
CHUO MATH NO.98(2012)

DEPARTMENT OF MATHEMATICS
CHUO UNIVERSITY

BUNKYOKU TOKYO JAPAN

STRONG CONVERGENCE THEOREMS 
FOR GENERALIZED EQUILIBRIUM PROBLEMS
AND RELATIVELY NONEXPANSIVE MAPPINGS 

IN BANACH SPACES

by
YUKINO  TOMIZAWA

NOV.28 , 2012

DEPARTMENT OF MATHEMATICS

BUNKYOKU TOKYO JAPAN



STRONG CONVERGENCE THEOREMS

FOR GENERALIZED EQUILIBRIUM PROBLEMS

AND RELATIVELY NONEXPANSIVE MAPPINGS

IN BANACH SPACES

YUKINO TOMIZAWA

Abstract. The purpose of this paper is to prove strong convergence theorems
for finding a common element of the set of solutions of a generalized equilibrium
problem and the set of common fixed points of infinite relatively nonexpansive

mappings in Banach spaces.

1. Introduction

Throughout this paper, we denote by � the set of all real numbers. Let E be a
real Banach space with a norm ∥·∥, E∗ the dual space of E, ⟨·, ·⟩ the pairing between
E and E∗ and C a nonempty closed convex subset of E. Let f : C × C → � be
a bifunction and A a nonlinear operator of C into E∗. The generalized equilibrium
problem is finding u ∈ C such that

f(u, y) + ⟨Au, y − u⟩ ≥ 0 (1.1)

for all y ∈ C. The set of solutions of (1.1) is denoted by EP, that is,

EP = {u ∈ C : f(u, y) + ⟨Au, y − u⟩ ≥ 0, ∀y ∈ C}.
If A = 0, then the problem (1.1) is equivalent to that of finding a point u ∈ C such
that

f(u, y) ≥ 0 (1.2)

for all y ∈ C which is called the equilibrium problem. The set of solutions of (1.2) is
denoted by EP (f). If f = 0, then the problem (1.1) is equivalent to that of finding
a point u ∈ C such that

⟨Au, y − u⟩ ≥ 0 (1.3)

for all y ∈ C which is called the variational inequality. The set of solutions of (1.3) is
denoted by V I(C,A). The problem (1.1) is very general in the sense that it includes,
as special cases, optimization problems, variational inequalities, minimax problems,
numerous problems in physics, economics and others. Some methods have been
proposed for solving the generalized equilibrium problem, the equilibrium problem
and the variational inequality in Hilbert spaces (see [14, 15]) and in Banach spaces
([11, 19]).

Let C be a nonempty closed convex subset of a real Banach space E. A mapping
T of C into E is said to be nonexpansive if ∥Tx− Ty∥ ≤ ∥x− y∥ for all x, y ∈ C.
A point p ∈ C is called a fixed point of T if Tp = p. The set of fixed points of a
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mapping T is denoted by F (T ). A point p ∈ C is called an asymptotic fixed point
of T if there exists a sequence {xn} ⊂ C such that xn ⇀ p and ∥xn − Txn∥ → 0.

We denote by F̂ (T ) the set of all asymptotic fixed points of T. A mapping T is said

to be relatively nonexpansive if F̂ (T ) = F (T ) ̸= ∅ and ϕ(u, Tx) ≤ ϕ(u, x) for all
u ∈ F (T ) and x ∈ C. Let α > 0. A operator A of C into E∗ is said to be α-inverse
strongly monotone if

⟨x− y,Ax−Ay⟩ ≥ α∥Ax−Ay∥2

for all x, y ∈ C. It is known that if A is an α-inverse strongly monotone operator,
then A is 1/α-Lipschitzian.

Example ([3]). Let E be a Banach space, f a continuously Fréchet differentiable,
convex functional on E and ∇f the gradient of f. If ∇f is 1/α-Lipschitz continuous,
then ∇f is α-inverse strongly monotone.

In 2008, Takahashi and Takahashi [15] proved a strong convergense theorem for
finding an element of F (S) ∩ EP in a Hilbert space H, where S is a nonexpan-
sive mapping of a nonempty closed convex subset C ⊂ H into itself and A is an
inverse strongly monotone operator of C into H. Recently, Chang, Lee and Chan
[4] considered iterative methods for finding an element of F (S) ∩ F (T ) ∩ EP in a
certain Banach space E, where S and T are two relatively nonexpansive mappings
of a nonempty closed convex subset C ⊂ E into itself and A is an inverse strongly
monotone operator of C into E∗. On the other hand, Matsushita, Nakajo and Taka-
hashi [10] introduced iterative methods for finding an element of

∩∞
i=0 F (Si), where

Si is a relatively nonexpansive mapping of C into itself for all i ≥ 0.
In this paper, motivated by Chang et al. [4] and Matsushita et al. [10], we

introduce new iterative methods for finding an element of
∩∞

i=0 F (Si)∩EP, where
Si is a relatively nonexpansive mapping of C into itself for all i ≥ 0 and A is an
inverse-strongly monotone operator of C into E∗. In the next section, we recall some
basic notions and give the definition of W -mappings and convex combinations of
mappings. We present and prove our main results which are strong convergence
theorems of W -mappings and convex combinations in Section 3 and Section 4,
respectively.

2. Preliminaries

Throughout this paper, we assume that E is a real Banach space with a norm
∥·∥, E∗ is the dual space of E and ⟨·, ·⟩ is the pairing between E and E∗. We denote
strong convergence of a sequence {xn} to x by xn → x and weak convergence by
xn ⇀ x.

Let U = {x ∈ E : ∥x∥ = 1}. A Banach space E is said to be reflexive if the
natural mapping E → E∗∗ is surjective and we write E = E∗∗. A Banach space E
is said to be strictly convex if ∥x+ y∥/2 < 1 for all x, y ∈ U with x ̸= y. A Banach
space E is said to be uniformly convex if for each ϵ ∈ (0, 2], there exists δ > 0 such
that, for any x, y ∈ U,

∥x− y∥ ≥ ϵ implies

∥∥∥∥x+ y

2

∥∥∥∥ ≤ 1− δ.

It is well known that a uniformly convex Banach space is reflexive and strictly
convex.
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A Banach space is said to have the Kadec-Klee property if, for every sequence
{xn} ⊂ E, xn ⇀ x and ∥xn∥ → ∥x∥ together imply ∥xn − x∥ → 0. It is known
that a uniformly convex Banach space has the Kadec-Klee property. Let G = {g :
[0,∞) → [0,∞) : g(0) = 0, g is continuous, strictly increasing and convex}. We
have the following theorem for a uniformly convex Banach space.

Proposition 2.1 ([20]). A Banach space E is uniformly convex if and only if, for
every bounded subset B of E, there exists gB ∈ G such that

∥λx+ (1− λ)y∥2 ≤ λ∥x∥2 + (1− λ)∥y∥2 − λ(1− λ)gB(∥x− y∥)

for all x, y ∈ B and 0 ≤ λ ≤ 1.

A Banach space E is said to be smooth if there exists

lim
t→0

∥x+ ty∥ − ∥x∥
t

(2.1)

for all x, y ∈ U. In this case, the norm of E is said to be Gâteaux differentiable. A
Banach space E is said to be uniformly Gâteaux differentiable if for each y ∈ U,
the limit defined by (2.1) exists uniformly for x ∈ U. It is also said to be uniformly
smooth if the limit is attained uniformly for all x, y ∈ U. It is well known that
every uniformly smooth Banach space is reflexive and with uniformly Gâteaux
differentiable norm. It is also known that E∗ is uniformly convex if E is uniformly
smooth.

The mapping J of E into 2E
∗
defined by

J(x) = {x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥2 = ∥x∗∥2}

for x ∈ E is called the normalized duality mapping. By the Hahn-Banach theorem,
J(x) ̸= ∅ for each x ∈ E. The normalized duality mapping J has the following
properties:
(i) if E is smooth, then J is single-valued;
(ii) if E is strictly convex, then J is one-to-one and ⟨x− y, x∗ − y∗⟩ > 0 holds

for all (x, x∗), (y, y∗) ∈ J with x ̸= y;
(iii) if E is reflexive, then J is surjective;
(iv) if E is uniformly smooth, then J is uniformly norm-to-norm continuous

on each bounded subset of E.
Let E be a smooth, strictly convex and reflexive Banach space and C a nonempty

closed convex subset of E. Throughout this paper, the Lyapunov functional ϕ :
E × E → �+ is defined by

ϕ(x, y) = ∥x∥2 − 2⟨x, Jy⟩+ ∥y∥2

for all x, y ∈ E; see [1, 7, 12]. It is obvious that
(i) ϕ(x, y) = 0 if and only if x = y;
(ii) (∥x∥ − ∥y∥)2 ≤ ϕ(x, y) ≤ (∥x∥+ ∥y∥)2 for all x, y ∈ E.

Proposition 2.2 ([7]). Let E be a smooth and uniformly convex Banach space
and {xn}, {yn} ⊂ E two sequences. If ϕ(xn, yn) → 0 and either {xn} or {yn} is
bounded, then ∥xn − yn∥ → 0.

Let {xn} and {yn} be two bounded sequences in a smooth Banach space. It is
obvious from the definition of ϕ that ϕ(xn, yn) → 0 whenever ∥xn − yn∥ → 0. By
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this fact and Proposition 2.2, if {xn} and {yn} are two bounded sequences in a
uniformly smooth and uniformly convex Banach space, then

∥xn − yn∥ → 0 ⇔ ∥Jxn − Jyn∥ → 0 ⇔ ϕ(xn, yn) → 0.

Proposition 2.3 ([7]). Let E be a smooth, strictly convex and reflexive Banach
space, C a nonempty closed convex subset of E and x ∈ E. Then there exists a
unique element x0 ∈ C such that ϕ(x0, x) = miny∈C ϕ(y, x).

Let E be a smooth, strictly convex and reflexive Banach space and C a nonempty
closed convex subset of E. Following Alber [1], the generalized projection ΠC of E
onto C is defined by

ΠCx = arg min
y∈C

ϕ(y, x)

for all x ∈ E. We have the following results for generalized projections.

Proposition 2.4 ([1, 7]). Let E be a smooth Banach space, C a nonempty convex
subset of E, x ∈ E and x0 ∈ C. Then x0 = ΠCx if and only if ⟨y−x0, Jx0−Jx⟩ ≥ 0
for all y ∈ C.

Proposition 2.5 ([1, 7]). Let E be a smooth, strictly convex and reflexive Banach
space, C a nonempty closed convex subset of E and y ∈ E. Then

ϕ(x,ΠCy) + ϕ(ΠCy, y) ≤ ϕ(x, y)

for all x ∈ C.

We denoted by F (T ) the set of all fixed points of a mapping T.

Proposition 2.6 ([11]). Let E be a smooth and strictly convex Banach space, C a
nonempty closed convex subset of E and T a relatively nonexpansive mapping of C
into itself. Then F (T ) is closed and convex.

Let E be a smooth, strictly convex and reflexive Banach space, C a nonempty
closed convex subset of E, {Si}∞i=0 a family of mappings of C into inself and {βn,i :
0 ≤ i ≤ n}∞n=0 ⊂ [0, 1] a sequence of real numbers. For any n ≥ 0, let us define a
mapping Wn of C into itself as follows:

Un,n+1 = I,

Un,n = ΠCJ
−1
(
βn,nJ(SnUn,n+1) + (1− βn,n)J

)
,

Un,n−1 = ΠCJ
−1
(
βn,n−1J(Sn−1Un,n) + (1− βn,n−1)J

)
,

...

Un,i = ΠCJ
−1
(
βn,iJ(SiUn,i+1) + (1− βn,i)J

)
, (2.2)

...

Un,1 = ΠCJ
−1
(
βn,1J(S1Un,2) + (1− βn,1)J

)
,

Wn = Un,0 = J−1
(
βn,0J(S0Un,1) + (1− βn,0)J

)
,

where I is the identity mapping on C. Such a mapping Wn is called the W -
mapping generated by {Si}ni=0 and {βn,i}ni=0. We have the following result for the
W -mappings; see [9, 10, 16, 18].
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Proposition 2.7 ([10]). Let E be a uniformly smooth and strictly convex Banach
space, C a nonempty closed convex subset of E and {Si}ni=0 a family of relatively
nonexpansive mappings of C into itself such that

∩n
i=0 F (Si) ̸= ∅. Let {βn,i}ni=0 be

a sequence of real numbers such that 0 < βn,0 ≤ 1 and 0 < βn,i < 1 for every

1 ≤ i ≤ n. Let {Un,i}n+1
i=0 be a sequence defined by (2.2) and Wn the W -mapping

generated by {Si}ni=0 and {βn,i}ni=0. Then the following hold:
(i) F (Wn) =

∩n
i=0 F (Si);

(ii) for every 0 ≤ i ≤ n, x ∈ C and z ∈ F (Wn), ϕ(z, Un,ix) ≤ ϕ(z, x)
and ϕ(z, SiUn,i+1x) ≤ ϕ(z, x).

Let E be a smooth and uniformly convex, C a nonempty closed convex subset
of E, {Si}∞i=0 a family of relatively nonexpansive mappings of C into itself and
{λn,i : 0 ≤ i ≤ n}∞n=0 ⊂ [0, 1] a sequence of real numbers. For any n ≥ 0, let Vn be
a mapping of C into itself defined by

Vn = J−1
n∑

i=0

λn,iJSi. (2.3)

We have the following result for convex combinations of relatively nonexpansive
mappings.

Proposition 2.8 ([10]). Let E be a smooth and uniformly convex Banach space,
C a nonempty closed convex subset of E and {Si}∞i=0 a family of relatively nonex-
pansive mappings of C into itself such that

∩∞
i=0 F (Si) ̸= ∅. Let {λn,i}ni=0 ⊂ [0, 1]

such that
∑n

i=0 λn,i = 1 for all n ≥ 0 and limn→∞ λn,i > 0 for each i ≥ 0. Let Vn

be a mapping of C into itself defined by (2.3). Then the following hold:
(i)
∩∞

n=0 F (Vn) =
∩∞

i=0 F (Si);
(ii) for every n ≥ 0, x ∈ C and z ∈

∩∞
i=0 F (Si), ϕ(z, Vnx) ≤ ϕ(z, x).

We denoted by F̂ (T ) the set of all asymptotic fixed points of a mapping T. For
solving the equilibrium problem, let us assume that a bifunction f : C × C → �
satisfies the following conditions:
(A1) f(x, x) = 0 for all x ∈ C;
(A2) f is monotone, that is, f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;
(A3) f is upper-hemicontinuous, that is, lim supt↓0 f(x+ t(z − x), y) ≤ f(x, y)

for all x, y, z ∈ C;
(A4) the function y 7→ f(x, y) is convex and lower semicontinuous.

Proposition 2.9 ([19]). Let E be a uniformly smooth and strictly convex Banach
space, C a nonempty closed convex subset of E and f : C × C → � a bifunction
satisfying (A1)–(A4). For r > 0 and x ∈ E, define a mapping Tr of E into C as
follows:

Tr(x) = {u ∈ C : f(u, y) +
1

r
⟨y − u, Ju− Jx⟩ ≥ 0, ∀y ∈ C} (2.4)

for all x ∈ E. Then the following hold:
(i) Tr is single-valued;
(ii) Tr is a firmly nonexpansive-type mapping, that is,

⟨Trx− Try, JTrx− JTry⟩ ≤ ⟨Trx− Try, Jx− Jy⟩
for all x, y ∈ E;

(iii) F (Tr) = F̂ (Tr) = EP (f);
(iv) EP (f) is a closed convex set of C.
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Remark. It follows from Proposition 2.9 that the mapping Tr defined by (2.4) is
relatively nonexpansive. Indeed, by Proposition 2.9 (ii), we have

⟨Trx− Try, JTrx− JTry⟩ ≤ ⟨Trx− Try, Jx− Jy⟩
for all x, y ∈ C. Moreover, we obtain

ϕ(Trx, Try) + ϕ(Try, Trx)

= 2∥Trx∥2 − 2⟨Trx, JTry⟩ − 2⟨Try, JTrx⟩+ 2∥Try∥2

= 2⟨Trx, JTrx− JTry⟩+ 2⟨Try, JTry − JTrx⟩
= 2⟨Trx− Try, JTrx− JTry⟩

and

ϕ(Trx, y) + ϕ(Try, x)− ϕ(Trx, x)− ϕ(Try, y)

= ∥Trx∥2 − 2⟨Trx, Jy⟩+ ∥y∥2 + ∥Try∥2 − 2⟨Try, Jx⟩+ ∥x∥2

− ∥Trx∥2 + 2⟨Trx, Jx⟩ − ∥x∥2 − ∥Try∥2 + 2⟨Try, Jy⟩ − ∥y∥2

= 2⟨Trx, Jx− Jy⟩ − 2⟨Try, Jx− Jy⟩
= 2⟨Trx− Try, Jx− Jy⟩.

Hence

ϕ(Trx, Try) + ϕ(Try, Trx) ≤ ϕ(Trx, y) + ϕ(Try, x)− ϕ(Trx, x)− ϕ(Try, y)

≤ ϕ(Trx, y) + ϕ(Try, x)

for all x, y ∈ C. Taking y = p ∈ F (Tr), we obtain

ϕ(p, Trx) ≤ ϕ(p, x).

Thus, by Proposition 2.9 (iii), this implies that Tr is relatively nonexpansive.

Proposition 2.10 ([19]). Let E be a smooth, strictly convex and reflexive Banach
space, C a nonempty closed convex subset of E, f : C × C → � a bifunction
satisfying (A1)–(A4) and r > 0. Let Tr be the mapping defined by (2.4). Then

ϕ(p, Trx) + ϕ(Trx, x) ≤ ϕ(p, x)

for all p ∈ F (Tr) and x ∈ E.

For solving the generalized equilibrium problem, let us assume that a nonlinear
operator A of C into E∗ is an α-inverse strongly monotone and a bifunction f :
C × C → � satisfies the conditions (A1)–(A4).

Proposition 2.11 ([4]). Let E be a smooth, strictly convex and reflexive Banach
space, C a nonempty closed convex subset of E and A an α-inverse strongly mono-
tone operator of C into E∗. Let f : C×C → � be a bifunction satisfying (A1)–(A4)
and g : C × C → � a bifunction defined by

g(x, y) = f(x, y) + ⟨Ax, y − x⟩
for all x, y ∈ C. Let r > 0 and x ∈ E. Then g satisfies (A1)–(A4) and there exists
u ∈ C such that

g(u, y) +
1

r
⟨y − u, Ju− Jx⟩ ≥ 0

for all y ∈ C.

Propositions 2.9 and 2.10 can obtain the following proposition.
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Proposition 2.12 ([4]). Let E be a uniformly smooth and strictly convex Banach
space, C a nonempty closed convex subset of E, A an α-inverse strongly monotone
operator of C into E∗ and f : C × C → � a bifunction satisfying (A1)–(A4). For
any r > 0 and x ∈ E, define a mapping Kr of E into C as follows:

Kr(x) = {u ∈ C : f(u, y) + ⟨Au, y − u⟩+ 1

r
⟨y − u, Ju− Jx⟩ ≥ 0, ∀y ∈ C}

for all x ∈ E. Then the following hold:
(i) Kr is single-valued;
(ii) Kr is a firmly nonexpansive-type mapping, that is,

⟨Krx−Kry, JKrx− JKry⟩ ≤ ⟨Krx−Kry, Jx− Jy⟩

for all x, y ∈ E;
(iii) F (Kr) = F̂ (Kr) = EP ;
(iv) EP is a closed convex set of C;
(v) ϕ(p,Krx) + ϕ(Krx, x) ≤ ϕ(p, x) for all p ∈ F (Kr).
Moreover, the mapping Kr is relatively nonexpansive.

3. Strong convergence theorems of W -mappings

In this section, we prove a strong convergence theorem ofW -mappings for finding
a common element of the set of solutions for a generalized equilibrium problem and
the set of common fixed points of infinite relatively nonexpansive mappings in a
Banach space.

Theorem 3.1. Let E be a uniformly smooth and uniformly convex Banach space,
C a nonempty closed convex subset of E. Let f : C×C → � a bifunction satisfying
(A1)–(A4) and {Si}∞i=0 an infinite family of relatively nonexpansive mappings of
C into itself such that F :=

∩∞
i=0 F (Si) ∩ EP (f) ̸= ∅. Let {βn,i}ni=0 ⊂ (0, 1) be a

sequence real numbers such that lim infn→∞ βn,i(1− βn,i) > 0, Wn the W -mapping
generated by {Si}ni=0 and {βn,i}ni=0. Let {xn} be the sequence generated by

x0 ∈ C,

yn = Wnxn,

un ∈ Tγnyn, that is, f(un, y) +
1
γn

⟨y − un, Jun − Jyn⟩ ≥ 0 for all y ∈ C,

Cn = {z ∈ C : ϕ(z, un) ≤ ϕ(z, xn)};
Qn = {z ∈ C : ⟨xn − z, Jx0 − Jxn⟩ ≥ 0};
xn+1 = ΠCn∩Qnx0

(3.1)

for n ≥ 0, where ΠCn∩Qn
is the generalized projection of E onto Cn ∩ Qn and

{γn} ⊂ [r,∞) for some r > 0. Then {xn} converges strongly to ΠFx0, where ΠF is
the generalized projection of E onto F .

Proof. First we prove that Cn ∩ Qn ⊂ C is closed convex subset for all n ≥ 0. In
fact, it is obvious that Cn is closed, and Qn is closed and convex for all n ≥ 0. It
follows that Cn is convex for all n ≥ 0 because ϕ(z, un) ≤ ϕ(z, xn) is equivalent to

2⟨z, Jxn − Jun⟩ ≤ ∥xn∥2 − ∥un∥2.

Thus Cn ∩Qn is closed and convex for all n ≥ 0.
Next we prove that F ⊂ Cn ∩ Qn for all n ≥ 0. Let un = Tγnyn for all n ≥ 0

and u ∈ F. It follows from Proposition 2.7 (i) that u ∈ F (Wn) for all n ≥ 0. We
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obtain Tγn is relatively nonexpansive by Proposition 2.9. Since Si is also relatively
nonexpansive for all n ≥ 0, by Proposition 2.7 (ii), we have

ϕ(u, un) = ϕ(u, Tγnyn) ≤ ϕ(u, yn) = ϕ(u,Wnxn)

= ϕ
(
u, J−1

(
βn,0J(S0Un,1xn) + (1− βn,0)Jxn

))
= ∥u∥2 − 2⟨u, βn,0J(S0Un,1xn) + (1− βn,0)Jxn⟩

+ ∥βn,0J(S0Un,1xn) + (1− βn,0)Jxn∥2

≤ ∥u∥2 − 2βn,0⟨u, J(S0Un,1xn)⟩ − 2(1− βn,0)⟨u, Jxn⟩

+ βn,0∥S0Un,1xn∥2 + (1− βn,0)∥xn∥2

= βn,0ϕ(u, S0Un,1xn) + (1− βn,0)ϕ(u, xn)

≤ βn,0ϕ(u, xn) + (1− βn,0)ϕ(u, xn) = ϕ(u, xn). (3.2)

This implies that u ∈ Cn and so F ⊂ Cn for all n ≥ 0. By induction, now we prove
that F ⊂ Cn ∩ Qn for all n ≥ 0. In fact, since Q0 = C, we have F ⊂ C0 ∩ Q0.
Suppose that F ⊂ Ck ∩Qk for some k ≥ 0. Then there exists xk+1 ∈ Ck ∩Qk such
that xk+1 = ΠCk∩Qk

x0. By the definition of xk+1, we have

⟨xk+1 − z, Jx0 − Jxk+1⟩ ≥ 0 (3.3)

for all z ∈ Ck ∩Qk. Since F ⊂ Ck ∩Qk, we obtain (3.3) for all z ∈ F. This shows
that z ∈ Qk+1, and so F ⊂ Qk+1. Therefore F ⊂ Cn ∩Qn for all n ≥ 0.

We prove that {xn} is bounded. By the definition of Qn and Proposition 2.4,
we have xn = ΠQnx0 for all n ≥ 0. Hence, by Proposition 2.5,

ϕ(xn, x0) = ϕ(ΠQnx0, x0) ≤ ϕ(u, x0)− ϕ(u,ΠQnx0) ≤ ϕ(u, x0)

for all u ∈ F ⊂ Qn and n ≥ 0. This implies that {ϕ(xn, x0)} is bounded, and so
{xn} and {un} are bounded in C.

Next we prove that ∥xn − un∥ → 0 and ∥Jxn − Jun∥ → 0. Since xn = ΠQnx0

and xn+1 = ΠCn∩Qnx0, we have ϕ(xn, x0) ≤ ϕ(xn+1, x0) for all n ≥ 0. This implies
that {ϕ(xn, x0)} is nondecreasing, and so there exists the limit limn→∞ ϕ(xn, x0).
By Proposition 2.5, we have

ϕ(xn+1, xn) = ϕ(xn+1,ΠQnx0)

≤ ϕ(xn+1, x0)− ϕ(ΠQnx0, x0)

= ϕ(xn+1, x0)− ϕ(xn, x0)

for all n ≥ 0. This implies that

lim
n→∞

ϕ(xn+1, xn) = 0. (3.4)

Since xn+1 = ΠCn∩Qnx0 ∈ Cn, by the definition of Cn, we obtain

ϕ(xn+1, un) ≤ ϕ(xn+1, xn). (3.5)

Since E is smooth and uniformly convex, from (3.4), (3.5) and Proposition 2.2 we
have

lim
n→∞

∥xn+1 − un∥ = lim
n→∞

∥xn+1 − xn∥ = 0

and

lim
n→∞

∥xn − un∥ = 0. (3.6)
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Since J is uniformly continuous on any bounded subset of E, we obtain

lim
n→∞

∥Jxn − Jun∥ = 0. (3.7)

Next we prove that ω({xn}) ⊂ F, where ω({xn}) is the set consisting all of the
weak limits points of {xn}. In fact, for any p ∈ ω({xn}), there exists a subsequence
{xnk

} ⊂ {xn} such that xnk
⇀ p. We shall prove that p ∈

∩∞
i=0 F (Si). We have

ϕ(u, xn)− ϕ(u, un) = ∥xn∥2 − ∥un∥2 + 2⟨u, Jun − Jxn⟩
≤
∣∣∥xn∥ − ∥un∥

∣∣(∥xn∥+ ∥un∥) + 2∥u∥∥Jun − Jxn∥
≤ ∥xn − un∥(∥xn∥+ ∥un∥) + 2∥u∥∥Jun − Jxn∥ (3.8)

for all n ≥ 0. From (3.6) and (3.7) we obtain

lim
n→∞

(
ϕ(u, xn)− ϕ(u, un)

)
= 0. (3.9)

By Proposition 2.7 (ii), we have

ϕ(u,Un,ixn) ≤ ϕ(u, xn) and ϕ(u, SiUn,i+1xn) ≤ ϕ(u,Un,i+1xn) ≤ ϕ(u, xn)

for each 0 ≤ i ≤ n. Thus {SiUn,i+1xn}n≥i and {Un,ixn}n≥i are bounded sequences
in C for all i ≥ 0. By Propositions 2.1, 2.5 and 2.7 (ii), we have

ϕ(u,Un,ixn) ≤ ϕ
(
u, J−1

(
βn,iJ(SiUn,i+1xn) + (1− βn,i)Jxn

))
− ϕ

(
Un,ixn, J

−1
(
βn,iJ(SiUn,i+1xn) + (1− βn,i)Jxn

))
= ∥u∥2 − 2⟨u, βn,iJ(SiUn,i+1xn) + (1− βn,i)Jxn⟩

+ ∥βn,iJ(SiUn,i+1xn) + (1− βn,i)Jxn∥2

− ϕ
(
Un,ixn, J

−1
(
βn,iJ(SiUn,i+1xn) + (1− βn,i)Jxn

))
= ∥u∥2 − 2⟨u, βn,iJ(SiUn,i+1xn) + (1− βn,i)Jxn⟩

+ βn,i∥SiUn,i+1xn∥2 + (1− βn,i)∥xn∥2

− βn,i(1− βn,i)g(∥J(SiUn,i+1xn)− Jxn∥)

− ϕ
(
Un,ixn, J

−1
(
βn,iJ(SiUn,i+1xn) + (1− βn,i)Jxn

))
= βn,iϕ(u, SiUn,i+1xn) + (1− βn,i)ϕ(u, xn)

− βn,i(1− βn,i)g(∥J(SiUn,i+1xn)− Jxn∥)

− ϕ
(
Un,ixn, J

−1
(
βn,iJ(SiUn,i+1xn) + (1− βn,i)Jxn

))
≤ βn,iϕ(u,Un,i+1xn) + (1− βn,i)ϕ(u, xn)

− βn,i(1− βn,i)g(∥J(SiUn,i+1xn)− Jxn∥)

− ϕ
(
Un,ixn, J

−1
(
βn,iJ(SiUn,i+1xn) + (1− βn,i)Jxn

))
for some g ∈ G and for all 1 ≤ i ≤ n. This implies that

ϕ(u, un) ≤ ϕ(u, yn) = ϕ(u,Wnxn) = ϕ(u,Un,0xn)

= ∥u∥2 − 2βn,0⟨u, J(S0Un,1xn)⟩ − 2(1− βn,0)⟨u, Jxn⟩

+ ∥βn,0J(S0Un,1xn) + (1− βn,0)Jxn∥2

≤ βn,0ϕ(u,Un,1xn) + (1− βn,0)ϕ(u, xn)



10 Y. TOMIZAWA

− βn,0(1− βn,0)g(∥J(S0Un,1xn)− Jxn∥)

≤ βn,0

{
βn,1ϕ(u,Un,2xn) + (1− βn,1)ϕ(u, xn)

− βn,1(1− βn,1)g(∥J(S1Un,2xn)− Jxn∥)

− ϕ
(
Un,1xn, J

−1
(
βn,1J(S1Un,2xn) + (1− βn,1)Jxn

))}
+ (1− βn,0)ϕ(u, xn)− βn,0(1− βn,0)g(∥J(S0Un,1xn)− Jxn∥)

≤ · · ·
≤ ϕ(u, xn)− βn,0(1− βn,0)g(∥J(S0Un,1xn)− Jxn∥)

− βn,0βn,1(1− βn,1)g(∥J(S1Un,2xn)− Jxn∥)− · · ·
− βn,0βn,1 · · ·βn,n(1− βn,n)g(∥J(SnUn,n+1xn)− Jxn∥)

− βn,0ϕ
(
Un,1xn, J

−1
(
βn,1J(S1Un,2xn) +

(
1− βn,1)Jxn

))
− · · ·

− βn,0βn,1 · · ·βn,n−1

× ϕ
(
Un,nxn, J

−1
(
βn,nJ(SnUn,n+1xn) +

(
1− βn,n)Jxn

))
(3.10)

for all n ≥ 0. From (3.9), (3.10) and lim infn→∞ βn,i(1− βn,i) > 0 we obtain

lim
n→∞

g(∥J(SiUn,i+1xn)− Jxn∥) = 0,

lim
n→∞

ϕ
(
Un,i+1xn, J

−1
(
βn,i+1J(Si+1Un,i+2xn) + (1− βn,i+1)Jxn

))
= 0

for all i ≥ 0. By the definition of g and Proposition 2.2, we have

lim
n→∞

∥J(SiUn,i+1xn)− Jxn∥ = 0, (3.11)

lim
n→∞

∥∥Un,i+1xn − J−1
(
βn,i+1J(Si+1Un,i+2xn) + (1− βn,i+1)Jxn

)∥∥ = 0. (3.12)

From (3.11) we obtain

lim
n→∞

∥βn,iJ(SiUn,i+1xn) + (1− βn,i)Jxn − Jxn∥

= lim
n→∞

βn,i∥J(SiUn,i+1xn)− Jxn∥ = 0. (3.13)

Since J−1 is also norm-to-norm continuous on bounded sets, from (3.11) and (3.13)
we have

lim
n→∞

∥SiUn,i+1xn − xn∥ = 0, (3.14)

lim
n→∞

∥∥J−1
(
βn,iJ(SiUn,i+1xn) + (1− βn,i)Jxn

)
− xn

∥∥ = 0 (3.15)

for all i ≥ 0. From (3.12) and (3.15) we obtain

lim
n→∞

∥Un,i+1xn − xn∥ = 0 (3.16)

for all i ≥ 0. Since xnk
⇀ p, we have Unk,i+1xnk

⇀ p for all i ≥ 0. From (3.14) and
(3.16) we obtain

lim
n→∞

∥SiUn,i+1xn − Un,i+1xn∥ = 0

for each i ≥ 0. Since Unk,i+1xnk
⇀ p and Si is relatively nonexpansive, we have

p ∈ F̂ (Si) = F (Si) for all i ≥ 0. Hence p ∈
∩∞

i=0 F (Si). Now we shall prove that
p ∈ EP (f). From (3.2), (3.9) and Proposition 2.10 we have

ϕ(un, yn) = ϕ(Tγnyn, yn) ≤ ϕ(u, yn)− ϕ(u, Tγnyn)
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≤ ϕ(u, xn)− ϕ(u, un) → 0.

It follows from Proposition 2.2 that

lim
n→∞

∥un − yn∥ = 0. (3.17)

Since xnk
⇀ p, it follows from (3.6) and (3.17) that unk

⇀ p and ynk
⇀ p.

Since J is uniformly continuous on any bounded set of E, from (3.17) we obtain
∥Jun − Jyn∥ → 0. By the assumption that γn ≥ r, we have

lim
n→∞

1

γn
∥Jun − Jyn∥ = 0. (3.18)

Since un = Tγnyn, we obtain

f(un, y) +
1

γn
⟨y − un, Jun − Jyn⟩ ≥ 0 (3.19)

for all y ∈ C. Replacing n by nk in (3.19), from (A2) we deduce

1

γnk

⟨y − unk
, Junk

− Jynk
⟩ ≥ −f(unk

, y) ≥ f(y, unk
) (3.20)

for all y ∈ C. Since y 7→ f(x, y) is convex and lower semicontinuous, it is also
weakly lower semicontinuous. Letting nk → ∞ in (3.20), from (3.18) and (A4) we
have f(y, p) ≤ 0 for all y ∈ C. For t ∈ (0, 1] and y ∈ C, letting yt = ty + (1 − t)p,
then yt ∈ C and f(yt, p) ≤ 0. From (A1) and (A4) we obtain

0 = f(yt, yt) ≤ tf(yt, y) + (1− t)f(yt, p) ≤ tf(yt, y).

Dividing by t, we have f(yt, y) ≥ 0 for all y ∈ C. Letting t ↓ 0, from (A3) we obtain
f(p, y) ≥ 0. Therefore p ∈ EP (f), and so p ∈ F. This shows that ω({xn}) ⊂ F.

Finally, we have prove that ω({xn}) is a singleton and xn → ΠFx0. Let w =
ΠFx0. Since w ∈ F ⊂ Cn ∩Qn and xn+1 = ΠCn∩Qnx0, we have

ϕ(xn+1, x0) ≤ ϕ(w, x0)

for all n ≥ 0. Since the norm is weakly lower semicontinuous, this implies that

ϕ(p, x0) = ∥p∥2 − 2⟨p, Jx0⟩+ ∥x0∥2

≤ lim inf
k→∞

(∥xnk
∥2 − 2⟨xnk

, Jx0⟩+ ∥x0∥2)

= lim inf
k→∞

ϕ(xnk
, x0)

≤ lim sup
k→∞

ϕ(xnk
, x0) ≤ ϕ(w, x0). (3.21)

It follows from the definition of w and (3.21) that p = w. This implies that ω({xn})
is a singleton and ϕ(xnk

, x0) → ϕ(w, x0). Therefore

0 = lim
k→∞

(
ϕ(xnk

, x0)− ϕ(w, x0)
)

= lim
k→∞

(∥xnk
∥2 − ∥w∥2 − 2⟨xnk

− w, Jx0⟩)

= lim
k→∞

∥xnk
∥2 − ∥w∥2,

that is,

lim
k→∞

∥xnk
∥2 = ∥w∥2. (3.22)
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Since E is uniformly convex, it has the Kadec-Klee property. It follows from (3.22)
and xnk

⇀ w that xnk
→ w = ΠFx0. Since ω(xn) is a singleton, we have xn →

ΠFx0. �

The following theorems can be obtained by Theorem 3.1.

Theorem 3.2 ([19]). Let E be a uniformly smooth and uniformly convex Banach
space, C a nonempty closed convex subset of E. Let f : C × C → � a bifunction
satisfying (A1)–(A4) and S a relatively nonexpansive mapping from C into itself
such that F := F (S) ∩ EP (f) ̸= ∅. Let {αn} ⊂ [0, 1] be a sequence real numbers
such that limn→∞ αn(1− αn) > 0. Let {xn} be the sequence generated by

x0 ∈ C,

yn = J−1(αnJSxn + (1− αn)Jxn),

un ∈ C such that f(un, y) +
1
γn

⟨y − un, Jun − Jyn⟩ ≥ 0 for all y ∈ C,

Cn = {z ∈ C : ϕ(z, un) ≤ ϕ(z, xn)};
Qn = {z ∈ C : ⟨xn − z, Jx0 − Jxn⟩ ≥ 0};
xn+1 = ΠCn∩Qnx0

(3.23)

for n ≥ 0, where ΠCn∩Qn is the generalized projection of E onto Cn ∩ Qn and
{γn} ⊂ [r,∞) for some r > 0. Then {xn} converges strongly to ΠFx0, where ΠF is
the generalized projection of E onto F .

Proof. Let Sn = S, βn,0 = αn and {βn,i}ni=1 = {0} for all n ≥ 0 in Theorem 3.1.
This shows that (3.1) is equivalent to (3.23). Therefore, the conclusion of Theorem
3.2 can be deduced from Theorem 3.1. �

Theorem 3.3. Let E be a uniformly smooth and uniformly convex Banach space,
C a nonempty closed convex subset of E. Let A be an α-inverse strongly monotone
operator of C into E∗, f : C × C → � a bifunction satisfying (A1)–(A4) and
{Si}∞i=0 an infinite family of relatively nonexpansive mappings of C into itself such
that F :=

∩∞
i=0 F (Si) ∩ EP ̸= ∅. Let {βn,i}ni=0 be a sequence real numbers such

that lim infn→∞ βn,i(1 − βn,i) > 0, Wn the W -mapping generated by {Si}ni=0 and
{βn,i}ni=0. Let {xn} be the sequence generated by

x0 ∈ C,

yn = Wnxn,

un ∈ Kγnyn, that is,

f(un, y) + ⟨Aun, y − un⟩+ 1
γn

⟨y − un, Jun − Jyn⟩ ≥ 0 for all y ∈ C,

Cn = {z ∈ C : ϕ(z, un) ≤ ϕ(z, xn)};
Qn = {z ∈ C : ⟨xn − z, Jx0 − Jxn⟩ ≥ 0};
xn+1 = ΠCn∩Qnx0

(3.24)

for n ≥ 0, where ΠCn∩Qn is the generalized projection of E onto Cn ∩ Qn and
{γn} ⊂ [r,∞) for some r > 0. Then {xn} converges strongly to ΠFx0, where ΠF is
the generalized projection of E onto F .

Proof. Let g(un, y) = f(un, y)+⟨Aun, y−un⟩. By Propositions 2.11 and 2.12, (3.24)
is equivalent to (3.1) in Theorem 3.1. Therefore, the conclusion of Theorem 3.3 can
be deduced from Theorem 3.1. �
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4. Strong convergence theorems of convex combinations

In this section, we prove strong convergence theorems of convex combinations
for finding a common element of the set of solutions for a generalized equilibrium
problem and the set of common fixed points of infinite relatively nonexpansive
mappings in a Banach space.

Theorem 4.1. Let E be a uniformly smooth and uniformly convex Banach space, C
a nonempty closed convex subset of E. Let f : C×C → � be a bifunction satisfying
(A1)–(A4) and {Si}∞i=0 an infinite family of relatively nonexpansive mappings of C
into itself such that F :=

∩∞
i=0 F (Si) ∩ EP (f) ̸= ∅. Let {λn,i}ni=0 ⊂ [0, 1) be a

sequence real numbers such that
∑n

i=0 λn,i = 1 for all n ≥ 0 and limn→∞ λn,i > 0
for each i ≥ 0, and Vn the mapping defined by (2.3). Let {xn} be the sequence
generated by

x0 ∈ C,

yn = Vnxn,

un ∈ Tγnyn, that is, f(un, y) +
1
γn

⟨y − un, Jun − Jyn⟩ ≥ 0 for all y ∈ C,

Cn = {z ∈ C : ϕ(z, un) ≤ ϕ(z, xn)};
Qn = {z ∈ C : ⟨xn − z, Jx0 − Jxn⟩ ≥ 0};
xn+1 = ΠCn∩Qnx0

(4.1)

for n ≥ 0, where ΠCn∩Qn is the generalized projection of E onto Cn ∩ Qn and
{γn} ⊂ [r,∞) for some r > 0. Then {xn} converges strongly to ΠFx0, where ΠF is
the generalized projection of E onto F .

Proof. First we prove that Cn ∩ Qn ⊂ C is closed convex subset for all n ≥ 0. In
fact, it is obvious that Cn is closed, and Qn is closed and convex for all n ≥ 0. It
follows that Cn is convex for all n ≥ 0 because ϕ(z, un) ≤ ϕ(z, xn) is equivalent to

2⟨z, Jxn − Jun⟩ ≤ ∥xn∥2 − ∥un∥2.

Thus Cn ∩Qn is closed and convex for all n ≥ 0.
Next we prove that F ⊂ Cn ∩ Qn for all n ≥ 0. Let un = Tγnyn for all n ≥ 0

and u ∈ F. It follows from Proposition 2.8 (i) and Proposition 2.9 (iii) that u ∈∩∞
n=0 F (Vn) ∩ F (Tγn). We have Tγn is relatively nonexpansive by Proposition 2.9.

By Proposition 2.8 (ii), we have

ϕ(u, un) = ϕ(u, Tγnyn) ≤ ϕ(u, yn) = ϕ(u, Vnxn) ≤ ϕ(u, xn). (4.2)

This implies that u ∈ Cn and so F ⊂ Cn for all n ≥ 0. By induction, now we prove
that F ⊂ Cn ∩ Qn for all n ≥ 0. In fact, since Q0 = C, we have F ⊂ C0 ∩ Q0.
Suppose that F ⊂ Ck ∩Qk for some k ≥ 0. Then there exists xk+1 ∈ Ck ∩Qk such
that xk+1 = ΠCk∩Qk

x0. By the definition of xk+1, we have

⟨xk+1 − z, Jx0 − Jxk+1⟩ ≥ 0 (4.3)

for all z ∈ Ck ∩ Qk. Since F ⊂ Ck ∩ Qk, we have (4.3) for all z ∈ F. This shows
that z ∈ Qk+1, and so F ⊂ Qk+1. Therefore F ⊂ Cn ∩Qn for all n ≥ 0.

Next we prove that {xn} is bounded. By the definition of Qn, we have xn =
ΠQnx0 for all n ≥ 0. Hence, by Proposition 2.5,

ϕ(xn, x0) = ϕ(ΠQnx0, x0) ≤ ϕ(u, x0)− ϕ(u,ΠQnx0) ≤ ϕ(u, x0)
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for all u ∈ F ⊂ Qn and n ≥ 0. This implies that {ϕ(xn, x0)} is bounded, and so
{xn} and {un} are bounded in C. Since xn+1 = ΠCn∩Qnx0 and xn = ΠQnx0, we
have

ϕ(xn, x0) ≤ ϕ(xn+1, x0)

for all n ≥ 0. This implies that {ϕ(xn, x0)} is nondecreasing, and so there exists
the limit limn→∞ ϕ(xn, x0). By Proposition 2.5, we deduce

ϕ(xn+1, xn) = ϕ(xn+1,ΠQnx0) ≤ ϕ(xn+1, x0)− ϕ(ΠQnx0, x0)

= ϕ(xn+1, x0)− ϕ(xn, x0)

for all n ≥ 0. This implies that

lim
n→∞

ϕ(xn+1, xn) = 0. (4.4)

Since xn+1 = ΠCn∩Qnx0 ∈ Cn, by the definition of Cn, we have

ϕ(xn+1, un) ≤ ϕ(xn+1, xn). (4.5)

Since E is smooth and uniformly convex, from (4.4), (4.5) and Proposition 2.2 we
obtain

lim
n→∞

∥xn+1 − un∥ = lim
n→∞

∥xn+1 − xn∥ = 0

and

lim
n→∞

∥xn − un∥ = 0. (4.6)

Since J is uniformly norm-to-norm continuous on bounded subsets, we have

lim
n→∞

∥Jxn − Jun∥ = 0. (4.7)

Next we prove that ∥Slxn − xn∥ → 0 for all l ≥ 0. By the definition of λn,i,
we have 1 − λn,l =

∑
i=0,1,...,n,i̸=l λn,i. For large enough n ≥ 0 and 0 ≤ l ≤ n,

Proposition 2.1 implies that

ϕ(u, un) ≤ ϕ(u, yn) = ϕ(u, Vnxn)

= ∥u∥2 − 2
n∑

i=0

λn,i⟨u, J(Sixn)⟩+

∥∥∥∥∥J−1
n∑

i=0

λn,iJ(Sixn)

∥∥∥∥∥
2

= ∥u∥2 − 2

n∑
i=0

λn,i⟨u, J(Sixn)⟩

+

∥∥∥∥λn,lJ(Slxn) + (1− λn,l)

∑
i=0,1,...,n,i̸=l λn,iJ(Sixn)

1− λn,l

∥∥∥∥2
≤ ∥u∥2 − 2

n∑
i=0

λn,i⟨u, J(Sixn)⟩+ λn,l∥Slxn∥2

+ (1− λn,l)

∥∥∥∥
∑

i=0,1,...,n,i̸=l λn,iJ(Sixn)

1− λn,l

∥∥∥∥2
− λn,l(1− λn,l)g

(∥∥∥∥J(Slxn)−
∑

i=0,1,...,n,i̸=l λn,iJ(Sixn)

1− λn,l

∥∥∥∥
)

= ∥u∥2 − 2
n∑

i=0

λn,i⟨u, J(Sixn)⟩+
n∑

i=0

λn,i∥Sixn∥2
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− λn,l(1− λn,l)g

(∥∥∥∥J(Slxn)−
∑

i=0,1,...,n,i̸=l λn,iJ(Sixn)

1− λn,l

∥∥∥∥
)

= ϕ(u, Sixn)− λn,l(1− λn,l)g

(∥∥∥∥J(Slxn)−
∑

i=0,1,...,n,i̸=l λn,iJ(Sixn)

1− λn,l

∥∥∥∥
)

≤ ϕ(u, xn)− λn,l(1− λn,l)g

(∥∥∥∥J(Slxn)−
∑

i=0,1,...,n,i̸=l λn,iJ(Sixn)

1− λn,l

∥∥∥∥
)

for some g ∈ G. Thus

λn,l(1− λn,l)g

(∥∥∥∥J(Slxn)−
∑

i=0,1,...,n,i̸=l λn,iJ(Sixn)

1− λn,l

∥∥∥∥
)

≤ ϕ(u, xn)− ϕ(u, un)

= ∥xn∥2 − ∥un∥2 + 2⟨u, Jun − Jxn⟩
≤ 2∥u∥ · ∥Jun − Jxn∥+ (∥xn∥+ ∥un∥)∥xn − un∥.

This implies that, together with (4.6) and (4.7),

lim
n→∞

∥∥∥∥J(Slxn)−
∑

i=0,1,...,n,i̸=l λn,iJ(Sixn)

1− λn,l

∥∥∥∥ = 0 (4.8)

for all l ≥ 0. From (4.2), (4.6), (4.7) and Proposition 2.10 we have

ϕ(un, yn) = ϕ(Tγnyn, yn)

≤ ϕ(u, yn)− ϕ(u, Tγnyn)

≤ ϕ(u, xn)− ϕ(u, un)

≤ ∥xn − un∥(∥xn∥+ ∥yn∥) + 2∥u∥∥Jun − Jxn∥ → 0.

This implies that

lim
n→∞

∥un − yn∥ = 0. (4.9)

From (4.6) and (4.9) we obtain

lim
n→∞

∥xn − yn∥ ≤ lim
n→∞

{∥xn − un∥+ ∥un − yn∥} = 0.

Since J is uniformly norm-to-norm continuous on bounded subsets, we have

lim
n→∞

∥Jxn − Jyn∥ = 0. (4.10)

Since

∥Jxn − J(Slxn)∥ ≤ ∥Jxn − J(Vnxn)∥+ ∥J(Slxn)− J(Vnxn)∥

= ∥Jxn − Jyn∥+

∥∥∥∥∥J(Slxn)−
n∑

i=0

λn,iJ(Sixn)

∥∥∥∥∥
= ∥Jxn − Jyn∥

+ (1− λn,l)

∥∥∥∥J(Slxn)−
∑

i=0,1,...,n,i̸=l λn,iJ(Sixn)

1− λn,l

∥∥∥∥
for large enough n ≥ 0, from (4.8) and (4.10) we obtain

lim
n→∞

∥Jxn − J(Slxn)∥ = 0.
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Since J−1 is also uniformly norm-to-norm continuous on bounded subsets, we have

lim
n→∞

∥xn − Slxn∥ = 0 (4.11)

for all l ≥ 0.
Next we prove that ω({xn}) ⊂ F, where ω({xn}) is the set consisting all of the

weak limits points of {xn}. In fact, for any p ∈ ω({xn}), there exists a subsequence
{xnk

} ⊂ {xn} such that xnk
⇀ p. Since Si is relatively nonexpansive, (4.11) implies

p ∈
∩∞

i=0 F̂ (Si) =
∩∞

i=0 F (Si). Now we prove that p ∈ EP (f). Since xnk
⇀ p, it

follows from (4.6) and (4.9) that unk
⇀ p and ynk

⇀ p. Since J is uniformly
continuous on any bounded set of E, from (4.9) we have ∥Jun − Jyn∥ → 0. By the
assumption that γn > r, we have

lim
n→∞

1

γn
∥Jun − Jyn∥ = 0. (4.12)

Since un = Tγnyn, we obtain

f(un, y) +
1

γn
⟨y − un, Jun − Jyn⟩ ≥ 0 (4.13)

for all y ∈ C. Replacing n by nk in (4.13), from (A2) we have

1

γnk

⟨y − unk
, Junk

− Jynk
⟩ ≥ −f(unk

, y) ≥ f(y, unk
) (4.14)

for all y ∈ C. Since y 7→ f(x, y) is convex and lower semicontinuous, it is also weakly
lower semicontinuous. Letting nk → ∞ in (4.14), from (4.12) and (A4) we obtain
f(y, p) ≤ 0 for all y ∈ C. For t ∈ (0, 1] and y ∈ C, letting yt = ty + (1 − t)p, then
yt ∈ C and f(yt, p) ≤ 0. From (A1) and (A4) we have

0 = f(yt, yt) ≤ tf(yt, y) + (1− t)f(yt, p) ≤ tf(yt, y).

Dividing by t, we obtain f(yt, y) ≥ 0 for all y ∈ C. Letting t ↓ 0, from (A3) we
have f(p, y) ≥ 0 for all y ∈ C. Therefore p ∈ EP (f), and so p ∈ F. This shows that
ω({xn}) ⊂ F.

Finally, we have prove that ω({xn}) is a singleton and xn → ΠFx0. Let w =
ΠFx0. From w ∈ F ⊂ Cn ∩Qn and xn+1 = ΠCn∩Qnx0 we have

ϕ(xn+1, x0) ≤ ϕ(w, x0)

for all n ≥ 0. Since the norm is weakly lower semicontinuous, this implies that

ϕ(p, x0) = ∥p∥2 − 2⟨p, Jx0⟩+ ∥x0∥2

≤ lim inf
k→∞

(∥xnk
∥2 − 2⟨xnk

, Jx0⟩+ ∥x0∥2)

= lim inf
k→∞

ϕ(xnk
, x0)

≤ lim sup
k→∞

ϕ(xnk
, x0) ≤ ϕ(w, x0). (4.15)

It follows from the definition of w and (4.15) that p = w. This implies that ω({xn})
is a singleton and ϕ(xnk

, x0) → ϕ(w, x0). Therefore

0 = lim
k→∞

(
ϕ(xnk

, x0)− ϕ(w, x0)
)

= lim
k→∞

(∥xnk
∥2 − ∥w∥2 − 2⟨xnk

− w, Jx0⟩)

= lim
k→∞

∥xnk
∥2 − ∥w∥2,
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that is,

lim
k→∞

∥xnk
∥2 = ∥w∥2. (4.16)

Since E is uniformly convex, it has the Kadec-Klee property. It follows from (4.16)
and xnk

⇀ w that xnk
→ w = ΠFx0. Since ω(xn) is a singleton, we have xn →

ΠFx0. �

The following theorem can be obtained by Theorem 4.1.

Theorem 4.2. Let E be a uniformly smooth and uniformly convex Banach space,
C a nonempty closed convex subset of E. Let A be an α-inverse strongly monotone
operator of C into E∗, f : C × C → � a bifunction satisfying (A1)–(A4) and
{Si}∞i=0 an infinite family of relatively nonexpansive mappings of C into itself such
that F :=

∩∞
i=0 F (Si) ∩EP ̸= ∅. Let {λn,i}ni=0 ⊂ [0, 1) be a sequence real numbers

such that
∑n

i=0 λn,i = 1 for all n ≥ 0 and limn→∞ λn,i > 0 for each i ≥ 0, and Vn

the mapping defined by (2.3). Let {xn} be the sequence generated by

x0 ∈ C,

yn = Vnxn,

un ∈ Kγnyn, that is,

f(un, y) + ⟨Aun, y − un⟩+ 1
γn

⟨y − un, Jun − Jyn⟩ ≥ 0 for all y ∈ C,

Cn = {z ∈ C : ϕ(z, un) ≤ ϕ(z, xn)};
Qn = {z ∈ C : ⟨xn − z, Jx0 − Jxn⟩ ≥ 0};
xn+1 = ΠCn∩Qnx0

(4.17)

for n ≥ 0, where ΠCn∩Qn is the generalized projection of E onto Cn ∩ Qn and
{γn} ⊂ [r,∞) for some r > 0. Then {xn} converges strongly to ΠFx0, where ΠF is
the generalized projection of E onto F .

Proof. Let g(un, y) = f(un, y)+⟨Aun, y−un⟩. By Propositions 2.11 and 2.12, (4.17)
is equivalent to (4.1) in Theorem 4.1. Therefore, the conclusion of Theorem 4.2 can
be deduced from Theorem 4.1. �
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