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Abstract

The existence of global solutions for the Navier-Stokes equations with the Coriolis
force is considered in the homogeneous Sobolev spaces. Without Coriolis force, it is
known that the unique global solutions are obtained if the initial data is sufficiently
small. In this paper, the unique global solutions are obtained for large initial data
if the speed of rotation is sufficiently large.
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1 Introduction

We consider the initial value problem for the Navier-Stokes equations with the
Coriolis force

%—Au+963xu+(u-V)u+Vp:O in R? x (0, 00),
divu=0 in R? x (0, 00), (NSC)
u(z,0) = ug(x) in R3,

where u = u(x,t) = (ui(x,t),us(x,t),us(z,t)) and p = p(x,t) denote the unknown
velocity field and the unknown pressure of the fluid at the point (z,t) € R? x (0, 00),
respectively, while ug = ug(x) = (uo1(z), uo2(2), up3(z)) denotes the given initial
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velocity field satisfying the compatibility condition div ug = 0. Here, 2 € R is the
speed of rotation around the vertical unit vector e3 = (0,0, 1).

The purpose of this paper is to show the existence and the uniqueness of the
global solutions to (NSC) in the homogeneous Sobolev spaces H*(R?) (s > 1/2).
In particular, we obtain global solutions for large initial velocity ug if the speed
of the rotation is sufficiently fast. For the existence of global solutions to (NSC),
Chemin-Desjardins-Gallagher-Grenier [5,6] proved that for any initial data uy €
L2(R2)% + Hz(R3)3, there exists a positive parameter Qq such that for every Q € R
with [Q2] > € there exists a unique global solution. Babin-Mahalov-Nicolaenko [1-
3] showed the existence of global solutions and the regularity of the solutions to
(NSC) for the periodic initial data with large |2|. On the other hand, Giga-Inui-
Mahalov-Saal [11] showed the existence of global solutions for small initial data
uy € FM; ' (R3)3, where the condition of smallness is independent of the speed of
the rotation €, and F'M; '(R?) is scaling invariant to (NSC) with Q = 0. Indeed,
for the solution u to (NSC) with Q = 0, let uy(z,t) := Au(Az, A\*t) for A > 0.
Then, uy is also a solution to (NSC) with 2 = 0 and we have “U)\(',O)HFMO—I =

(-, 0)| pyt for all A > 0. On such other results of global solutions for small
initial data, Hieber-Shibata [12] studied in the Sobolev space Hz(R3), Konieczny-

Yoneda [18] studied in the Fourier-Besov space FB (R3) with 1 < p < 0o. On the
well-posedness for (NSC) with 2 = 0 in the scaling 1nvar1nt spaces, we refer to Fujita-
Kato [7], Kato [14], Kozono-Yamazaki [19], Koch-Tataru [17]. On the local existence
of solutions to (NSC), we refer to the results by Giga-Inui-Mahalov-Matsui [9,10]
and Sawada [20]. In our previous result [13], we showed that it is possible to take the
existence time of the solutions long for initial data uy € H*(R?)? (1/2 < s < 5/4) if
the speed of rotation €2 is sufficiently large.

In this paper, we establish the existence theorem on global solutions to (NSC) for
the initial velocity u, in the homogeneous Sobolev spaces H*(R?) (1/2 < s < 3/4).
In the case s > 1/2, the existence of global solutions is obtained if the speed of
rotation (2 is large compared with the norm of initial data ||ug||;;.. On the other
hand, in the critical case s = 1/2, the speed |Q2] to obtain the existence of global
solutions is determined by each precompact set K C Hz (R3)3, which the initial data
belongs to.

We consider the following integral equation:
t
ult) = Taltyuo — [ Ta(t = 7)PV - (u® u)dr, (IE)
0

where P = (d;; + R;R;)1<i j<3 denotes the Helmholtz projection onto the divergence-
free vector fields and T (+) denotes the semigroup corresponding to the linear prob-
lem of (NSC), which is given explicitly by

~

To(t) f:fl[cos (Qf| ) t|€2[f<§)+sin< |§3’ ) I R(£) F(€)



for t > 0 and divergence-free vector fields f. Here, I is the identity matrix in R3,
R; (j = 1,2,3) is the Riesz transform and R() is the skew-symmetric matrix symbol
related to the Riesz transform, which is defined by

X 0 & —&
R(€) =T —& 0§ for £ € R*\ {0}.
S —& 0

We refer to Hieber-Shibata [12] for the derivation of the explicit form of Tq(-).
Theorem 1.1 Let Q € R\ {0}, and let s,p and 6 satisfy
2
< - - 1.1
3 ? ( )

<1l—-. (1.2)

Then, there exists a positibe constant C' = C(s,p,0) > 0 such that for any initial
velocity field uy € H*(R?)3 with

571 and  divug =0, (1.3)

e < CIQ

[[uo]

there exists a unique global solution u € C([0,00), H*(R%))* N LY(0, 00; H3(R?))? to
(NSC).

Remark 1.2 The existence of global solutions for small initial data uy € Hz(R?)3
were shown by Hieber-Shibata [12]. The size condition (1.3) on initial data can be
regarded as a continuous extension of that in Hz (R?®)3. Indeed, Hieber-Shibata [12]
assumed the smallness condition [|uol| 3 < 4 for some § > 0, which corresponds to
our condition (1.3) with s = 1/2.

Remark 1.3 The space L% (0, oo; H]fg (R?)) is scaling invariant to (NSC) in the case
Q) =0if 0y, sg and pg satisfy

On the first condition of (1.2), we see that

2+3<5+8<1+ if >1
-+ -<-4z s s>,
6 p 4 2 2

Therefore, the space L°(0, oc; H;’ (R?)) in Theorem 1.1 includes more regular func-
tions than those in the scaling invariant spaces.

By Theorem 1.1 for the case s > 1/2, it is possible to obtain global solutions for



initial data uy € H*(R?)? if Q satisfies

2

= (1.5)

1
H?2

19| > Cuo

Therefore, the speed || of rotation to obtain global solutions is determined by the
each bounded set in H*(R3) if s > 1/2. We next consider the critical case s = 1/2.

Theorem 1.4 For any ug € Hz(R3)? with divug = 0, there exists w = w(ug) > 0
such that for any Q € R with || > w, there exists a unique global solution u to

(NSC) in C([0, 00), F3(R?))3 0 L}(0, 00; HE (R?))?.

Remark 1.5 The space L*(0, co; HZ (R?)) in Theorem 1.6 is scaling invariant space
in the case 2 = 0 since 6y =4, sp = 1/2 and py = 3 satisfy (1.4).

Since the condition (1.5) breaks down in the case s = 1/2, it is not clear whether
the Coriolis parameter €2 to obtain global solutions for initial data uy € H %(R3)3
can be characterized by the norm of initial data HUOH.H% such as (1.5). To overcome

this difficulty, we consider a class of precompact subsets in H2 (R3)3.

Theorem 1.6 Let K be an arbitrary precompact set in H %(R3)3. Then, there exists

w(K) > 0 such that for any Q € R with || > w(K) and for any ug € K with

divug = 0, there ezists a unique global solution u to (NSC) in C(]0, 00), H2 (R3))*N
1

140, o0; 11} (R

Remark 1.7 For the original Navier-Stokes equations

%—Au—k(u-V)quVp—O in R?® x (0, 00),
divu =0 in R? x (0, 00), (NS)
u(x,0) = ug(x) in R3,

it is known by the results of Brezis [4], Giga [8] and Kozono [15] that the existence
time T of local solutions for initial data in L"(R?) (3 < r < oo) and L3(R3) is
determined by the each bounded set B in L"(R®) (3 < r < oo) and the each
precompact set K in L3(R?), respectively. Note that the space L3(R?) is a scaling
critical space to (NS). On the other hand, the sufficint speed 2 to obtain global
solutions is determined by the bounded sets and precompact sets in Theorem 1.1 and
Theorem 1.6, respectively. Therefore, our theorems can be regarded as a counterpart
of such results from the viewpoint of the Coriolis parameter €2 for the existence of
global solutions.

On the existence of local solutions in H*(R?), it is also expected that the sufficient
speed () to obtain local solutions is determined by the existence time 7" > 0, and
each bounded set for the case s > 1/2 or each precompact set for the case s = 1/2.
In our previous result [13], we considered the case s > 1/2 and showed that the



existence time 7' > 0 satisfies T" > c|Q\°‘||u0H;If with some constants ¢, o, 3 > 0. By
this result, we see that for the time 7' > 0 and the bounded set B in H*(R?), the
sufficient speed €2 to obtain local solutions is determined by 7" and B if s > 1/2. In
the case s = 1/2, the following is our theorem for local solutions.

Theorem 1.8 For any T > 0 and precompact set K in H%(R?’), there exists w =
w(T,K) > 0 such that for any Q € R with || > w and for any uy € K with
divug = 0, there exists a unique local solution u to (NSC) in C([0,T), Hz(R3))3 N

L4(0,T; Fig (R%))°.

Remark 1.9 For any precompact set K in Hz(R3), the constant w(T, K) > 0 in
Theorem 1.8 is increasing and bounded with respect to 7" > 0. Indeed, w(T, K) >
w(T,K) if T > T since a local solution on the time interval [0,T) is also a solution
on [0, 7). By Theorem 1.6 for global solutions, it suffices to take |Q| sufficiently large
to obtain global solutions and the lower bound w(7T, K) for local solutions does not
diverge to infinity as T" — oo.

This paper is organized as follows. In Section 2, we introduce propositions to prove
theorems which are on linear estimates for the semigroup Tq(-) and the bilinear
estimate. In Section 3, we prove Theorem 1.1, Theorem 1.6 and Theorem 1.8.

2 Preliminaries

In what follows, we denote by C' > 0 various constants and by 0 < ¢ < 1 various
small constants. In order to introduce propositions to prove theorems, let us recall
the definition of the homogeneous Besov spaces in brief. Let ¢ be a radial smooth
function satisfying

suppd C {€€R* |27 < |¢] <2}, Y @(277¢) =1 for any € € R\ {0}.

JEZL
Let {¢;}jez be defined by
pj(z) :=2%¢(2x) for j € Z,x € R

Then, for s € R, 1 < p,q < 0o, the homogeneous Besov space B;,q(R:") is defined by
the set of all tempered distributions f € &'(R?) with

< Q.

/1

Big T H{28j’|¢j * f||LP(R3)}jeZ

Lemma 2.1 [13] Let 2 < p < co. There ezists C > 0 such that

a(z)

; 1 Q
||F_1€iz%9tff||302 < C Og(€+ | |t)

(it 0y ed
S TR LI sa-2 (2.1)
1+ [Q[t Big,;l;)



fordl QeR, t>0, feB (p P (R,

Lemma 2.2 Let 1 < ¢ < 2 < p < oo satisfy 1/q > 1 — 1/p. Then, there exists
C > 0 such that

(L | Q 3(1-2)
a0 lr < 030D BRIV g, (2:2)

for allQ € Rt >0, f € LY(R?).

Proof. By the continuous embedding BY,(R?) — LP(R?) and (2.1), we have

log(e + [Q[t) ) 20-3)
Ta®)lr < CITal®)f 59, < {W} e 1 o
m,Q

And we have from Lemma 2.2 in [16] and the continuous embedding LI(R3) —
BY,(R?)
q,2

[ f1 sup) < CF 2”)||f|| 0, SOt 2G| £l o e
2
P

Therefore, we obtain (2.2). |

Proposition 2.3 [13] Let 2 < p < 6, 2 < § < 0o satisfy

Then, there exists C' > 0 such that
_1.3¢q_2
ITa()floooinn) < CIQIT7 0] £ 12
for all Q € R\ {0}, f € L*(R?).
Proposition 2.4 For every f € H2(R?), it holds that

lim |[To () f]]

L
2]—00 L4(0,00:H7)

= 0. (2.3)

Proof. Since S(R3) is dense in Hz(R?), there exists {fx}3_, C S(R®) such that
fv — f in Hz(R?). Then, we have from Proposition 2.3

T 1 Tol(- — 1 4+ | Tl it
ITaO1 g ety S WO =D o FITaOIN s 2.4
<Cllfv = fll 3+ "T"(')fNHLzl(o,oo;Hé)'



On the second term of the last right hand side, we have from (2.1), (2.2) and
Lebesgue’s dominated convergence theorem

log(e + [©2[t) 23
T <Cl\—on -3
ol b, < OS2 g0
§7
log(e + 1) (2.5)
—of{lsl gy
1+ |Qft L4(0,1) B% .
— 0 as |Q — oo,
_s2_1) [log(e +[Qt)
ROfl, sl p{EEeHayeh,
H Q( )fNH H32) = 1+|Q|t ”fNH %2 L4(1,00)
_1flog(e + |Q[t)\ 5 (2:6)
1+ Qt L4(1,oo)HfNHHg2

— 0 as|Q — oo.

Therefore, we obtain (2.3) by (2.4), (2.5), (2.6) and the convergence fy — f in
H2(R3) as N — oo. O

Proposition 2.5 Let 2 < p <3 and 6/5 < q < 2 satisfy

1 1 1 1
1—- S - 5 ) 2.7
Ppq 3 p (27)

3/1 1 1 2 1 1 371 1
______ _(1-2 S - 2(2_=Z p
max{o, Q(q p> 2( p>} 0~ 2 Q(q p) (28)
Then, there exists C' > 0 such that
t

To(t — 7PV f(1)d <l 2G-a 2.9
| [ ot = revsear| s ol 17l iy (29

foralls e R, Qe R\ {0}, f € Lg(O,oo;H;’(RS)).

Proof. We only consider the case s = 0 for simplicity since the case s # 0 is treated
similarly. By Lemma 2.2, we have

L?(0,00;LP)

H /Ot To(t — )PV f(r)dr

3 1 3,1 Q 5(
[ = miradop[losle Ol |’>} Nl
L

1+ Qt —

(0,00)



In the case 1/6 = 1/2 — 3(1/q — 1/p)/2, we have from Hardy-Littlewood-Sobolev’s
inequality

¢ _1_3¢1_1y(log(e+ |||t — 3(1-2
R e S I TIV
t 13,1 1
< | [ a=n D]
<Ol g 0o

In the case 1/6 < 1/2 —3(1/q— 1/p)/2, we have from Hausdorfl-Young’s inequality
with 1/0 =2/ +1/r — 1

3 1_3/1 1 0 2(1 )
/O(t_7_>*§*§(575 { Og(€+| ||t ‘ |>} Hf( )HquT 9
L

1+ ]9t - 0,00)
< [rasa-p el D)y
1+ |Q|t L7(0,00) L% (0,00,L9)
11,311

= ClOP = Ay
Therefore, we obtain (2.9). O
Proposition 2.6 There exists a positive constant C' such that

| [ 70209000y < Wiy (210)

foralls e R, Qe R, f e L*0,00; H(R?)).

Proof. For simplicity, we show (2.10) in the case s = 0 since it is possible to treat
the case s # 0 similarly. On the L*(0,00; L?) norm, we have from Plancherel’s
theorem and Holder’s inequality

t ) .

<c| [t g fmiar|
0

o~ (=g €| Hf

/Ot To(t —7)Vf(T)dr L2

£2(0,0) £2(0.0)|| 2 (2.11)
< O fllz20,00:L2)

= C(Hf”Lz(O,oo;LQ)'

On the L*(0, 00; L3(R?)) norm, we have from (2.2) and Hardy-Littlewood-Sobolev’s
inequality

H /Ot To(t — )V f(r)dr

<c| [ - n D]

< Ol fllz2(0,005L2)-

L4(0,00;L3(R3))

Therefore, we obtain (2.10) by (2.11) and (2.12). |



Lemma 2.7 Let s, p satisfy

0<s<3 i < ! < ! + i
S 3 o - a P
- 3 p 2 6
and let q satisfy
L 2 s
¢ p 3
Then, there exists C' > 0 such that
||f9|H; §O||f|Hz§ 9|H;~ (2.13)

Proof. Let r satisfy 1/¢ = 1/p + 1/r. In the Sobolev spaces, it is known that

/9]

iy < Cf

- +C|f

isllg wrllgll -

By the continuous embedding H;(R?’) — L"(R3), we obtain (2.13). |

3 Proof of theorems

We prove Theorem 1.1, Theorem 1.6 and Theorem 1.8. The proof of Theorem 1.4
is omitted since it is shown in the similar way to that of Theorem 1.6.

Proof of Theorem 1.1. Since the assumption on # and p in Proposition 2.3 is
satisfied by (1.1) and (1.2), there exists Cy > 0 such that

1T (Yt a0 sty < 12177507 Co ol
Let ¥(u) and Y be defined by
t
W(u)(t) = To(t)uo — / To(t — 7PV - (u ® u)(7)dr, (3.1)
0

i _1,3_2
Y ={uc Le(o,oo;H;(R3))3 | ||U||Le(o,oo;f1;) < 2CH|9| gt p)||u0|

d(ua U) = HU - ’UHLG(O,OO;H;)'

e, divu =01},

Let ¢ satisfy 1/q = 2/p — s/3. Since the assumptions on s, p, ¢ and 6 in Proposition
2.5 and Lemma 2.7 are satisfied by (1.1) and (1.2), for any u,v € Y, we have from



Proposition 2.3, Proposition 2.5 and Lemma 2.7

_1.3 3(1-1
HM@MWWHSSQM|ﬁAI\mmp+am622qu®Mummm>

< Col Q77T g
< ColQ 71 g
< ColaTril- ||U0||Hs + G192

1, § 1_1
H‘S _|_ C’Q’G 2 2 q p)”uHLO O,OO,HZ‘E)

e+ CI|Q|5—2+2 ———)+2{—§+§(1——)

3(

=9 o1
(3.2)

1@ () = ()l poo,00;13)

= H /Ot To(t —7)PV - {u® (u—v)(1) + (u—v) ®v(r) }dr

L9(0,oo;f{§)

W

SC|Q|$*%+—(§7%)Hu®(u—v)+(u—v)®v|| 280000010

=4+30-D)
< C|Q| . (Hquﬁ OOOH + HUHLB 0,00;H3 )Hu - UHLG(O,oo;Hg)
< Gl Q772G 7T 0D g |

= ColQ T2 Juo

U_UHLB (0,003 H13)

U — ’UHLG(O,OO;HS)

—_= l
= Cal QU2 4 Juoll gl = vll o0 ocs5)-

If Q, ug satisfy

Ch

s 1
540w

s 1
54l i <5

s < Co, Oy

then, it is possible to apply Banach’s fixed point theorem in Y and we obtain u € Y
with t
u(t) = To(t)uo — / To(t — 7)PV - (u @ u)dr.
0

Here, we show that the solution u € Y satisfies u(t) € H*(R")? for all t > 0. On the
linear part, it is easy to see that To(t)ug € H*(R®)® for any ¢ > 0. On the nonlinear
part, let 1/¢ = 2/p — s/3 and we have from Lemma 2.2, Lemma 2.7 and Hélder’s
inequality

/tTﬂ@—T)PV-(u@u)(T)dT < [t Y e gyde
" " Ot 1_3/1
<C [ (t- 7) 72 u(7) |3, dr
1_3/1 1
<Ot — )26 o 0re Il ol
< O T T Il
(3.3)

Here, we note on the integrability at 7 = ¢ that

0 1 3/1 1 . . 1 5 3 S
m{§+§<a—§>}<l 1fand0nly1f —<§ + .

10

2]
L?2(0,00)



Therefore, we obtain u(t) € H*(R™)? and we also see u € C([0, 00), H*(R?))?. O

Proof of Theorem 1.6. Let § > 0 be an arbitrary positive number to be determined
. . . o1 3 .
later. Since K is precompact in H2(R?)?, the closure of K is compact. Hence there

exist a natural number N (6§, K) and {f]}N((S K) ¢ Hz(R3)3 such that
K C U (f]7 )7

where B(f,6) denotes a ball in H %(R?’)?’ with center being f and radius §. By
Proposition 2.4, there exists wq(d, K) > 0 such that we have

su Ta()f; 1 <4
. [T )f;I\LLL(Om;HBQ)

for all 2 € R with || > wy(0, K). Then, for any f € K, there exists j €
{1,2,--- ,N(4, K)} such that f € B(f;,0) and we have from Proposition 2.3

Taol(- 1 < ||1g 1 To()f; 1
| Q()me(o,oo; 1 Ta () (f; )‘|L4(0,oo;Hf)+‘| Q()fJHm(o,oo;H;)
<CIf; = fll+96
< C.

Therefore, there exists a positive constant C; > 0

sup [[Ta() 1, <Gy (3-4)
feK

000ty
for all 2 € R with |Q] > wy(d, K). Then, let the space X be defined by

<2046, divu=0},

Let ¥ be defined by (3.1). For any v € X, we have from Proposition 2.6, Lemma
2.7 and Holder’s inequality

1@ gty < Clluoll s + Cllu@ull s
2
< Cllusll 3 + Clull? %mw) (3.5)
2
< Clluollyy +Cllully, -

We also have from Proposition 2.6, Lemma 2.7 and Holder’s inequality

1 (w)l 1 S Ta()uol p HCluul,

LA(0,00,H2) — LA(0,00,H12) 0,00;H )
< W TaChuoll b, +01\||u||2% om0 (3.6)
< [[Ta(: Cy||ul? .
< Wyl gty * 2Hu”L4<o,oo;H§>

11



Similarly, we also have for u,v € X

U(u) — U <C - .
[ () (v)||L4(OVOO;H3%)_ 3(”7“‘HL4(0,00;H§)+””HL4(0,00;H%))”“ Ol s 0 et

3
(3.7)
Here, since ¢ is an arbitrary positive number, let 6 > 0 satisfy

6 < '{—1 —1 }
Sl VTS NGAR ToXoN &

where C,Cy and Cj is the constants in (3.4), (3.6) and (3.7), respectively. Then,
we have from (3.4), (3.5), (3.6) and (3.7)

||\I’(“)||L°°(O,OO;H%) < 00
L\ <2046
| <U>HL4(0,OO;H§) < 2C40,
1
\ -y < 2oy —
[ (u) <U)||L4(o,oo;H§) < QHU UHL4(0700;H3%)7

for all u,v € X, Q@ € R with |Q] > wy(d, K). Therefore, it is possible to apply
Banach’s fixed point theorem to obtain the global solutions. |

Proof of Theorem 1.8. By the same argument to the precompact set K in H 3 (R3)
as that of proof of Theorem 1.6, we see that for any 7" > 0 and d > 0, there exist
w(T, K) > 0 and C; > 0 such that

To(: < Cyo
?22” Q()f||L4(0,T;H§)_ 19,

for all Q € R with |Q] > w(T, K). Then, we can obtain the similar estimate as (3.5),
(3.6) and (3.7) in which time interval (0, o) is replaced with (0, 7). It is possible to
apply Banach’s fixed point theorem in the space

oL 37\ 3 .
= < =
X ={uel(0,T), H2(R?))” | HUHL4(0,T;H3%) <2040, divu =0},
) = e =oll, 1
and obtain local solutions. |
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