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GROUP ALGEBRAS AND NORMAL BASIS PROBLEM

NORIYUKI SUWA∗)

Abstract. We formulate the notion of cleft extensions in the Hopf-Galois theory in the frame-

work of algebraic geometry. The unit group scheme of the algebra of a finite flat group scheme

plays the key role.

Introduction

The Kummer theory is an important item in the classical Galois theory to describe explicitly

cyclic extensions of a field. We have an elementary way to verify the Kummer theory by the

Lagrange resolvants. Serre [7, Ch.VI, 8] formulated this method, combining the normal basis

theorem and the algebraic group representing the unit group of a group algebra. More precisely,

the following assertion was proved:

— Let k be a field and Γ a finite group. Then any Galois extension K of k with group Γ is

obtained by a cartesian diagram

SpecK −−−→ U(Γ )ky y
Spec k −−−→ U(Γ )k/Γ.

Here U(Γ )k is the algebraic group over k representing the unit group k[Γ ]×.

It is not difficult to formulate Serre’s argument in the framework of group scheme theory over

a ring as is done in [8]. In particular we have the following assertion:

— Let R be a ring, Γ a finite group and S an unramified Galois extension of R with group Γ .

Then the Galois extension S/R has a normal basis if and only if there exists a cartesian diagram

SpecS −−−→ U(Γ )y y
SpecR −−−→ U(Γ )/Γ.

Here U(Γ ) is the unit group scheme of the group algebra of Γ . (A definition of U(Γ ) is recalled

in Example 2.8.)

In this article we generalize the above assertion to Hopf-Galois extensions as follows:

Theorem(=Corollary 3.2) Let R be a ring and C a commutative Hopf R-algebra such that C is

a projective R-module of finite rank. Then a commutative C-comodule algebra S is cleft over
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2 N. SUWA

R if and only if there exists a cartesian diagram

SpecS −−−→ U(G)y y
SpecR −−−→ U(G)/G.

Here U(G) is the unit group scheme of the group algebra of the finite flat group scheme G =

SpecC. (For the definition of U(G), see Definitions 2.5 and 2.7.)

We state and prove our main result in a more general setting. It should be mentioned that,

when C is cocommutative, the theorem is stated in Tsuno [10]. Indeed, the group scheme U(G)

is isomorphic to the Weil restriction
∏

C∨/R

Gm,C∨ , where C∨ denotes the Cartier dual of C, as is

verified in Example 2.9.

It should be mentioned also that the notion of a cleft C-comodule algebra was introduced by

Doi and Takeuchi [4]. Here C is a Hopf R-algebra (not necessarily commutative). They proved

that a C-comodule algebra S is cleft if and only if S/R is a C-Galois extension with normal

basis [4, Th.9].

Now we explain the organization of the article. In Section 1, we recall needed facts on

coalgebras, bialgebras and comodules. In Section 2, for a finite flat group S-scheme G, we define

an affine group S-scheme U(G), the unit group scheme of the group algebra of G. Our main

result is mentioned and proved in Section 3.

It should be remarked that related results were estabished by Aljadeff-Kassel [1] and Kassel-

Masuoka [5] in the framework of the Hopf-Galois theory over fields. It would be interseting to

generalize our main result, including non-commutative cases and removing the assumption on

Hopf algebras to be finite over a base ring, and to give a geometric interpretation of their works

as is done in this article.

The author would like to express his hearty thanks to the hospitality of Università degli studi

di Padova. In particular he is very grateful to Marco Garuti for valuable discussions. This work

began with a conversation along a canal of Padova. Finally the author thanks Akira Masuoka

for his introduction to trends in the Hopf-Galois theory.

Notation

For a ring R, R× denotes the multiplicative group of invertible elements of R. A ring is

commutative unless otherwise mentioned.

For a scheme X and a group scheme G over X, H1(X,G) denotes the set of isomorphism

classes of right G-torsors over X. (For details we refer to Demazure-Gabriel [3, Ch.III, 4].)

1. Cleft extensions

In the section, A denotes a commutative ring. We refer to [4] and [6] for detailed argument

on coalgebras, bialgebras and comodules.
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Definition 1.1. Let C be an A-module, and let ∆ : C → C ⊗A C and ε : C → A be

homomorphisms of A-modules. The triple (C,∆, ε) is called an A-coalgebra if (∆ ⊗ IC) ◦∆ =

(IC ⊗ ∆) ◦ ∆ and (ε ⊗ IC) ◦ ∆ = IC = (IC ⊗ ε) ◦ ∆ hold. The maps ∆ and ε are called the

comultiplication and the counit, respectively, of the coalgebra C.

An A-coalgebra (C,∆, ε) is called cocommutative if T ◦∆ = ∆ holds. Here T : C ⊗A C →
C ⊗A C denotes the twist map defined by T (a⊗ b) = b⊗ a.

Let (C,∆, ε) and (C ′,∆′, ε′) be A-coalebras. A homomorphism of A-modules φ : C → C ′ is

called a homomorphism of A-coalgebras if (φ⊗ φ) ◦∆ = ∆′ ◦ φ and ε = ε′ ◦ φ hold.

Definiton 1.2. Let (C,∆, ε) be an A-coalgebra, M an A-module and ρ : M → M ⊗A C a

homomorphism of A-modules. The pair (M,ρ) is called a right C-comodule if (ρ ⊗ IC) ◦ ρ =

(IM ⊗∆) ◦ ρ and (IM ⊗ ε) ◦ ρ = IM hold.

Let (C,∆, ε) be an A-coalgebra, and let (M,ρ) and (M ′, ρ′) be right C-comodules. A ho-

momorphism of A-modules f : M → M ′ is called a homomorphism of right C-comodules if

(f ⊗ IC) ◦ ρ = ρ′ ◦ f holds.

Definition 1.3. Let C be an A-coalgebra and B an A-algebra (not necessarily commutative).

For φ,ψ ∈ HomA(C,B), the convolution product φ∗ψ is defined by φ∗ψ = µB◦(φ⊗ψ)◦∆C . Here

µB : B⊗AB → B denotes the multiplication of the algebra B. The A-module HomA(C,B) is an

A-algebra equipped with the multiplication ∗. The neutral element of the algebra HomA(C,B)

is given by the composite u ◦ ε : C → B, where u : A→ B is the structure map.

Definition 1.4. An A-coalgebra (C,∆, ε) is called an A-bialgebra if C is an A-algebra (not

necessarily commutative) and the maps ∆ : C → C ⊗A C and ε : C → A are homomorphisms

of A-algebras. Moreover, the bialgebra C is called an Hopf algebra over A if there exists an

A-homomorphism S : C → C such that µ ◦ (S ⊗ IC) ◦∆ = u ◦ ε = µ ◦ (IC ⊗ S) ◦∆ holds. The

map S is called the antipode of the Hopf algebra C.

Here is an important example of a bialgebra or a Hopf algebra.

Example 1.5. Let Γ be a finite semi-group. Put C = HomA(A[Γ ], A), where A[Γ ] denotes

the semi-group algebra of Γ over A. Then C has a structure of A-bialgebra. More precisely,

an addtion and a multiplication of C are defined by the addtion and the multiplication of A,

respectively. On the other hand, a comultiplication and a counit of C are defined by the the

multiplication of A[Γ ] and by the sturcure homomorphism A → A[Γ ], repectively. The semi-

group scheme SpecC is nothing but the constant semi-group scheme over A defined by Γ . By

abbreviation we denote by Γ also the constant semi-group scheme SpecC.

Assume now that Γ is a group. Then C has a structure of Hopf A-algebra. Indeed, the

correspondence γ 7→ γ−1 gives rise to an automorphism of A-module A[Γ ], which defines an

antipode of C. The group scheme SpecC is nothing but the constant group scheme over A

defined by Γ .
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Definition 1.6. Let (C,∆, ε) be an A-bialgebra and (B, ρ) a right C-comodule. We say

that B is a C-comodule algebra or that C coacts to the right on B if B is an A-algebra (not

necessarily commutative) and the map ρ : B → B ⊗A C is a homomorphism of A-algebras. Put

BC = {b ∈ B ; ρ(b) = b ⊗ 1}. Then BC is a sub-A-algebra of B. BC is called the invariant

subring of the C-comodule algebra B.

Example 1.7. Let Γ be a finite semi-group, C = HomA(A[Γ ], A) and (B, ρ) a C-comodule

algebra. For γ ∈ Γ we define eγ ∈ C by

eγ(γ
′) =

1 if γ′ = γ

0 if γ′ ̸= γ.

Then {eγ}γ∈Γ is a basis of the A-module C.

Furhtermore, for b ∈ B and γ ∈ Γ , we define γ(b) ∈ B by

ρ(b) =
∑
γ∈Γ

γ(b)⊗ eγ .

It is readily seen that (γ, b) 7→ γ(b) : Γ ×B → B is a left action of Γ on B and that the invariant

subring BC of the C-comodule algebra B coincides with the invariant subring BΓ of B by the

action of Γ .

Definition 1.8. Let C be an A-bialgebra. A C-comodule algebra B is called cleft if there exists

φ : C → B a homomorphism of A-module which is compatible with the coactions by C and

invertible for the convolution product.

Example 1.9. Let Γ be a finite group, C = HomA(A[Γ ], A) and (B, ρ) a C-comodule algebra

(not nesessarily commutative). Then B is cleft if and only if B is a Γ -Galois extension with

normal basis. (For detailed accounts, we refer to [6] and [4].) Recall that, by definiton, a Γ -

Galois extension B/A admits a normal basis if there exists b ∈ B such that {γ(b)}γ∈Γ is a basis

of the A-module B.

Assume now that B is commutative. Then B is a Γ -Galois extension if and only if SpecB

has has a structure of Γ -torisor over SpecA.

Remark 1.10. Let S be a scheme. We can generalize the definitions mentioned above in the

category of OS-modules. In particular, the functor C 7→ Spec C gives rise to anti-equivalences of

categories

{quasi-coherent commutative OS-bialgebras}
∼−→ {semi-group S-schemes affine over S}

and

{quasi-coherent commutative Hopf OS-algebras}
∼−→ {group S-schemes affine over S}.
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Definition 1.11. Let S be a scheme, G a group S-scheme affine over S and X a right G-torsor

over S. We shall say that the G-torsor X is cleft if the OG-comodule algebra OX is cleft.

2. A(G) and U(G)

First we recall a definition of the group algebra A(G) of an affine group scheme G. We refer

to [2] for generalities on group algebras. We follow the notations of [3] and [11] concerning affine

group schemes.

2.1. Let S be a scheme and (C,∆, ε) an OS-coalgebra. Let S(C) denote the symmetric OS-

algebra associated to the OS-module C. Then S(C) has a strucute of an OS-bialgebra.

Indeed, a comultiplication of S(C) is given by the OS-algerbra homomorphism S(C) →
S(C)⊗OS

S(C), the unique extension of the OS-homomorphism

a 7→ ∆(a) : C → C ⊗OS
C → S(C)⊗OS

S(C),

and a counit of S(C) by the OS-algerbra homomorphism S(C) → OS , the unique extension of

the OS-homomorphism ε : C → OS . It is readily seen that the canonical inclusion i : C → S(C)
is a homomorphism of OS-coalgebras.

The correspondence C 7→ S(C) defines a covariant functor from the category of OS-coalgebras

to that of commutative OS-bialgebras, which is left-adjoint of the forgetful functor. More pre-

cisely, let B be a commutative OS-bialgebra and φ : C → B a homomorhism of OS-coalgebras.

Then φ is extended to a homomorhism OS-bialgebras φ̃ : S(C)→ B by

φ̃(a1 ⊗ a2 ⊗ · · · ⊗ ar) = φ(a1)φ(a2) · · ·φ(ar).

Moreover φ 7→ φ̃ gives rise to a bijection HomOS−coalg(C,B)
∼→ HomOS−bialg(S(C),B). Indeed,

the inverse is given by ψ 7→ ψ ◦ i.

2.2. Assume now C is a quasi-coherent commutaive OS-bialgebra. Then G = Spec C is an

semigroup scheme affine over S.

Furthermore S(C) is a quasi-coherent commutative OS-algebra. Put now A(G) = SpecS(C).
Then A(G) is equipped with a ring structure. Indeed, the multiplication of A(G) is defined

by the comultiplication ∆ : S(C) → S(C) ⊗OS
S(C). Moreover the addition of A(G) is defined

by the OS-algebra homomorphism S(C) → S(C) ⊗OS
S(C), the unique extension of the OS-

homomorphism

a 7→ a⊗ 1 + 1⊗ a : C → S(C)⊗OS
S(C).

We call the ring S-scheme A(G) the group algebra of the group scheme G = Spec C.
Let π : S(C) → C denote the homomorphism of OS-algebras defined by s1 ⊗ s2 ⊗ · · · ⊗ sj 7→

s1s2 · · · sj . Then π is surjective. Let ι : G → A(G) denote the closed immersion defined by π.

The morphism ι : G→ A(G) is a homomorphism of multiplicative semigroups.
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The comultiplication S(C)→ S(C)⊗OS
S(C) induces the right coaction S(C)→ S(C)⊗OS

C.
The canonical injection of OS-modules i : C → S(C) is a homomorphism of C-comodules.

Remark 2.3. The ring S-scheme A(G) represents the functor defined by T 7→ HomOS
(C,OT )

equipped with the convolution product.

More precisely, let T be an affine S-scheme. Then we have

A(G)(T ) = HomOS−alg(S(CG),OT ) = HomOS
(OG,OT ).

It is readily seen that the addition of A(G)(T ) coincide with the addition of HomOS
(C,OT ). On

the other hand, the multiplication of A(G)(T ) is the convolution of HomOS
(C,OT ) since, for

φ,ψ ∈ HomOS
(C,OT ), the convolution product φ ∗ ψ is defined by φ ∗ ψ = µ ◦ (φ⊗ ψ) ◦∆.

Furthermore the map ι : G(T )→ A(G)(T ) is nothing but the inclusion HomOS−alg(C,OT )→
HomOS

(C,OT ).

Example 2.4. Let Γ be a finite semigroup. Put C = HomZ(Z[Γ ],Z). Then SpecC is the

constant semigroup scheme Γ over Z.
Now let {eγ}γ∈Γ denote the dual basis for the basis {γ}γ∈Γ of Z[Γ ]. The comultiplication on

C is given by

∆(eγ) =
∑

γ′γ′′=γ

eγ′ ⊗ eγ′′ .

Furthermore we have A(Γ ) = SpecZ[Tγ ; γ ∈ Γ ], where the addition of A(Γ ) is given by

Tγ 7→ Tγ ⊗ 1 + 1⊗ Tγ

and the multiplication by

Tγ 7→
∑

γ′γ′′=γ

Tγ′ ⊗ Tγ′′ .

For a ring R, A(Γ )(R) is nothing but the semigroup algebra R[Γ ].

Definition 2.5. Let S be a scheme and G an affine group scheme over S. Define a functor

U(G) by U(G)(T ) = A(G)(T )×. Then U(G) is a sheaf of groups for the fppf-topolgy over S.

The morphism ι : G → A(G) is factorized as G → U(G) → A(G). We denote also by ι the

morphism of sheaves G→ U(G). Then ι : G→ U(G) is a homomorphism of groups.

Theorem 2.6. Let S be a scheme and G an affine group scheme over S. Assume that OG is a

locally free OS-module of finite rank. Then:

(1) A(G) is smooth over S;

(2) U(G) is represented by an affine open subscheme of A(G), and therefore smooth over S.

(3) ι : G→ U(G) is a closed immersion.

Proof. (1) By locality of the problem, we may assume that S = SpecA, G = SpecC and C

is a free A-module of finite rank. Take a basis {e1, e2, . . . , en} of C over A. For each j, let Tj
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denote the image of ej by the canonical injection C → SA(C). Then SA(C) is isomorphic to the

polynomial algebra A[T1, T2, . . . , Tn], which implies that A(G) = SpecSA(C) is smooth over A.

(2) Define a linear form Rij(e1, e2, . . . , en) =
n∑

k=1

cijkek (aijk ∈ A) for each (i, j) by

∆C(ej) =
n∑

i=1

ei ⊗Rij(e1, e2, . . . , en).

The matrix (Rij)1≤i,j≤n is nothing but the right regular representation of the bialgebra C with

respect to the basis {e1, e2, . . . , en}.
The multiplication of A(G) = SpecA[T1, T2, . . . , Tn] is defined by

Tj 7→
n∑

j=1

Ti ⊗Rij(T1, T2, . . . , Tn),

where Rij(T1, T2, . . . , Tn) =
n∑

k=1

cijkTk.

More precisely, let R be an A-algebra. Then the additive group A(G)(R) is isomorphic to the

direct sum Rn, and the multiplication of A(G)(R) is given by

(a1, a2, . . . , an)(b1, b2, . . . , bn)

=
( n∑
i=1

aiRi1(b1, b2, . . . , bn),
n∑

i=1

aiRi2(b1, b2, . . . , bn), . . . ,
n∑

i=1

aiRin(b1, b2, . . . , bn)
)
.

By the coassociativity of ∆C , we have also

(a1, a2, . . . , an)(b1, b2, . . . , bn)

=
( n∑
j=1

R1j(a1, a2, . . . , an)bj ,
n∑

j=1

R2j(a1, a2, . . . , an)bj , . . . ,
n∑

j=1

Rnj(a1, a2, . . . , an)bj
)
.

Hence (a1, a2, . . . , an) ∈ A(G)(R) is invertible if and only if det(Rij(a1, a2, . . . , an)) is invertible

in R.

Thus we obtain

U(G) = SpecA[T1, T2, . . . , Tn,
1

∆
],

where ∆ = det(Rij(T1, T2, . . . , Tn)). This implies the assertion.

(3) We obtain the conclusion, noting that the composite G
ι→ U(G)→ A(G) is a closed immer-

sion and the embedding U(G)→ A(G) is an affine morphism.

Definition 2.7. We shall call the group S-scheme U(G) the unit group scheme of the group

algebra of the finite flat group scheme G = Spec C.

Example 2.8. Let Γ be a finite group. Then U(Γ ) is nothing but the unit group scheme of

the group algebra of Γ . That is to say, for a ring R, we have U(Γ )(R) = R[Γ ]×.

More explicitly, we have

U(Γ ) = SpecZ[Tγ ,
1

∆Γ
; γ ∈ Γ ],
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where∆Γ = det(Tγγ′) denotes the determinant of the matrix (Tγγ′)γ,γ′∈Γ (the group determinant

of Γ ).

Example 2.9. Let G be an affine commutative group scheme over S such that OG is a locally

free OS-module of finite rank. Then U(G) is isomorphic to the Weil restriction
∏

G∨/S

Gm,G∨ .

Indeed, let T be an S-scheme affine over S. Then we have functorial isomorphisms of OS-

algebras

HomOS
(OG,OT )

∼−→ HomOS
(OG,OS)⊗OS

OT
∼−→ OG∨ ⊗OS

OT

since OG is a locally free OS-module of finite rank. It is now sufficient to note that the func-

tors T 7→ HomOS
(OG,OT )

× and (OG∨ ⊗OS
OT )

× are represented by U(G) and
∏

G∨/S

Gm,G∨ ,

respectively.

Remark 2.10. Let k be a field. Takeuchi constructed in [9] a covariant functor C 7→ H(C)

from the category of k-coalgebras to that of commutative Hopf k-algebras, which is a left adjoint

of the forgetful functor. The Hopf algebra H(C) is called the free Hopf algebra generated by

C. Aljadeff and Kassel gave a different description of H(C) in [1, Appendix B]. They denote

by S(C)Θ the free Hopf algebra generated by C. (We employ here a slightly different notation

from theirs.) It is not difficult to verify that, if C is a finite dimensional Hopf k-algebra and

G = SpecC, the affine ring of U(G) coincides with H(C).

3. Main theorem

Theorem 3.1. Let S be a scheme and G an affine group scheme over S. Assume that OG is a

locally free OS-module of finite rank. Then U(G) is a cleft G-torsor over U(G)/G.

Proof. Let S(OG)[1/∆] denote the quasi-coherent OS-algebra with SpecS(OG)[1/∆] = U(G).

We denote by i : OG → S(OG)[1/∆] also the composite of the canonical injections of OS-modules

OG → S(OG) and S(OG) → S(OG)[1/∆]. Then i is a homomorphism of OG-comodules. We

prove that i is invertible for the convolution products.

As in the proof of Theorem 2.6, we may assume that S = SpecA, G = SpecC and C is a free

A-module of finite rank. Take a basis {e1, e2, . . . , en} of C over A. Let Tj denote the image of

ej by i : OG → S(OG)[1/∆] or equivalently i : C → SA(C)[1/∆].

Furthermore we may assume that e1 = 1 and εC(ej) = 0 for j > 1 since the A-module C is a

direct sum of A and Ker εC . Then we obtain R1j(T1, . . . , Tn) = Tj for each j since we have

ej = (εC ⊗ IC)(∆C(ej)) = (εC ⊗ IC)(
n∑

i=1

ei ⊗Rij(e1, . . . , en)) = R1j(e1, . . . , en).
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For each i, let ∆i denote the (i, 1)-cofactor of the matrix (Rij(T1, . . . , Tn))i,j . Then we obtain

n∑
i=1

∆jRij(T1, . . . , Tn) =

∆ (j = 1)

0 (i ̸= 1)
.

Now define a homomorphism of A-modules ψ : C → SA(C)[1/∆] by

ψ(ei) =
∆i

∆
(1 ≤ i ≤ n),

Then we have ψ ∗ i = i ∗ ψ = IC .

Corollary 3.2. Under the assumption of Theorem 3.1, a G-torsor X over S is cleft if and only

if there exists a cartesian diagram

X −−−→ U(G)y y
S −−−→ U(G)/G.

Proof. Assume that there exists a cartesian diagram

X −−−→ U(G)y y
S −−−→ U(G)/G.

Then X is a cleft G-torsor over S since U(G) is a cleft G-torsor over U(G)/G.

Conversely assume that the G-torsor X is cleft. Then there exists a homomorphism of OG-

comodules φ : OG → OX which invertible for the convolution product in HomOS
(OG,OX).

By the universality, the homomorphism of OS-modules φ is extented to a homomorphism of

OS-algebras φ̃ : S(OG) → OX . It is readily seen that φ̃ is compatible with the coactions by

OG. We will prove that the homomorphism φ̃ : S(OG) → OX is extended to a homomorphism

of OS-algebras φ̃ : S(OG)[1/∆]→ OX .

Let ψ : OG → OX denote the inverse of φ. Then we have

n∑
k=1

φ(Rik)ψ(Rkj) =

1 (i = j)

0 (i ̸= j)

since

∆OG
(Rij) =

n∑
k=1

Rik ⊗Rkj

and

εOG
(Rij) =

1 (i = j)

0 (i ̸= j)
.

Then the matrix (φ(Rij)) is invertible with inverse (ψ(Rij)). This implies that φ̃ : S(OG)→ OX

is extended to a homomorphism of OS-algebras φ̃ : S(OG)[1/∆] → OX . Hence we obtain a
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cartesian diagram
X −−−→ U(G)y y
S −−−→ U(G)/G.

Remark 3.3. Under the assumption of Theorem 3.1, the sequence of sheaves over S with values

in pointed sets

1 −→ G
ι−→ U(G) −→ U(G)/G −→ 1,

is exact with respect to the fppf-topology. Then we obtain an exact sequence of pointed sets

U(G)(S) −→ (U(G)/G)(S) −→ H1(S,G) −→ H1(S,U(G))

(cf. Demazure-Gabriel [3, Ch.III, Prop.4.6].)

Let X be a G-torsor over S. Then [S] ∈ Im[(U(G)/G)(S) → H1(S,G)] if and only if there

exists a cartesian diagram
X −−−→ U(G)y y
S −−−→ U(G)/G.

Hence it follows from Corollary 3.2 that the G-torsor X over S is cleft if and only if [X] ∈
Ker[H1(S,G)→ H1(S,U(G))].

Remark 3.4. We conclude the article, mentioning related results in the Hopf-Galois theory.

Let k be a field and C a Hopf k-algebra. Aljadeff and Kassel introduced a subalgebra BC of

S(C)Θ = H(C) in [1, Sect.5] and a cleft Hopf-Galois extension AC of BC with Hopf algebra C

in [1, Sect.6]. (We employ again slightly different notations from theirs.)

Kassel and Masuoka proved remarkable theorems as follow.

(1) ([5, Th.3.6]) If C is of finite dimension over k, then S(C)Θ is a projective BC-module of finite

rank.

(2) ([5, Th.3.8]) If C is cocommutative, then S(C)Θ is faithfully flat over BC .
(3) ([5, Th.3.13]) If C is commutative, then S(C)Θ = AC and S(C)Θ is a free BC-module.

They asserted also an important remark in the last phrase of [5, Sect.1] as follows:

— Let K be an extension field of k. Assume that S(C)Θ is faithfully flat over BC . Then any

cleft C-Galois extension R of K is obtained by a cocartesian diagram of k-algebras

R ←−−− ACx x
K ←−−− BC .

Corollary 3.2 gives a geometric interpretation a scheme S of the above results when C is a

commutaitve Hopf OS-algebra and a locally free OS-module of finite rank.
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