CHUO MATH NO.105(2013)

REAL HYPERSURFACES OF
APSEUDO RICCI SYMMETRIC
COMPLEX PROJECTIVE SPACE
by
SHYAMAL KUMAR HUI
AND YOSHIO MATSUYAMA

DEPARTMENT OF MATHEMATICS

& CHUO UNIVERSITY
BUNKYOKU TOKYO JAPAN

AUG.7, 2013
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ABSTRACT. Real hypersurfaces of a pseudo Ricel symmetric complex projective
space are classified and we obtained that there are no real hypersurfaces of such
type complex projective space.

1. INTRODUCTION

Let C'P". n > 3 be an n-dimensional complex projective space with Fubini-Study
metric of constant holomorphic sectional curvature 4 and let M be a real hypersurface
of CP". Then M has an almost contact metric structure (¢,&.n,g) induced from
the Kahler structure of CP". Many differential geometers have been studied real
hypersurfaces of a complex projective space such as Bejancu and Deshmukh [2], Cecil
and Ryan [3]. Cho and Ki [6], Deshmukh [7], Hamada ([9].[10].[11]), Tkuta [12], Kimura
([14]. [15]. [16]. [17]), Kimura and Maeda [18], Maeda ([19], [20], [21]). Matsuyama
([22], [23]. [24]), Okumura [25], Perez et. al ([28]. [29]. [30], [31]), Takagi ([33],[34].
135]), Wang [36] and others.

It is well known that there does not exist a real hypersurface M of C'P" satisfying
the condition that the second fundamental tensor A of M is parallel. Again in [10]
Hamada use the condition that the second fundamental tensor A is recurrent, i.e.
there exists an 1-form « such that VA = A ® a. And Hamada [10] proved that
there are no real hypersurfaces of a complex projective space with recurrent second
fundamental tensor. Again many differential geometers studied real hvpersurfaces of
complex projective space satisfying some condition of Ricei tensor. In [13] Ki proved
that there are no real hypersurfaces of a complex projective space with parallel Ricci
tensor. Again in [11], Hamada studied the real hypersurfaces of a complex projective
space with recurrent Ricei tensor and proved that there are no real hypersurfaces
with recurrent Ricci tensor of C'P™ under the condition that £ is a principal curvature
vector.

A Riemannian space is said to be Ricci symmetric if its Ricei tensor S of type (0.2)
satisfics V.S = 0. where V denotes the Ricimannian conncection. During the last five
decades. the notion of Ricei symmetry has been weakened by many authors in several
ways to a different extent such as Riccl recurrent space [27], Ricel semisymmetric space
(32]. pseudo Ricci symmetric space by Deszez [8], pseudo Ricei symmetric space by
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Chaki [4].
A non-flat Riemannian space (A", g) is said to be pseudo Ricei symmetric [4] if its
Riceil tensor S of type (0,2) is not identically zero and satisfies the condition

(1.1) (VASHY. Z) = 2a(X)S(Y. Z) + a(Y)S(X. Z) + ( Z)S(Y. X).

for any vector field X, Y. Z. where o is a nowhere vanishing 1-form and V denotes
the operator of covariant differentiation with respect to the metric tensor g. Such
an n-dimensional space is denoted by (PRS),. The pseudo Ricei symmetric spaces
have been also studied by Arslan et. al [1], Chaki and Saha [5]. Ozen [26] and many
others.

The relation (1.1) can be written as

(1.2) (VxQ)Y =2a(X)QY + a(Y)QX + S(Y. X)p,

where p is the vector field associated to the 1-form o such that o(X) = g(X, p) and
() is the Ricei operator, ie.. g(QX.Y) = S5S(X.Y) for all X, Y.

Motivated by the above studies the present paper deals with the study of real
hypersurfaces of a pseudo Ricci symmetric complex projective space. A complex pro-
jective space C'P", n > 3 is called pseudo Ricci symmetric complex projective space
if its Ricci operator Q) satisfics the rvelation (1.2). The paper is organized as follows.
Section 2 is concerned with some preliminaries. Section 3 is devoted to the study
of real hypersurfaces of a pseudo Ricei symmetric complex projective space and it
is proved that there are no real hypersurfaces of a pseudo Ricci symmetric complex
projective space C' P,

2. PRELIMINARIES

Let M be a real hypersurface of CP". In a neighbourhood of each point. we take

a unit normal vector field N in CP". The Riemannian connections V in CP" and V
in M are related by

(2.1) ViY = VY + g(AX.Y)N.

(2.2) ViN = —AX

for arbitrary vector fields X and Y on M. where ¢ is the Riemannian metric of M
induced from the Fubini-Study metric G of CP" and A is the second fundamental
tensor of M in CP". Let TM be the tangent bundle of M. An eigenvector X of the
second fundamental tensor A is called a principal curvature vector. Also an eigenvalue
A of A is called a principal curvature. It is known that M has an almost contact metric
structure induced from the Kahler structure .J on C'P". that is we define a tensor
field ¢ of type (1.1), a vector field € and an 1-form n on M by g(¢X.Y) = G(JX.Y)
and ¢g(&, X) = n(X) = G(JX.N). Then we have

(2.3) P*X = =X +n(X)E n(§) =g(6.&) =1. ¢f=0.
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Also it follows from (2.1) that
(2.4) (Vyo)Y = g(Y)AX - g(AX.Y)E.

(2.5) Vi =0AX.

Let 12 and R be the curvature tensors of C'P™ and M respectively. From the expression
of the curvature tensor of C'P™, we see that the curvature tensor, Codazzi equation
and the Ricei tensor of type (1,1) are given by
(26)  RN.Y)Z — g(V.Z)X ~ g(X.Z)Y + g(6Y. 2)0X — g(6X. Z)oY

— 29(0X.Y)oZ + g(AY. Z)AX — g(AX, Z)AY,

(2.7) (VA — (VyA)X = n(X)8Y — g(Y)oX — 2g(0X, Y)E.

(2.8) QX = (2n+ DX = 3n(X)E + hAX — A*X,

where h = traceA.

Again we have

(2.9) (ViQ)Y = =3g(¢AX.Y)E - 3n(Y)pAX + (Xh)AY
+ WV yA)Y — AV A)Y — (VyA)AY.

Also we recall the following:

Lemma 2.1. [19] If £ is a principal curvature vector, then the corresponding principal
curvature a is locally constant.

Lemma 2.2. [19] Assume that £ is a principal curvature vector and the corresponding
principal curvature is a. If AX = AX for X L &, then we have ApX = X, where
X _ (aA+2)

T 2x—a)”

Theorem 2.1. [3] Let M be a connected real hypersurface of CP", n > 3, whose
Ricci tensor S sabisfics S(X.Y) = ag(X.Y) + bn(X)n(Y') for some smooth functions
a and b on M. Then M is locally congruent to one of the following:

(i) a geodesic hypersurface,

(ii) @ tube of radius v over a totally geodesic CP*, 1 < k <n — 2, where 0 < r < 3
and cot?r = n/f’;‘;_l,

(iil) a tube of radius r over a complex quadric Q,_;, where 0 < r < T and cot? 2r =
n—2.

Theorem 2.2. [33] Let M be a homogeneous real hypersurface of CP". Then M is
a tube of radius r over one of the following Kahler submanifolds:

(A1) hyperplane C P where 0 < r < 5

(Az) totally geodesic CP*, (1 <k <n —2), where 0 <r <
(B) complexr quadric Q, _,, where 0 < r < o

(C) CP' x CP"= , where 0 < r < T and n(>5) is odd,

[STE)
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(D) complexr Grassman ¢Gq 5, where 0 <r < T andn =9,
(E) Hermitian symmetric space SO(10)/U(5). where 0 < r < § and n = 15,

Theorem 2.3. [15] Let M be a real hypersurface of CP". Then M has constant
principal curvatures and & is a principal curvature vector if and only if M is locally
congruent to a homogeneous real hypersurface.

Theorem 2.4. [13] There are no real hypersurfaces with parallel Ricci tensor of a
complex space form ¢M™, ¢ #£ 0.

3. REAL HYPERSURFACES OF A PSEUDO RICCI SYMMETRIC COMPLEX
PROJECTIVE SPACE C'P"

In this section, we have studied real hypersurfaces of a pseudo Ricel symmetric
complex projective space C'P" and prove the following;:

Lemma 3.1. Let M be a connected real hypersurface of a pseudo Ricci symmetric
complex projective space C'P". If all eigenvalues of the Ricci operator Q) are constant
then the Ricci tensor S of M s parallel.

Proof: Let QX = AX. QY = uY and QZ = v7. Then we have
G(TQ)Y. Z) = (4 — )g(V Y. 2).
Again we have from (1.2) that
g(VxQ)Y. Z) = 20{X)ug(Y. Z) + oY )rg(X. Z) + o(Z)pg(X.Y).

IfXA# pu. A#vand u # vthen g((VxQ)Y. Z) = 0. Also in the case of p = v, we
obtain g((VyQ)Y. Z) = 0.

Assume that g # v, A = v. Then g((VzQ)X.Y) = 0.

On the other hand, we have

g(V2Q)X.Y) = 2a(Z)pug(X.Y) + [(X)S(Z.Y) + (Y)S(X. Z)].

Thus we obtain o(Z)ug(X.Y) = 0. Hence g((ViQ@Q)Y.Z) = 0. Consequently. the
Ricci tensor S of A is parallel.

From (2.8) and since & is principal. the principal curvature vector will also be eigen-
vectors of S. Thus Ricei tensor of a homogeneous real hypersurface has constant
eigenvalues. Again the hypersurface listed in Theorem 2.2 do not have parallel Ricci
tensor. Thus from Lemma 3.1 and Theorem 2.3, we obtain

Proposition 3.1. A homogeneous real hypersurface of C'P" can not be pscudo Ricci
symmetric.

So by using Theorem 2.1, we have

Corollary 3.1. A real hypersurface of CP". n > 3 whose Ricci tensor S satisfies
S(X.Y) =ag(X.Y) +bn(X)n(Y) for some smooth functions a and b on M, can not
be pseudo Ricci symmetric.
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Now we prove the following:
Theorem 3.1. There are no real hypersurfaces of pseudo Ricci symmetric complex
projective space CP™ under the condition that £ is a principal curvature vector.
Proof: Let us take a real hypersurface of pseudo Ricci symmetric complex projective
space C'P"*. Then by virtue of (2.8) it follows from (1.2) that
(3.1) G(TAQY.Z) = 20(X)[(20 + 1)g(Y, Z) = 35(Y ) (Z)
hg(AY., Z) — g(A%Y, Z)}

(Y)[(Zn + Dg(X., Z) = 3n(X)In(Z)
hg(AX.Z) — g(A*X. Z)]

(Z){(anL Dg(X,Y) = 3n(X)n(Y)
hg(AX,Y) — g(A*X, Y)]

+ o+ o+ o+ o+

Using (2.9) in (3.1), we get

(3.2) 20(X)[(2n+ V(Y. Z) = 3n(Y)(Z) + hg(AY. Z) - g(A*Y. Z)]

a(Y)[(2n+ 1)g(X. Z) = 3n(X)n(Z) + hg(AX. Z) — g(A°X. Z)]

a(Z) [(2n + 1)g(X. Y) = 3n(Xn(Y) + hg(AX.Y) — g(4°X.Y)]
IN(Z)g(0AX. Y )+ 3n(Y)g(pAX. Z) — (Xh)g(AY. Z)

— hg((VxAY, Z)+ g(A(VNA)Y, )+ g(VxA)AY, Z) =0

for any tangent vectors X, Y, 7.
Putting ¥ = ¢ and Z = o X in (3.2), we get

(3.3) 20(X) [hg( AL X)) — g(A*E. 0 X )] + a(f) [hg‘(AX, dX) — g(A*X, d)X)J
+ a(eX)[2(n = D)n(X) + hg(AX.&) — g(A* X, &)]
+ 39(AX, X) = 3n(AX)n(X) — (Xh)g(AE 0 X)
— hg((Vy A 0 X) + g{A(V YA 0X) + g((VyA) AL 0X) = 0.

Let us assume A& = a&. Then by Lemma 2.1, we have a is constant and hence we get

+ o+

(3.4) (VxA)E = apAX — ApAX.
Using (3.4) in (3.3). we obtain
(3.5) (1(5) (hg(AX. 0X) — g(A°X, o X)) +2(n — 1)a(pX )n(X)

+ 3g(AX, X) = 3a(n(X))” = hag(¢AX.oX)
+ hg(AGAX . 6X) — g(AAX. A6 X) + a’g(0AX ,6X) =0

for any tangent vector X on M. We choose X as a unit principal curvature vector
orthogonal to & and by virtue of Lemma 2.2, we have

AX = AX and AdX = M X.
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where \ = gi—fj Therefore we obtain
(3.6) AN = b+ a(EIX = (a® = ha + 3)] = 0.
Again from Lemma 2.2, we may write
— At
(3.7) AN = ; a+1.
If A = A then (3.7) vields
(3.8) MNo=a\+1.

If 0 occurs as a principal curvature (for a principal vector orthogonal to £), then (3.7)
shows that all principal curvature must be constant.

Next assuming that 0 is not a principal curvature (again we consider only directions
orthogonal to &), the relation (3.6) shows that there arc at most two distinct principal
curvatures. If A and X are distinct then we have

A A=h+a(&) and A = —(a* — ha + 3).

which yields
—(a* — ha +3) = {h—+§@ﬁ + 1.

ie.
2 {h—ald}a L4-0

2
Thus the coefficients in (3.6) are constants and hence so are A and A. The final
possibility is that all principal curvatures (with principal vectors orthogonal to &)
satisfy (3.8) and are again constant.
So by Theorem 2.3 and Proposition 3.1. we get the desired result.
Acknowledgement: This work was done while the first author (S. K. Hui) was a
visiting scholar at Chuo University, Japan.
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