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Abstract

The existence of global solutions for the Navier-Stokes equations with the Coriolis
force is considered in the homogeneous Sobolev spaces. Without Coriolis force, it is
known that the unique global solutions are obtained if the initial data is su�ciently
small. In this paper, the unique global solutions are obtained for large initial data
if the speed of rotation is su�ciently large.
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1 Introduction

We consider the initial value problem for the Navier-Stokes equations with the
Coriolis force

8>>>><
>>>>:

@u

@t
��u + ⌦e3 ⇥ u + (u ·r)u +rp = 0 in R3 ⇥ (0,1),

div u = 0 in R3 ⇥ (0,1),

u(x, 0) = u0(x) in R3,

(NSC)

where u = u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) and p = p(x, t) denote the unknown
velocity field and the unknown pressure of the fluid at the point (x, t) 2 R3⇥(0,1),
respectively, while u0 = u0(x) = (u0,1(x), u0,2(x), u0,3(x)) denotes the given initial
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velocity field satisfying the compatibility condition div u0 = 0. Here, ⌦ 2 R is the
speed of rotation around the vertical unit vector e3 = (0, 0, 1).

The purpose of this paper is to show the existence and the uniqueness of the
global solutions to (NSC) in the homogeneous Sobolev spaces Ḣs(R3) (s � 1/2).
In particular, we obtain global solutions for large initial velocity u0 if the speed
of the rotation is su�ciently fast. For the existence of global solutions to (NSC),
Chemin-Desjardins-Gallagher-Grenier [5,6] proved that for any initial data u0 2
L2(R2)2 + H

1
2 (R3)3, there exists a positive parameter ⌦0 such that for every ⌦ 2 R

with |⌦| � ⌦0 there exists a unique global solution. Babin-Mahalov-Nicolaenko [1–
3] showed the existence of global solutions and the regularity of the solutions to
(NSC) for the periodic initial data with large |⌦|. On the other hand, Giga-Inui-
Mahalov-Saal [11] showed the existence of global solutions for small initial data
u0 2 FM�1

0 (R3)3, where the condition of smallness is independent of the speed of
the rotation ⌦, and FM�1

0 (R3) is scaling invariant to (NSC) with ⌦ = 0. Indeed,
for the solution u to (NSC) with ⌦ = 0, let u�(x, t) := �u(�x, �2t) for � > 0.
Then, u� is also a solution to (NSC) with ⌦ = 0 and we have ku�(·, 0)kFM�1

0
=

ku(·, 0)kFM�1
0

for all � > 0. On such other results of global solutions for small

initial data, Hieber-Shibata [12] studied in the Sobolev space H
1
2 (R3), Konieczny-

Yoneda [18] studied in the Fourier-Besov space ˙FB
2� 3

p
p,1 (R3) with 1 < p  1. On the

well-posedness for (NSC) with ⌦ = 0 in the scaling invarint spaces, we refer to Fujita-
Kato [7], Kato [14], Kozono-Yamazaki [19], Koch-Tataru [17]. On the local existence
of solutions to (NSC), we refer to the results by Giga-Inui-Mahalov-Matsui [9,10]
and Sawada [20]. In our previous result [13], we showed that it is possible to take the
existence time of the solutions long for initial data u0 2 Ḣs(R3)3 (1/2 < s < 5/4) if
the speed of rotation ⌦ is su�ciently large.

In this paper, we establish the existence theorem on global solutions to (NSC) for
the initial velocity u0 in the homogeneous Sobolev spaces Ḣs(R3) (1/2  s < 3/4).
In the case s > 1/2, the existence of global solutions is obtained if the speed of
rotation ⌦ is large compared with the norm of initial data ku0kḢs . On the other
hand, in the critical case s = 1/2, the speed |⌦| to obtain the existence of global
solutions is determined by each precompact set K ⇢ Ḣ

1
2 (R3)3, which the initial data

belongs to.

We consider the following integral equation:

u(t) = T⌦(t)u0 �
Z t

0
T⌦(t� ⌧)Pr · (u⌦ u)d⌧, (IE)

where P = (�ij +RiRj)1i,j3 denotes the Helmholtz projection onto the divergence-
free vector fields and T⌦(·) denotes the semigroup corresponding to the linear prob-
lem of (NSC), which is given explicitly by

T⌦(t)f = F�1

cos

✓
⌦

⇠3

|⇠|t
◆
e�t|⇠|2I bf(⇠) + sin

✓
⌦

⇠3

|⇠|t
◆
e�t|⇠|2R(⇠) bf(⇠)

�

2



for t � 0 and divergence-free vector fields f . Here, I is the identity matrix in R3,
Rj (j = 1, 2, 3) is the Riesz transform and R(⇠) is the skew-symmetric matrix symbol
related to the Riesz transform, which is defined by

R(⇠) :=
1

|⇠|

0
BBBBB@

0 ⇠3 �⇠2

�⇠3 0 ⇠1

⇠2 �⇠1 0

1
CCCCCA for ⇠ 2 R3 \ {0}.

We refer to Hieber-Shibata [12] for the derivation of the explicit form of T⌦(·).

Theorem 1.1 Let ⌦ 2 R \ {0}, and let s, p and ✓ satisfy

1

2
< s <

3

4
,

1

3
+

s

9
<

1

p
<

2

3
� s

3
, (1.1)

s

2
� 1

2p
<

1

✓
<

5

8
� 3

2p
+

s

4
,

3

4
� 3

2p
 1

✓
< 1� 2

p
. (1.2)

Then, there exists a positibe constant C = C(s, p, ✓) > 0 such that for any initial
velocity field u0 2 Ḣs(R3)3 with

ku0kḢs  C|⌦| s
2�

1
4 and div u0 = 0, (1.3)

there exists a unique global solution u 2 C([0,1), Ḣs(R3))3 \ L✓(0,1; Ḣs
p(R3))3 to

(NSC).

Remark 1.2 The existence of global solutions for small initial data u0 2 Ḣ
1
2 (R3)3

were shown by Hieber-Shibata [12]. The size condition (1.3) on initial data can be
regarded as a continuous extension of that in Ḣ

1
2 (R3)3. Indeed, Hieber-Shibata [12]

assumed the smallness condition ku0kH
1
2
 � for some � > 0, which corresponds to

our condition (1.3) with s = 1/2.

Remark 1.3 The space L✓0(0,1; Ḣs0
p0

(R3)) is scaling invariant to (NSC) in the case
⌦ = 0 if ✓0, s0 and p0 satisfy

2

✓0
+

3

p0
= 1 + s0. (1.4)

On the first condition of (1.2), we see that

2

✓
+

3

p
<

5

4
+

s

2
< 1 + s if s >

1

2
.

Therefore, the space L✓(0,1; Ḣs
p(R3)) in Theorem 1.1 includes more regular func-

tions than those in the scaling invariant spaces.

By Theorem 1.1 for the case s > 1/2, it is possible to obtain global solutions for

3



initial data u0 2 Ḣs(R3)3 if ⌦ satisfies

|⌦| > Cku0k
2

s� 1
2

Ḣ
1
2

. (1.5)

Therefore, the speed |⌦| of rotation to obtain global solutions is determined by the
each bounded set in Ḣs(R3) if s > 1/2. We next consider the critical case s = 1/2.

Theorem 1.4 For any u0 2 Ḣ
1
2 (R3)3 with div u0 = 0, there exists ! = !(u0) > 0

such that for any ⌦ 2 R with |⌦| > !, there exists a unique global solution u to

(NSC) in C([0,1), Ḣ
1
2 (R3))3 \ L4(0,1; Ḣ

1
2
3 (R3))3.

Remark 1.5 The space L4(0,1; Ḣ
1
2
3 (R3)) in Theorem 1.6 is scaling invariant space

in the case ⌦ = 0 since ✓0 = 4, s0 = 1/2 and p0 = 3 satisfy (1.4).

Since the condition (1.5) breaks down in the case s = 1/2, it is not clear whether
the Coriolis parameter ⌦ to obtain global solutions for initial data u0 2 Ḣ

1
2 (R3)3

can be characterized by the norm of initial data ku0kḢ
1
2

such as (1.5). To overcome

this di�culty, we consider a class of precompact subsets in Ḣ
1
2 (R3)3.

Theorem 1.6 Let K be an arbitrary precompact set in Ḣ
1
2 (R3)3. Then, there exists

!(K) > 0 such that for any ⌦ 2 R with |⌦| > !(K) and for any u0 2 K with
div u0 = 0, there exists a unique global solution u to (NSC) in C([0,1), Ḣ

1
2 (R3))3\

L4(0,1; Ḣ
1
2
3 (R3))3.

Remark 1.7 For the original Navier-Stokes equations
8>>>><
>>>>:

@u

@t
��u + (u ·r)u +rp = 0 in R3 ⇥ (0,1),

div u = 0 in R3 ⇥ (0,1),

u(x, 0) = u0(x) in R3,

(NS)

it is known by the results of Brezis [4], Giga [8] and Kozono [15] that the existence
time T of local solutions for initial data in Lr(R3) (3 < r < 1) and L3(R3) is
determined by the each bounded set B in Lr(R3) (3 < r < 1) and the each
precompact set K in L3(R3), respectively. Note that the space L3(R3) is a scaling
critical space to (NS). On the other hand, the su�cint speed ⌦ to obtain global
solutions is determined by the bounded sets and precompact sets in Theorem 1.1 and
Theorem 1.6, respectively. Therefore, our theorems can be regarded as a counterpart
of such results from the viewpoint of the Coriolis parameter ⌦ for the existence of
global solutions.

On the existence of local solutions in Ḣs(R3), it is also expected that the su�cient
speed ⌦ to obtain local solutions is determined by the existence time T > 0, and
each bounded set for the case s > 1/2 or each precompact set for the case s = 1/2.
In our previous result [13], we considered the case s > 1/2 and showed that the

4



existence time T > 0 satisfies T � c|⌦|↵ku0k��
Ḣs with some constants c,↵, � > 0. By

this result, we see that for the time T > 0 and the bounded set B in Ḣs(R3), the
su�cient speed ⌦ to obtain local solutions is determined by T and B if s > 1/2. In
the case s = 1/2, the following is our theorem for local solutions.

Theorem 1.8 For any T > 0 and precompact set K in Ḣ
1
2 (R3), there exists ! =

!(T, K) > 0 such that for any ⌦ 2 R with |⌦| > ! and for any u0 2 K with
div u0 = 0, there exists a unique local solution u to (NSC) in C([0, T ), Ḣ

1
2 (R3))3 \

L4(0, T ; Ḣ
1
2
3 (R3))3.

Remark 1.9 For any precompact set K in Ḣ
1
2 (R3), the constant !(T,K) > 0 in

Theorem 1.8 is increasing and bounded with respect to T > 0. Indeed, !(T,K) >
!( eT , K) if T > eT since a local solution on the time interval [0, T ) is also a solution
on [0, eT ). By Theorem 1.6 for global solutions, it su�ces to take |⌦| su�ciently large
to obtain global solutions and the lower bound !(T,K) for local solutions does not
diverge to infinity as T !1.

This paper is organized as follows. In Section 2, we introduce propositions to prove
theorems which are on linear estimates for the semigroup T⌦(·) and the bilinear
estimate. In Section 3, we prove Theorem 1.1, Theorem 1.6 and Theorem 1.8.

2 Preliminaries

In what follows, we denote by C > 0 various constants and by 0 < c < 1 various
small constants. In order to introduce propositions to prove theorems, let us recall
the definition of the homogeneous Besov spaces in brief. Let � be a radial smooth
function satisfying

supp b� ⇢ { ⇠ 2 R3 | 2�1  |⇠|  2 },
X
j2Z

b�(2�j⇠) = 1 for any ⇠ 2 R3 \ {0}.

Let {�j}j2Z be defined by

�j(x) := 23j�(2jx) for j 2 Z, x 2 R3.

Then, for s 2 R, 1  p, q  1, the homogeneous Besov space Ḃs
p,q(R3) is defined by

the set of all tempered distributions f 2 S 0(R3) with

kfkḂs
p,q

:=
����
n
2sjk�j ⇤ fkLp(R3)

o
j2Z

���
`q(Z)

< 1.

Lemma 2.1 [13] Let 2  p  1. There exists C > 0 such that

kF�1e±i
⇠3
|⇠|⌦tFfkḂ0

p,2
 C

⇢
log(e + |⌦|t)

1 + |⌦|t

� 1
2 (1� 2

p )

kfk
Ḃ

3(1� 2
p )

p
p�1 ,2

(2.1)

5



for all ⌦ 2 R, t > 0, f 2 Ḃ
3(1� 2

p )
p

p�1 ,2 (R3).

Lemma 2.2 Let 1 < q  2  p < 1 satisfy 1/q � 1 � 1/p. Then, there exists
C > 0 such that

kT⌦(t)fkLp  Ct�
3
2 ( 1

q�
1
p )

⇢
log(e + |⌦|t)

1 + |⌦|t

� 1
2 (1� 2

p )

kfkLq (2.2)

for all ⌦ 2 R, t > 0, f 2 Lq(R3).

Proof. By the continuous embedding Ḃ0
p,2(R3) ,! Lp(R3) and (2.1), we have

kT⌦(t)fkLp  CkT⌦(t)fkḂ0
p,2
 C

⇢
log(e + |⌦|t)

1 + |⌦|t

� 1
2 (1� 2

p )

ket�fk
Ḃ

3(1� 2
p )

p
p�1 ,2

.

And we have from Lemma 2.2 in [16] and the continuous embedding Lq(R3) ,!
Ḃ0

q,2(R3)

ket�fk
Ḃ

3(1� 2
p )

p
p�1 ,2

 Ct�
3
2 ( 1

q�
1
p )kfkḂ0

q,2
 Ct�

3
2 ( 1

q�
1
p )kfkLq(R3).

Therefore, we obtain (2.2).

Proposition 2.3 [13] Let 2 < p < 6, 2 < ✓ < 1 satisfy

3

4
� 3

2p
 1

✓
< 1� 2

p
.

Then, there exists C > 0 such that

kT⌦(·)fkL✓(0,1;Lp)  C|⌦|�
1
✓ + 3

4 (1� 2
p )kfkL2

for all ⌦ 2 R \ {0}, f 2 L2(R3).

Proposition 2.4 For every f 2 Ḣ
1
2 (R3), it holds that

lim
|⌦|!1

kT⌦(·)fk
L4(0,1;Ḣ

1
2
3 )

= 0. (2.3)

Proof. Since S(R3) is dense in Ḣ
1
2 (R3), there exists {fN}1N=1 ⇢ S(R3) such that

fN ! f in Ḣ
1
2 (R3). Then, we have from Proposition 2.3

kT⌦(·)fk
L4(0,1;Ḣ

1
2
3 )
 kT⌦(·)(fN � f)k

L4(0,1;Ḣ
1
2
3 )

+ kT⌦(·)fNk
L4(0,1;Ḣ

1
2
3 )

 CkfN � fk
Ḣ

1
2

+ kT⌦(·)fNk
L4(0,1;Ḣ

1
2
3 )

.
(2.4)

6



On the second term of the last right hand side, we have from (2.1), (2.2) and
Lebesgue’s dominated convergence theorem

kT⌦(·)fNk
L4(0,1;Ḣ

1
2
3 )
 C

����
⇢

log(e + |⌦|t)
1 + |⌦|t

� 1
2 (1� 2

3 )

kfNk
Ḃ

1
2+3(1� 2

3 )

3
2 ,2

����
L4(0,1)

= C
����
⇢

log(e + |⌦|t)
1 + |⌦|t

� 1
6
����

L4(0,1)
kfNk

Ḃ
3
2
3
2 ,2

! 0 as |⌦|!1,

(2.5)

kT⌦(·)fNk
L4(1,1;Ḣ

1
2
3 )
 C

����t� 3
2 ( 2

3�
1
3 )

⇢
log(e + |⌦|t)

1 + |⌦|t

� 1
2 (1� 2

3 )

kfNk
Ḣ

1
2
3
2

����
L4(1,1)

 C
����t� 1

2

⇢
log(e + |⌦|t)

1 + |⌦|t

� 1
6
����

L4(1,1)
kfNk

Ḣ
1
2
3
2

! 0 as |⌦|!1.

(2.6)

Therefore, we obtain (2.3) by (2.4), (2.5), (2.6) and the convergence fN ! f in
Ḣ

1
2 (R3) as N !1.

Proposition 2.5 Let 2 < p < 3 and 6/5 < q < 2 satisfy

1� 1

p
 1

q
<

1

3
+

1

p
, (2.7)

max
⇢
0,

1

2
� 3

2

✓
1

q
� 1

p

◆
� 1

2

✓
1� 2

p

◆�
<

1

✓
 1

2
� 3

2

✓
1

q
� 1

p

◆
. (2.8)

Then, there exists C > 0 such that

����
Z t

0
T⌦(t� ⌧)Prf(⌧)d⌧

����
L✓(0,1;Ḣs

p)
 C|⌦|�{ 1

2�
3
2 ( 1

q�
1
p )� 1

✓ }kfk
L

✓
2 (0,1;Ḣs

q )
(2.9)

for all s 2 R, ⌦ 2 R \ {0}, f 2 L
✓
2 (0,1; Ḣs

q (R3)).

Proof. We only consider the case s = 0 for simplicity since the case s 6= 0 is treated
similarly. By Lemma 2.2, we have

����
Z t

0
T⌦(t� ⌧)Prf(⌧)d⌧

����
L✓(0,1;Lp)

 C
����

Z t

0
(t� ⌧)�

1
2�

3
2 ( 1

q�
1
p )

⇢
log(e + |⌦||t� ⌧ |)

1 + |⌦||t� ⌧ |

� 1
2 (1� 2

p )

kf(⌧)kLqd⌧
����

L✓(0,1)
.

7



In the case 1/✓ = 1/2 � 3(1/q � 1/p)/2, we have from Hardy-Littlewood-Sobolev’s
inequality

����
Z t

0
(t� ⌧)�

1
2�

3
2 ( 1

q�
1
p )

⇢
log(e + |⌦||t� ⌧ |)

1 + |⌦||t� ⌧ |

� 1
2 (1� 2

p )

kf(⌧)kLqd⌧
����

L✓(0,1)


����

Z t

0
(t� ⌧)�

1
2�

3
2 ( 1

q�
1
p )kf(⌧)kLqd⌧

����
L✓(0,1)

 Ckfk
L

✓
2 (0,1;Lq)

.

In the case 1/✓ < 1/2� 3(1/q� 1/p)/2, we have from Hausdor↵-Young’s inequality
with 1/✓ = 2/✓ + 1/r � 1

����
Z t

0
(t� ⌧)�

1
2�

3
2 ( 1

q�
1
p )

⇢
log(e + |⌦||t� ⌧ |)

1 + |⌦||t� ⌧ |

� 1
2 (1� 2

p )

kf(⌧)kLqd⌧
����

L✓(0,1)


����t� 1

2�
3
2 ( 1

q�
1
p )

⇢
log(e + |⌦|t)

1 + |⌦|t

� 1
2 (1� 2

p )����
Lr(0,1)

kfk
L

✓
2 (0,1;Lq)

= C|⌦|
1
✓�

1
2+ 3

2 ( 1
q�

1
p )kfk

L
✓
2 (0,1;Lq)

.

Therefore, we obtain (2.9).

Proposition 2.6 There exists a positive constant C such that
����

Z t

0
T⌦(t� ⌧)rf(⌧)d⌧

���
L1(0,1;Ḣs)\L4(0,1;Ḣs

3)
 CkfkL2(0,1;Ḣs) (2.10)

for all s 2 R, ⌦ 2 R, f 2 L2(0,1; Ḣs(R3)).

Proof. For simplicity, we show (2.10) in the case s = 0 since it is possible to treat
the case s 6= 0 similarly. On the L1(0,1; L2) norm, we have from Plancherel’s
theorem and Hölder’s inequality

����
Z t

0
T⌦(t� ⌧)rf(⌧)d⌧

���
L2
 C

����
Z t

0
e�(t�⌧)|⇠|2|⇠|| bf(⌧)|d⌧

����
L2

 C
����
���e�(t�⌧)|⇠|2

���
L2

⌧ (0,t)
|⇠|

��� bf(⌧)
���

L2
⌧ (0,t)

����
L2

 Ck bfkL2(0,1;L2)

= CkfkL2(0,1;L2).

(2.11)

On the L4(0,1; L3(R3)) norm, we have from (2.2) and Hardy-Littlewood-Sobolev’s
inequality

����
Z t

0
T⌦(t� ⌧)rf(⌧)d⌧

���
L4(0,1;L3(R3))

 C
����

Z t

0
(t� ⌧)�

1
2�

3
2 ( 1

2�
1
3 )kf(⌧)kL2d⌧

����
L4(0,1)

 CkfkL2(0,1;L2).
(2.12)

Therefore, we obtain (2.10) by (2.11) and (2.12).
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Lemma 2.7 Let s, p satisfy

0  s < 3,
s

3
<

1

p
<

1

2
+

s

6
,

and let q satisfy

1

q
=

2

p
� s

3
.

Then, there exists C > 0 such that

kfgkḢs
q
 CkfkḢs

p
kgkḢs

p
. (2.13)

Proof. Let r satisfy 1/q = 1/p + 1/r. In the Sobolev spaces, it is known that

kfgkḢs
q
 CkfkḢs

p
kgkLr + CkfkLrkgkḢs

p
.

By the continuous embedding Ḣs
p(R3) ,! Lr(R3), we obtain (2.13).

3 Proof of theorems

We prove Theorem 1.1, Theorem 1.6 and Theorem 1.8. The proof of Theorem 1.4
is omitted since it is shown in the similar way to that of Theorem 1.6.

Proof of Theorem 1.1. Since the assumption on ✓ and p in Proposition 2.3 is
satisfied by (1.1) and (1.2), there exists C0 > 0 such that

kT⌦(·)u0kL✓(0,1;Ḣs
p)  |⌦|�

1
✓ + 3

4 (1� 2
p )C0ku0kḢs .

Let  (u) and Y be defined by

 (u)(t) := T⌦(t)u0 �
Z t

0
T⌦(t� ⌧)Pr · (u⌦ u)(⌧)d⌧, (3.1)

Y := {u 2 L✓(0,1; Ḣs
p(R3))3 | kukL✓(0,1;Ḣs

p)  2C0|⌦|�
1
✓ + 3

4 (1� 2
p )ku0kḢs , div u = 0 },

d(u, v) := ku� vkL✓(0,1;Ḣs
p).

Let q satisfy 1/q = 2/p� s/3. Since the assumptions on s, p, q and ✓ in Proposition
2.5 and Lemma 2.7 are satisfied by (1.1) and (1.2), for any u, v 2 Y , we have from
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Proposition 2.3, Proposition 2.5 and Lemma 2.7

k (u)kL✓(0,1;Ḣs
p)  C0|⌦|�

1
✓ + 3

4 (1� 2
p )ku0kḢs + C|⌦|

1
✓�

1
2+ 3

2 ( 1
q�

1
p )ku⌦ uk

L
✓
2 (0,1;Ḣs

q )

 C0|⌦|�
1
✓ + 3

4 (1� 2
p )ku0kḢs + C|⌦|

1
✓�

1
2+ 3

2 ( 1
q�

1
p )kuk2

L✓(0,1;Ḣs
p)

 C0|⌦|�
1
✓ + 3

4 (1� 2
p )ku0kḢs + C1|⌦|

1
✓�

1
2+ 3

2 ( 1
q�

1
p )+2{� 1

✓ + 3
4 (1� 2

p )}ku0k2
Ḣs

 C0|⌦|�
1
✓ + 3

4 (1� 2
p )ku0kḢs + C1|⌦|�

s
2+ 1

4 |⌦|�
1
✓ + 3

4 (1� 2
p )ku0k2

Ḣs ,
(3.2)

k (u)� (v)kL✓(0,1;Ḣs
p)

=
����

Z t

0
T⌦(t� ⌧)Pr · {u⌦ (u� v)(⌧) + (u� v)⌦ v(⌧)}d⌧

����
L✓(0,1;Ḣs

p)

 C|⌦|
1
✓�

1
2+ 3

2 ( 1
q�

1
p )ku⌦ (u� v) + (u� v)⌦ vk

L
✓
2 (0,1;Ḣs

q )

 C|⌦|
1
✓�

1
2+ 3

2 ( 1
q�

1
p )

⇣
kukL✓(0,1;Ḣs

p) + kvkL✓(0,1;Ḣs
p)

⌘
ku� vkL✓(0,1;Ḣs

p)

 C2|⌦|
1
✓�

1
2+ 3

2 ( 1
q�

1
p )� 1

✓ + 3
4 (1� 2

p )ku0kḢsku� vkL✓(0,1;Ḣs
p)

= C2|⌦|
1
4+ 3

2q�
3
pku0kḢsku� vkL✓(0,1;Ḣs

p)

= C2|⌦|�
s
2+ 1

4ku0kḢsku� vkL✓(0,1;Ḣs
p).

If ⌦, u0 satisfy

C1|⌦|�
s
2+ 1

4ku0kḢs  C0, C2|⌦|�
s
2+ 1

4ku0kḢs 
1

2
,

then, it is possible to apply Banach’s fixed point theorem in Y and we obtain u 2 Y
with

u(t) = T⌦(t)u0 �
Z t

0
T⌦(t� ⌧)Pr · (u⌦ u)d⌧.

Here, we show that the solution u 2 Y satisfies u(t) 2 Ḣs(Rn)3 for all t � 0. On the
linear part, it is easy to see that T⌦(t)u0 2 Ḣs(R3)3 for any t � 0. On the nonlinear
part, let 1/q = 2/p � s/3 and we have from Lemma 2.2, Lemma 2.7 and Hölder’s
inequality
����

Z t

0
T⌦(t� ⌧)Pr · (u⌦ u)(⌧)d⌧

����
Ḣs
 C

Z t

0
(t� ⌧)�

1
2�

3
2 ( 1

q�
1
2 )k(u⌦ u)(⌧)kḢs

q
d⌧

 C
Z t

0
(t� ⌧)�

1
2�

3
2 ( 1

q�
1
2 )ku(⌧)k2

Ḣs
p
d⌧

 C
���(t� ·)�

1
2�

3
2 ( 1

q�
1
2 )

���
L

✓
✓�2 (0<⌧<t)

���ku(⌧)k2
Ḣs

p

���
L

✓
2 (0,1)

 Ct
✓�2

✓ [1� ✓
✓�2{�

1
2�

3
2 ( 1

q�
1
2 )}]kuk2

L✓(0,1;Ḣs
p).

(3.3)

Here, we note on the integrability at ⌧ = t that

✓

✓ � 2

⇢
1

2
+

3

2

✓
1

q
� 1

2

◆�
< 1 if and only if

1

✓
<

5

8
� 3

2p
+

s

4
.
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Therefore, we obtain u(t) 2 Ḣs(Rn)3 and we also see u 2 C([0,1), Ḣs(R3))3.

Proof of Theorem 1.6. Let � > 0 be an arbitrary positive number to be determined
later. Since K is precompact in Ḣ

1
2 (R3)3, the closure of K is compact. Hence there

exist a natural number N(�, K) and {fj}N(�,K)
j=1 ⇢ Ḣ

1
2 (R3)3 such that

K ⇢ [N(�,K)
j=1 B(fj, �),

where B(f, �) denotes a ball in Ḣ
1
2 (R3)3 with center being f and radius �. By

Proposition 2.4, there exists !0(�, K) > 0 such that we have

sup
j=1,2,···N(�,K)

kT⌦(·)fjk
L4(0,1;Ḣ

1
2
3 )
 �

for all ⌦ 2 R with |⌦| > !0(�, K). Then, for any f 2 K, there exists j 2
{1, 2, · · · , N(�, K)} such that f 2 B(fj, �) and we have from Proposition 2.3

kT⌦(·)fk
L4(0,1;Ḣ

1
2
3 )
 kT⌦(·)(fj � f)k

L4(0,1;Ḣ
1
2
3 )

+ kT⌦(·)fjk
L4(0,1;Ḣ

1
2
3 )

 Ckfj � fk
Ḣ

1
2

+ �

 C�.

Therefore, there exists a positive constant C1 > 0

sup
f2K

kT⌦(·)fk
L4(0,1;Ḣ

1
2
3 )
 C1� (3.4)

for all ⌦ 2 R with |⌦| > !0(�, K). Then, let the space X be defined by

X := {u 2 C([0,1), Ḣ
1
2 (R3))3 | kuk

L4(0,1;Ḣ
1
2
3 )
 2C1�, div u = 0 },

d(u, v) := ku� vk
L4(0,1;Ḣ

1
2
3 )

.

Let  be defined by (3.1). For any u 2 X, we have from Proposition 2.6, Lemma
2.7 and Hölder’s inequality

k (u)k
L1(0,1;Ḣ

1
2 )
 Cku0kḢ

1
2

+ Cku⌦ uk
L2(0,1;Ḣ

1
2 )

 Cku0kḢ
1
2

+ C
���kuk2

Ḣ
1
2
3

���
L2(0,1)

 Cku0kḢ
1
2

+ Ckuk2

L4(0,1;Ḣ
1
2
3 )

.

(3.5)

We also have from Proposition 2.6, Lemma 2.7 and Hölder’s inequality

k (u)k
L4(0,1;Ḣ

1
2
3 )
 kT⌦(·)u0k

L4(0,1;Ḣ
1
2
3 )

+ Cku⌦ uk
L2(0,1;Ḣ

1
2 )

 kT⌦(·)u0k
L4(0,1;Ḣ

1
2
3 )

+ C
���kuk2

Ḣ
1
2
3

���
L2(0,1)

 kT⌦(·)u0k
L4(0,1;Ḣ

1
2
3 )

+ C2kuk2

L4(0,1;Ḣ
1
2
3 )

.

(3.6)
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Similarly, we also have for u, v 2 X

k (u)� (v)k
L4(0,1;Ḣ

1
2
3

)

 C3

⇣
kuk

L4(0,1;Ḣ
1
2
3 )

+ kvk
L4(0,1;Ḣ

1
2
3 )

⌘
ku� vk

L4(0,1;Ḣ
1
2
3 )

.

(3.7)

Here, since � is an arbitrary positive number, let � > 0 satisfy

� < min
⇢

1

4C1C2
,

1

8C1C3

�
,

where C1, C2 and C3 is the constants in (3.4), (3.6) and (3.7), respectively. Then,
we have from (3.4), (3.5), (3.6) and (3.7)

k (u)k
L1(0,1;Ḣ

1
2 )

< 1
k (u)k

L4(0,1;Ḣ
1
2
3 )
 2C1�,

k (u)� (v)k
L4(0,1;Ḣ

1
2
3 )
 1

2
ku� vk

L4(0,1;Ḣ
1
2
3 )

,

for all u, v 2 X, ⌦ 2 R with |⌦| > !0(�, K). Therefore, it is possible to apply
Banach’s fixed point theorem to obtain the global solutions.

Proof of Theorem 1.8. By the same argument to the precompact set K in Ḣ
1
2 (R3)

as that of proof of Theorem 1.6, we see that for any T > 0 and � > 0, there exist
!(T, K) > 0 and C1 > 0 such that

sup
f2K

kT⌦(·)fk
L4(0,T ;Ḣ

1
2
3 )
 C1�,

for all ⌦ 2 R with |⌦| > !(T,K). Then, we can obtain the similar estimate as (3.5),
(3.6) and (3.7) in which time interval (0,1) is replaced with (0, T ). It is possible to
apply Banach’s fixed point theorem in the space

X := {u 2 C([0, T ), Ḣ
1
2 (R3))3 | kuk

L4(0,T ;Ḣ
1
2
3 )
 2C1�, div u = 0 },

d(u, v) := ku� vk
L4(0,T ;Ḣ

1
2
3 )

and obtain local solutions.
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