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Abstract

We consider double weight varieties associated with SU(3), that is, symplectic
torus quotients for a direct product of two coadjoint orbits of SU(3). In the previous
paper, we gave an explicit formula for the symplectic volumes of them in the case
where both of two coadjoint orbits are flag manifolds of SU(3). In this paper, we
generalize the volume formula so that we can also apply it to the case where both or
one of two orbits is the complex projective plane. Moreover, using the volume formula,

we concretely express the symplectic volume in some typical cases.

1 Introduction.

This paper is a continuation of [16]. In [16], we introduced a new class of symplectic
manifolds, called double weight varieties. We first review the definition of double
weight varieties.

Let G be a compact semisimple Lie group with Lie algebra g, and 1" a maximal
torus of G with Lie algebra t. Let g* and t* be the dual of g and t, respectively. Under
an invariant inner product { , ) on g, we identify g and t with g* and t*, respectively.
By this identification, we regard t* as a subspace of g*.

Under the left coadjoint action of G on g*, let Oy be a coadjoint orbit of G through
a point A € t* C g*, which has a natural symplectic structure. Then the T-action on
0, is Hamiltonian.

In general, let M be a compact symplectic manifold with an action of a torus 7.
Suppose that the T-action on M is Hamiltonian with moment map ® : M — t*. For
any regular value p € t* of ®, the symplectic quotient at u is defined by M//,T =
o~ () /T

In particular, Oy //,T is called a weight variety ([13]). For G = SU(n), Guillemin-

Lerman-Sternberg gave some formulas for the volume of weight varieties ([6]), and
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Goldin described the cohomology ring of weight varieties ([4]). For compact semisimple
Lie groups except of type A, weight varieties are orbifolds in general and are used as

model spaces to verify some invariants of orbifolds ([5]).

Let O,,,0,, be two coadjoint orbits. Then the diagonal T-action on the direct
product Oy, x O, is Hamiltonian, and we have the symplectic quotient (O, X
Ox,)//uT. We call it a double weight variety.

In this paper, we consider the case G = SU(3). Except for the orbit consisting
only of the origin, each coadjoint orbit of SU(3) is diffeomorphic to either the flag
manifold SU(3)/T or the complex projective plane P2.

There are two goals in this paper. The first is to generalize the volume formula
given in [16]. In [16], we gave an explicit formula for the symplectic volumes of double
weight varieties (Ox, x Ox,)//,T in the case where both of two coadjoint orbits Oy,
and O,, are flag manifolds SU(3)/T. In this paper, we also consider the case where

both or one of two coadjoint orbits is the complex plane P2.

The second is to give more concrete expression of the symplectic volume in several
cases by using the volume formula obtained above. To this end, we draw the image of
the moment map @ : Oy, x Oy, — t*, and investigate the position of p in it. The set
of regular values of the moment map ® : Oy, x Oy, — t* is decomposed into several
connected components, which are called alcoves of ®. The topological type of a double
weight variety (Ox, x Ox,)//,T depends on the alcove to which p belongs. By the
theorem of Duistermaat-Heckman ([3]), the symplectic volume on each alcove become
a polynomial function of u. Thus in order to study the volume of all double weight
varieties, we must detect all of the alcove of @ : Oy, x Oy, — t*. However, it seems
to be complicated even in the case of G = SU(3). Therefore, we restrict ourselves to
some typical cases.

In order to state the first result in this paper, we use the notation as follows. Let
20 be the Weyl group of SU(3). We denote by t} a positive Weyl chamber, and by %
the interior of the Weyl chamber t% . Let oy, as € t* be simple roots, and A;, Ay € t*
fundamental weights, which satisfy (a1,q1) = (@2,a2) = 2, (a1,a0) = —1, and
(i, Aj) =045 (i,5 = 1,2). Weset p =y +az = Ay+ Az, 71 =Rspar +Rug(ar +ag),

and v2 = Rog(ag + ag) + Rsgas. For further details of the notation, see Section 2.

Theorem. (See Corollary 3.7 below.)  Let A, A2 € t}. — {0} and p € t* satisfy

the following two assumptions.
(A1) p is in the convex full of {wiA; + woAa|wy,wy € W},

(A2) For any wy,ws € 27,

(i +wado — p, Ar) # 0, (widy +wady — 1, Ao) # 0,
(wiA1 +wado — i, A1) # (Wi Ay +wada — p, Ag).



Then we have
VOI((OA1 X O>\2)//#T) = Z E(wl)E(U}?)F()‘la/\Qa.u;wlaw2)7
w1, w2 €W

where e(w) = %1 is the signature of w € 2, and F = F (A1, Ao, p; w1, wa) 1s given as

follows. We write

A= (w1 A +wadro — i, Ay) (w1 A1 + waAe — p, Ag),

B =
C = (wip+wap, A1) , D = (w1p + wap, A2)

for brevity.
(1) If M, A2 € 6, then

1 .
EB=‘(2A - B) (if widy +wody — p € 1),

1
F= EAB(—A + 23) (Zf WAL + Wadg — ne ’Yz),

0 (otherwise).
(2) If ety Aety —t, —{0}, then

1
EBQ(B(C — 2D) + 3AD) (Zf WAL + Wado — p € ’}/1),

|
I

gAz(A(—QC’ + D) +3BC) (if wir1 +wade — p € y2),

0 (otherwise).

(3) If M, Az € ) — 7, — {0}, then

1
EB(B(fGDQ +6CD + 1) +2A(3D* — 1))

(if widr +wada — p € 1),
F= %A(A(—GCQ +6CD +1) 4+ 2B(3C* — 1))

(if w11+ wady — p € 72),

0 (otherwise).

The second result in this paper is concerned with more concrete expression of the

symplectic volume in the following three cases.
Case A: A\, A €t —t5 . — {0} and p € t*.
Case B: A\, Ay € tf. — {0}, € t* and p is sufficiently close to Ay + Ao.
Case C: A\, Ay € t} — {0}, € t* and p is sufficiently close to 0.

In Case A, both of two coadjoint orbits Oy, and O,, are the complex projective
planes P2, while the position of 4 is general. On the other hand, in Cases B and C,
the orbit type of coadjoint orbits Oy, and Oy, are general, while y is in a particular
alcove. Here in this introduction, we only state the result for Case B. For Cases A

and C, see Section 4.



Corollary. (See Corollary 4.1 below.) Let A\, \y € t} — {0} and p € t* satisfy
the assumptions (A1) and (A2). Furthermore assume that p is sufficiently close to
A + Aa. Then we have

vol((Ox, x Ox,)//,T) = >, e(wr)e(wz) (A1, Az, p1; w1, wa),
w1 €W ,w2€Wa,

where for X € £, we denote Wy = {w € W|wA = A}

Let us set p = zoy + yag € t*. We can express the volume vol((Ox, x Ox,)//.T)

as a polynomial of p,q,r, s, u,v,x,y as follows.

(1) Let us set )\1, )\2 S fi - fi+ - {0} = R>0A1 (] R>0A2.
(la) If Ay = u(201 + a2), Ao = v(2a1 + ) € RogAq, then we have

vol((Ox, X Ox,)//uT) =(u+v —y)(u+v—z+y).

Note that Ay + Ao — p is not in ~s.
(Ib) If A1 = u(2a1 + a2) € RugA1, Ao = v(a1 + 2as) € RygAg, then we have
1
§(u+2v —y)? (N + X —pEmn),
vl((O, x Ox,)//,T) = { 2

5(2u+v—x)2 (if A1 4+ A2 — p € 72).

(le) If Ay = u(ag + 2a2), Ao = v(ag + 2a) € RsgAg, then we have
Vol((Ox, X Ox)//uT) = (u+ v — ) (u+v+z - y).
Note that Ay + A2 — p is not in ;.

(2) Let usset \y € £, Ay €t — 5, — {0}
(2a) If Ay = poy +qog € €, A2 = u(201 + a2) € RygAq, then we have

1
@+ u—y)*Bp— 20+ 4u—3v+2)
VOI((O)\l X OAz)//HT) = (lf Al + )\2 — Qe ’Yl),
1
é(p—i—Qu—x)B (if A1 4+ A2 — p € 7).
(2b) If Ay = pa1 + qag € £, A2 = u(oq + 2a2) € RyoAp, then we have

1 .
6(q+2u—y)3 (if A+ X2 — p € 1),

vol((Ox, x Ox,)//,.T) = é(p +u — x)%(=2p + 3¢ + 4u + 2z — 3y)
(if Adr + A2 — p € 72).

(3) If Ay = pay + qaz, Ay = rag + sag € ) |, then we have

1
E(q-l—s—y)3(2p—q+2r—s—2x+y)

if A +Xo—pue ,
wol(Ox, % Ox,)//uT) = (U d 420 —p€m)

1
S0t =2 (—p+20—r+25+5-2)

(lf)\l + Ao —ue ’)/2).



This paper is organized as follows. In Sections 2 and 3, we review the definition of
a double weight variety and the result in [16] for the weight multiplicity. In section 3,
we prove the theorem of the symplectic volume vol((Ox, x Ox,)//,T). Finally, in
Section 4, we consider several examples and write down the symplectic volume for

them more explicitly.

2 Preliminaries.

2.1 The representation theory of SU(3) and notation.

In this subsection, we review some standard facts about the representation theory of
SU(3) in order to recall the notation used in [16]. We refer to [2] for the generalities
on compact Lie groups and their representations.

Let G = SU(3), g = su(3), T the standard maximal torus of G consisting of
diagonal matrices in G, and t its Lie algebra. Let g* and t* be the duals of g and ¢,
respectively. We define the AdG-invariant positive definite inner product (, ) on g by

(X,Y) = —T;Tr(XY) (X,Y € qg).

We identify g* with g, or t* with t by the inner product ( , ). We define simple roots
ay,an € tF =tby

1 0 0 0 0 O
a;:=2rv—-1]1 0 -1 0], a:=2nv—-1| 0 1 o1,
0o 0 O 0 0 -1
which satisfy (a1, 1) = (a2, a2) =2, (a1,as) = —1. Let us set

Q = Za1 + ZOLQ,
1 = Rogar + Ry + a2), 72 := Rug(ar + az) + Rupas,
7 = Rxpa1 +Rxo(an + a2), 72 := Ryg(a1 + az) + Rxpas.

We define fundamental weights Ay, Ay € t* by

o 20[1 + Qo oy + 20&2

Aqc: Ay =
1 3 5 412 3 )

which satisty (o, A;) = ;5 (4,7 = 1,2). Let us set

th == RxoA1 + RxoAg, t, = RooA; + RopAy,
P .= ZAl + ZAQ, P+ = ZZOAl + ZZQAQ, P++ = Z>0A1 + Z>0A2.

Let 20 2 &3 be the Weyl group of G = SU(3). The Weyl group 20 is generated by
81, 82 € 2, where s1, o are reflections on t* defined by s;A := A\ — (a;, A)a; for A € t*
and 7 = 1,2. The set t? is called a positive Weyl chamber and forms a fundamental

domain of the action of the Weyl group 20 on t*.



Elements in P, are called dominant weights. For A € P;, we denote by V) the
irreducible representation of G with the highest weight A € P,. Let us set p :=
a1 +ag = A1 + Ao

We denote by W, the weight space associated with u € P. For a representation V/
of T', we define the weight multiplicity of W, in V' by

[V : W] = dime(V @ W;)7,

the complex dimension of the T-invariant subspace of V' ® W ;. Then V' decomposes

the weight spaces:
V=P [V: WW,.

nepr

2.2 Double weight varieties.

In this subsection, we review the definition of the double weight variety introduced
in [16]. Although we consider the case G = SU(3), most of the following still holds
when G is a general compact Lie group. For further details on coadjoint orbits, see,
e.g., [11] and [14]. For general properties of symplectic quotients, see, e.g., [9],[12] and
[15].

The left coadjoint action of G on g* is defined by g - f := Ad*(g)f for g € G and
f € g*, where

(Ad*(9)f, X) = (£, Ad(g™)X) (X ).

We denote by Oy = G-\ the coadjoint orbit through A € t* C g*. Then the intersection
Oy N t* is the W-orbit through A, and Oy Nt} consists of a single point. In other
words, coadjoint orbits are parametrized by elements in t7 .

For G = SU(3), the topological type of coadjoint orbits O, are classified as follows,

where G denotes the isotropy subgroup at A € t7 for the coadjoint action of G on

g*.
(1) IfXxet), then Gy =T and O, is diffeomorphic to the flag manifold SU(3)/T.

(2) It e fi—fiJr—{O} = R>OA1|_|R>0A2, then G, & {A € U(].) XU(2)| det A = 1}
and O, is diffeomorphic to the complex projective plane P2.

(3) If A=0, then G5 = G and O, = {0}.

In this paper, we assume X\ # 0, that is, O, # {0}.
On each coadjoint orbit Oy, there exists a natural G-invariant symplectic structure

wy, called the Kirillov-Kostant-Souriau symplectic form, defined by
(Wr)2(X,Y) = (2, [X,Y]) (z€0,X,Y €qg),

where X is the vector field on Oy given by

- d
o = — tX) - .
al 0(exp ) x
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The action of G on O, is Hamiltonian and the associated moment map is given by
the inclusion ¢y : Oy < g*, that is, we have d(z, X) = wy (X, -).

In addition, there exists a G-invariant complex structure Jy on Oy, which is com-
patible with the symplectic structure wy. Thus O, becomes a Kahler manifold.

Moreover, in the case A € P, there exists a G-equivariant holomorphic line bundle
Ly over Oy such that ¢1(Ly) = [wy]. The Borel-Weil theorem (see, e.g., [2] and [10])
shows that

H°(Ox,0(Ly)) = Vi, H* (02, 0(Ly) =0 (k>0)

as representation of G, where O(L,) denotes the sheaf of germs of holomorphic sections
of Ly.

The action of the maximal torus T of G on O, is also Hamiltonian, and the
associated moment map my : O\ — t* is given by the composition of the inclusion
tx : Oy — g* and the projection g* — t*. The image of the moment map my : Oy — t*
is expressed by a triangle or hexagon and the inside of it as in Figure 1. Here vertices
of each triangle or hexagon correspond to the fixed points (O))T = {wA|w € W} for
the action of T on O,, and the union of edges which connect two vertices and are
parallel to a, as and ag 4 s is equal to the set of singular values of the moment map

7. For more generalities, see [1], [6] and [7].

G\/GH'GZ

ai

A€ RoAy A € Ryolg

Aeti Nm A€ Ruplon + az) Aeth Ny
Figure 1. The image of the moment map my : Oy — t*.

Let A1, Az € t}. The diagonal action of the maximal torus 7" of G on the direct
product Oy, x O,, is also Hamiltonian and its moment map ® : Oy, x Oy, — t* is

given by ®(x1,x2) = ma, (21) + 7r, (T2).



For p € t*, we define the symplectic quotient at u by

(O X Ox)//uT := @7 () /T
= {(1‘1,1‘2) € 0/\1 X O>\2|7T/\1 (xl) + ﬂ-/\z(x?) = M}/T

We write M = (O, x Oy,)//,T for brevity. Here we assume that for p € t*,
(A1) pis in the convex full of {wi A\ + weAs|wy, we € W},
(A2) For any w;,ws € 2,

(wiA1 +wade — p, A1) # 0,
<’w1>\1 + 'w2>\2 — /1,7A2> # 0,
<’w1>\1 + WAy — ILL,A1> 7é <U}1)\1 + wodg — JIR A2>

By the convexity theorem of Hamiltonian torus actions on symplectic manifolds (see [1]
and [7]), (A1) implies that y is in the image of the moment map ® : Oy, x Oy, — t*,
that is, @7 1(u) # (0. On the other hand, (A2) implies that u is a regular value of the
moment map ® : Oy, x Oy, — t* (see e.g., [6]). Namely, =1 (u) is a submanifold
of Oy, x Oy, and the maximal torus T acts locally free on ®~*(u). In the case
G = SU(3), this T-action becomes free. Hence it follows from (A2) that the quotient
space ®~1(u)/T becomes a smooth manifold.

In this case, there exists a natural symplectic structure w = w(A1, A2, ) and a
compatible complex structure J on M induced from those on Oy, x O,,, which make

M a Kéhler manifold. The complex dimension d of M is
1
d =dimp G — i(dlmR G)\l + dimp Gx\z) — dimg T

We call M = (Oy, x Oy,)//,T a double weight variety.
Now suppose A1, A2 € P4. Let Ly, be the T-equivariant holomorphic line bundle

over O,, as above, and let us set
L= (Lx, ®WLx,)//uT := ((priLla, @ praLa, @ Wop)lo-1(0)/T,

where pr; : Oy, x Oy, = Oy, (i =1,2) is the i-th projection.

We assume that
(A3) A1, A, 1 € Q.

In general, the action on priLy, ® pryLy, ® W_, of the center Z(G) = Z/3Z C T of
G = SU(3) is not trivial although this action on ®~!(p) is trivial. However, it follows
from (A3) that this action on priLy, ® prsLy, ® W_,, becomes trivial, that is, £ is a
genuine holomorphic line bundle over M. Then we have ¢1(£) = [w(A1, A2, 1))

In [16], we showed that the Riemann-Roch number RR(M, £) of (M, L) and the
symplectic volume vol(M) of (M,w) can be expressed in terms of representation of
T.



Proposition 2.1 ([16], Proposition 2.3). Suppose that A1, a2 € Py and p € P satisfy
the assumptions (A1), (A2) and (A3). Then we have

/Ch JTA(M) = [V, @ Vy, : W],

where Ch(L) denotes the Chem character of £ and Td(M) denotes the Todd class of
M, and k runs over positive integers while going to infinity.

In other words, RR(M, £) is equal to the weight multiplicity [V, ® Vi, : W], and
vol(M) is equal to the leading term in [Vix, ® Via, : Wy,] as a function of positive

integer k.

3 Formulas.

3.1 Formulas for the weight multiplicity and the Riemann-

Roch number.

In this subsection, we recall the concrete description of the weight multiplicity [V, ®
Vi, : W] and the explicit formula for the Riemann-Roch number RR((Ox, xOx,)// T, (Lx,X
Ly,)//,T) obtained in [16].

By Proposition 2.1, the explicit formula for the weight multiplicity plays the key

role in order to compute the symplectic volume of double weight varieties.

Proposition 3.1 ([16]). Let A1, A2 € Py and p € P satisfy the assumptions (Al),
(A2) and (A3). Then we have

VA, @V, : Wl = > e(wi)e(ws) B, Ao, g5 w1, ws), (3.1)
w1, wa €W
where e(w) = £1 is the signature of w € W and E(A1, A, u; wi, ws) is given as follows.

We write

A= (wi Ay +wado — p, Ay) , B = (widy +wada — p, Ag),

B
C = (wip +w2p, A1) , D = (wip + wap, A2)
for brevity.
(1) If wi (A1 +p) +wa(Aa + p) — . — 2p € 71, then
E(A1, A2, p; w1, w2)

1
T 12

(2) If wi(A +p) +wa(A2 +p) — p—2p € V2, then

—(B+D—1)(B+D)(B+D+1)(2(A+C) — (B + D)).

E()‘lv )\2,,11,; w17w2)

- %2(,4 +C—1)(A+C)A+C+1)(—(A+C)+2(B + D)).



(3) Otherwise, then
E(A1; Az, p3 wi, we) = 0.

Combining Propositions 2.1 and 3.1, we immediately obtain the following formula
for the Riemann-Roch number RR((Ox, x Oy,)//,T, (Lx, K Ly,)//.T).

Corollary 3.2 ([16], Proposition 3.3). Let A\, o € Py and p € P satisfy the
assumptions (Al), (A2) and (A3). Then the Riemann-Roch number RR((Ox, x
Ox,)//uT, (Lx, W Ly,)//uT) is given by the right hand side of the formula (3.1) in
Proposition 3.1.

3.2 Volume formula.

In this subsection, we give an explicit formula for the symplectic volume of double
weight varieties. We have already obtained the volume formula for the case A1, As €
% ., that is, both of two coadjoint orbits Oy, and O,, are flag manifolds SU(3)/T
([16, Corollary 3.5]). Here, we also consider the case where either A\; or Ay is in
t — & — {0}, that is, both or one of O, and Oy, is the complex projective plane
P2,

We first give the volume formula in the case A\, As € P — {0} and p € P.
Theorem 3.3. Let A1, Ay € Py — {0} and p € P satisfy the assumptions (Al), (A2)
and (A3). Then we have

vol((Ox, x Ox)/[uT) = Y elwn)e(wa) F(Ar, Ao, 3w, wa), (3-2)
w1, w2 €W

where F (A1, Mg, p; w1, we) is given as follows. We write
A= (widi +wada — p, A1), B = (Wi Ap + wado — p, A2),
C = (wip+wap,A1) , D = (wip + wa2p, Az)
for brevity.

(1) If M, Ao € Py, then
1

EB?)(QA e B) (Zf WA + Wado — ne ’)/1),
1

F(A1, A2, pywy, wa) = EAi”(ﬂal +2B)  (if wi; +waede — p1 € ),
0 (otherwise).

(2) If M € Pyy Ao € Py — Py — {0}, then
éBQ(B(C —2D) +3AD)
(Zf WA + Wadkg — p € ’Y1),

F(A, Az, i wy, ws) = éA2(A(—20 + D) +3BC)

(Zf WA + Wadkg — p € ’72),

0 (otherwise).
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(3) If A, A2 € Py — Py — {0}, then

1
EB(B(—GD2 +6CD + 1) +2A(3D? — 1))

(Zf WA + Waky — p € ’}/1),
F(A1, Az, ps wi, wa) = %A(A(—GCQ +6CD + 1) +2B(3C? — 1))

(Zf WAL + Wake — p € ’}/2),

0 (otherwise).

PROOF. According to Propositions 2.1 and 3.1, we first compute E(kA1, kAo, ku; wy, we).

The condition w1 (A1 + p) + wa(Ae + p) —  — 2p € 41 in (1) of Proposition 3.1
means that kB+ D —2 >0 and

0 < (wi(kA1 + p) + w2 (kA2 + p) = 2p — kp, Ay — Ag)
=k(A-B)+(C - D).
Let us take k large enough. By the assumption (A2), these inequalities above mean
that A > B > 0, that is, w1 A1 + waAy — p € 1. Then we have
E(k)\lv k/\27 kﬂﬁ wiy, U}Q)

_ T12(kB+D —1)(kB +D)(kB+ D + 1)(2(kA+C) — (kB + D))

k4 k3
B3*(2A - B) + —B*(B(C — 2D) + 3AD)

T 12 6
2
+ %B(B(—6D2 +6CD +1) +2A(3D* — 1))
+ g(—AD(DQ — 1)+ BC(3D* — 1) — BD(2D?* — 1))
1
+ ED(D2 —1)(=2C + D).

Similarly, when & >> 0, the condition wy(A; + p) + w2 (A2 +p) — p— 2p € T2 in (2)
of Proposition 3.1 means that B > A > 0, that is, w1 A; + woAs — p € 2. Then we

have
E(k)\l, k)\g, k/l,, w1, U)Q)

%(kA 4 C—1)(kA+ C)(kA +C +1)(—(kA + C) +2(kB + D))
i =

= EA?’(—A +2B) + €A2(A(—2C + D)+ 3BC)

k2

12

+ g(—BC(Cz —1) - AC(2C? — 1) + AD(3C? — 1))

+ —A(A(-6C? + 60D +1) + 2B(3C? — 1))

1 2
+ 5 C(C* = 1)(C —2D).

Finallyd when &k > 0, the condition that wy (A1 + p) + w2 (A2 + p) — p — 2p is not
in 77 and 7 in (3) of Proposition 3.1 means that A < 0 or B < 0. Then we have

E(k:/\l, k‘)\g, k,u; w1, UJQ) =0.
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Now, for A1, A2 € P — {0}, € P and wy,wy € 2, we define functions Fy, F and

F35 as follows.

1
—B3*(24 - B) (if widi +wado — p € 71),

12
1

Fi(A1, A2, s wi, wp) = EAS(_A+2B) (Zf WAL + wag —/LG’YQ),
0 (otherwise).

%32(3(0 —2D) 4 3AD)
(if w11 +wada — p € 1),
Fo (A1, Ag, pywi, w2) 1= éAZ(A(—QC + D)+ 3BC)

(tf widi +wado — p € ¥2),

0 (otherwise).

1
ﬁB(B(—GD2 +6CD + 1) +2A(3D? — 1))

(if wiA1 + wada — p € 71),
F3(At, Az, w1, w2) = 1—12A(A(—602 +6CD +1) +2B(3C? — 1))

(Zf WAL + Wadg — me ’)/2),

0 (otherwise).

Note that the functions Fy, F; and F3 are the coefficient of k%, k3 and k2 in E(kAy, ks, ku; w1, ws),
respectively.
(1) For A1, A2 € P14 and p € P satisfying (A1), (A2) and (A3), we have

d= diHl((j(((OA1 X OAZ)//MT) =4
and

Vias @ Viers © Wiyl
= k4 Z e(wr)e(we) F1 (A1, A2, 4wy, we) + (lower terms of k).
wy w2 €W
By Proposition 2.1, taking F' = Fj, we obtain the assertion (1). See also [16,
Theorem 3.4]
(2) For Ay € Pyy, Ay € Py — Py — {0} and pu € P satisfying (A1), (A2) and (A3),
we have

d= dimc((O)\l X O)Q)//MT) = 3.

On the other hand, for each wy,ws € W, E(kA1, kA2, ku; w1, ws) is given by the same
formula as (1). In this case, we claim the following although each Fy (A1, Ag, p; w1, wa) #

0 in general.
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Claim 3.4. If \; € P, — {0}, Ay € PL — Py — {0} and p € P satisfy (Al), (A2) and
(A3), then we have

Z e(wy)e(w2) F1 (A1, A, 3w, w2) = 0.

wl,wzeim

By Claim 3.4, we have
Vias @ Vi, @ Wiy

=3 Z e(wy)e(we) Fa (A1, A2, 4wy, we) + (lower terms of k).
w1, w2 €W

Taking F' = F5, we obtain the assertion (2).
PrROOF OF CLAIM 3.4. Regarding A, B, C' and D as functions with respect to (wy,ws) €
202, we denote
A= A(wl,wg), B = B(wl,wg), C= C’(w1,w2), D = D(wl,wg).

Now we assume Ay € 3ZsoA1 C (P — Py — {0}) N Q. Because sahy = Ay for
so € 20, we see that w1 ] + wods — = w1 A + wass Ay — p and

A(wy, we) = A(wy, wess), Blwy,ws) = B(wy,was2) (w1, ws € ).
Here, for Ay € Py — {0}, A2 € 3Z~0A1 and p € P, it is enough to prove
e(wr)e(wa) F1 (A1, Ay s w1, wa) + e(wy)e(wase) Fi (A1, Ao, iy wi, was2) =0 (3.3)

for any wy,ws € 2.

If w11 + wo Ao — p € 71, then we have

e(wr)e(w2) F1 (A1, Ag, s w, w2) + e(wi)e(wes2) F1 (A1, Az, g5 wr, wasz)

= c(wn)e(uws) g By, wn)* (2A(wr, w5) — Blun,w))
+ eln)e(uwmsa) o5 B, wr2) 2A(w, was2) — Blun, wrs:)
= ewn)e(ws) 15 Bl wn) (A (ws, wz) — Blu, )
— ewn)ews) o5 Bun, w2)*(2A(wr,wa) — Bluy, )
—0
as claimed.
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If w1 A + wada — p € 79, then we have

e(wr)e(w2) F1 (A1, Ag, s w1, w2) + e(wi)e(wes2) F1(A1, Az, g5 wr, wasz)

= 5(w1)5(w2)1—12A(w1, w2)?(—A(wy, w) + 2B(wy, ws))

1
+ 5(w1)5(w232)ﬁA(w1, w252)3(—A(w1, wasa) + 2B(w1, w2$2))

= g(wl)a(wg)l—zA(wl, w2)?(— A(wy, w) + 2B(wy, ws))

iA(wl, wo)3 (= A(wy, wy) + 2B(wy, wy))

—e(wi)e(wz) 15

=0
as claimed.
If wi A1 + wade — p is not in 7 and ~y9, then it is obvious that (3.3) holds.

On the other hand, in the case Ao € 3Z<gAa, by s102 = Ao for 51 € 20, we see
that w1 A1 + wodg — = w1 A1 + wasi Ao — p and

A(whwg) = A(wl,wgsl), B(wl,wg) = B(wl,wgsl) (wl,wg S Qﬁ)
Then it is enough to prove
e(wy)e(wa) F1 (A1, Az, 3wy, wa) + e(wr)e(wzs1) F1 (A1, Az, g wy, was1) =0

for any wq,we € 20. This is showed by a similar argument to that in (3.3). We have
completed the proof of Claim 3.4. O

(3) If Ay, A2 € P — Py — {0} and p € P satisfy (A1), (A2) and (A3), we have
d= dimc((O)\l X O)Q)//#T) = 2.

Also in this case, for each wy,wy € W, E(kA1, kAo, ku;wi, ws) is given by the same
formula as (1). We claim the following although each F; (A1, Ao, p; wy,we) # 0 (i = 1,2)

in general.

Claim 3.5. If A\j, 2 € P — Py, — {0} and p € P satisfy (Al), (A2) and (A3), then

we have

) Y e(wi)e(wa)Fi(Ar, A, 3 wi, wp) = 0,

wl,wQGQI]

() Y e(wi)e(ws)Fa(Ar, Ag, p3wr, w) = 0.

w1, w2 €W

By Claim 3.5, we have

Via, ® Vin, @ Wy

= k2 Z e(wr)e(we) F3(A1, Aa, 5wy, we) + (lower terms of k).
w1, w2 €W

Taking F' = F3, we obtain the assertion (3). O
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ProOOF OF Cram 3.5. (i) It follows from Claim 3.4.

(ii) We denote Wy = {w € WwA = A} for A € Py — Py — {0}. Namely,
Wy = {e,s2} for A € 3Z-oA1, and W, = {e,s1} for A € 3Z~gAs. Then for any
wy,wy € W, w € Wy, and w’ € W,,, we have

11.)1’(1))\1 + ’wg’w/)\g — U= ’LU1)\1 + w2)\2 - U

and

A(wyw, wow’) = A(wy, ws), Bwiw,wew') = B(wy,ws).

It is enough to prove

Z g(wiw)e(waw) Fa (A1, Az, g wiw, waw') = 0 (3.4)
wem,\l,’w/Ean2

for any wy,ws € 2.

If w11 + wo Ao — p € 71, then we have

Z e(wiw)e(waw’) Fa( A1, Mg, 5 wrw, wow")
wEQU)\l ,U)’GQUAz
1
- Z g(wlw)s(wgw’)éB(wlw, wyw')?
wemxl ,w'EQUAZ

A B(wiw, wow) (Clwiw, wow') — 2D (wiw, wow’)) + 3A(wiw, wow”) D(wiw, wow') }
= 5(w1)5(w2)%B(w1,w2)2
. {B(wl, wg)( Z e(w)e(w) (C(wiw, wow') — 2D (wyw, wgw’)))

weWy, ,w €W,

—|—3A(w1,w2)( Z E(w)a(w')D(wlw,wgw’))}.

weWx, ,w €W,

Since
Z e(w)e(w")(wrwp + wow'p) = 0,
weEW, ,w' €Wy,
we have
Z e(w)e(w')C(wyw, wew') = Z e(w)e(w") D(wiw, wow') = 0,
weWx, ,w €Wy, weWx, ,w €Wy,

which proves the equation (3.4).
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If w1 A + wada — p € 79, then we have

Z e(wyw)e(waw") Fo (A1, A2, p1; wiw, waw')
weWy, ,w €Wy,
— Z s(wlw)s(wgw’)éA(wlm wow')?
weW x, ,w €W,
A A(wrw, waw") (=20 (wrw, wow') + D(wiw, waw')) + 3B(wiw, wew)C(wyw, waw’) }
1
= E(wl)&‘(wg)gA(’wl,UJg)Q
. {A(wl,wg)( Z e(w)e(w) (—2C (wiw, wow') +D(w1w,w2w')))
weW x, ,w €W,

£3Bnu) (Y )l wa)) |

weW, ,w €W,

=0

as claimed.
If w11 + wade — p is not in 7 and 79, then it is obvious that (3.4) holds. This
completes the proof. O

Remark 3.6. In general, for € P, there exist w € 20 and p/ € Py such that
p=wp'. Since [Vy, @ Vi, : W] = [Va, ® Vi, : W], we have vol((Ox, x Ox,)//.T) =
vol((Ox, x Ox,)//,wT. But the computation of the right hand side of the formula (3.2)
for ;' € Py becomes simpler than that for u € P.

We can extend Theorem 3.3 to the general case A1, Ay € t} — {0} and p € t*.

Corollary 3.7. Suppose that A\, Ay € t — {0} and p € t* satisfy the assumptions
(A1) and (A2). Then the volume vol((Ox, x Ox,)//,T) is given by the right hand side
of the formula (3.2), where we replace Py and P,y by € and t |, respectively.

PROOF. By continuity of the symplectic form of symplectic quotients (see, e.g., [3]
and [8]), it is enough to show in the case that A;,A2 € (P ® Q) Nt} — {0} and
u € P ® Q satisfy (A1) and (A2). Since P® Q = Q ® Q, there exists n € Z~( such
that nA1,n\y € Py — {0} and nu € P satisfy (A3). Thus we have
vol((Onx, X Onxy)//nuT) = Z e(wr)e(wa)F(nA1, nAg, np; wr, ws).
w1, wa €W

On the other hand, (Ona, X Onx,)//npT = (Ox, X Oy,)// T as complex manifolds,

and w(nAy,nAg,nu) = né - w(Ai, Ag, ). Hence we have

VO]((OTM1 x OTLAQ)//TLILT) = nd 'VOI((OAl X 0>\2)//HT)'

Furthermore, for n € Zsq, the conditions wi(nA1) + wa(nA2) — nu € 41 and
w1 (nA1) + wa(nA2) — np € y9 are equivalent to the conditions wiA; + wade — p € 1

and wy Ay + waAy — p € 7o, respectively. Thus we have

F(nAy,no, np;wy, we) = n® - F(Ay, Mg, g3 w1, w2).
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Combining all the results above, we obtain the assertion. O

Remark 3.8. As will be discussed in [17], using the volume formula (3.2), we can
compute the generating function of the cohomological intersection product for double
weight varieties (Ox, x Ox,)//,T.

4 Examples.

In this section, as examples of Theorem 3.3 and Corollary 3.7, we concretely compute
the volume of some special double weight varieties. As stated in introduction, the
topological type of a double weight variety (O, x Ox,)//,T depends on the alcove
to which p belongs. Thus in order to compute the volume of double weight varieties,
we must detect all of the alcove of ® : Oy, x Oy, — t*. We investigate the following
three cases.

Case A: A\; and Ag are in t§ — ¢} | — {0} = RyoA; URSoA,.

Case B: A\, Ay € tf. — {0}, pu € t* and p is sufficiently close to A\; + Xa.

Case C: A\, A2 € t}. — {0}, p € t* and p is sufficiently close to 0.

In Case A, each of two coadjoint orbits Oy, and O,, is the complex projective

plane P2, while the position of y is general. On the other hand, in Cases B and C,
the orbit type of coadjoint orbits Oy, and O,, are general, while p is in a particular

alcove.

Assume that A\, Ay € t§ — {0} and p € t* satisfy the assumptions (A1) and (A2)

in Section 3.

4.1 Case A: A\; and A, are in £} — t&  — {0}.

We consider the following two cases.
Case I. A1, Ao € RyoA1 = Rog(2a + a2).
Case II. A1 € R5oA1 = Ro(2a1 + a2), A2 € RugAs = Rog(ag + 2a3).
In Case I, we can set Ay = u(201 + a2), A2 = v(201 + a2) (u > v > 0) without loss
of generality. Then Case I are divided into the following four cases.
(Ta) u > 2v, (Ib) u =2v, (Ic) v < u < 2v, (Id) u = v.
In the four cases above, the image of the moment map @ : Oy, x Oy, — t* is expressed
by a triangle and the inside of it as in Figure 2.
By Remark 3.4, it is sufficient to consider only the case p € t}. If p = xza; +
yag € t is in the alcove 1 in Figure 2 (Ta), then wy,ws € W = S3 which satisfy
wiA1 + wada — p € v are (wy,wa) = (e, e), (e, s1), (51,¢€),(s1,51), and wy,wy € W

which satisfy wiA; + wada — p € 72 is nothing. Thus we can express the volume
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a a+a:
A
ai

N/ 2
(Ia) u > 2v (Ib) u = 2v

AA

(Ie) v <u < 2v (Id) u=w

Figure 2.

vol((Ox, x Ox,)//,T) as a polynomial of u,v,z,y as follows.
vol; :1—12(u+u—y){(u+v—y)-1+2(2u+2v—x)~11}
—%(u—l—v—y){(u—i—v—y)-7+2(2u+2v—a@)~2}
—%(u—l—v—y){(u—i—v—y)-7+2(2u+211—aj)~2}
+%(u+v—y){(u—|—v—y)-1—|—2(2u—|—21}—x)~(—1)}
(v y){—(utv—y)+ (2u+20— )}
=u? + 2uv + v* — ur — vz + 2y — >,

where the symbol “vol;” means the volume (O, x O,,)//,T for p € t* which is in
the alcove 1. In the following, we use similar symbols.

If 4 = xaq + yas is in the alcove 2, 3, 4 in Figure 2 (Ia), then we have
2 1 2 1 2 2
voly = —u +4uv+§v +ux—2vx—§x + zy — 2,
1 5 1
volz = — §u2 + 2uv + 502 +uy — 20y — §y2,

9
voly :§v2,
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respectively.

If p is in the alcove 1, 2, 3 in Figure 2 (Ib) or (Ic), then the volume vol((Oy, x

Ox,)//,T) are equal to voly, voly, vols, respectively.

If 4 = xaq + yas is in the alcove 4’ in Figure 2 (Ic), then we have

3 3
voly = f§u2 + 6uv — 51)2 — 2% 4 zy — 92

If p is in the alcove 1, 4’ in Figure 2 (Id), then the volume vol((Ox, x Ox,)//,T)

are equal to voly, voljj, respectively.

Similarly, in Case II, we set A\; = u(2a1 + a2), A2 = v(a1 + 2a2) (u,v > 0). Then
Case II are divided into the following three cases.
(ITa) w > v, (Ilb) u = v, (Ilc) u < v.
In the three cases above, we can draw the image of the moment map ® : Oy, xOy, — t*

as in Figure 3.

Y

(ITa) u > v (ITb) u = v

JANRN

(Ilc) u < v

Figure 3.
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If 4 = xay + yas is in the alcove 1, 2, 3 in Figure 3 (I1a), then we have

1 1 1
vol; = —(2u+v — 2)? = 2u® + 2uv + 502 — 2uz —vx + iwg,

1 1 1
voly = i(u—l— 2w —y)? = §u2 + 2uv + 207 — uy — vy + §y2,

9
volg = 502,

respectively.
If p is in the alcove 1, 2 in Figure 3 (IIb) or (Ilc), then the volume vol((Oy, x
0,,)//.T) are equal to vol;, voly, respectively.

If 4 = zay + yas is in the alcove 3’ in Figure 3 (Ilc), then we have

9
voly = iuz.

4.2 Case B: pu is sufficiently close to A; + As.

If i is in an alcove which is close to the vertex A; 4o, then we have F(A1, Ag, p; w1, wq) =
0 unless wy,ws € W satisfy wiA; = A1 and wa Ay = Ao. Hence we obtain the following
by Corollary 3.7.

Corollary 4.1. Let A\, Ao € t} — {0} and p € t* satisfy the assumptions (Al) and

(A2). Furthermore assume that p is sufficiently close to Ay + \a. Then we have

VO]((O)\l X OAz)//HT) = Z 6(/LUI)6(11}2)}7()‘17A27/’(‘; wlan)a
w16wk1,wg€m>\2

where for X € £, we denote Wy = {w € W|wA = \}.

Let us set g1 = oy + yag € t*. We can express the volume vol((Ox, x Ox,)//,.T)

as a polynomial of p,q,r, s, u,v,x,y as follows.

(1) Let us set )\1, )\2 € fj_ *fj__i_ 7{0} = R>0A1 UR>0A2 = R>0(20¢1 +042)|_|R>0(O£1 +
2042).
(1a) If Ay = w201 +@2), Aa = v(201 +ag) € RugAg, then Wy, = W, = {e, s2}.
Thus we have

vol((Ox, X Ox,)//uT) =(u+v—y)(u+v—z+y).

Note that Ay + Ao — p is not in 5. See Case I in Section 4.1.
(1b) If \ = u(2a1 + OéQ) € R>OA1,)\2 = v(a1 + 20&2) € R>QA2, then QH,\I =
{e,s2},2, = {e, s1}. Thus we have

—(u+20—y)? (fA+da—pem),

—No | =

VOl((O)\l X O/\Q)//HT) =
5(2U+’U7I)2 (if>\1+)\2*,u€’}/2).

See Case II in Section 4.1.
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(Ic) I Ay = u(ar +2a2), Ay = v(ag+2as) € RsgAg, then Wy, = Wy, = {e, s1}.

Thus we have
vol((Ox, x Ox)//uT) = (u+v—2)(u+v+z—y),
Note that A\; + Ao — p is not in 7.

(2) Let usset \y € £, Ay €t} — 7, — {0}

(2a) If Ay = pony + qag € €, A2 = u(201 + a2) € RogAq, then

1

gla+u—y)*(Bp — 20+ du — 3z + 2y)
VOI((OA1 X O>\2)//#T) = (lf A1+ Ay — ne ")/1),

1

6(p+2u—x)3 (if/\1+)\2—u€72).

(2b) If Ay = paq + qag €t , Ao = u(ay + 202) € RygA2, then

1 .
6(q+2u—y)3 (if A\ + Ao — p €M),
1
vol((Ox, X Ox,)//uT) = 6(p+u —2)%(=2p + 3¢ + 4u + 22 — 3y)
(if A1 4+ A2 — i € 7).

(3) If Ay = pay + qaz, Ay = rag + sag € ) |, then we have

1
E(q+s—y)3(2p—q+2r—s—2x+y)

if A\ +Xo—pu € ,
wol(Ox, x Ox,)//uT) = (fh 420 —pem)

1
@t —2 (-pt 20—+ 25+ 5 2)

(i A4+ X2 —p € y2).

4.3 Case C: pu is sufficiently close to 0.

In this subsection, we consider the case where p is in the alcove which contains the

origin 0. Here, we assume that p = 0 is a regular value of the moment map @, that

is, vertices w1 A1 + wode (w1, ws € W) do not lie in Rag, Rag and R(ay + ag).
Let us investigate the following six cases.
Case I. A1, A2 € RogA1 = Ry (209 + an).
Case II. A1 € RyoA1 = Roo(2a1 + a2), A2 € RugAs = Rog(ar + 2as).
Case IIL. Ay € €, N1, A2 € RypAy.
Case IV. Ay € £, Nv1, A2 € RypAs.
Case V. Ay, A2 €85, Nyp.
Case VI. Ay € t}, Ny1, A2 € £, Nya.

For Cases I and II, we have already computed the volume of them in Section 4.1.

For Cases ITII-VI, we first need to observe which vertices wy A1 + waAe (w1, ws € W) of

D0y, X O,,) are in the domains ;7 and 2 so that we can compute F(A1, Mg, ; w1, wa)

in Theorem 3.3 or Corollary 3.7. In order to describe them, we call each vertex
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w1 A1 + wadg as follows. First, as in Figure 4, we label each vertex wA (w € 20) of

7T>\(O>\) C t* as “A??, “B777 s or “F”.

B:isiA A BB \ BA A8/ AA

AE AC
E:sisaA C:s:A VAV, ARNAAD N\ cp
B\VA ANVA

¥ AVARV4

F:sisasi A D:s:siA

=55152 A
FF DD

Figure 4.
Figure 5.

Note that A=C, B=E and D=F for A € Ry¢A;, and A=B, C=D and E=F for
A € RypAz as in Figure 1. For the vertices of ®(O,, x O,,), for example, as in
Figure 5, we label the vertex A\ + Ao as “AA”, A1 + s1A2 as “AB”, s1 A1 + Ag as “BA”
and so on.

Since we only observe which vertices are in the domains ~; and 79, for example,

we do not distinguish two images in Figure 6.

S

/NA S9N AN/
v o/

\‘\/\ /D hY /D

Figure 6.

We set u = zay + yas € t*.

Case I. A\, \s € RugA = R>0(20&1 + 042).

Let us set A1 = u(201 + a2), A2 = v(201 + a@2) (u > v > 0). This case corresponds
to the cases where p belongs to the alcove 4 in Figure 2 (Ia), and the alcove 4’ in

Figure 2 (Ic). Thus the symplectic volumes are given as follows.
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AV
(TIa) u > 2v (Ie) v <u < 2v
Figure 7.
(Ia) vol = 202. (Ic) vol = fgu2 + 6uv — gv2 —2? +ay — >

Case II. Al € R>0A1 = R>0(2a1 + 052), Ao € R>0A2 = R>0(041 + 2a2).

Let us set Ay = u(2a1 + a2), A2 = v(ay + 2a2) (u,v > 0). This case corresponds
to the cases where p belongs to the alcove 3 in Figure 3 (IIa), and the alcove 3’ in

Figure 3 (IIc). Thus the symplectic volumes are given as follows.

N

(ITa) u > v (Ile) u < v

Figure 8.

(ITa) vol = gvz. (IIc) vol = guz.

Case III. \; €t} N1, A2 € RypAg.

Varying A1 € £, N1, A2 € RygAy, we investigate which vertices are in the domains

v and 2. In particular, we look at two vertices AB and AD.

(IlIa) If AB € 1, then vertices AA, AB, AD, CA, CB, CD are in the domain v;, and

no vertex is in 7y, as in Figure 9 (IIla).
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(ITIb) If AB € 5 and AD € ~q, then AA, AD, CA, CB are in 7; and AB, BA are in

72 as in Figure 9 (IIIb).

(IlIc) If AB € 5 and AD ¢ 51 U3, then AA, CA are in 7; and AB, BA, CB, EA

are in 72 as in Figure 9 (IIlc).

(ITId) If AB ¢ 71 U~e, then AA BA, CA, DA, EA, FA are in the domain 2, and no

vertex is in 7, as in Figure 9 (II1d).

VA 1V

hY /'

R4

(I11a)

AA
CA

AB BA

BA AB AA

Vavvi:
Py a¥e: CA

\v4 Y

VAV/ENVAN

T
N

(ITIc)

ANIVAN /\_/
Vi v

(I1Ib)

BA AA
JANRVAN YANA

ANERN FA/ /DA

(111d)

Thus we divide Case III into the four cases (IITa)—(IIId) as in Figure 9.



Let us set A\ = pag + qag, Ao = u(2aq + a2) (2¢ > p > ¢ > 0,u > 0). In each case,
the symplectic volume vol((Ox, x O,,)//,T) is expressed as follows.

(1) +3(p—u - 2))
p—q—2u—y)*((p—q—2u—y)-3+3(p—u—1x)-(-1))

+(p—gq—2u—y*((p—q—2u—y)-2+3(p—u—1x)-(-1))
(ITIb) 6 - vol =3p> — 9p2q + Ipqg® — 3¢° — 18p*u + 36pqu — 18¢%u

+ 9pu? + 18qu® — 24u® + 6pa? — 6qz® — 12uz?

— 6pxy + 6qxy + 12uzy + 322y + 6py* — 694>

— 12uy? — 3zy°.
(Ille) 6 - vol =3p® — 9p*q + Ipg® — 6¢° — 18p>u + 36pgt + Ipu® — 18qu>

+ 6px? — 12qz% — 6pry + 12q2y + 6py? — 12qy°.
(ITId) 6 - vol = — 6p° + 9p°q + 9pg” — 64> = 3(2¢ — p)(2p — @) (p + @)-

Case IV. \; € tiJr N1, A2 € RygAs.
We look at three vertices AA, AC and AE.

(IVa) If AA € 1, then vertices AA, AC, AE, CA, CC, CE are in the domain -7, and

no vertex is in vy as in Figure 10 (IVa).

(IVb) If AA, AE € 79, then AC, CA are in v, and, AA, AE, BA, BC are in 7 as in
Figure 10 (IVD).

(IVe) If AA € v, AC € 91 and AE ¢ v Uy, then AC, CA, BC, DA are in 77 and
AA, BA are in 7y, as in Figure 10 (IVc).

(IVd) If AA € v, and AC, AE ¢ 71 U s, then AA, BA, CA, DA, EA, FA are in the

domain 72, and no vertex is in ; as in Figure 10 (IVd).
Thus we divide Case IV into the four cases (IVa)—(IVd) as in Figure 10.
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Figure 10.

Let us set A\ = pag + qag, Ao = u(ag +2a3) (2¢ > p > ¢ > 0,u > 0). In each case,
the symplectic volume vol((Ox, x O,,)//,T) is expressed as follows.

(IVa) 6 - vol =27(—p + 2q)u?.

(IVb) 6-vol = — 3p® + 9p?q — Ipg® + 3¢° — 18p*u + 36pqu — 18¢%u + 18pu?
+ 9qu? — 24u® — 6pa® + 6gx? — 12uz?® + 6pry — 6qzy
+ 12ury — 32%y — 6py? + 6qy* — 12uy® + 3wy

(IVe) 6-vol = — 6p® + 9p*q — Ipg® + 3¢> + 36pqu — 18¢%u — 18pu® + 9qu?
— 12px? + 6q2” + 12pxy — 6qay — 12py° + 6qy>.

(IVd) 6-vol = — 6p® + 9p°q + 9pg® — 6¢° = 3(2¢ — p)(2p — ¢)(p + q).
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Case V. A\, A2 €t N1

Let us set A\ = pay + qag, As = rag + sas (2g > p > q > 0,2s > r > s > 0), and
assume either p > r, or, p = r and ¢ > s. We look at two vertices AB and CB.

(Va) If AB € 74, then vertices AA, AB, AC, AD, AE, AF, CA, CB, CC, CD, CE, CF

are in the domain 7, and no vertex is in 2 as in Figure 11 (Va).

(Vb) If AB € v9 and CB € v, then AA, AC, AD, AF, CA, CB, CC, CE are in 71,
and AB, AE, BA, BC are in ;2 as in Figure 11 (Vb).

(Vc) If AB € v9 and CB € 7, then AA, AC, CA, CC are in 71, and AB, AE, BA,
BC, CB, CE, EA, EC are in 75 as in Figure 11 (Vc).

"

Pa\

AA
PaN VA%, Pa%y
AC BC AE
AD AF 'AD
LA\ AF/X\CB \CA P way XK CA
AV N« SUA NV
% v AY/N Ve N/

BA AB AA

(Va) (Vb)
BA AB AA
e -,
Pa\ SEEAY Ao
R/
AVaNvaY; avzuV4
\VAV/ \VAV/
(Ve)
Figure 11.
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Thus we divide Case V into the three cases (Va)—(Vc) as in Figure 11. In each case,

the symplectic volume vol((Ox, x O,,)//,T) is expressed as follows.

(Va) 12-vol =(¢+ s —y)*2(p+7r—2) — (¢ + 5 —y))

=12pr3 — 24qr® — 18pr?s + 36qr?s — 18prs® + 36qrs® + 12ps® — 24¢s>
=6(2¢ — p)(—r + 2s)(2r — s)(r + s).
(Vb) 12 - vol = — 6p3r 4 18p?qr — 18pg*r + 6¢°r + 18p*r? — 36pqr? + 18¢*r? — 6pr®
— 6gr® + 611 + 12p®s — 36p?qs + 36pq*s — 12¢3s — 36p>rs + T2pqrs
— 36¢°rs + 18pr?s — 12135 — 18prs® + 36qrs® 4+ 12ps> — 24¢s®
— 12pra? + 12qra® + 12r22? + 24psa® — 24qsx® — 24rsz® + 12pray
— 12qray — 12r2zy — 24pszy + 24qszy + 24rszy — 6ra’y + 1252’y
— 12pry? + 12qry® + 1202y2 + 24psy® — 24qsy® — 24rsy?
+ 6ray® — 12sxy>.
(Ve) 12 - vol = — 6p3r + 18p2qr — 18pg*r + 12¢3r + 18p*r? — 36pqr® — 6pr3
+12¢r + 12p3s — 36p°qs + 36pq>s — 24¢>s — 36p2rs + T2pqrs
+ 18p7“25 — 36qr25 — 18pr82 + 36q7"s2 + 121053 — 24qs3
— 12pra® + 24qra® + 24psa® — 48¢sx® + 12pray — 24qrzy
— 24psxy + 48qsxy — 12pry* + 24qry? + 24psy® — 48qsy>.

Case VI. A1 et/ Ny, A2 €t Nya
We look at five vertices AA, AB, CA, CB and BC.

(VIa) If AA € v and AB € 1, then vertices AA, AB, AC, AD, AE, AF, CA, CB, CC,
CD, CE, CF are in the domain =, and no vertex is in 7 as in Figure 12 (VIa).

(VIb) If AA € 91, AB € 5 and CB € ~, then AA, AC, AD, AF, CA, CB, CC, CE
are in 71, and AB, AE, BA, BC are in v, as in Figure 12 (IVb).
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(VIc) If AA € v1, AB € 742, CB € 72 and BC € 73, then AA, AC, CA, CC are in 7,
and AB, AE, BA, BC, CB, CE, EA, EC are in 7, as in Figure 12 (VIc).

(VId) If AA € v, AB € 75, CB € 75 and BC € 74, then AA, AC, BC, CA, CC, DA,
EC, FA are in 71, and AB, BA, CB, EA are in v, as in Figure 12 (VId).

(VIe) If AA € 49, CA € v1, CB € 41 and BC € 44, then AC, AD, BC, BD, CA, CB,
DA, DB are in 71, and AA, AB, BA, BB are in 75 as in Figure 13 (VIe).

(VIf) If AA € 5, CA € 41, CB € 3 and BC € 42, then AC, AD, CA, CB are in 7,
and AA, AB, BA, BB, BC, BD, DA, DB are in v» as in Figure 13 (VIf).

(VIg) If AA € v9, CA € 91 and CB € 59, then AC, AD, BC, DA are in 7, and AA,
AB, BA, BB, CB, DB, EA, FA are in 75 as in Figure 13 (VIg).

(VIh) If AA € 5 and CA € 74, then no vertex is in 1, and AA, AB, BA, BB, CA,
CB, DA, DB, EA, EB, FA, FB are in v as in Figure 13 (VIh).

/J AA BA AB AA

SR AN AD:,\\CA \ /4 y
N VAN A
X ) N AVAV.@:PAVL: ¥an/ ¢

\V4 \V4 \V4 \V4
(VIa) (VIb)

N\ AEWBC /A\AAC VANCYAWAN: /Qxc
e
AN NXIUEXR / /< W

A
YALIENSEN R M
W/\/\W

(VIc) (VId)

Figure 12.

Thus we divide Case VI into the eight cases (VIa)—(VIh) as in Figure 12 and 13.

29



BB

\VAVAV
RESCHe

AB

AN Q58NN ARV S AVARY,
NISN RN NNV
VAWERV /RN \V/ZAAVAVANV

(Vlg) (VIh)

Figure 13.

Let us set A\; = pag + qag, Ao = rag + sas (29 >p>¢q>0,2r >s>r>0). By
Corollary 3.7, the symplectic volume vol((Ox, x Ox,)//,T) is expressed as follows.

(VIa) 12 - vol =12pr® — 24qr® — 18pr?s + 36qr?s — 18prs® 4 36qrs® + 12ps® — 24¢s®
=6(2¢ — p)(2s — 1)(2r — s)(r + ).
(VIb) 12 - vol = — 6p°r + 18p*qr — 18pg®r + 6¢°r + 18p*r? — 36pqr® + 18¢°r?
— 6prr3 — 6gr3 + 61t + 12p3s — 36p°qs + 36pg*s — 12¢>s — 36p>rs
+ 72pqrs — 36¢°rs + 18pr?s — 12r3s — 18prs? + 36qrs® + 12ps®
— 24qs® — 12pra? 4+ 12qra® + 121222 + 24psa® — 24qsax® — 24rsa?
+ 12pray — 12qray — 12r2zy — 24psay + 24qswy + 24rsxy
— 6rz’y + 12522y — 12pry? 4+ 12qry® + 12r%y% + 24psy?®
— 24qsy* — 24rsy® + 6ray® — 12sxy>.
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(VIc) 12 - vol = — 6p°r + 18p%qr — 18pg®r + 12¢3r + 18p*r? — 36pgr? — 6pr®
+12¢r® + 12ps — 36p>qs + 36pq>s — 24¢>s — 36p°rs + T2pqrs
+ 18pr?s — 36qr’s — 18prs? + 36qrs® + 12ps® — 24qs>
— 12pra? + 24qra? + 24psa? — 48¢sx® + 12pray — 24qray
— 24psxy + 48qsxy — 12pry* + 24qry® + 24psy® — 48qsy>.

(VId) 12 - vol =6p* — 12p3q — 6p°r + 18p*qr — 18pg®r + 12¢3r + 18p*r? — 36pgqr?
— 6pr® + 12gr3 — 6p3s + 36pg*s — 24¢3s — 36p>rs + T2pqrs
+ 18pr?s — 36qr?s + 18p®s® — 36pgs? — 18prs® + 36qrs?
+ 6ps® — 12¢s> + 12p%2? — 24pga® — 12pra? + 24qra®
+ 12psa? — 24qgsx® — 12pxy + 24pqry + 12pray — 24qrzy
— 12pszy + 24qszy — 6paly + 12qz2y + 12p%y? — 24pqy?
— 12pry® + 24qry® + 12psy® — 24qsy® + 6pay® — 12qzy>.

(VIe) 12 - vol = — 12p3r + 36p2qr — 36pg>r + 12¢°r — 24pr3 + 12q1° + 6p>s
— 18p%gs + 18pg®s — 6¢°s — 36p>rs + T2pgrs — 36¢°rs + 36prs
— 18qr23 + 18])282 — 36pqs2 + 18q2$2 + 18q7"s2 — 6ps3 — 6qs3
—12rs% + 65 — 24pra? + 24qra® + 12psa® — 12¢sx® — 24rsa>
+ 125222 + 24pray — 24qray — 12psxy + 12gszy + 24rszy
— 12522y — 12r2%y + 652y — 24pry? + 24qry® + 12psy?
— 12¢sy* — 24rsy® + 125%y* + 12rzy® — 6say°.

(VIf) 12 - vol = — 24p3r 4 36p%qr — 36pq®r + 12¢°r — 24pr® + 1213 + 12p°s
— 18p%gs + 18pg®s — 6¢°s + T2pqrs — 36¢%rs + 36pris — 18¢r?s
— 36pgs® 4 18¢°%s* — 36prs® + 18qrs® + 12ps® — 6¢s>
— A8pra? + 24qra? + 24psaz? — 12qsx® + 48pray — 24qray
— 24psxy + 12gsxy — 48pry* + 24qry® + 24psy® — 12qsy>.

(VIg) 12 - vol = — 12pg® + 6¢* — 24p3r + 36p>qr — 6¢°r — 36pqr® + 18¢%r? — 12pr
+ 6qr3 + 12p°s — 18p%gs + 18pg®s — 6¢°s + T2pqrs — 36¢°rs
+ 36pr?s — 18qr2s — 36pqs® + 18¢%s% — 36prs® + 18qrs® + 12ps®
— 6gs> — 24pqa? + 122 — 24pra® + 12qra® + 24psa?®
— 12¢sx? + 24pqry — 12¢%xy + 24pray — 12qray — 24psxy
+ 12¢szy — 12pz’y + 6qz2y — 24pqy® + 12¢%y? — 24pry?
+ 12qry® + 24psy® — 12qsy* + 12pxy® — 6qxy>.

(VIh) 12 - vol = — 24p3r + 36p>qr + 36pg*r — 24¢°r + 12p>s — 18p>qs — 18pg°s + 12¢°s

=6(—p+2q)(2p — @) (p + @) (2r — s).

Remark 4.2. Using the concrete expression to symplectic volumes in Section 4, we
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can compute the Betti number and the Poincaré polynomial as well as the cohomolog-

ical intersection product for each double weight variety (Ox, x Ox,)//, T in Cases A,
B and C. The details will be discussed in [17].
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