CHUO MATH NO.98(2012)

STRONG CONVERGENCE THEOREMS FOR GENERALIZED EQUILIBRIUM PROBLEMS AND RELATIVELY NONEXPANSIVE MAPPINGS IN BANACH SPACES by YUKINO TOMIZAWA

DEPARTMENT OF MATHEMATICS CHUO UNIVERSITY
BUNKYOKU TOKYO JAPAN

NOV.28, 2012

STRONG CONVERGENCE THEOREMS FOR GENERALIZED EQUILIBRIUM PROBLEMS AND RELATIVELY NONEXPANSIVE MAPPINGS IN BANACH SPACES

YUKINO TOMIZAWA

Abstract

The purpose of this paper is to prove strong convergence theorems for finding a common element of the set of solutions of a generalized equilibrium problem and the set of common fixed points of infinite relatively nonexpansive mappings in Banach spaces.

1. Introduction

Throughout this paper, we denote by \mathbb{R} the set of all real numbers. Let E be a real Banach space with a norm $\|\cdot\|, E^{*}$ the dual space of $E,\langle\cdot, \cdot\rangle$ the pairing between E and E^{*} and C a nonempty closed convex subset of E. Let $f: C \times C \rightarrow \mathbb{R}$ be a bifunction and A a nonlinear operator of C into E^{*}. The generalized equilibrium problem is finding $u \in C$ such that

$$
\begin{equation*}
f(u, y)+\langle A u, y-u\rangle \geq 0 \tag{1.1}
\end{equation*}
$$

for all $y \in C$. The set of solutions of (1.1) is denoted by $E P$, that is,

$$
E P=\{u \in C: f(u, y)+\langle A u, y-u\rangle \geq 0, \forall y \in C\}
$$

If $A=0$, then the problem (1.1) is equivalent to that of finding a point $u \in C$ such that

$$
\begin{equation*}
f(u, y) \geq 0 \tag{1.2}
\end{equation*}
$$

for all $y \in C$ which is called the equilibrium problem. The set of solutions of (1.2) is denoted by $E P(f)$. If $f=0$, then the problem (1.1) is equivalent to that of finding a point $u \in C$ such that

$$
\begin{equation*}
\langle A u, y-u\rangle \geq 0 \tag{1.3}
\end{equation*}
$$

for all $y \in C$ which is called the variational inequality. The set of solutions of (1.3) is denoted by $V I(C, A)$. The problem (1.1) is very general in the sense that it includes, as special cases, optimization problems, variational inequalities, minimax problems, numerous problems in physics, economics and others. Some methods have been proposed for solving the generalized equilibrium problem, the equilibrium problem and the variational inequality in Hilbert spaces (see $[14,15]$) and in Banach spaces ([11, 19]).

Let C be a nonempty closed convex subset of a real Banach space E. A mapping T of C into E is said to be nonexpansive if $\|T x-T y\| \leq\|x-y\|$ for all $x, y \in C$. A point $p \in C$ is called a fixed point of T if $T p=p$. The set of fixed points of a

[^0]mapping T is denoted by $F(T)$. A point $p \in C$ is called an asymptotic fixed point of T if there exists a sequence $\left\{x_{n}\right\} \subset C$ such that $x_{n} \rightharpoonup p$ and $\left\|x_{n}-T x_{n}\right\| \rightarrow 0$. We denote by $\hat{F}(T)$ the set of all asymptotic fixed points of T. A mapping T is said to be relatively nonexpansive if $\hat{F}(T)=F(T) \neq \emptyset$ and $\phi(u, T x) \leq \phi(u, x)$ for all $u \in F(T)$ and $x \in C$. Let $\alpha>0$. A operator A of C into E^{*} is said to be α-inverse strongly monotone if
$$
\langle x-y, A x-A y\rangle \geq \alpha\|A x-A y\|^{2}
$$
for all $x, y \in C$. It is known that if A is an α-inverse strongly monotone operator, then A is $1 / \alpha$-Lipschitzian.

Example ([3]). Let E be a Banach space, f a continuously Fréchet differentiable, convex functional on E and ∇f the gradient of f. If ∇f is $1 / \alpha$-Lipschitz continuous, then ∇f is α-inverse strongly monotone.

In 2008, Takahashi and Takahashi [15] proved a strong convergense theorem for finding an element of $F(S) \cap E P$ in a Hilbert space H, where S is a nonexpansive mapping of a nonempty closed convex subset $C \subset H$ into itself and A is an inverse strongly monotone operator of C into H. Recently, Chang, Lee and Chan [4] considered iterative methods for finding an element of $F(S) \cap F(T) \cap E P$ in a certain Banach space E, where S and T are two relatively nonexpansive mappings of a nonempty closed convex subset $C \subset E$ into itself and A is an inverse strongly monotone operator of C into E^{*}. On the other hand, Matsushita, Nakajo and Takahashi [10] introduced iterative methods for finding an element of $\bigcap_{i=0}^{\infty} F\left(S_{i}\right)$, where S_{i} is a relatively nonexpansive mapping of C into itself for all $i \geq 0$.

In this paper, motivated by Chang et al. [4] and Matsushita et al. [10], we introduce new iterative methods for finding an element of $\bigcap_{i=0}^{\infty} F\left(S_{i}\right) \cap E P$, where S_{i} is a relatively nonexpansive mapping of C into itself for all $i \geq 0$ and A is an inverse-strongly monotone operator of C into E^{*}. In the next section, we recall some basic notions and give the definition of W-mappings and convex combinations of mappings. We present and prove our main results which are strong convergence theorems of W-mappings and convex combinations in Section 3 and Section 4, respectively.

2. Preliminaries

Throughout this paper, we assume that E is a real Banach space with a norm $\|\cdot\|, E^{*}$ is the dual space of E and $\langle\cdot, \cdot\rangle$ is the pairing between E and E^{*}. We denote strong convergence of a sequence $\left\{x_{n}\right\}$ to x by $x_{n} \rightarrow x$ and weak convergence by $x_{n} \rightharpoonup x$.

Let $U=\{x \in E:\|x\|=1\}$. A Banach space E is said to be reflexive if the natural mapping $E \rightarrow E^{* *}$ is surjective and we write $E=E^{* *}$. A Banach space E is said to be strictly convex if $\|x+y\| / 2<1$ for all $x, y \in U$ with $x \neq y$. A Banach space E is said to be uniformly convex if for each $\epsilon \in(0,2]$, there exists $\delta>0$ such that, for any $x, y \in U$,

$$
\|x-y\| \geq \epsilon \quad \text { implies } \quad\left\|\frac{x+y}{2}\right\| \leq 1-\delta
$$

It is well known that a uniformly convex Banach space is reflexive and strictly convex.

A Banach space is said to have the Kadec-Klee property if, for every sequence $\left\{x_{n}\right\} \subset E, x_{n} \rightharpoonup x$ and $\left\|x_{n}\right\| \rightarrow\|x\|$ together imply $\left\|x_{n}-x\right\| \rightarrow 0$. It is known that a uniformly convex Banach space has the Kadec-Klee property. Let $G=\{g$: $[0, \infty) \rightarrow[0, \infty): g(0)=0, g$ is continuous, strictly increasing and convex $\}$. We have the following theorem for a uniformly convex Banach space.

Proposition 2.1 ([20]). A Banach space E is uniformly convex if and only if, for every bounded subset B of E, there exists $g_{B} \in G$ such that

$$
\|\lambda x+(1-\lambda) y\|^{2} \leq \lambda\|x\|^{2}+(1-\lambda)\|y\|^{2}-\lambda(1-\lambda) g_{B}(\|x-y\|)
$$

for all $x, y \in B$ and $0 \leq \lambda \leq 1$.
A Banach space E is said to be smooth if there exists

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{\|x+t y\|-\|x\|}{t} \tag{2.1}
\end{equation*}
$$

for all $x, y \in U$. In this case, the norm of E is said to be Gâteaux differentiable. A Banach space E is said to be uniformly Gâteaux differentiable if for each $y \in U$, the limit defined by (2.1) exists uniformly for $x \in U$. It is also said to be uniformly smooth if the limit is attained uniformly for all $x, y \in U$. It is well known that every uniformly smooth Banach space is reflexive and with uniformly Gâteaux differentiable norm. It is also known that E^{*} is uniformly convex if E is uniformly smooth.

The mapping J of E into $2^{E^{*}}$ defined by

$$
J(x)=\left\{x^{*} \in E^{*}:\left\langle x, x^{*}\right\rangle=\|x\|^{2}=\left\|x^{*}\right\|^{2}\right\}
$$

for $x \in E$ is called the normalized duality mapping. By the Hahn-Banach theorem, $J(x) \neq \emptyset$ for each $x \in E$. The normalized duality mapping J has the following properties:
(i) if E is smooth, then J is single-valued;
(ii) if E is strictly convex, then J is one-to-one and $\left\langle x-y, x^{*}-y^{*}\right\rangle>0$ holds for all $\left(x, x^{*}\right),\left(y, y^{*}\right) \in J$ with $x \neq y$;
(iii) if E is reflexive, then J is surjective;
(iv) if E is uniformly smooth, then J is uniformly norm-to-norm continuous on each bounded subset of E.
Let E be a smooth, strictly convex and reflexive Banach space and C a nonempty closed convex subset of E. Throughout this paper, the Lyapunov functional ϕ : $E \times E \rightarrow \mathbb{R}^{+}$is defined by

$$
\phi(x, y)=\|x\|^{2}-2\langle x, J y\rangle+\|y\|^{2}
$$

for all $x, y \in E$; see $[1,7,12]$. It is obvious that
(i) $\phi(x, y)=0$ if and only if $x=y$;
(ii) $(\|x\|-\|y\|)^{2} \leq \phi(x, y) \leq(\|x\|+\|y\|)^{2}$ for all $x, y \in E$.

Proposition 2.2 ([7]). Let E be a smooth and uniformly convex Banach space and $\left\{x_{n}\right\},\left\{y_{n}\right\} \subset E$ two sequences. If $\phi\left(x_{n}, y_{n}\right) \rightarrow 0$ and either $\left\{x_{n}\right\}$ or $\left\{y_{n}\right\}$ is bounded, then $\left\|x_{n}-y_{n}\right\| \rightarrow 0$.

Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be two bounded sequences in a smooth Banach space. It is obvious from the definition of ϕ that $\phi\left(x_{n}, y_{n}\right) \rightarrow 0$ whenever $\left\|x_{n}-y_{n}\right\| \rightarrow 0$. By
this fact and Proposition 2.2, if $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are two bounded sequences in a uniformly smooth and uniformly convex Banach space, then

$$
\left\|x_{n}-y_{n}\right\| \rightarrow 0 \Leftrightarrow\left\|J x_{n}-J y_{n}\right\| \rightarrow 0 \Leftrightarrow \phi\left(x_{n}, y_{n}\right) \rightarrow 0
$$

Proposition 2.3 ([7]). Let E be a smooth, strictly convex and reflexive Banach space, C a nonempty closed convex subset of E and $x \in E$. Then there exists a unique element $x_{0} \in C$ such that $\phi\left(x_{0}, x\right)=\min _{y \in C} \phi(y, x)$.

Let E be a smooth, strictly convex and reflexive Banach space and C a nonempty closed convex subset of E. Following Alber [1], the generalized projection Π_{C} of E onto C is defined by

$$
\Pi_{C} x=\underset{y \in C}{\arg \min } \phi(y, x)
$$

for all $x \in E$. We have the following results for generalized projections.
Proposition 2.4 ($[1,7]$). Let E be a smooth Banach space, C a nonempty convex subset of $E, x \in E$ and $x_{0} \in C$. Then $x_{0}=\Pi_{C} x$ if and only if $\left\langle y-x_{0}, J x_{0}-J x\right\rangle \geq 0$ for all $y \in C$.

Proposition 2.5 ([1, 7]). Let E be a smooth, strictly convex and reflexive Banach space, C a nonempty closed convex subset of E and $y \in E$. Then

$$
\phi\left(x, \Pi_{C} y\right)+\phi\left(\Pi_{C} y, y\right) \leq \phi(x, y)
$$

for all $x \in C$.
We denoted by $F(T)$ the set of all fixed points of a mapping T.
Proposition 2.6 ([11]). Let E be a smooth and strictly convex Banach space, C a nonempty closed convex subset of E and T a relatively nonexpansive mapping of C into itself. Then $F(T)$ is closed and convex.

Let E be a smooth, strictly convex and reflexive Banach space, C a nonempty closed convex subset of $E,\left\{S_{i}\right\}_{i=0}^{\infty}$ a family of mappings of C into inself and $\left\{\beta_{n, i}\right.$: $0 \leq i \leq n\}_{n=0}^{\infty} \subset[0,1]$ a sequence of real numbers. For any $n \geq 0$, let us define a mapping W_{n} of C into itself as follows:

$$
\begin{align*}
& U_{n, n+1}=I \\
& U_{n, n}=\Pi_{C} J^{-1}\left(\beta_{n, n} J\left(S_{n} U_{n, n+1}\right)+\left(1-\beta_{n, n}\right) J\right) \\
& U_{n, n-1}=\Pi_{C} J^{-1}\left(\beta_{n, n-1} J\left(S_{n-1} U_{n, n}\right)+\left(1-\beta_{n, n-1}\right) J\right), \\
& \vdots \tag{2.2}\\
& U_{n, i}=\Pi_{C} J^{-1}\left(\beta_{n, i} J\left(S_{i} U_{n, i+1}\right)+\left(1-\beta_{n, i}\right) J\right) \\
& \vdots \\
& U_{n, 1}=\Pi_{C} J^{-1}\left(\beta_{n, 1} J\left(S_{1} U_{n, 2}\right)+\left(1-\beta_{n, 1}\right) J\right) \\
& W_{n}=U_{n, 0}=J^{-1}\left(\beta_{n, 0} J\left(S_{0} U_{n, 1}\right)+\left(1-\beta_{n, 0}\right) J\right)
\end{align*}
$$

where I is the identity mapping on C. Such a mapping W_{n} is called the W mapping generated by $\left\{S_{i}\right\}_{i=0}^{n}$ and $\left\{\beta_{n, i}\right\}_{i=0}^{n}$. We have the following result for the W-mappings; see $[9,10,16,18]$.

Proposition 2.7 ([10]). Let E be a uniformly smooth and strictly convex Banach space, C a nonempty closed convex subset of E and $\left\{S_{i}\right\}_{i=0}^{n}$ a family of relatively nonexpansive mappings of C into itself such that $\bigcap_{i=0}^{n} F\left(S_{i}\right) \neq \emptyset$. Let $\left\{\beta_{n, i}\right\}_{i=0}^{n}$ be a sequence of real numbers such that $0<\beta_{n, 0} \leq 1$ and $0<\beta_{n, i}<1$ for every $1 \leq i \leq n$. Let $\left\{U_{n, i}\right\}_{i=0}^{n+1}$ be a sequence defined by (2.2) and W_{n} the W-mapping generated by $\left\{S_{i}\right\}_{i=0}^{n}$ and $\left\{\beta_{n, i}\right\}_{i=0}^{n}$. Then the following hold:
(i) $F\left(W_{n}\right)=\bigcap_{i=0}^{n} F\left(S_{i}\right)$;
(ii) for every $0 \leq i \leq n, x \in C$ and $z \in F\left(W_{n}\right), \phi\left(z, U_{n, i} x\right) \leq \phi(z, x)$ and $\phi\left(z, S_{i} U_{n, i+1} x\right) \leq \phi(z, x)$.
Let E be a smooth and uniformly convex, C a nonempty closed convex subset of $E,\left\{S_{i}\right\}_{i=0}^{\infty}$ a family of relatively nonexpansive mappings of C into itself and $\left\{\lambda_{n, i}: 0 \leq i \leq n\right\}_{n=0}^{\infty} \subset[0,1]$ a sequence of real numbers. For any $n \geq 0$, let V_{n} be a mapping of C into itself defined by

$$
\begin{equation*}
V_{n}=J^{-1} \sum_{i=0}^{n} \lambda_{n, i} J S_{i} \tag{2.3}
\end{equation*}
$$

We have the following result for convex combinations of relatively nonexpansive mappings.
Proposition 2.8 ([10]). Let E be a smooth and uniformly convex Banach space, C a nonempty closed convex subset of E and $\left\{S_{i}\right\}_{i=0}^{\infty}$ a family of relatively nonexpansive mappings of C into itself such that $\bigcap_{i=0}^{\infty} F\left(S_{i}\right) \neq \emptyset$. Let $\left\{\lambda_{n, i}\right\}_{i=0}^{n} \subset[0,1]$ such that $\sum_{i=0}^{n} \lambda_{n, i}=1$ for all $n \geq 0$ and $\lim _{n \rightarrow \infty} \lambda_{n, i}>0$ for each $i \geq 0$. Let V_{n} be a mapping of C into itself defined by (2.3). Then the following hold:
(i) $\bigcap_{n=0}^{\infty} F\left(V_{n}\right)=\bigcap_{i=0}^{\infty} F\left(S_{i}\right)$;
(ii) for every $n \geq 0, x \in C$ and $z \in \bigcap_{i=0}^{\infty} F\left(S_{i}\right), \phi\left(z, V_{n} x\right) \leq \phi(z, x)$.

We denoted by $\hat{F}(T)$ the set of all asymptotic fixed points of a mapping T. For solving the equilibrium problem, let us assume that a bifunction $f: C \times C \rightarrow \mathbb{R}$ satisfies the following conditions:
$\left(A_{1}\right) f(x, x)=0$ for all $x \in C$;
$\left(A_{2}\right) f$ is monotone, that is, $f(x, y)+f(y, x) \leq 0$ for all $x, y \in C$;
$\left(A_{3}\right) f$ is upper-hemicontinuous, that is, $\limsup _{t \downarrow 0} f(x+t(z-x), y) \leq f(x, y)$ for all $x, y, z \in C$;
$\left(A_{4}\right)$ the function $y \mapsto f(x, y)$ is convex and lower semicontinuous.
Proposition 2.9 ([19]). Let E be a uniformly smooth and strictly convex Banach space, C a nonempty closed convex subset of E and $f: C \times C \rightarrow \mathbb{R}$ a bifunction satisfying $\left(A_{1}\right)-\left(A_{4}\right)$. For $r>0$ and $x \in E$, define a mapping T_{r} of E into C as follows:

$$
\begin{equation*}
T_{r}(x)=\left\{u \in C: f(u, y)+\frac{1}{r}\langle y-u, J u-J x\rangle \geq 0, \forall y \in C\right\} \tag{2.4}
\end{equation*}
$$

for all $x \in E$. Then the following hold:
(i) T_{r} is single-valued;
(ii) T_{r} is a firmly nonexpansive-type mapping, that is,

$$
\left\langle T_{r} x-T_{r} y, J T_{r} x-J T_{r} y\right\rangle \leq\left\langle T_{r} x-T_{r} y, J x-J y\right\rangle
$$

for all $x, y \in E$;
(iii) $F\left(T_{r}\right)=\hat{F}\left(T_{r}\right)=E P(f)$;
(iv) $E P(f)$ is a closed convex set of C.

Remark. It follows from Proposition 2.9 that the mapping T_{r} defined by (2.4) is relatively nonexpansive. Indeed, by Proposition 2.9 (ii), we have

$$
\left\langle T_{r} x-T_{r} y, J T_{r} x-J T_{r} y\right\rangle \leq\left\langle T_{r} x-T_{r} y, J x-J y\right\rangle
$$

for all $x, y \in C$. Moreover, we obtain

$$
\begin{aligned}
& \phi\left(T_{r} x, T_{r} y\right)+\phi\left(T_{r} y, T_{r} x\right) \\
& =2\left\|T_{r} x\right\|^{2}-2\left\langle T_{r} x, J T_{r} y\right\rangle-2\left\langle T_{r} y, J T_{r} x\right\rangle+2\left\|T_{r} y\right\|^{2} \\
& =2\left\langle T_{r} x, J T_{r} x-J T_{r} y\right\rangle+2\left\langle T_{r} y, J T_{r} y-J T_{r} x\right\rangle \\
& =2\left\langle T_{r} x-T_{r} y, J T_{r} x-J T_{r} y\right\rangle
\end{aligned}
$$

and

$$
\begin{aligned}
& \phi\left(T_{r} x, y\right)+\phi\left(T_{r} y, x\right)-\phi\left(T_{r} x, x\right)-\phi\left(T_{r} y, y\right) \\
&=\left\|T_{r} x\right\|^{2}-2\left\langle T_{r} x, J y\right\rangle+\|y\|^{2}+\left\|T_{r} y\right\|^{2}-2\left\langle T_{r} y, J x\right\rangle+\|x\|^{2} \\
& \quad-\left\|T_{r} x\right\|^{2}+2\left\langle T_{r} x, J x\right\rangle-\|x\|^{2}-\left\|T_{r} y\right\|^{2}+2\left\langle T_{r} y, J y\right\rangle-\|y\|^{2} \\
&= 2\left\langle T_{r} x, J x-J y\right\rangle-2\left\langle T_{r} y, J x-J y\right\rangle \\
&= 2\left\langle T_{r} x-T_{r} y, J x-J y\right\rangle .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\phi\left(T_{r} x, T_{r} y\right)+\phi\left(T_{r} y, T_{r} x\right) & \leq \phi\left(T_{r} x, y\right)+\phi\left(T_{r} y, x\right)-\phi\left(T_{r} x, x\right)-\phi\left(T_{r} y, y\right) \\
& \leq \phi\left(T_{r} x, y\right)+\phi\left(T_{r} y, x\right)
\end{aligned}
$$

for all $x, y \in C$. Taking $y=p \in F\left(T_{r}\right)$, we obtain

$$
\phi\left(p, T_{r} x\right) \leq \phi(p, x)
$$

Thus, by Proposition 2.9 (iii), this implies that T_{r} is relatively nonexpansive.
Proposition 2.10 ([19]). Let E be a smooth, strictly convex and reflexive Banach space, C a nonempty closed convex subset of $E, f: C \times C \rightarrow \mathbb{R}$ a bifunction satisfying $\left(A_{1}\right)-\left(A_{4}\right)$ and $r>0$. Let T_{r} be the mapping defined by (2.4). Then

$$
\phi\left(p, T_{r} x\right)+\phi\left(T_{r} x, x\right) \leq \phi(p, x)
$$

for all $p \in F\left(T_{r}\right)$ and $x \in E$.
For solving the generalized equilibrium problem, let us assume that a nonlinear operator A of C into E^{*} is an α-inverse strongly monotone and a bifunction f : $C \times C \rightarrow \mathbb{R}$ satisfies the conditions $\left(A_{1}\right)-\left(A_{4}\right)$.
Proposition 2.11 ([4]). Let E be a smooth, strictly convex and reflexive Banach space, C a nonempty closed convex subset of E and A an α-inverse strongly monotone operator of C into E^{*}. Let $f: C \times C \rightarrow \mathbb{R}$ be a bifunction satisfying $\left(A_{1}\right)-\left(A_{4}\right)$ and $g: C \times C \rightarrow \mathbb{R}$ a bifunction defined by

$$
g(x, y)=f(x, y)+\langle A x, y-x\rangle
$$

for all $x, y \in C$. Let $r>0$ and $x \in E$. Then g satisfies $\left(A_{1}\right)-\left(A_{4}\right)$ and there exists $u \in C$ such that

$$
g(u, y)+\frac{1}{r}\langle y-u, J u-J x\rangle \geq 0
$$

for all $y \in C$.
Propositions 2.9 and 2.10 can obtain the following proposition.

Proposition 2.12 ([4]). Let E be a uniformly smooth and strictly convex Banach space, C a nonempty closed convex subset of E, A an α-inverse strongly monotone operator of C into E^{*} and $f: C \times C \rightarrow \mathbb{R}$ a bifunction satisfying $\left(A_{1}\right)-\left(A_{4}\right)$. For any $r>0$ and $x \in E$, define a mapping K_{r} of E into C as follows:

$$
K_{r}(x)=\left\{u \in C: f(u, y)+\langle A u, y-u\rangle+\frac{1}{r}\langle y-u, J u-J x\rangle \geq 0, \forall y \in C\right\}
$$

for all $x \in E$. Then the following hold:
(i) K_{r} is single-valued;
(ii) K_{r} is a firmly nonexpansive-type mapping, that is,

$$
\left\langle K_{r} x-K_{r} y, J K_{r} x-J K_{r} y\right\rangle \leq\left\langle K_{r} x-K_{r} y, J x-J y\right\rangle
$$

for all $x, y \in E$;
(iii) $F\left(K_{r}\right)=\hat{F}\left(K_{r}\right)=E P$;
(iv) $E P$ is a closed convex set of C;
(v) $\phi\left(p, K_{r} x\right)+\phi\left(K_{r} x, x\right) \leq \phi(p, x)$ for all $p \in F\left(K_{r}\right)$.

Moreover, the mapping K_{r} is relatively nonexpansive.

3. Strong convergence theorems of W-mappings

In this section, we prove a strong convergence theorem of W-mappings for finding a common element of the set of solutions for a generalized equilibrium problem and the set of common fixed points of infinite relatively nonexpansive mappings in a Banach space.

Theorem 3.1. Let E be a uniformly smooth and uniformly convex Banach space, C a nonempty closed convex subset of E. Let $f: C \times C \rightarrow \mathbb{R}$ a bifunction satisfying $\left(A_{1}\right)-\left(A_{4}\right)$ and $\left\{S_{i}\right\}_{i=0}^{\infty}$ an infinite family of relatively nonexpansive mappings of C into itself such that $F:=\bigcap_{i=0}^{\infty} F\left(S_{i}\right) \cap E P(f) \neq \emptyset$. Let $\left\{\beta_{n, i}\right\}_{i=0}^{n} \subset(0,1)$ be a sequence real numbers such that $\liminf _{n \rightarrow \infty} \beta_{n, i}\left(1-\beta_{n, i}\right)>0, W_{n}$ the W-mapping generated by $\left\{S_{i}\right\}_{i=0}^{n}$ and $\left\{\beta_{n, i}\right\}_{i=0}^{n}$. Let $\left\{x_{n}\right\}$ be the sequence generated by
$\left\{\begin{array}{l}x_{0} \in C, \\ y_{n}=W_{n} x_{n}, \\ u_{n} \in T_{\gamma_{n}} y_{n}, \text { that is, } f\left(u_{n}, y\right)+\frac{1}{\gamma_{n}}\left\langle y-u_{n}, J u_{n}-J y_{n}\right\rangle \geq 0 \text { for all } y \in C, \\ C_{n}=\left\{z \in C: \phi\left(z, u_{n}\right) \leq \phi\left(z, x_{n}\right)\right\} ; \\ Q_{n}=\left\{z \in C:\left\langle x_{n}-z, J x_{0}-J x_{n}\right\rangle \geq 0\right\} ; \\ x_{n+1}=\Pi_{C_{n} \cap Q_{n}} x_{0}\end{array}\right.$
for $n \geq 0$, where $\Pi_{C_{n} \cap Q_{n}}$ is the generalized projection of E onto $C_{n} \cap Q_{n}$ and $\left\{\gamma_{n}\right\} \subset[r, \infty)$ for some $r>0$. Then $\left\{x_{n}\right\}$ converges strongly to $\Pi_{F} x_{0}$, where Π_{F} is the generalized projection of E onto F.

Proof. First we prove that $C_{n} \cap Q_{n} \subset C$ is closed convex subset for all $n \geq 0$. In fact, it is obvious that C_{n} is closed, and Q_{n} is closed and convex for all $n \geq 0$. It follows that C_{n} is convex for all $n \geq 0$ because $\phi\left(z, u_{n}\right) \leq \phi\left(z, x_{n}\right)$ is equivalent to

$$
2\left\langle z, J x_{n}-J u_{n}\right\rangle \leq\left\|x_{n}\right\|^{2}-\left\|u_{n}\right\|^{2} .
$$

Thus $C_{n} \cap Q_{n}$ is closed and convex for all $n \geq 0$.
Next we prove that $F \subset C_{n} \cap Q_{n}$ for all $n \geq 0$. Let $u_{n}=T_{\gamma_{n}} y_{n}$ for all $n \geq 0$ and $u \in F$. It follows from Proposition 2.7 (i) that $u \in F\left(W_{n}\right)$ for all $n \geq 0$. We
obtain $T_{\gamma_{n}}$ is relatively nonexpansive by Proposition 2.9. Since S_{i} is also relatively nonexpansive for all $n \geq 0$, by Proposition 2.7 (ii), we have

$$
\begin{align*}
\phi\left(u, u_{n}\right)= & \phi\left(u, T_{\gamma_{n}} y_{n}\right) \leq \phi\left(u, y_{n}\right)=\phi\left(u, W_{n} x_{n}\right) \\
= & \phi\left(u, J^{-1}\left(\beta_{n, 0} J\left(S_{0} U_{n, 1} x_{n}\right)+\left(1-\beta_{n, 0}\right) J x_{n}\right)\right) \\
= & \|u\|^{2}-2\left\langle u, \beta_{n, 0} J\left(S_{0} U_{n, 1} x_{n}\right)+\left(1-\beta_{n, 0}\right) J x_{n}\right\rangle \\
& +\left\|\beta_{n, 0} J\left(S_{0} U_{n, 1} x_{n}\right)+\left(1-\beta_{n, 0}\right) J x_{n}\right\|^{2} \\
\leq & \|u\|^{2}-2 \beta_{n, 0}\left\langle u, J\left(S_{0} U_{n, 1} x_{n}\right)\right\rangle-2\left(1-\beta_{n, 0}\right)\left\langle u, J x_{n}\right\rangle \\
& +\beta_{n, 0}\left\|S_{0} U_{n, 1} x_{n}\right\|^{2}+\left(1-\beta_{n, 0}\right)\left\|x_{n}\right\|^{2} \\
= & \beta_{n, 0} \phi\left(u, S_{0} U_{n, 1} x_{n}\right)+\left(1-\beta_{n, 0}\right) \phi\left(u, x_{n}\right) \\
\leq & \beta_{n, 0} \phi\left(u, x_{n}\right)+\left(1-\beta_{n, 0}\right) \phi\left(u, x_{n}\right)=\phi\left(u, x_{n}\right) . \tag{3.2}
\end{align*}
$$

This implies that $u \in C_{n}$ and so $F \subset C_{n}$ for all $n \geq 0$. By induction, now we prove that $F \subset C_{n} \cap Q_{n}$ for all $n \geq 0$. In fact, since $Q_{0}=C$, we have $F \subset C_{0} \cap Q_{0}$. Suppose that $F \subset C_{k} \cap Q_{k}$ for some $k \geq 0$. Then there exists $x_{k+1} \in C_{k} \cap Q_{k}$ such that $x_{k+1}=\Pi_{C_{k} \cap Q_{k}} x_{0}$. By the definition of x_{k+1}, we have

$$
\begin{equation*}
\left\langle x_{k+1}-z, J x_{0}-J x_{k+1}\right\rangle \geq 0 \tag{3.3}
\end{equation*}
$$

for all $z \in C_{k} \cap Q_{k}$. Since $F \subset C_{k} \cap Q_{k}$, we obtain (3.3) for all $z \in F$. This shows that $z \in Q_{k+1}$, and so $F \subset Q_{k+1}$. Therefore $F \subset C_{n} \cap Q_{n}$ for all $n \geq 0$.

We prove that $\left\{x_{n}\right\}$ is bounded. By the definition of Q_{n} and Proposition 2.4, we have $x_{n}=\Pi_{Q_{n}} x_{0}$ for all $n \geq 0$. Hence, by Proposition 2.5,

$$
\phi\left(x_{n}, x_{0}\right)=\phi\left(\Pi_{Q_{n}} x_{0}, x_{0}\right) \leq \phi\left(u, x_{0}\right)-\phi\left(u, \Pi_{Q_{n}} x_{0}\right) \leq \phi\left(u, x_{0}\right)
$$

for all $u \in F \subset Q_{n}$ and $n \geq 0$. This implies that $\left\{\phi\left(x_{n}, x_{0}\right)\right\}$ is bounded, and so $\left\{x_{n}\right\}$ and $\left\{u_{n}\right\}$ are bounded in C.

Next we prove that $\left\|x_{n}-u_{n}\right\| \rightarrow 0$ and $\left\|J x_{n}-J u_{n}\right\| \rightarrow 0$. Since $x_{n}=\Pi_{Q_{n}} x_{0}$ and $x_{n+1}=\Pi_{C_{n} \cap Q_{n}} x_{0}$, we have $\phi\left(x_{n}, x_{0}\right) \leq \phi\left(x_{n+1}, x_{0}\right)$ for all $n \geq 0$. This implies that $\left\{\phi\left(x_{n}, x_{0}\right)\right\}$ is nondecreasing, and so there exists the limit $\lim _{n \rightarrow \infty} \phi\left(x_{n}, x_{0}\right)$. By Proposition 2.5, we have

$$
\begin{aligned}
\phi\left(x_{n+1}, x_{n}\right) & =\phi\left(x_{n+1}, \Pi_{Q_{n}} x_{0}\right) \\
& \leq \phi\left(x_{n+1}, x_{0}\right)-\phi\left(\Pi_{Q_{n}} x_{0}, x_{0}\right) \\
& =\phi\left(x_{n+1}, x_{0}\right)-\phi\left(x_{n}, x_{0}\right)
\end{aligned}
$$

for all $n \geq 0$. This implies that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \phi\left(x_{n+1}, x_{n}\right)=0 \tag{3.4}
\end{equation*}
$$

Since $x_{n+1}=\Pi_{C_{n} \cap Q_{n}} x_{0} \in C_{n}$, by the definition of C_{n}, we obtain

$$
\begin{equation*}
\phi\left(x_{n+1}, u_{n}\right) \leq \phi\left(x_{n+1}, x_{n}\right) . \tag{3.5}
\end{equation*}
$$

Since E is smooth and uniformly convex, from (3.4), (3.5) and Proposition 2.2 we have

$$
\lim _{n \rightarrow \infty}\left\|x_{n+1}-u_{n}\right\|=\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-u_{n}\right\|=0 \tag{3.6}
\end{equation*}
$$

Since J is uniformly continuous on any bounded subset of E, we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|J x_{n}-J u_{n}\right\|=0 \tag{3.7}
\end{equation*}
$$

Next we prove that $\omega\left(\left\{x_{n}\right\}\right) \subset F$, where $\omega\left(\left\{x_{n}\right\}\right)$ is the set consisting all of the weak limits points of $\left\{x_{n}\right\}$. In fact, for any $p \in \omega\left(\left\{x_{n}\right\}\right)$, there exists a subsequence $\left\{x_{n_{k}}\right\} \subset\left\{x_{n}\right\}$ such that $x_{n_{k}} \rightharpoonup p$. We shall prove that $p \in \bigcap_{i=0}^{\infty} F\left(S_{i}\right)$. We have

$$
\begin{align*}
\phi\left(u, x_{n}\right)-\phi\left(u, u_{n}\right) & =\left\|x_{n}\right\|^{2}-\left\|u_{n}\right\|^{2}+2\left\langle u, J u_{n}-J x_{n}\right\rangle \\
& \leq\left|\left\|x_{n}\right\|-\left\|u_{n}\right\|\right|\left(\left\|x_{n}\right\|+\left\|u_{n}\right\|\right)+2\|u\|\left\|J u_{n}-J x_{n}\right\| \\
& \leq\left\|x_{n}-u_{n}\right\|\left(\left\|x_{n}\right\|+\left\|u_{n}\right\|\right)+2\|u\|\left\|J u_{n}-J x_{n}\right\| \tag{3.8}
\end{align*}
$$

for all $n \geq 0$. From (3.6) and (3.7) we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\phi\left(u, x_{n}\right)-\phi\left(u, u_{n}\right)\right)=0 \tag{3.9}
\end{equation*}
$$

By Proposition 2.7 (ii), we have

$$
\phi\left(u, U_{n, i} x_{n}\right) \leq \phi\left(u, x_{n}\right) \quad \text { and } \quad \phi\left(u, S_{i} U_{n, i+1} x_{n}\right) \leq \phi\left(u, U_{n, i+1} x_{n}\right) \leq \phi\left(u, x_{n}\right)
$$

for each $0 \leq i \leq n$. Thus $\left\{S_{i} U_{n, i+1} x_{n}\right\}_{n \geq i}$ and $\left\{U_{n, i} x_{n}\right\}_{n \geq i}$ are bounded sequences in C for all $i \geq 0$. By Propositions 2.1, 2.5 and 2.7 (ii), we have

$$
\begin{aligned}
\phi\left(u, U_{n, i} x_{n}\right) \leq & \phi\left(u, J^{-1}\left(\beta_{n, i} J\left(S_{i} U_{n, i+1} x_{n}\right)+\left(1-\beta_{n, i}\right) J x_{n}\right)\right) \\
& -\phi\left(U_{n, i} x_{n}, J^{-1}\left(\beta_{n, i} J\left(S_{i} U_{n, i+1} x_{n}\right)+\left(1-\beta_{n, i}\right) J x_{n}\right)\right) \\
= & \|u\|^{2}-2\left\langle u, \beta_{n, i} J\left(S_{i} U_{n, i+1} x_{n}\right)+\left(1-\beta_{n, i}\right) J x_{n}\right\rangle \\
& +\left\|\beta_{n, i} J\left(S_{i} U_{n, i+1} x_{n}\right)+\left(1-\beta_{n, i}\right) J x_{n}\right\|^{2} \\
& -\phi\left(U_{n, i} x_{n}, J^{-1}\left(\beta_{n, i} J\left(S_{i} U_{n, i+1} x_{n}\right)+\left(1-\beta_{n, i}\right) J x_{n}\right)\right) \\
= & \|u\|^{2}-2\left\langle u, \beta_{n, i} J\left(S_{i} U_{n, i+1} x_{n}\right)+\left(1-\beta_{n, i}\right) J x_{n}\right\rangle \\
& +\beta_{n, i}\left\|S_{i} U_{n, i+1} x_{n}\right\|^{2}+\left(1-\beta_{n, i}\right)\left\|x_{n}\right\|^{2} \\
& -\beta_{n, i}\left(1-\beta_{n, i}\right) g\left(\left\|J\left(S_{i} U_{n, i+1} x_{n}\right)-J x_{n}\right\|\right) \\
& -\phi\left(U_{n, i} x_{n}, J^{-1}\left(\beta_{n, i} J\left(S_{i} U_{n, i+1} x_{n}\right)+\left(1-\beta_{n, i}\right) J x_{n}\right)\right) \\
= & \beta_{n, i} \phi\left(u, S_{i} U_{n, i+1} x_{n}\right)+\left(1-\beta_{n, i}\right) \phi\left(u, x_{n}\right) \\
& -\beta_{n, i}\left(1-\beta_{n, i}\right) g\left(\left\|J\left(S_{i} U_{n, i+1} x_{n}\right)-J x_{n}\right\|\right) \\
& -\phi\left(U_{n, i} x_{n}, J^{-1}\left(\beta_{n, i} J\left(S_{i} U_{n, i+1} x_{n}\right)+\left(1-\beta_{n, i}\right) J x_{n}\right)\right) \\
\leq & \beta_{n, i} \phi\left(u, U_{n, i+1} x_{n}\right)+\left(1-\beta_{n, i}\right) \phi\left(u, x_{n}\right) \\
& -\beta_{n, i}\left(1-\beta_{n, i}\right) g\left(\left\|J\left(S_{i} U_{n, i+1} x_{n}\right)-J x_{n}\right\|\right) \\
& -\phi\left(U_{n, i} x_{n}, J^{-1}\left(\beta_{n, i} J\left(S_{i} U_{n, i+1} x_{n}\right)+\left(1-\beta_{n, i}\right) J x_{n}\right)\right)
\end{aligned}
$$

for some $g \in G$ and for all $1 \leq i \leq n$. This implies that

$$
\begin{aligned}
& \phi\left(u, u_{n}\right) \leq \phi\left(u, y_{n}\right)=\phi\left(u, W_{n} x_{n}\right)=\phi\left(u, U_{n, 0} x_{n}\right) \\
& =\|u\|^{2}-2 \beta_{n, 0}\left\langle u, J\left(S_{0} U_{n, 1} x_{n}\right)\right\rangle-2\left(1-\beta_{n, 0}\right)\left\langle u, J x_{n}\right\rangle \\
& \quad+\left\|\beta_{n, 0} J\left(S_{0} U_{n, 1} x_{n}\right)+\left(1-\beta_{n, 0}\right) J x_{n}\right\|^{2} \\
& \leq \beta_{n, 0} \phi\left(u, U_{n, 1} x_{n}\right)+\left(1-\beta_{n, 0}\right) \phi\left(u, x_{n}\right)
\end{aligned}
$$

$$
\begin{align*}
&-\beta_{n, 0}\left(1-\beta_{n, 0}\right) g\left(\left\|J\left(S_{0} U_{n, 1} x_{n}\right)-J x_{n}\right\|\right) \\
& \leq \beta_{n, 0}\left\{\beta_{n, 1} \phi\left(u, U_{n, 2} x_{n}\right)+\left(1-\beta_{n, 1}\right) \phi\left(u, x_{n}\right)\right. \\
&-\beta_{n, 1}\left(1-\beta_{n, 1}\right) g\left(\left\|J\left(S_{1} U_{n, 2} x_{n}\right)-J x_{n}\right\|\right) \\
&\left.-\phi\left(U_{n, 1} x_{n}, J^{-1}\left(\beta_{n, 1} J\left(S_{1} U_{n, 2} x_{n}\right)+\left(1-\beta_{n, 1}\right) J x_{n}\right)\right)\right\} \\
&+\left(1-\beta_{n, 0}\right) \phi\left(u, x_{n}\right)-\beta_{n, 0}\left(1-\beta_{n, 0}\right) g\left(\left\|J\left(S_{0} U_{n, 1} x_{n}\right)-J x_{n}\right\|\right) \\
& \leq \cdots \\
& \leq \phi\left(u, x_{n}\right)-\beta_{n, 0}\left(1-\beta_{n, 0}\right) g\left(\left\|J\left(S_{0} U_{n, 1} x_{n}\right)-J x_{n}\right\|\right) \\
&-\beta_{n, 0} \beta_{n, 1}\left(1-\beta_{n, 1}\right) g\left(\left\|J\left(S_{1} U_{n, 2} x_{n}\right)-J x_{n}\right\|\right)-\cdots \\
&-\beta_{n, 0} \beta_{n, 1} \cdots \beta_{n, n}\left(1-\beta_{n, n}\right) g\left(\left\|J\left(S_{n} U_{n, n+1} x_{n}\right)-J x_{n}\right\|\right) \\
&-\beta_{n, 0} \phi\left(U_{n, 1} x_{n}, J^{-1}\left(\beta_{n, 1} J\left(S_{1} U_{n, 2} x_{n}\right)+\left(1-\beta_{n, 1}\right) J x_{n}\right)\right)-\cdots \\
&-\beta_{n, 0} \beta_{n, 1} \cdots \beta_{n, n-1} \\
& \quad \times \phi\left(U_{n, n} x_{n}, J^{-1}\left(\beta_{n, n} J\left(S_{n} U_{n, n+1} x_{n}\right)+\left(1-\beta_{n, n}\right) J x_{n}\right)\right) \tag{3.10}
\end{align*}
$$

for all $n \geq 0$. From (3.9), (3.10) and $\liminf _{n \rightarrow \infty} \beta_{n, i}\left(1-\beta_{n, i}\right)>0$ we obtain

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} g\left(\left\|J\left(S_{i} U_{n, i+1} x_{n}\right)-J x_{n}\right\|\right)=0 \\
& \lim _{n \rightarrow \infty} \phi\left(U_{n, i+1} x_{n}, J^{-1}\left(\beta_{n, i+1} J\left(S_{i+1} U_{n, i+2} x_{n}\right)+\left(1-\beta_{n, i+1}\right) J x_{n}\right)\right)=0
\end{aligned}
$$

for all $i \geq 0$. By the definition of g and Proposition 2.2, we have

$$
\begin{align*}
& \lim _{n \rightarrow \infty}\left\|J\left(S_{i} U_{n, i+1} x_{n}\right)-J x_{n}\right\|=0 \tag{3.11}\\
& \lim _{n \rightarrow \infty}\left\|U_{n, i+1} x_{n}-J^{-1}\left(\beta_{n, i+1} J\left(S_{i+1} U_{n, i+2} x_{n}\right)+\left(1-\beta_{n, i+1}\right) J x_{n}\right)\right\|=0 . \tag{3.12}
\end{align*}
$$

From (3.11) we obtain

$$
\begin{align*}
& \lim _{n \rightarrow \infty}\left\|\beta_{n, i} J\left(S_{i} U_{n, i+1} x_{n}\right)+\left(1-\beta_{n, i}\right) J x_{n}-J x_{n}\right\| \\
& =\lim _{n \rightarrow \infty} \beta_{n, i}\left\|J\left(S_{i} U_{n, i+1} x_{n}\right)-J x_{n}\right\|=0 \tag{3.13}
\end{align*}
$$

Since J^{-1} is also norm-to-norm continuous on bounded sets, from (3.11) and (3.13) we have

$$
\begin{align*}
& \lim _{n \rightarrow \infty}\left\|S_{i} U_{n, i+1} x_{n}-x_{n}\right\|=0 \tag{3.14}\\
& \lim _{n \rightarrow \infty}\left\|J^{-1}\left(\beta_{n, i} J\left(S_{i} U_{n, i+1} x_{n}\right)+\left(1-\beta_{n, i}\right) J x_{n}\right)-x_{n}\right\|=0 \tag{3.15}
\end{align*}
$$

for all $i \geq 0$. From (3.12) and (3.15) we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|U_{n, i+1} x_{n}-x_{n}\right\|=0 \tag{3.16}
\end{equation*}
$$

for all $i \geq 0$. Since $x_{n_{k}} \rightharpoonup p$, we have $U_{n_{k}, i+1} x_{n_{k}} \rightharpoonup p$ for all $i \geq 0$. From (3.14) and (3.16) we obtain

$$
\lim _{n \rightarrow \infty}\left\|S_{i} U_{n, i+1} x_{n}-U_{n, i+1} x_{n}\right\|=0
$$

for each $i \geq 0$. Since $U_{n_{k}, i+1} x_{n_{k}} \rightharpoonup p$ and S_{i} is relatively nonexpansive, we have $p \in \hat{F}\left(S_{i}\right)=F\left(S_{i}\right)$ for all $i \geq 0$. Hence $p \in \bigcap_{i=0}^{\infty} F\left(S_{i}\right)$. Now we shall prove that $p \in E P(f)$. From (3.2), (3.9) and Proposition 2.10 we have

$$
\phi\left(u_{n}, y_{n}\right)=\phi\left(T_{\gamma_{n}} y_{n}, y_{n}\right) \leq \phi\left(u, y_{n}\right)-\phi\left(u, T_{\gamma_{n}} y_{n}\right)
$$

$$
\leq \phi\left(u, x_{n}\right)-\phi\left(u, u_{n}\right) \rightarrow 0
$$

It follows from Proposition 2.2 that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|u_{n}-y_{n}\right\|=0 \tag{3.17}
\end{equation*}
$$

Since $x_{n_{k}} \rightharpoonup p$, it follows from (3.6) and (3.17) that $u_{n_{k}} \rightharpoonup p$ and $y_{n_{k}} \rightharpoonup p$. Since J is uniformly continuous on any bounded set of E, from (3.17) we obtain $\left\|J u_{n}-J y_{n}\right\| \rightarrow 0$. By the assumption that $\gamma_{n} \geq r$, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{\gamma_{n}}\left\|J u_{n}-J y_{n}\right\|=0 \tag{3.18}
\end{equation*}
$$

Since $u_{n}=T_{\gamma_{n}} y_{n}$, we obtain

$$
\begin{equation*}
f\left(u_{n}, y\right)+\frac{1}{\gamma_{n}}\left\langle y-u_{n}, J u_{n}-J y_{n}\right\rangle \geq 0 \tag{3.19}
\end{equation*}
$$

for all $y \in C$. Replacing n by n_{k} in (3.19), from $\left(A_{2}\right)$ we deduce

$$
\begin{equation*}
\frac{1}{\gamma_{n_{k}}}\left\langle y-u_{n_{k}}, J u_{n_{k}}-J y_{n_{k}}\right\rangle \geq-f\left(u_{n_{k}}, y\right) \geq f\left(y, u_{n_{k}}\right) \tag{3.20}
\end{equation*}
$$

for all $y \in C$. Since $y \mapsto f(x, y)$ is convex and lower semicontinuous, it is also weakly lower semicontinuous. Letting $n_{k} \rightarrow \infty$ in (3.20), from (3.18) and (A_{4}) we have $f(y, p) \leq 0$ for all $y \in C$. For $t \in(0,1]$ and $y \in C$, letting $y_{t}=t y+(1-t) p$, then $y_{t} \in C$ and $f\left(y_{t}, p\right) \leq 0$. From $\left(A_{1}\right)$ and $\left(A_{4}\right)$ we obtain

$$
0=f\left(y_{t}, y_{t}\right) \leq t f\left(y_{t}, y\right)+(1-t) f\left(y_{t}, p\right) \leq t f\left(y_{t}, y\right)
$$

Dividing by t, we have $f\left(y_{t}, y\right) \geq 0$ for all $y \in C$. Letting $t \downarrow 0$, from $\left(A_{3}\right)$ we obtain $f(p, y) \geq 0$. Therefore $p \in E P(f)$, and so $p \in F$. This shows that $\omega\left(\left\{x_{n}\right\}\right) \subset F$.

Finally, we have prove that $\omega\left(\left\{x_{n}\right\}\right)$ is a singleton and $x_{n} \rightarrow \Pi_{F} x_{0}$. Let $w=$ $\Pi_{F} x_{0}$. Since $w \in F \subset C_{n} \cap Q_{n}$ and $x_{n+1}=\Pi_{C_{n} \cap Q_{n}} x_{0}$, we have

$$
\phi\left(x_{n+1}, x_{0}\right) \leq \phi\left(w, x_{0}\right)
$$

for all $n \geq 0$. Since the norm is weakly lower semicontinuous, this implies that

$$
\begin{align*}
\phi\left(p, x_{0}\right) & =\|p\|^{2}-2\left\langle p, J x_{0}\right\rangle+\left\|x_{0}\right\|^{2} \\
& \leq \liminf _{k \rightarrow \infty}\left(\left\|x_{n_{k}}\right\|^{2}-2\left\langle x_{n_{k}}, J x_{0}\right\rangle+\left\|x_{0}\right\|^{2}\right) \\
& =\liminf _{k \rightarrow \infty} \phi\left(x_{n_{k}}, x_{0}\right) \\
& \leq \limsup _{k \rightarrow \infty} \phi\left(x_{n_{k}}, x_{0}\right) \leq \phi\left(w, x_{0}\right) . \tag{3.21}
\end{align*}
$$

It follows from the definition of w and (3.21) that $p=w$. This implies that $\omega\left(\left\{x_{n}\right\}\right)$ is a singleton and $\phi\left(x_{n_{k}}, x_{0}\right) \rightarrow \phi\left(w, x_{0}\right)$. Therefore

$$
\begin{aligned}
0 & =\lim _{k \rightarrow \infty}\left(\phi\left(x_{n_{k}}, x_{0}\right)-\phi\left(w, x_{0}\right)\right) \\
& =\lim _{k \rightarrow \infty}\left(\left\|x_{n_{k}}\right\|^{2}-\|w\|^{2}-2\left\langle x_{n_{k}}-w, J x_{0}\right\rangle\right) \\
& =\lim _{k \rightarrow \infty}\left\|x_{n_{k}}\right\|^{2}-\|w\|^{2}
\end{aligned}
$$

that is,

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|x_{n_{k}}\right\|^{2}=\|w\|^{2} \tag{3.22}
\end{equation*}
$$

Since E is uniformly convex, it has the Kadec-Klee property. It follows from (3.22) and $x_{n_{k}} \rightharpoonup w$ that $x_{n_{k}} \rightarrow w=\Pi_{F} x_{0}$. Since $\omega\left(x_{n}\right)$ is a singleton, we have $x_{n} \rightarrow$ $\Pi_{F} x_{0}$.

The following theorems can be obtained by Theorem 3.1.
Theorem 3.2 ([19]). Let E be a uniformly smooth and uniformly convex Banach space, C a nonempty closed convex subset of E. Let $f: C \times C \rightarrow \mathbb{R}$ a bifunction satisfying $\left(A_{1}\right)-\left(A_{4}\right)$ and S a relatively nonexpansive mapping from C into itself such that $F:=F(S) \cap E P(f) \neq \emptyset$. Let $\left\{\alpha_{n}\right\} \subset[0,1]$ be a sequence real numbers such that $\lim _{n \rightarrow \infty} \alpha_{n}\left(1-\alpha_{n}\right)>0$. Let $\left\{x_{n}\right\}$ be the sequence generated by

$$
\left\{\begin{array}{l}
x_{0} \in C \tag{3.23}\\
y_{n}=J^{-1}\left(\alpha_{n} J S x_{n}+\left(1-\alpha_{n}\right) J x_{n}\right) \\
u_{n} \in C \text { such that } f\left(u_{n}, y\right)+\frac{1}{\gamma_{n}}\left\langle y-u_{n}, J u_{n}-J y_{n}\right\rangle \geq 0 \text { for all } y \in C \\
C_{n}=\left\{z \in C: \phi\left(z, u_{n}\right) \leq \phi\left(z, x_{n}\right)\right\} \\
Q_{n}=\left\{z \in C:\left\langle x_{n}-z, J x_{0}-J x_{n}\right\rangle \geq 0\right\} \\
x_{n+1}=\Pi_{C_{n} \cap Q_{n}} x_{0}
\end{array}\right.
$$

for $n \geq 0$, where $\Pi_{C_{n} \cap Q_{n}}$ is the generalized projection of E onto $C_{n} \cap Q_{n}$ and $\left\{\gamma_{n}\right\} \subset[r, \infty)$ for some $r>0$. Then $\left\{x_{n}\right\}$ converges strongly to $\Pi_{F} x_{0}$, where Π_{F} is the generalized projection of E onto F.

Proof. Let $S_{n}=S, \beta_{n, 0}=\alpha_{n}$ and $\left\{\beta_{n, i}\right\}_{i=1}^{n}=\{0\}$ for all $n \geq 0$ in Theorem 3.1. This shows that (3.1) is equivalent to (3.23). Therefore, the conclusion of Theorem 3.2 can be deduced from Theorem 3.1.

Theorem 3.3. Let E be a uniformly smooth and uniformly convex Banach space, C a nonempty closed convex subset of E. Let A be an α-inverse strongly monotone operator of C into $E^{*}, f: C \times C \rightarrow \mathbb{R}$ a bifunction satisfying $\left(A_{1}\right)-\left(A_{4}\right)$ and $\left\{S_{i}\right\}_{i=0}^{\infty}$ an infinite family of relatively nonexpansive mappings of C into itself such that $F:=\bigcap_{i=0}^{\infty} F\left(S_{i}\right) \cap E P \neq \emptyset$. Let $\left\{\beta_{n, i}\right\}_{i=0}^{n}$ be a sequence real numbers such that $\liminf _{n \rightarrow \infty} \beta_{n, i}\left(1-\beta_{n, i}\right)>0$, W_{n} the W-mapping generated by $\left\{S_{i}\right\}_{i=0}^{n}$ and $\left\{\beta_{n, i}\right\}_{i=0}^{n}$. Let $\left\{x_{n}\right\}$ be the sequence generated by

$$
\left\{\begin{array}{l}
x_{0} \in C \tag{3.24}\\
y_{n}=W_{n} x_{n}, \\
u_{n} \in K_{\gamma_{n}} y_{n}, \text { that is, } \\
\quad f\left(u_{n}, y\right)+\left\langle A u_{n}, y-u_{n}\right\rangle+\frac{1}{\gamma_{n}}\left\langle y-u_{n}, J u_{n}-J y_{n}\right\rangle \geq 0 \text { for all } y \in C \\
C_{n}=\left\{z \in C: \phi\left(z, u_{n}\right) \leq \phi\left(z, x_{n}\right)\right\} \\
Q_{n}=\left\{z \in C:\left\langle x_{n}-z, J x_{0}-J x_{n}\right\rangle \geq 0\right\} \\
x_{n+1}=\Pi_{C_{n} \cap Q_{n}} x_{0}
\end{array}\right.
$$

for $n \geq 0$, where $\Pi_{C_{n} \cap Q_{n}}$ is the generalized projection of E onto $C_{n} \cap Q_{n}$ and $\left\{\gamma_{n}\right\} \subset[r, \infty)$ for some $r>0$. Then $\left\{x_{n}\right\}$ converges strongly to $\Pi_{F} x_{0}$, where Π_{F} is the generalized projection of E onto F.

Proof. Let $g\left(u_{n}, y\right)=f\left(u_{n}, y\right)+\left\langle A u_{n}, y-u_{n}\right\rangle$. By Propositions 2.11 and 2.12, (3.24) is equivalent to (3.1) in Theorem 3.1. Therefore, the conclusion of Theorem 3.3 can be deduced from Theorem 3.1.

4. Strong convergence theorems of convex combinations

In this section, we prove strong convergence theorems of convex combinations for finding a common element of the set of solutions for a generalized equilibrium problem and the set of common fixed points of infinite relatively nonexpansive mappings in a Banach space.

Theorem 4.1. Let E be a uniformly smooth and uniformly convex Banach space, C a nonempty closed convex subset of E. Let $f: C \times C \rightarrow \mathbb{R}$ be a bifunction satisfying $\left(A_{1}\right)-\left(A_{4}\right)$ and $\left\{S_{i}\right\}_{i=0}^{\infty}$ an infinite family of relatively nonexpansive mappings of C into itself such that $F:=\bigcap_{i=0}^{\infty} F\left(S_{i}\right) \cap E P(f) \neq \emptyset$. Let $\left\{\lambda_{n, i}\right\}_{i=0}^{n} \subset[0,1)$ be a sequence real numbers such that $\sum_{i=0}^{n} \lambda_{n, i}=1$ for all $n \geq 0$ and $\lim _{n \rightarrow \infty} \lambda_{n, i}>0$ for each $i \geq 0$, and V_{n} the mapping defined by (2.3). Let $\left\{x_{n}\right\}$ be the sequence generated by

$$
\left\{\begin{array}{l}
x_{0} \in C \tag{4.1}\\
y_{n}=V_{n} x_{n}, \\
u_{n} \in T_{\gamma_{n}} y_{n}, \text { that is, } f\left(u_{n}, y\right)+\frac{1}{\gamma_{n}}\left\langle y-u_{n}, J u_{n}-J y_{n}\right\rangle \geq 0 \text { for all } y \in C, \\
C_{n}=\left\{z \in C: \phi\left(z, u_{n}\right) \leq \phi\left(z, x_{n}\right)\right\} \\
Q_{n}=\left\{z \in C:\left\langle x_{n}-z, J x_{0}-J x_{n}\right\rangle \geq 0\right\} \\
x_{n+1}=\Pi_{C_{n} \cap Q_{n}} x_{0}
\end{array}\right.
$$

for $n \geq 0$, where $\Pi_{C_{n} \cap Q_{n}}$ is the generalized projection of E onto $C_{n} \cap Q_{n}$ and $\left\{\gamma_{n}\right\} \subset[r, \infty)$ for some $r>0$. Then $\left\{x_{n}\right\}$ converges strongly to $\Pi_{F} x_{0}$, where Π_{F} is the generalized projection of E onto F.

Proof. First we prove that $C_{n} \cap Q_{n} \subset C$ is closed convex subset for all $n \geq 0$. In fact, it is obvious that C_{n} is closed, and Q_{n} is closed and convex for all $n \geq 0$. It follows that C_{n} is convex for all $n \geq 0$ because $\phi\left(z, u_{n}\right) \leq \phi\left(z, x_{n}\right)$ is equivalent to

$$
2\left\langle z, J x_{n}-J u_{n}\right\rangle \leq\left\|x_{n}\right\|^{2}-\left\|u_{n}\right\|^{2}
$$

Thus $C_{n} \cap Q_{n}$ is closed and convex for all $n \geq 0$.
Next we prove that $F \subset C_{n} \cap Q_{n}$ for all $n \geq 0$. Let $u_{n}=T_{\gamma_{n}} y_{n}$ for all $n \geq 0$ and $u \in F$. It follows from Proposition 2.8 (i) and Proposition 2.9 (iii) that $u \in$ $\bigcap_{n=0}^{\infty} F\left(V_{n}\right) \cap F\left(T_{\gamma_{n}}\right)$. We have $T_{\gamma_{n}}$ is relatively nonexpansive by Proposition 2.9. By Proposition 2.8 (ii), we have

$$
\begin{equation*}
\phi\left(u, u_{n}\right)=\phi\left(u, T_{\gamma_{n}} y_{n}\right) \leq \phi\left(u, y_{n}\right)=\phi\left(u, V_{n} x_{n}\right) \leq \phi\left(u, x_{n}\right) . \tag{4.2}
\end{equation*}
$$

This implies that $u \in C_{n}$ and so $F \subset C_{n}$ for all $n \geq 0$. By induction, now we prove that $F \subset C_{n} \cap Q_{n}$ for all $n \geq 0$. In fact, since $Q_{0}=C$, we have $F \subset C_{0} \cap Q_{0}$. Suppose that $F \subset C_{k} \cap Q_{k}$ for some $k \geq 0$. Then there exists $x_{k+1} \in C_{k} \cap Q_{k}$ such that $x_{k+1}=\Pi_{C_{k} \cap Q_{k}} x_{0}$. By the definition of x_{k+1}, we have

$$
\begin{equation*}
\left\langle x_{k+1}-z, J x_{0}-J x_{k+1}\right\rangle \geq 0 \tag{4.3}
\end{equation*}
$$

for all $z \in C_{k} \cap Q_{k}$. Since $F \subset C_{k} \cap Q_{k}$, we have (4.3) for all $z \in F$. This shows that $z \in Q_{k+1}$, and so $F \subset Q_{k+1}$. Therefore $F \subset C_{n} \cap Q_{n}$ for all $n \geq 0$.

Next we prove that $\left\{x_{n}\right\}$ is bounded. By the definition of Q_{n}, we have $x_{n}=$ $\Pi_{Q_{n}} x_{0}$ for all $n \geq 0$. Hence, by Proposition 2.5,

$$
\phi\left(x_{n}, x_{0}\right)=\phi\left(\Pi_{Q_{n}} x_{0}, x_{0}\right) \leq \phi\left(u, x_{0}\right)-\phi\left(u, \Pi_{Q_{n}} x_{0}\right) \leq \phi\left(u, x_{0}\right)
$$

for all $u \in F \subset Q_{n}$ and $n \geq 0$. This implies that $\left\{\phi\left(x_{n}, x_{0}\right)\right\}$ is bounded, and so $\left\{x_{n}\right\}$ and $\left\{u_{n}\right\}$ are bounded in C. Since $x_{n+1}=\Pi_{C_{n} \cap Q_{n}} x_{0}$ and $x_{n}=\Pi_{Q_{n}} x_{0}$, we have

$$
\phi\left(x_{n}, x_{0}\right) \leq \phi\left(x_{n+1}, x_{0}\right)
$$

for all $n \geq 0$. This implies that $\left\{\phi\left(x_{n}, x_{0}\right)\right\}$ is nondecreasing, and so there exists the limit $\lim _{n \rightarrow \infty} \phi\left(x_{n}, x_{0}\right)$. By Proposition 2.5 , we deduce

$$
\begin{aligned}
\phi\left(x_{n+1}, x_{n}\right)=\phi\left(x_{n+1}, \Pi_{Q_{n}} x_{0}\right) & \leq \phi\left(x_{n+1}, x_{0}\right)-\phi\left(\Pi_{Q_{n}} x_{0}, x_{0}\right) \\
& =\phi\left(x_{n+1}, x_{0}\right)-\phi\left(x_{n}, x_{0}\right)
\end{aligned}
$$

for all $n \geq 0$. This implies that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \phi\left(x_{n+1}, x_{n}\right)=0 \tag{4.4}
\end{equation*}
$$

Since $x_{n+1}=\Pi_{C_{n} \cap Q_{n}} x_{0} \in C_{n}$, by the definition of C_{n}, we have

$$
\begin{equation*}
\phi\left(x_{n+1}, u_{n}\right) \leq \phi\left(x_{n+1}, x_{n}\right) \tag{4.5}
\end{equation*}
$$

Since E is smooth and uniformly convex, from (4.4), (4.5) and Proposition 2.2 we obtain

$$
\lim _{n \rightarrow \infty}\left\|x_{n+1}-u_{n}\right\|=\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-u_{n}\right\|=0 \tag{4.6}
\end{equation*}
$$

Since J is uniformly norm-to-norm continuous on bounded subsets, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|J x_{n}-J u_{n}\right\|=0 \tag{4.7}
\end{equation*}
$$

Next we prove that $\left\|S_{l} x_{n}-x_{n}\right\| \rightarrow 0$ for all $l \geq 0$. By the definition of $\lambda_{n, i}$, we have $1-\lambda_{n, l}=\sum_{i=0,1, \ldots, n, i \neq l} \lambda_{n, i}$. For large enough $n \geq 0$ and $0 \leq l \leq n$, Proposition 2.1 implies that

$$
\begin{aligned}
& \phi\left(u, u_{n}\right) \leq \phi\left(u, y_{n}\right)=\phi\left(u, V_{n} x_{n}\right) \\
&=\|u\|^{2}-2 \sum_{i=0}^{n} \lambda_{n, i}\left\langle u, J\left(S_{i} x_{n}\right)\right\rangle+\left\|J^{-1} \sum_{i=0}^{n} \lambda_{n, i} J\left(S_{i} x_{n}\right)\right\|^{2} \\
&=\|u\|^{2}-2 \sum_{i=0}^{n} \lambda_{n, i}\left\langle u, J\left(S_{i} x_{n}\right)\right\rangle \\
&+\left\|\lambda_{n, l} J\left(S_{l} x_{n}\right)+\left(1-\lambda_{n, l}\right) \frac{\sum_{i=0,1, \ldots, n, i \neq l} \lambda_{n, i} J\left(S_{i} x_{n}\right)}{1-\lambda_{n, l}}\right\|^{2} \\
& \leq\|u\|^{2}-2 \sum_{i=0}^{n} \lambda_{n, i}\left\langle u, J\left(S_{i} x_{n}\right)\right\rangle+\lambda_{n, l}\left\|S_{l} x_{n}\right\|^{2} \\
&+\left(1-\lambda_{n, l}\right)\left\|\frac{\sum_{i=0,1, \ldots, n, i \neq l} \lambda_{n, i} J\left(S_{i} x_{n}\right)}{1-\lambda_{n, l}}\right\|^{2} \\
& \quad-\lambda_{n, l}\left(1-\lambda_{n, l}\right) g\left(\left\|J\left(S_{l} x_{n}\right)-\frac{\sum_{i=0,1, \ldots, n, i \neq l} \lambda_{n, i} J\left(S_{i} x_{n}\right)}{1-\lambda_{n, l}}\right\|\right) \\
&=\|u\|^{2}-2 \sum_{i=0}^{n} \lambda_{n, i}\left\langle u, J\left(S_{i} x_{n}\right)\right\rangle+\sum_{i=0}^{n} \lambda_{n, i}\left\|S_{i} x_{n}\right\|^{2}
\end{aligned}
$$

STRONG CONVERGENCE THEOREMS FOR GENERALIZED EQUILIBRIUM PROBLEMS 15

$$
\begin{aligned}
& -\lambda_{n, l}\left(1-\lambda_{n, l}\right) g\left(\left\|J\left(S_{l} x_{n}\right)-\frac{\sum_{i=0,1, \ldots, n, i \neq l} \lambda_{n, i} J\left(S_{i} x_{n}\right)}{1-\lambda_{n, l}}\right\|\right) \\
= & \phi\left(u, S_{i} x_{n}\right)-\lambda_{n, l}\left(1-\lambda_{n, l}\right) g\left(\left\|J\left(S_{l} x_{n}\right)-\frac{\sum_{i=0,1, \ldots, n, i \neq l} \lambda_{n, i} J\left(S_{i} x_{n}\right)}{1-\lambda_{n, l}}\right\|\right) \\
\leq & \phi\left(u, x_{n}\right)-\lambda_{n, l}\left(1-\lambda_{n, l}\right) g\left(\left\|J\left(S_{l} x_{n}\right)-\frac{\sum_{i=0,1, \ldots, n, i \neq l} \lambda_{n, i} J\left(S_{i} x_{n}\right)}{1-\lambda_{n, l}}\right\|\right)
\end{aligned}
$$

for some $g \in G$. Thus

$$
\begin{aligned}
& \lambda_{n, l}\left(1-\lambda_{n, l}\right) g\left(\left\|J\left(S_{l} x_{n}\right)-\frac{\sum_{i=0,1, \ldots, n, i \neq l} \lambda_{n, i} J\left(S_{i} x_{n}\right)}{1-\lambda_{n, l}}\right\|\right) \\
& \leq \phi\left(u, x_{n}\right)-\phi\left(u, u_{n}\right) \\
& =\left\|x_{n}\right\|^{2}-\left\|u_{n}\right\|^{2}+2\left\langle u, J u_{n}-J x_{n}\right\rangle \\
& \leq 2\|u\| \cdot\left\|J u_{n}-J x_{n}\right\|+\left(\left\|x_{n}\right\|+\left\|u_{n}\right\|\right)\left\|x_{n}-u_{n}\right\| .
\end{aligned}
$$

This implies that, together with (4.6) and (4.7),

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|J\left(S_{l} x_{n}\right)-\frac{\sum_{i=0,1, \ldots, n, i \neq l} \lambda_{n, i} J\left(S_{i} x_{n}\right)}{1-\lambda_{n, l}}\right\|=0 \tag{4.8}
\end{equation*}
$$

for all $l \geq 0$. From (4.2), (4.6), (4.7) and Proposition 2.10 we have

$$
\begin{aligned}
\phi\left(u_{n}, y_{n}\right) & =\phi\left(T_{\gamma_{n}} y_{n}, y_{n}\right) \\
& \leq \phi\left(u, y_{n}\right)-\phi\left(u, T_{\gamma_{n}} y_{n}\right) \\
& \leq \phi\left(u, x_{n}\right)-\phi\left(u, u_{n}\right) \\
& \leq\left\|x_{n}-u_{n}\right\|\left(\left\|x_{n}\right\|+\left\|y_{n}\right\|\right)+2\|u\|\left\|J u_{n}-J x_{n}\right\| \rightarrow 0 .
\end{aligned}
$$

This implies that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|u_{n}-y_{n}\right\|=0 \tag{4.9}
\end{equation*}
$$

From (4.6) and (4.9) we obtain

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\| \leq \lim _{n \rightarrow \infty}\left\{\left\|x_{n}-u_{n}\right\|+\left\|u_{n}-y_{n}\right\|\right\}=0 .
$$

Since J is uniformly norm-to-norm continuous on bounded subsets, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|J x_{n}-J y_{n}\right\|=0 . \tag{4.10}
\end{equation*}
$$

Since

$$
\begin{aligned}
\left\|J x_{n}-J\left(S_{l} x_{n}\right)\right\| \leq & \left\|J x_{n}-J\left(V_{n} x_{n}\right)\right\|+\left\|J\left(S_{l} x_{n}\right)-J\left(V_{n} x_{n}\right)\right\| \\
= & \left\|J x_{n}-J y_{n}\right\|+\left\|J\left(S_{l} x_{n}\right)-\sum_{i=0}^{n} \lambda_{n, i} J\left(S_{i} x_{n}\right)\right\| \\
= & \left\|J x_{n}-J y_{n}\right\| \\
& +\left(1-\lambda_{n, l}\right)\left\|J\left(S_{l} x_{n}\right)-\frac{\sum_{i=0,1, \ldots, n, i \neq l} \lambda_{n, i} J\left(S_{i} x_{n}\right)}{1-\lambda_{n, l}}\right\|
\end{aligned}
$$

for large enough $n \geq 0$, from (4.8) and (4.10) we obtain

$$
\lim _{n \rightarrow \infty}\left\|J x_{n}-J\left(S_{l} x_{n}\right)\right\|=0
$$

Since J^{-1} is also uniformly norm-to-norm continuous on bounded subsets, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-S_{l} x_{n}\right\|=0 \tag{4.11}
\end{equation*}
$$

for all $l \geq 0$.
Next we prove that $\omega\left(\left\{x_{n}\right\}\right) \subset F$, where $\omega\left(\left\{x_{n}\right\}\right)$ is the set consisting all of the weak limits points of $\left\{x_{n}\right\}$. In fact, for any $p \in \omega\left(\left\{x_{n}\right\}\right)$, there exists a subsequence $\left\{x_{n_{k}}\right\} \subset\left\{x_{n}\right\}$ such that $x_{n_{k}} \rightharpoonup p$. Since S_{i} is relatively nonexpansive, (4.11) implies $p \in \bigcap_{i=0}^{\infty} \hat{F}\left(S_{i}\right)=\bigcap_{i=0}^{\infty} F\left(S_{i}\right)$. Now we prove that $p \in E P(f)$. Since $x_{n_{k}} \rightharpoonup p$, it follows from (4.6) and (4.9) that $u_{n_{k}} \rightharpoonup p$ and $y_{n_{k}} \rightharpoonup p$. Since J is uniformly continuous on any bounded set of E, from (4.9) we have $\left\|J u_{n}-J y_{n}\right\| \rightarrow 0$. By the assumption that $\gamma_{n}>r$, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{\gamma_{n}}\left\|J u_{n}-J y_{n}\right\|=0 \tag{4.12}
\end{equation*}
$$

Since $u_{n}=T_{\gamma_{n}} y_{n}$, we obtain

$$
\begin{equation*}
f\left(u_{n}, y\right)+\frac{1}{\gamma_{n}}\left\langle y-u_{n}, J u_{n}-J y_{n}\right\rangle \geq 0 \tag{4.13}
\end{equation*}
$$

for all $y \in C$. Replacing n by n_{k} in (4.13), from $\left(A_{2}\right)$ we have

$$
\begin{equation*}
\frac{1}{\gamma_{n_{k}}}\left\langle y-u_{n_{k}}, J u_{n_{k}}-J y_{n_{k}}\right\rangle \geq-f\left(u_{n_{k}}, y\right) \geq f\left(y, u_{n_{k}}\right) \tag{4.14}
\end{equation*}
$$

for all $y \in C$. Since $y \mapsto f(x, y)$ is convex and lower semicontinuous, it is also weakly lower semicontinuous. Letting $n_{k} \rightarrow \infty$ in (4.14), from (4.12) and $\left(A_{4}\right)$ we obtain $f(y, p) \leq 0$ for all $y \in C$. For $t \in(0,1]$ and $y \in C$, letting $y_{t}=t y+(1-t) p$, then $y_{t} \in C$ and $f\left(y_{t}, p\right) \leq 0$. From $\left(A_{1}\right)$ and $\left(A_{4}\right)$ we have

$$
0=f\left(y_{t}, y_{t}\right) \leq t f\left(y_{t}, y\right)+(1-t) f\left(y_{t}, p\right) \leq t f\left(y_{t}, y\right)
$$

Dividing by t, we obtain $f\left(y_{t}, y\right) \geq 0$ for all $y \in C$. Letting $t \downarrow 0$, from $\left(A_{3}\right)$ we have $f(p, y) \geq 0$ for all $y \in C$. Therefore $p \in E P(f)$, and so $p \in F$. This shows that $\omega\left(\left\{x_{n}\right\}\right) \subset F$.

Finally, we have prove that $\omega\left(\left\{x_{n}\right\}\right)$ is a singleton and $x_{n} \rightarrow \Pi_{F} x_{0}$. Let $w=$ $\Pi_{F} x_{0}$. From $w \in F \subset C_{n} \cap Q_{n}$ and $x_{n+1}=\Pi_{C_{n} \cap Q_{n}} x_{0}$ we have

$$
\phi\left(x_{n+1}, x_{0}\right) \leq \phi\left(w, x_{0}\right)
$$

for all $n \geq 0$. Since the norm is weakly lower semicontinuous, this implies that

$$
\begin{align*}
\phi\left(p, x_{0}\right) & =\|p\|^{2}-2\left\langle p, J x_{0}\right\rangle+\left\|x_{0}\right\|^{2} \\
& \leq \liminf _{k \rightarrow \infty}\left(\left\|x_{n_{k}}\right\|^{2}-2\left\langle x_{n_{k}}, J x_{0}\right\rangle+\left\|x_{0}\right\|^{2}\right) \\
& =\liminf _{k \rightarrow \infty} \phi\left(x_{n_{k}}, x_{0}\right) \\
& \leq \limsup _{k \rightarrow \infty} \phi\left(x_{n_{k}}, x_{0}\right) \leq \phi\left(w, x_{0}\right) . \tag{4.15}
\end{align*}
$$

It follows from the definition of w and (4.15) that $p=w$. This implies that $\omega\left(\left\{x_{n}\right\}\right)$ is a singleton and $\phi\left(x_{n_{k}}, x_{0}\right) \rightarrow \phi\left(w, x_{0}\right)$. Therefore

$$
\begin{aligned}
0 & =\lim _{k \rightarrow \infty}\left(\phi\left(x_{n_{k}}, x_{0}\right)-\phi\left(w, x_{0}\right)\right) \\
& =\lim _{k \rightarrow \infty}\left(\left\|x_{n_{k}}\right\|^{2}-\|w\|^{2}-2\left\langle x_{n_{k}}-w, J x_{0}\right\rangle\right) \\
& =\lim _{k \rightarrow \infty}\left\|x_{n_{k}}\right\|^{2}-\|w\|^{2},
\end{aligned}
$$

that is,

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|x_{n_{k}}\right\|^{2}=\|w\|^{2} \tag{4.16}
\end{equation*}
$$

Since E is uniformly convex, it has the Kadec-Klee property. It follows from (4.16) and $x_{n_{k}} \rightharpoonup w$ that $x_{n_{k}} \rightarrow w=\Pi_{F} x_{0}$. Since $\omega\left(x_{n}\right)$ is a singleton, we have $x_{n} \rightarrow$ $\Pi_{F} x_{0}$.

The following theorem can be obtained by Theorem 4.1.
Theorem 4.2. Let E be a uniformly smooth and uniformly convex Banach space, C a nonempty closed convex subset of E. Let A be an α-inverse strongly monotone operator of C into $E^{*}, f: C \times C \rightarrow \mathbb{R}$ a bifunction satisfying $\left(A_{1}\right)-\left(A_{4}\right)$ and $\left\{S_{i}\right\}_{i=0}^{\infty}$ an infinite family of relatively nonexpansive mappings of C into itself such that $F:=\bigcap_{i=0}^{\infty} F\left(S_{i}\right) \cap E P \neq \emptyset$. Let $\left\{\lambda_{n, i}\right\}_{i=0}^{n} \subset[0,1)$ be a sequence real numbers such that $\sum_{i=0}^{n} \lambda_{n, i}=1$ for all $n \geq 0$ and $\lim _{n \rightarrow \infty} \lambda_{n, i}>0$ for each $i \geq 0$, and V_{n} the mapping defined by (2.3). Let $\left\{x_{n}\right\}$ be the sequence generated by

$$
\left\{\begin{array}{l}
x_{0} \in C \tag{4.17}\\
y_{n}=V_{n} x_{n}, \\
u_{n} \in K_{\gamma_{n}} y_{n}, \text { that is, } \\
\quad f\left(u_{n}, y\right)+\left\langle A u_{n}, y-u_{n}\right\rangle+\frac{1}{\gamma_{n}}\left\langle y-u_{n}, J u_{n}-J y_{n}\right\rangle \geq 0 \text { for all } y \in C \\
C_{n}=\left\{z \in C: \phi\left(z, u_{n}\right) \leq \phi\left(z, x_{n}\right)\right\} \\
Q_{n}=\left\{z \in C:\left\langle x_{n}-z, J x_{0}-J x_{n}\right\rangle \geq 0\right\} \\
x_{n+1}=\Pi_{C_{n} \cap Q_{n}} x_{0}
\end{array}\right.
$$

for $n \geq 0$, where $\Pi_{C_{n} \cap Q_{n}}$ is the generalized projection of E onto $C_{n} \cap Q_{n}$ and $\left\{\gamma_{n}\right\} \subset[r, \infty)$ for some $r>0$. Then $\left\{x_{n}\right\}$ converges strongly to $\Pi_{F} x_{0}$, where Π_{F} is the generalized projection of E onto F.

Proof. Let $g\left(u_{n}, y\right)=f\left(u_{n}, y\right)+\left\langle A u_{n}, y-u_{n}\right\rangle$. By Propositions 2.11 and 2.12, (4.17) is equivalent to (4.1) in Theorem 4.1. Therefore, the conclusion of Theorem 4.2 can be deduced from Theorem 4.1.

References

[1] Ya. I. Alber, Metric and generalized projection operators in Banach spaces: properties and applications, in: Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, Lecture Notes Pure Appl. Math. 178 Marcel Dekker, New York, 1996, 15-50.
[2] K. Aoyama, F. Kohsaka, W. Takahashi, Strongly relatively nonexpansive sequences in Banach spaces and applications, J. Fixed Point Theory Appl. 5 (2009) 201-225.
[3] J. B. Baillon, G. Haddad, Quelques propriétés des opérateurs angle-bornés et n-cycliquement monotones, Israel J. Math. 26 (1977) 137-150.
[4] S.-S. Chang, H. W. J. Lee, C. K. Chan, A new hybrid method for solving a generalized equilibrium problem, solving a variational inequality problem and obtaining common fixed points in Banach spaces, with applications, Nonlinear Anal. 73 (2010) 2260-2270.
[5] I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Kluwer, Dordrecht, 1990.
[6] H. Iiduka, W. Takahashi, Weak convergence of a projection algorithm for variational inequalities in a Banach space, J. Math. Anal. Appl. 339 (2008) 668-679.
[7] S. Kamimura, W. Takahashi, Strong convergence of a proximal-type algorithm in a Banach space, SIAM J. Optim. 13 (2002) 938-945.
[8] Y. Kimura, W. Takahashi, Weak convergence to common fixed points of countable nonexpansive mappings and its applications, J. Korean Math. Soc. 38 (2001) 1275-1284.
[9] P. K. F. Kuhfittig, Common fixed points of nonexpansive mappings by iteration, Pacific J. Math. 97 (1981) 137-139.
[10] S. Matsushita, K. Nakajo, W. Takahashi, Strong convergence theorems obtained by a generalized projections hybrid method for families of mappings in Banach spaces, Nonlinear Anal. 73 (2010) 1466-1480.
[11] S. Matsushita, W. Takahashi, A strong convergence theorem for relatively nonexpansive mappings in a Banach space, J. Approx. Theory 134 (2005) 257-266.
[12] S. Reich, A weak convergence theorem for the alternating method with Bregman distances, in: Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, Lecture Notes Pure Appl. Math. 178, Marcel Dekker, New York, 1996, 313-318.
[13] K. Shimoji, W. Takahashi, Strong convergence to common fixed points of infinite nonexpansive mappings and applications, Taiwanese J. Math. 5 (2001) 387-404.
[14] A. Tada, W. Takahashi, Weak and strong convergence theorems for a nonexpansive mapping and an equilibrium problem, J. Optim. Theory Appl. 133 (2007) 359-370.
[15] S. Takahashi, W. Takahashi, Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space, Nonlinear Anal. 69 (2008) 1025-1033.
[16] W. Takahashi, Weak and strong convergence theorems for families of nonexpansive mappings and their applications, Ann. Univ. Mariae Curie-Sklodowska Sect. A 51 (1997) 277-292.
[17] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.
[18] W. Takahashi, K. Shimoji, Convergence theorems for nonexpansive mappings and feasibility problems, Math. Comput. Modelling 32 (2000) 1463-1471.
[19] W. Takahashi, K. Zembayashi, Strong and weak convergence theorems for equilibrium problems and relatively nonexpansive mappings in Banach spaces, Nonlinear Anal. 70 (2009) 45-57.
[20] H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16 (1991) 11271138.

Current address: Department of Mathematics, Graduate School of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan

E-mail address: tomizawa@gug.math.chuo-u.ac.jp

[^0]: 2010 Mathematics Subject Classification. 47H09, 47J25.
 Key words and phrases. Generalized equilibrium problem, relatively nonexpansive mapping, W -mapping, convex combination.

