,, — p. Since J is uniformly
continuous on any bounded set of E, from (4.9) we have ||Ju, — Jy,|| — 0. By the
assumption that v, > r, we have
lim — || Jup — Jyn|| = 0. (4.12)

Tn

n—oo

Since uy, = 1%, Yy, we obtain

1
f(un,y) + —(y — un, Juy, — Jyn) >0 (4.13)
for all y € C. Replacing n by ng in (4.13), from (As) we have
1
T<y — Up,,, Junk - Jynk> 2 _f(unkay) 2 f(yvunk) (414)
n

for all y € C. Since y — f(x,y) is convex and lower semicontinuous, it is also weakly
lower semicontinuous. Letting ny — oo in (4.14), from (4.12) and (A4) we obtain
f(y,p) <0forally € C. Fort € (0,1] and y € C, letting y; = ty + (1 — t)p, then
yr € C and f(ys,p) < 0. From (A;) and (A4) we have

0= f(yeye) <tf (e y) + (1 =) f(ye,p) < f(Yr,9)-

Dividing by ¢, we obtain f(y:,y) > 0 for all y € C. Letting ¢t | 0, from (As) we
have f(p,y) > 0 for all y € C. Therefore p € EP(f), and so p € F. This shows that
w({zn}) C F.
Finally, we have prove that w({z,}) is a singleton and z,, — Hpxzg. Let w =
Ipzo. From w € F C C, N Qy and 41 = I, nQ,, xo We have
¢($n+1, 1'0) S ¢(w, 1’0)

for all n > 0. Since the norm is weakly lower semicontinuous, this implies that
$(p,x0) = [Ip|I* = 2(p, o) + o]
< lim inf([|zp, |* = 2(2n,, Jz0) + [|z0]*)
k—o0
= liminf ¢(zn, , o)
k—o0

< lim sup d)(mnINxO) < ¢(wax0)' (415)

k—o0

It follows from the definition of w and (4.15) that p = w. This implies that w({z,})
is a singleton and ¢(zp, ,zo) = ¢(w, xy). Therefore

0= kli{go (¢(xnkam0) - ¢(wa xo))

. 2 2
= Hm ([lzn, |7 = [lwl]” = 2z, —w, Jzo))
ade ]

. 2 2
i {fzn, |7 = o,
—00
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that is,
. 2 2
i {lzn | = flw]”. (4.16)
—00
Since E is uniformly convex, it has the Kadec-Klee property. It follows from (4.16)

and z,, — w that z,, — w = pxy. Since w(z,) is a singleton, we have z, —
HFIL'(). O

The following theorem can be obtained by Theorem 4.1.

Theorem 4.2. Let E be a uniformly smooth and uniformly convexr Banach space,
C a nonempty closed convex subset of E. Let A be an a-inverse strongly monotone
operator of C into E*, f : C x C — R a bifunction satisfying (A1)—(A4) and
{8:}524 an infinite family of relatively nonexpansive mappings of C' into itself such
that F := (\;2g F(S;) NEP #0. Let {\, i} C [0,1) be a sequence real numbers
such that Z?:o Ani =1 for alln >0 and lim,,—soc A\ ; > 0 for each ¢ > 0, and V,
the mapping defined by (2.3). Let {x,} be the sequence generated by

xo € C,
Yn = Van,
un € K yn, that is,
f(un,y) + (Aun,y — uy) + %(y — Up, Jup, — Jyn) >0 for ally € C, (4.17)
Cn={2z€C:¢(z,un) < od(z,2,)};
Qn={2€C:{xy— 2, Jxg— Ja,) > 0};

Tnl = HCanniﬂo

for n > 0, where llg, g, s the generalized projection of E onto C, N Q, and
{n} C [r,00) for somer > 0. Then {x,} converges strongly to M pxg, where Il is
the generalized projection of E onto F'.

Proof. Let g(un,y) = f(tn,y)+{Au,, y—u,). By Propositions 2.11 and 2.12, (4.17)
is equivalent to (4.1) in Theorem 4.1. Therefore, the conclusion of Theorem 4.2 can
be deduced from Theorem 4.1. (]
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