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Abstract

Our aim in this paper is to compute the first cohomology of some type of
finite group schemes. L. G. Roberts [7] gave the first cohomology of group
schemes in certain conditions. We compute it by completely different way
and under circumstances, by using the concept of cyclotomic twisted tori.
The concept was introduced by Y. Koide and T. Sekiguchi [4], and they
showed that such a twisted torus is isomorphic to a subgroup scheme in a
Weil restriction of 1-dimensional algebraic torus given by the intersection
of whole norm maps. Here we extend the isomorphism to a resolution of
the cyclotomic twisted torus, consisting of Weil restriction of 1-dimensional
algebraic tori and several norm maps. And we describe the endomorphism
ring of a cyclotomic twisted torus. Moreover, we show that by using the
resolution, one can compute that first cohomology of a cyclotomic twisted
torus, and that one can describe the torsors of some type of finite group

schemes by using the concept of cyclotomic twisted tori.
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1. Introduction

F. Oort and J. Tate [6] gave the complete classification of finite group

schemes of order prime p in the following way: Let A be a Aj-algebra, where

Ap:Z{C, N Zyp,

1
p(p — 1)]
¢ being a primitive (p — 1)-st root of unity in the ring of p-adic integers Z,.
Then any finite A-group schemes of order p are classified by triples (M, a, b)
consisting of a projective module M of rank 1 (cf. [1, Chap. II, p.141)),
together with @ € M®®~Y and b € M®1~P) such that a ® b = w, where w, is
the product of p and of an invertible element of A, (cf. [6] for details). The

group scheme corresponding to triples (M, a, b) is given by
Gap = Spec (A[z] /(2P — ax))

with the group scheme structure

[ . .
* _ . ) p—1i
m'(z)=r®1+1®x p—_liZ:;U(z)x ® TP,
where U(i) is an invertible element of A.
If A is a local ring, then G, = G, if and only if there exists u € A*
such that @’ = u?~1a and V/ = u'~Pb, where A* is the multiplicative group of

the invertible elements of A. If A has characteristic p, then
Goo =a,, Gio= Z/pZ, Goi= Hp.

If uis a (p—1)-st root of b € A with a = b~'w, € A and B = Afu], then
G is the Galois descent of p, 5. Our aim is to compute the torsors for this
kind of group schemes G .

As all the symbols used in [4], we denote by n a positive integer, by

m = ¢(n) the value of the Euler function and by G a cyclic group of order n
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with a generator og, unless otherwise stated throughout this paper. Let B/A
be a G-torsor. We suppose that B is a free A-module. Let  be a primitive
n-th root of unity, and I be the representation matrix of the action of  on
Z[¢] by the multiplication. Then we can define an action of G on GJ; 5 by
(1,29, ...,2m)%° = (21,79, ...,7,)", and on B by the Galois action (cf. §2).
By this G-action, we can descent the torus Gy,  to over A, which we call a
cyclotomic twisted torus of degree n, and we denote it by G(n)4. Y. Koide
and T. Sekiguchi [4] showed that the cyclotomic twisted torus is canonically

isomorphic to the subgroup scheme

T(n)a:= ﬂ Ker (Nmy) C H G, B
Ln B/A
where Nmy is the norm map from B to B, = Bl (cf. [4, Th. 6.1.]). We
extend the isomorphism to a resolution of the cyclotomic twisted torus, which

we call a cyclotomic resolution, as follows.

Assertion 1. (cf. Th. 3.2, 3.3) Let n = p{'p3* - - - pS be the prime decompo-

sition of a positive integer n. For integers 1 < ig < iy < --- <1, <1, we set

niOil"'i5>

Nigiy i = N/ DigDiy -+ Din and Biyi,...;, = B Under these notations,

there is a following exact sequence of sheaves of groups on (Spec A)gat;

0= Gn)a 5 [[ Cus T I] Gus,

B/A i=1 \ B;/A

ot 0?
— H H Gm’Bioil o

1<ip<i1 <r Bioil /A
ar—l
— H Gm,Bo..., — 0.
Blg...r/A

In §2, we quickly review the cyclotomic twisted torus G(n). In §3, we give
the cyclotomic resolution above. In §4, we give explicitly the endomorphism

ring of G(n)4 and the isomorphism as follows.
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Assertion 2. (cf. Th. 4.1) There exists the canonical isomorphism
End(G(n)) = Z[(].
Assertion 3. (cf. Prop. 4.2) For ¢ € End(G(n)a) (¢ #0),
det ¢ = Nm ¢ = ord(Ker ¢),

where det ¢ = det M for the representing matriz M, and Nm ¢ means the

norm as an element of Z[(].

In §5, we compute the first cohomology of G(n)4 and the Galois descent
of the kernel of an isogeny 0 : G}, z — G, 5, where 0 € Z[(].

2. Review on G(n) : the cyclotomic twisted tori

From now on, as in the introduction, we denote by n a positive integer,
by m = ¢(n) the value of the Euler function and by G a cyclic group of order
n with a generator 0. Let B/A be a G-torsor. We suppose that B is a free
A-module. Let ¢ be a primitive n-th root of unity. Let

b, (x) = H (z—C) ="+ a2™ " +- Fan
ke(Z/nZ)x

be the cyclotomic polynomial, and I be the representation matrix of the

action of ¢ on Z[¢] by the multiplication, that is to say,

00 - 0 —an

10 --- 0 —Qm—1
I=10 1 -+ 0 —ap-2

0 0 - 1 —Qaq



It is well-known that the coefficients of ®,,(z) are rational integers. In particu-
lar, we can easily see that a,, = 1. In general, for a vector ¢ = (21, xa,...,ZTy)
and a matrix A = (a;;) € Mxe(Z), we define the matrix power z# by

m m m
A aj1 a;2 aje
r = H%‘ ,ij H% :
Jj=1

J=1 J=1

Now we consider the algebraic torus

m
xlamQa"wxm?l/ | |$Z
i=1

over B. It is well-known that Aut(G}; p) = GL,,(Z). We define an action of
G on Gy, p by

m.B = Spec B

Blzy, ..., xm, 1/ 1] ] 20, Blzy, ...,z 1/ T, il
00 4 = (T1,...,Tpm) oz = (20, ..., 2%0) = x!,

be B = b7,

By this G-action, we can descent the torus Gj 5 to over A, which we call a
cyclotomic twisted torus of degree n, and we denote it by G(n)4. Then the

cyclotomic twisted torus can be written as

G(n)a = Spec A[&1, &, ..., &0 /2L,

where &1,&,, ..., &, are G-invariant parameters, and the ideal 2 is given ex-
plicitly (cf. [4, Th. 4.1.]).

Example 2.1. In case p = 5 and A = F5, computation in MAGMA shows
that
G(4)r, = SpecF5[&1, 2, &3, 6a] /2L,

where the ideal 2l is generated by

{ 262 4+ 36,8, + 2 + 3, }
4€1&5 + 3E2 + 482 '
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If p=7and A = F; then

G(6)F7 - Spec ]F7[£17 527 537 547 557 gﬁ]/m
with the ideal 2 generated by

(46166 + 6665 + 4636y + 4,
66185 + 284 + 3E5 + 685,
3ET + 5266 + 26385 + 665 + 4,
46185 + 3€5 + 363 + 66486 + &2,
6€183 + 485 + 58486 + &2,
667 4 6&1 + 5286 + 5E3&5 + 267,
26185 + 26264 + BE5 + BE; + 468,
58184 + §283 + &4 + 558,

[ 26182 + 282 + &386 + 38485 J

3

The cyclotomic twisted torus is canonically isomorphic to the intersection

of the kernels of norm maps. In fact, for each positive integer ¢ dividing n,
we denote By, = B<"g/e> C B, and

Nmy : H Gm,p — H Gm,B,

B/A By/A

the norm map from B to By,. Then the group scheme

T(n)a=[)Ker Nmy) C [[ G

£n B/A

is nothing but the cyclotomic twisted torus G(n)4 (cf. [4, Th. 6.1.]).

3. Cyclotomic resolution
Here we note the surjectivity of the norm map
Nm:F; — F,
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for later use.

Lemma 3.1. Let g be a power of a prime number. Then the norm map
Nm:Fp — F,
18 surjective.

Proof. Let @ be a primitive element of F;». Then

— — 2 ... n—1 (A _
Nmg = gltete +-+a"" — gla"-1/(¢-1)

This is an element of F, of order ¢ — 1. O]

The rest of this section, we denote & = F, and K = F;». Now we have

the following theorem.

Theorem 3.2. Letn = p'p3? - - - pSr be the prime decomposition of a positive
integer n.  For integers 1 < 15 < 43 < -+ < i < 1, we sel Njyiy.i, =
n/PiPiy -+ Diy and My, ..;. = Fq"ioilmis. Under these notations, there is a

following exact sequence which we call a cyclotomic resolution;

1021

0= G)(k) S K B[ S ] Mi, S
=1

1<ip<i1<r

'

ar—Q ar—l

C— l_IMlx2 . — M., —0,
=1

where the morphisms 0° are defined as
P = (NmKX/Mlxm, NmKX/MQXx, coey NI .71:)

forx € K, and

iOil‘“i]‘“

J

s (1)
S _ ~
(0 m)zozlz = (NmMX . S/Mf)lxzmlzjz)
=0

P . . . . . . ><
fOT’ r = ($1011"'Zs—1)1§10<11<"'<ls—1§7’ € | | Mioil---is_l'
1<ip<<is—1<r
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Proof. Clearly, 9°719* = 1. The case of r = 1 is proved by Lemma 3.1. We
use induction on the number r of the prime factors of n.
First, we check that Kerd' € Imd° in the case r = 2, that is to say,

n = p{'ps?. In this case, the required resolution is as follows;
€ x 8° X x O X
0— Gn)k(k) > K* — M x My — M5 — 0.

Set
x = (11,79) € Ker @' for x € M x My.

By Lemma 3.1, we can take an element z; € K* satisfying x1 = NmKX/Mlx 2.
Then
((8021)_1:13)1 =1 and (0°z) 'z € Kerd".

Therefore we may assume that * = (1,25) € Ker9*. Now we can take an
element zy € K™ satisfying o = Nm .. /Mg 22 and prepare more notations.

Set 1 X" —1
=5 and E’Oilwz‘s(X):m'

F(X)

Then

(ﬁl}f(())(( ))’ i“l;((;(())) = (;—(:__11 ?:1) — 1.

Therefore there exist polynomials f1(X), fo(X) € Z[X] such that

Xm -1 X -1

Xni2 ] + f2<X)Xn12 —1 =1

fi(X)

(cf. [4, Lem. 6.4., Prop. 7.4.]). Now we set

N = Zgl(ao)(ﬂgl—l)/(ag”—l)_

Then
Nioxppxy =1 and Ny ey = 2.

That is to say, 9’y = x. Hence we prove that Ker o' C Im 0°.
Y, 077



Second, we will verify that Ker 9! C Imd*, where s + 1 # r — 1. For
simplicity, we suppose that 1 <1y < iy < --- <1, always. Set

— s+1 X
r = (xioir--is)isﬁr € Kero for =€ H Mioil"'is'
1s<r
and
€r—1

g I — g T
n=p; P, ¢=¢7, T= (ngzl--~zs)13§r—17

and consider a sequence

B % 8/0 rl v 8/1 x 8/2
0= Gn)(k) > K* =M= [ M5 =
i=1 1<ip<t1<r—1
a/r—? x

T > My, 1 — 0,

where the morphisms @ are naturally induced by 9. Then &’ € Ker (9')*!.
By the induction hypothesis, there exists an element v’ = (Uioz‘1~~~i571)
such that (0')*u’ = x’. We set

i371§T—1

Uigiy-ig_or — 1 and u= (uioil'"is—l)is,1<r .

Then
((8Su)_1a})i0i1“_i =1 for isz<r-—1,
and
(0*u)'x € Ker 0°t.

Therefore we may assume that & = (Zy,...4,); <, € Ker 0! with @y5,..;, = 1
for iy, <r — 1. Then we have
s+1 - (-1
(a m>ioi1---isr = H (NIHMZ'O.4.{j4.4¢ST/Mi0~-~isrx’io-~iAjmiST') =1
=0
We set

yioiy“isfl - xioirnisfl’f) y = (yioi1~~~isf1)is_l<,,,_1 )
er—1

/I __ .e1,€2 Er—1 ! __ Dr
n=pi PP, 4¢=q"

! !
K = Mr = F(q/)”/’ M; - Mioiy--%?"?

10%1 - 1s



and consider a sequence

0 = G(n)u(k) & (K1) 25 ﬁ(Mf)X

7
i=1

(81)1 (8/)2 (8/)7-—2
- H (Mi/0i1)>< T (M{Q---rfl)x — 07

1<ip<i1<r—1

where the morphisms (9')! are naturally induced by 9°. Then

/\ S _ s+1 _
((8) y)ioir-~is - (8 m)i0i1-~~i5r = 1.
’ /
Then we choose an element v’ = (Uioil"'isf2>is_2§r—1 such that
Ns—1_./ _ — .. .
((8) v >i0i1'“is—1 = Yigir-is—1 = Ligiz-is_1r-
Set
1 for 1,1 <r-—1,
Vigigig—1 — , ‘ . .
Vigiroia_p TOT g 1 =T,
and
v = (Uioil"'isfl)isflgr .
Then we have
s 1 for 1, <r—1,
(070),.0, =
0?1 "2s f .
Ligiy-ig_1r 10T 1g =T.

That is to say, 9*v = x. Hence we see that Ker 9°t! C Im 0°.

Lastly we check that Ker9"~! ¢ Imd"~2. We prepare more notations.
We set

~ ~ ~
Y

i=(1,...,4,...,r) and iAj:(l,...,i,...,

CT).

Fixed

-1
x = (vy,75,...,7;) € Kerd" for x;GM%X.
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Then

T

r—1,, (=17t

J=1

We choose elements 2o, 23, ..., 2, € K* satisfying
xT; = Nme/Mgzi for 1=2,3,...,r.

Now we set

eg3—1 er—1

n — p?P;Q, q/ _ qp3 Py ’ K' = Mﬁ — F(q/)n/,

! : (-1 % 1\ % X X
' = xi,H<NmKX/M;zj> € (Mj)* x (M])* = M x M,

=2

and consider a sequence

(@) =9 Lz = 1.

By the induction hypothesis, we can choose an element ug; € (K')* = M

such that (0')’u; = «'. By setting uz = 1 for ij #12 and u = (ujhr<i<j<rs

we have

(0 %u)"'x); =1 and (9" *u) 'z e Kerd .
Therefore we may assume that = (1,23,...,2;) € Kerd ', Assume
without loss of generality that = (z,...,2-—,1). Next we set

er—1 " er—1

n =pitp, o =4,
" __ o " _
K" = Mr - F(q”)n”u M; — Mi0~'~is7’7

10 1s

' = (xi, “us ,xﬁ),
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and consider a sequence

0= G(n")e(k) 5 (k") 5 HM” S | A
i1 1<io,i1<r—1
" " = I\ —2
Oy Ty O ity .
i=1
Then

(a//>r 2.1 ar 1 =1.

Again by the induction hypothesis, we can choose an element v’ = (U{‘j)lgi<j§7~_1

such that (8”)’"*31)% = z". By setting v;; = 1 and v = (vj;)1<i<j<r, We have

1 for i=r.

(6’7"2'0);:{ x; for 1<i<r—1,

That is to say, 9" 2v = x. Hence we see that Ker9"! C Im 9" 2. O

The essential point of the proof of Theorem 3.2 is the surjectivity of the
norm map
Nm : Fgn — Fy.

We can easily see the surjectivity of the norm map of sheaves on the flat site
(Spec A)ﬂat;
m: H G = G4,

B/A
where the notations are as in the previous section, namely, G is a cyclic
group of order n and B/A is a G-torsor. In fact, for any A-algebra R and
any element a € G,, 4(R) = R*, set S = R[T]/(T™ — a). Then the morphism

Spec S — Spec R is surjective and flat, and we get the following commutative
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diagram;

Nm(R
[[Gns | (B) = (Roa B —" =G, A(R) = R*
B/A
\Lrest. rest.
Nm(S
[[Gus | (5) = (S@a B —= G, a(S) = 5

B/A

Thus we see that Nm(S)(T ® 1) = rest(a). Therefore by the same argument

in the proof of Theorem 3.2, we have the following.

Theorem 3.3. The sequence of sheaves of groups on (Spec A)gay

0— G(n)A i> H Gm,B ﬁ : H Gm,Bi

B/A i=1 \B;/A
ot 0?
- H H Gm’Bioil o
1<ig<i1<r \ Bigi, /A

arfl
“— JI Gmsu.. =0
Bia..n/A

!

fopiom i

where B;y;,..., = B , s exact.

4. Endomorphism ring of cyclotomic twisted torus

Under the notations in the previous section, we determine the endomor-

phism ring of G(n),4 as follows.

Theorem 4.1. There exists the following canonical isomorphism,

End (G(n)a) = Z[C).
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Proof. Suppose that ¢ is a G-equivariant endomorphism of Gy 5. Then the
morphism ¢ is represented by some matrix M = (b;;) € M,,(Z) satisfying
the equality M1 = IM. By calculating IMI~!, we have the relations

bij = bi—1j-1 — Am—it1bm -1 for 4,5 >2,
blj = _bm,j—l for ] Z 2.

Set ¢; = b;; for i =1,2,--- ,m. Our assertion is that

M = ij cp P
k=1

In fact, we have

k—1
bk = E QpCm—k+1+£
=1
by the relations above, where ay = —1 and

k—1
o = —Zaiak_i for k> 2.
i=1

Then

m [
bij = Ci—jy1 + E Ck E U410k~ j—i—14£ | 5

k=m—j+2 =1
where oy = ¢, = 0 for ¢ < 0. On the other hand, since the (i, m)-entry of the

matrix I* is given by

k
g CpQm—p+k—i+1,

{=k—i+1

(¢,7)-entry of the matrix > ", cpIF1 is

m 7
Ci—j+1 + E CkE Of—1+4j—m—i+0m—+1 | -

k=m—j+2 /=1

This proves the theorem. O]

By Theorem 4.1, we have the following proposition.
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Proposition 4.2. For ¢ € End(G(n)a) (p #0),
det ¢ = Nm ¢ = ord(Ker ¢),

where det ¢ = det M for the representing matriz M, and Nm ¢ means the

norm of ¢ regarded as an element of Z|(].

Proof. Let
M= I
i=1

be the representing matrix of ¢ € End(G(n)4) (¢ # 0). Set

flz) = i”: cir' L.
i=1

Then the eigenvalues of M = f(I) are given by { f(¢*) | k € (Z/nZ)* } from

Frobenius’ theorem. Therefore we have

det M= [ f(¢") =Nmf(Q).

ke(Z/nZ)*
Note that det M > 0 since
Nmg(o)/aictc1) 9 = ¢ = |¢f* > 0.
Then we can choose J, J' € GL,,(Z) such that

dy

dy
JMJ,: . ’

i,

where dy,ds, . . ., d,, are positive integers such that d|ds| - - - |d,,, and det M =
dydy - - - dy, since det M > 0. Therefore we see that det M = ord (Ker ) since

Ker ¢ = Ker @
= Spec Blxy, o, . . ., ) /(28 — 1,28 — 1, 2% — 1)

= Md; XSpecB Mdy XSpecB *** XSpec B fhd,, -
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5. G, p-torsors

As previous section, let G be a cyclic group of order n and B/A be a
G-torsor. We denote X = Spec A and Y = Spec B. We assume that the base

scheme lies over Spec A, where

Ap:Z{C, N Zy,

]
p(p—1)
¢ being a primitive (p — 1)-st root of unity in the ring of p-adic integers Z,.
Since the morphism Y — X is étale, and []5 /A Gy, 1s a smooth X-group
scheme,

H? | Xg, H Gmp | = H? | Xa, H Gm,B
B/A B/A

for ¢ > 0. In general,

H? XétaHGTmB :Hq XétyHGm,B
B/A B/A

For any étale open covering {U, — X} ca, we have an étale open covering
{U)\ ny — X})\EA' Then

¢ {UA}AEAaHGm,B = H I U)\o)q---)\qal_[Gm,B

B/A A0S ALyeeey )\qEA B/A
= JI TWws,NY.Gup)
A0y ALyeeey )\qEA

= Cq({U)\ N Y}AeA, Gm,B)'

We obtain,

HY | {Usheas [[ Gms | = HY(UAN Y hrea, G ).

B/A
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Therefore we have the following equalities;

H' | Xa, [[ Gms | = H' | Xeo, [ [ G
B/A B/A

= Hl(ntaGm,B)
- H1<YZarqu,B)
= H1<Yﬂ7Gm,B)7

since
[:[q XétaHGm,B = Hq(yétaGm,B) = Hq(Y:éth,B)'
BJA

In particular if A is local, then B is semi-local and
H1<Yzar, Gm,B) = PicY =0.
Consider the exact sequence

0— G(n)s = HGm,B 20—> Ker 9' — 0
B/A

which is obtained by the cyclotomic resolution,

r 1
0= Gn)a S [[Cus I1Gns | &
BJA i=1 \ B;/A
Under flat topology, we have an exact sequence,
0 e 0 , 0
0= HYX,G(n)a) =2 B | X, [ G | 555 HO(X, Ker &)
B/A
1 (3]
& H(X,Gn)a) 5 B X, [[ G | =0
B/A
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Then we have the canonical isomorphism,
H'(X,G(n),) ~ Coker H(X,d")

and the explicit correspondence is given as follows: For f € Coker H°(X, 9°)
which is represented by f € H°(X,Kerd'), we have the following diagram

of = [ [[ G | ——X

B/A

0——=G(n) Ker 9' ——=0

HGmB

B/A

by taking pull-back i.e. fiber product (cf. §7).

Let p be a principal prime ideal which splits completely over Q({) with
pNZ = (p). In fact, p splits completely if and only if p = 1 (mod n) (cf.
9, Prop. 2.14.]). We assume that n = p — 1. Set p = (0). Then we have an
exact sequence

O—),{ULPB—>GmB—>G 50,

where we recognize 0 € End(G(n)4). Then the Galois descent theory gives

an eX&Ct Sequence
L 0
0— (pp5)% 5 G(n)a = G(n)a — 0.

We can describe the torsors for (u, 5)¢ in the following way: By Oort-Tate’s

classification theorem, we have

p,B = Spec Blz]/ (2" — sz)

with comultiplication

p—1

* 1 i
m()—z@l—l—l@z—EZU 7@ 2P,

18



where w), is the product of p and of an invertible element of A,, and U(7) is
an invertible element of A (cf. [6] for details). The Galois group G = (o)
acts on p, g = Spec B[z]|/(xP — 1) by 2°° = 2* with some integer ¢, and on
Spec B[z]/(2P — wyz) by 2°° = (*z where  is a primitive n-th root of unity
(cf. [6, Section 2, Prop.]). Now we assume that there exists u € B a n-th
root of some non-zero divisor b € A with a = b~'w, € A and B = A[u]. Then
Gap is the Galois descent of p, 5. In fact, we may assume without loss of

generality that u® = (u since
Fua(X) = X" =b= (X —u)(X = Cu) -+ (X = (""u).

Hence u~'z is G-invariant. Therefore we have the following equalities

o= (E) —a(D) e[,
w ()= (G ere1e (D) -5 So0 (2 e ()

and that the Galois descent of p, 5 is given by G, i.e., we obtain an exact

sequence

0= Gap 2 G(n)a > G(n)a — 0.
From this sequence, we obtain a long exact sequence

HO(X ) HO(X,0)

0 = H(X,Gap) —— H(X,G(n)a) — H(X,G(n).)
& HY(X, Gup) 5% HY(X,G(n)a) =% HY(X, G(n).)
o]

_>...

Then we have the non-canonical isomorphism

HY(X,Gap) = Coker HY(X,0) x Ker H'(X,0)
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and the explicit correspondence is given as follows: For g € Coker H°(X, 6)
and f* (HB/A Gm,B> € Ker H'(X, 0), we have the diagram,

Gop SDl({Oi}XX)—>X

Gm)a ~ f|]]Gms| —=X

B/A
’ i“ﬁ

G(n)a ~ 6.f HGm,B —X

B/A
12
G(TL)A x X

where ¢, (7! ({1} x X)) = f* (HB/A Gm,B> (cf. §7). Therefore we have
g+ ¢ ({0} x X) € H'(X,Gap),

where the operation “+” is the group law of H'(X,G,p).
Note that we only considered the case that prime ideals lying over p are
principal. The non-principal case is studied by Y. Koide in his forthcoming

paper [3].

6. Examples

Example 6.1 (cf. [6] for details). In case p = 7, n = 6, m = 2. The base
ring A7 is given by
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where ( is the unique element of Z; such that (> = —1 and ¢ = 3 (mod 7).

The representation matrix of the action of ¢ on Z|[(] is given by

0 —1
I = >
ie., G = (0g) acts on G2, p = Spec Blz,y,1/xy] by (z,y)7 = (y,27'y). Set

m

0 = 3 — 2¢ € Z[(] which corresponds to an endomorphism

( ; i) € End (G(6),) .

-2

Note that det @ = 7. Then we see that
1 0 3 2 1 -2 B 1 0
3 1)\—=21)\-1 3/) \o 7

Ker 6 2 Spec Blz,y,1/zy]/(x — y*,y" — 1) = Spec Bly]/(y" — 1) = pr 5

and

with the G-action y” = y°. By Oort-Tate’s theorem, the group scheme p7 5

7

is isomorphic to the group scheme Spec B[z]/(z" —wrz) with comultiplication

6
1 . .
m*(z):z®1+1®z—6ilU(i)zﬂ@Z?z7

where
1
U(1)=U(0) = s g
1
U@)=U() = s a
U(3) = U4) = ﬁ
and

2= —y+ P+ Cy = Cy't =+ 0
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Hence G acts on Spec B[z]/(27 — wrz) by

="+ P+ Cy -y =yt =
Now we assume that there exists u© € B a 6-th root of some non-zero divisor
be Awith a =0b"'w; € Aand B = Afu]. We may assume without loss of

generality that u® = (Su. Then u~'z is G-invariant. Therefore G, is the

Galois descent of pu7 p since

=it ((2) -0 (3)) e8]
(2= G)erere () -grv0 ) e ()

Example 6.2. In case that A is a local IF,-algebra. Let beF » be a primitive

and

element of F,. Set B = Afu| where u is a n-th root of b, and n = p — 1.
Then an ideal (p,b— () of Z|[(] is one of the prime ideals lying over p (cf. |9,
Prop. 2.14.]). We consider the case that (p,b— () is principal. Computation
in MAGMA for p < 100 shows that (p,b — () is principal if p is one of the
numbers

5,7,11,13,17,19,23,29,31,37,41,43,61,67, 71,

and a prime ideal lying over p is given as follows:

5=Nm(2+ (), 31 = Nm(1 + G — C3p),

7=Nm(2+ (), 37 = Nm(1 + (35 — (3),
11 = Nm(2 — (), 1=Nm( + Ca0 — Cio);
13 = Nm(2 + (10), = Nm(1 = G2 + (),
17 = Nm(1 + G + Cy), = Nm(1 + & + o)
19 = Nm(1 + (15 — (), = Nm(1 + Ces — Cg5),
23 = Nm(1 — (oo + 3, = Nm(1 — Gy — (o),
29 = Nm(1 4 (o8 + Cog),
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where (, is a primitive n-th root of unity. Set (0) = (p,b— () where 6 € Z|[(].

Then we have an exact sequence
0

By the same argument in the previous section, the Galois descent theory

gives an exact sequence
0= Gop 5 G(n)a > G(n)a — 0,

and we can compute the torsor for Gop.
In particular if A = F, then H°(X,Go;) = 0. Hence H'(X,Gop) = 0
since

H°(X,0): H*(X,G(n)a) — H*(X,G(n)4)

is an isomorphism.

7. Appendix : push-down and pull-back of torsors

In this section, we give an outline of a proof which we apply the push-

down and the pull-back theory to the torsors of schemes.

7.1. Push-down of torsors

Let G be a commutative group scheme over X and Y/X be a G-torsor.
For a group homomorphism ¢ : G — G’, we can get the G’-torsor on X as
follows, by the same argument with the push-down in extensions of groups:
Consider the diagram

G ~ Y—"+X

yoop
G~ Y s X,

where we assume that there exists the quotient

.Y =G xY/{(pg,~9) g€ G}
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as a scheme, and the morphisms ¢ and 7 are defined by

$(y)=(0,y) and 7 (W) =7(y)

for any local sections y € Y, ¢ € G', and G’ acts on ¢,Y by

g ((g”, y)) = (9 +9"y)

Then we can check that 7 is well defined and the diagram is commutative,

that is to say,
o(gy) = wg(@y) and To@=r.

Moreover,

()" (ny) = (@, Gy) = (9(C) + Gry) = (Cry) = G
Therefore we see that .Y is a G'-torsor on X.

7.2. Pull-back of torsors
Let G be a group and Y/X be a G-torsor. For a morphism f : X' — X,

we can get the G-torsor on X’ as follows, by the same argument with the

pull-back in extensions of groups: Consider the diagram

G ~ frY2sXx

o )

G ~ Y—T"+X,

where f*Y =Y X x X', the morphisms p; and p, are projections, and G acts
on f*Y by g(y,2’') = (gy,x’). Then we see that the action of G commutes
with the projection p;, and f*Y is a G-torsor on X'.
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