CONTINUOUS INFINITESIMAL GENERATORS OF A CLASS OF NONLINEAR EVOLUTION OPERATORS IN BANACH SPACES

by
YUKINO TOMIZAWA

DEPARTMENT OF MATHEMATICS CHUO UNIVERSITY
 BUNKYOKU TOKYO JAPAN

JAN.31, 2014

CONTINUOUS INFINITESIMAL GENERATORS OF A CLASS OF NONLINEAR EVOLUTION OPERATORS IN BANACH SPACES

YUKINO TOMIZAWA

Abstract

A class of nonlinear evolution operators is introduced and a characterization of continuous infinitesimal generators of such evolution operators is given by applying the results on semigroups of Lipschitz operators.

Let X be a real Banach space with norm $\|\cdot\|$. Let Ω be a closed subset of $[0, \infty) \times X$ such that $\Omega(t)=\{x \in X ;(t, x) \in \Omega\} \neq \emptyset$ for $t \in[0, \infty)$. Let A be a continuous mapping from Ω into X. Given $(\tau, x) \in \Omega$, we consider the following initial value problem:

$$
\left\{\begin{array}{l}
u^{\prime}(t)=A(t, u(t)) \quad \text { for } \quad \tau \leq t<\infty, \\
u(\tau)=x .
\end{array}\right.
$$

Set $\Delta=\{(t, \tau) ; 0 \leq \tau \leq t<\infty\}$. Suppose that the problem (IVP; $\tau, x)$ has a unique (continuously differentiable) solution $u(\cdot)$ on $[\tau, \infty)$. Defining by $U(t, \tau) x=u(t)$, we have the following properties:
(E1) $U(\tau, \tau) x=x$ and $U(t, s) U(s, \tau) x=U(t, \tau) x$ for $(\tau, x) \in \Omega$ and $t, s \in[0, \infty)$ such that $t \geq s \geq \tau$.
(E2) For any $(\tau, x) \in \Omega, U(s, \tau) x$ converges to $U(t, \tau) x$ in X as $s \rightarrow t$ in $[\tau, \infty)$.
By a (nonlinear) evolution operator on Ω, we mean a family $\{U(t, \tau)\}_{(t, \tau) \in \Delta}$ of operators $U(t, \tau): \Omega(\tau) \rightarrow \Omega(t)$ satisfying (E1) and (E2). We consider the following additional condition on such a family $\{U(t, \tau)\}_{(t, \tau) \in \Delta}$ which ensures the continuous dependence of solutions $u(\cdot)$ on the initial data $(\tau, x) \in \Omega$:
(E3) For any $T>0$, there exists $M_{T} \in(0, \infty)$ such that

$$
\begin{aligned}
& \quad\|U(\tau+t, \tau) x-U(\sigma+t, \sigma) y\| \leq M_{T}(|\tau-\sigma|+\|x-y\|) \\
& \text { for }(\tau, x),(\sigma, y) \in \Omega \text { and } t \in[0, T] .
\end{aligned}
$$

The aim of this paper is to prove the following theorem, which provides a characterization of the continuous infinitesimal generator A such that the solution operator to (IVP; τ, x) becomes an evolution operator on Ω satisfying condition (E3). Our class of evolution operators is rather narrow but closely related to the ones discussed in Murakami [12], Martin [9], Lakshmikantham et al. [8] and Kato [4]. The theorem is proved by the use of the results for the autonomous case by Kobayashi-Tanaka [6].

Theorem 1. There exists an evolution operator $\{U(t, \tau)\}_{(t, \tau) \in \Delta}$ on Ω such that (E3) is satisfied and that $u(t)=U(t, \tau) x$ is a unique solution to (IVP; $\tau, x)$ on $[\tau, \infty)$ for any $(\tau, x) \in$ Ω if and only if the mapping A on Ω satisfies the following conditions $(\Omega 1)$ and $(\Omega 2)$:
$(\Omega 1)$ For any $(\tau, x) \in \Omega$,

$$
\liminf _{h \rightarrow+0} d(x+h A(\tau, x), \Omega(\tau+h)) / h=0,
$$

where $d(x, S)=\inf _{y \in S}\|x-y\|$ for $x \in X$ and $S \subset X$.
$(\Omega 2)$ There exist a number $\omega \in[0, \infty)$ and $V:(\boldsymbol{R} \times X) \times(\boldsymbol{R} \times X) \rightarrow[0, \infty)$, which satisfies conditions (V1) and (V2) below, such that

$$
\begin{equation*}
D_{+} V((\tau, x),(\sigma, y))(A(\tau, x), A(\sigma, y)) \leq \omega V((\tau, x),(\sigma, y)) \tag{1}
\end{equation*}
$$

for $(\tau, x),(\sigma, y) \in \Omega$, where

$$
\begin{aligned}
& \quad D_{+} V((\tau, x),(\sigma, y))(\xi, \eta) \\
& =\liminf _{h \rightarrow+0}(V((\tau+h, x+h \xi),(\sigma+h, y+h \eta))-V((\tau, x),(\sigma, y))) / h \\
& \text { for }(\tau, x),(\sigma, y) \in \boldsymbol{R} \times X \text { and }(\xi, \eta) \in X \times X
\end{aligned}
$$

(V1) There exists $L \in(0, \infty)$ such that

$$
\begin{aligned}
& |V((\tau, x),(\sigma, y))-V((\hat{\tau}, \hat{x}),(\hat{\sigma}, \hat{y}))| \\
\leq & L(|\tau-\hat{\tau}|+|\sigma-\hat{\sigma}|+\|x-\hat{x}\|+\|y-\hat{y}\|)
\end{aligned}
$$

for $(\tau, x),(\sigma, y),(\hat{\tau}, \hat{x}),(\hat{\sigma}, \hat{y}) \in \boldsymbol{R} \times X$.
(V2) There exists $M \in[1, \infty)$ such that

$$
|\tau-\sigma|+\|x-y\| \leq V((\tau, x),(\sigma, y)) \leq M(|\tau-\sigma|+\|x-y\|)
$$

for $(\tau, x),(\sigma, y) \in \Omega$.
Moreover, in this case, we have

$$
\begin{equation*}
V((\tau+t, U(\tau+t, \tau) x),(\sigma+t, U(\sigma+t, \sigma) y)) \leq e^{\omega t} V((\tau, x),(\sigma, y)) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\|U(\tau+t, \tau) x-U(\sigma+t, \sigma) y\| \leq M e^{\omega t}(|\tau-\sigma|+\|x-y\|) \tag{3}
\end{equation*}
$$

for $(\tau, x),(\sigma, y) \in \Omega$ and $t \in[0, \infty)$.
Proof. Let \mathcal{X} be the real Banach space $\boldsymbol{R} \times X$ with norm $\|(t, x)\|_{\mathcal{X}}=|t|+\|x\|$ for $(t, x) \in \mathcal{X}$. We define $\mathcal{A}: \Omega \rightarrow \mathcal{X}$ by $\mathcal{A}(t, x)=(1, A(t, x))$ for $(t, x) \in \Omega$. Obviously, \mathcal{A} is a continuous mapping on Ω into \mathcal{X}. We note that Ω is closed in \mathcal{X}. We note also that, for any $(\tau, x) \in \Omega$, $\boldsymbol{u}:[0, \infty) \rightarrow \boldsymbol{R} \times X$ is a solution to the initial value problem

$$
\left\{\begin{array}{l}
\boldsymbol{u}^{\prime}(t)=\mathcal{A} \boldsymbol{u}(t) \quad \text { for } \quad 0 \leq t<\infty \tag{4}\\
\boldsymbol{u}(0)=(\tau, x),
\end{array}\right.
$$

if and only if $\boldsymbol{u}(t)=(t+\tau, v(t+\tau))$ for $t \geq 0$, where $v(t)$ is a solution to (IVP; $\tau, x)$. Indeed, let $\boldsymbol{u}(t)=(s(t), u(t))$ be a solution to (4). Then, $s^{\prime}(t)=1$ and $s(t)=t+\tau$ since $s(0)=\tau$. Therefore,

$$
u^{\prime}(t)=A(s(t), u(t))=A(t+\tau, u(t)) \quad \text { for } \quad t \geq 0 \quad \text { and } \quad u(0)=x
$$

Hence, $v(t)$ defined by $v(t)=u(t-\tau)$ for $t \in[\tau, \infty)$ is a solution to (IVP; $\tau, x)$ and $\boldsymbol{u}(t)=$ $(t+\tau, v(t+\tau)$). Conversely, let $v(t)$ be a solution to (IVP; $\tau, x)$ and $\boldsymbol{u}(t)=(t+\tau, v(t+\tau))$. Then, $\boldsymbol{u}(0)=(\tau, v(\tau))=(\tau, x)$ and

$$
\boldsymbol{u}^{\prime}(t)=\left(1, v^{\prime}(t+\tau)\right)=(1, A(t+\tau, v(t+\tau)))=\mathcal{A}(t+\tau, v(t+\tau))=\mathcal{A} \boldsymbol{u}(t)
$$

for $t \geq 0$.
Suppose that there exists an evolution operator $\{U(t, \tau)\}_{(t, \tau) \in \Delta}$ on Ω such that (E3) is satisfied and that $v(t)=U(t, \tau) x$ is a unique solution to (IVP; $\tau, x)$ on $[\tau, \infty)$ for any $(\tau, x) \in$
Ω. Let $(\tau, x) \in \Omega$ and $v(t)=U(t, \tau) x$ for $t \geq \tau$. Then, since $v(\tau+h)=U(\tau+h, \tau) x \in \Omega(\tau+h)$ for $h>0$, we have

$$
\begin{aligned}
& \limsup _{h \rightarrow+0} d(x+h A(\tau, x), \Omega(\tau+h)) / h \\
\leq & \limsup _{h \rightarrow+0}\|x+h A(\tau, x)-v(\tau+h)\| / h=\left\|A(\tau, v(\tau))-v^{\prime}(\tau)\right\|=0 .
\end{aligned}
$$

Thus, ($\Omega 1$) is satisfied. We define $\mathcal{U}(t): \Omega \rightarrow \Omega$ by

$$
\mathcal{U}(t)(\tau, x)=(\tau+t, U(\tau+t, \tau) x)
$$

for $(\tau, x) \in \Omega$ and $t \in[0, \infty)$. By (E1), we have $\mathcal{U}(0)(\tau, x)=(\tau, U(\tau, \tau) x)=(\tau, x)$ and

$$
\begin{aligned}
\mathcal{U}(t) \mathcal{U}(s)(\tau, x) & =\mathcal{U}(t)(\tau+s, U(\tau+s, \tau) x) \\
& =((\tau+s)+t, U((\tau+s)+t, \tau+s) U(\tau+s, \tau) x) \\
& =(\tau+(s+t), U(\tau+(s+t), \tau) x)=\mathcal{U}(t+s)(\tau, x)
\end{aligned}
$$

for $s, t \in[0, \infty)$ and $(\tau, x) \in \Omega$. By (E2), $\mathcal{U}(s)(\tau, x)=(\tau+s, U(\tau+s, \tau) x) \rightarrow(\tau+t, U(\tau+$ $t, \tau) x)=\mathcal{U}(t)(\tau, x)$ in $\boldsymbol{R} \times X$ as $s \rightarrow t$ in $[0, \infty)$. Hence the family $\{\mathcal{U}(t)\}_{t \in[0, \infty)}$ is a semigroup on Ω. Since, for any $(\tau, x), \boldsymbol{u}(t)=\mathcal{U}(t)(\tau, x)$ is a solution to (4), the mapping \mathcal{A} is the infinitesimal generator of the semigroup $\{\mathcal{U}(t)\}_{t \in[0, \infty)}$. Condition (E3) implies that, for any $T>0$, there exists $M_{T} \in(0, \infty)$ such that

$$
\begin{aligned}
& \|\mathcal{U}(t)(\tau, x)-\mathcal{U}(t)(\sigma, y)\|_{\mathcal{X}} \\
= & |(\tau+t)-(\sigma+t)|+\|U(\tau+t, \tau) x-U(\sigma+t, \sigma) y\| \\
\leq & |\tau-\sigma|+M_{T}(|\tau-\sigma|+\|x-y\|) \leq\left(M_{T}+1\right)\|(\tau, x)-(\sigma, y)\|_{\mathcal{X}}
\end{aligned}
$$

for $(\tau, x),(\sigma, y) \in \Omega$ and $t \in[0, T]$. Hence, it follows from [6, Theorem 4.2] that there exist a number $\omega \in[0, \infty)$ and $V: \mathcal{X} \times \mathcal{X} \rightarrow[0, \infty)$ satisfying conditions (V1) and (V2) such that

$$
V(\mathcal{U}(t)(\tau, x), \mathcal{U}(t)(\sigma, y)) \leq e^{\omega t} V((\tau, x),(\sigma, y))
$$

for $(\tau, x),(\sigma, y) \in \Omega$ and $t \in[0, \infty)$. Hence, by the definition of $\mathcal{U}(t)$, (2) holds for $(\tau, x),(\sigma, y) \in \Omega$ and $t \in[0, \infty)$. By (2) and (V2), (3) also holds for $(\tau, x),(\sigma, y) \in \Omega$ and $t \in[0, \infty)$. Since \mathcal{A} is the infinitesimal generator of $\{\mathcal{U}(t)\}_{t \in[0, \infty)}$, [6, Theorem 4.2] implies that

$$
\begin{gather*}
\liminf _{h \rightarrow+0}(V((\tau, x)+h \mathcal{A}(\tau, x),(\sigma, y)+h \mathcal{A}(\sigma, y))-V((\tau, x),(\sigma, y))) / h \tag{5}\\
\leq \omega V((\tau, x),(\sigma, y))
\end{gather*}
$$

for $(\tau, x),(\sigma, y) \in \Omega$. By the definition of \mathcal{A}, we have

$$
\begin{align*}
& D_{+} V((\tau, x),(\sigma, y))(A(\tau, x), A(\sigma, y)) \tag{6}\\
= & \liminf _{h \rightarrow+0}(V((\tau+h, x+h A(\tau, x)),(\sigma+h, y+h A(\sigma, y)))-V((\tau, x),(\sigma, y))) / h \\
= & \liminf _{h \rightarrow+0}(V((\tau, x)+h \mathcal{A}(\tau, x),(\sigma, y)+h \mathcal{A}(\sigma, y))-V((\tau, x),(\sigma, y))) / h
\end{align*}
$$

for $(\tau, x),(\sigma, y) \in \Omega$. Hence, (1) holds for any $(\tau, x),(\sigma, y) \in \Omega$.
We suppose conversely that the mapping A satisfies conditions ($\Omega 1$) and $(\Omega 2)$. Let $(\tau, x) \in$ Ω. Then, by ($\Omega 1$), there exist $h_{n}>0$ and $x_{n} \in \Omega\left(\tau+h_{n}\right)$ such that $h_{n} \rightarrow 0$ and $\| x+$
$h_{n} A(\tau, x)-x_{n} \| / h_{n} \rightarrow 0$ as $n \rightarrow \infty$. We have

$$
\begin{aligned}
& \left\|(\tau, x)+h_{n} \mathcal{A}(\tau, x)-\left(\tau+h_{n}, x_{n}\right)\right\|_{\mathcal{X}} / h_{n} \\
= & \left\|(\tau, x)+h_{n}(1, A(\tau, x))-\left(\tau+h_{n}, x_{n}\right)\right\|_{\mathcal{X}} / h_{n} \\
= & \left\|x+h_{n} A(\tau, x)-x_{n}\right\| / h_{n} \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$. Since $\left(\tau+h_{n}, x_{n}\right) \in \Omega$, it follows that

$$
\liminf _{h \rightarrow+0} d_{\mathcal{X}}((\tau, x)+h \mathcal{A}(\tau, x), \Omega) / h=0
$$

where $d_{\mathcal{X}}((t, x), \mathcal{S})=\inf _{(s, y) \in \mathcal{S}}\|(t, x)-(s, y)\|_{\mathcal{X}}$ for $(t, x) \in \mathcal{X}$ and $\mathcal{S} \subset \mathcal{X}$. By ($\Omega 2$), there exist a number $\omega \in[0, \infty)$ and $V: \mathcal{X} \times \mathcal{X} \rightarrow[0, \infty)$ satisfying (V1) and (V2) such that (1) holds true for any $(\tau, x),(\sigma, y) \in \Omega$. Using (6) again, we see from (1) that (5) holds true for any $(\tau, x),(\sigma, y) \in \Omega$. Therefore, [6, Theorem 4.2] implies that \mathcal{A} is the infinitesimal generator of a semigroup $\{\mathcal{U}(t)\}_{t \in[0, \infty)}$ on Ω such that, for any $(\tau, x) \in \Omega, \boldsymbol{u}(t)=\mathcal{U}(t)(\tau, x)$ is a unique solution to the initial value problem (4) and

$$
\begin{equation*}
V(\mathcal{U}(t)(\tau, x), \mathcal{U}(t)(\sigma, y)) \leq e^{\omega t} V((\tau, x),(\sigma, y)) \tag{7}
\end{equation*}
$$

for $(\tau, x),(\sigma, y) \in \Omega$ and $t \in[0, \infty)$. Let $(\tau, x) \in \Omega$ and $\boldsymbol{u}(t)=\mathcal{U}(t)(\tau, x)$ for $t \in[0, \infty)$. Then we have $\boldsymbol{u}(t)=(t+\tau, v(t+\tau)$), where $v(t)$ is a solution to (IVP; $\tau, x)$. By virtue of the unicity of the solution $\boldsymbol{u}(t)$ to (4), the solution $v(t)$ is uniquely determined by (τ, x). Thus, we define $U(t, \tau) x \in X$ by $U(t, \tau) x=v(t)$ for $t \in[\tau, \infty)$. Since $\boldsymbol{u}(t-\tau)=(t, v(t))=(t, U(t, \tau) x) \in \Omega$, we see that $U(t, \tau) x \in \Omega(t)$ for $t \in[\tau, \infty)$. Since $\{\mathcal{U}(t)\}_{t \in[0, \infty)}$ is a semigroup on Ω, we have

$$
(t, U(t, \tau) x)=\mathcal{U}(t-\tau)(\tau, x)=\lim _{s \rightarrow t} \mathcal{U}(s-\tau)(\tau, x)=\lim _{s \rightarrow t}(s, U(s, \tau) x)
$$

in $\boldsymbol{R} \times X$ and $U(t, \tau) x=\lim _{s \rightarrow t} U(s, \tau) x$ in X for $t \geq \tau$. Let $t \geq s \geq \tau$. Then,

$$
\begin{aligned}
& (t, U(t, \tau) x)= \\
= & \mathcal{U}(t-\tau)(\tau, x)=\mathcal{U}(t-s) \mathcal{U}(s-\tau)(\tau, x) \\
& (t, U(s, \tau) x)=(t, U(t, s) U(s, \tau) x)
\end{aligned}
$$

and $U(t, \tau) x=U(t, s) U(s, \tau) x$. Thus $\{U(t, \tau)\}_{(t, \tau) \in \Delta}$ is an evolution operator on Ω. Moreover, (7) implies that

$$
\begin{aligned}
& \|U(\tau+t, \tau) x-U(\sigma+t, \sigma) y\| \leq\|\mathcal{U}(t)(\tau, x)-\mathcal{U}(t)(\sigma, y)\|_{\mathcal{X}} \\
\leq & V(\mathcal{U}(t)(\tau, x), \mathcal{U}(t)(\sigma, y)) \leq e^{\omega t} V((\tau, x),(\sigma, y)) \\
\leq & M e^{\omega t}\|(\tau, x)-(\sigma, y)\|_{\mathcal{X}}=M e^{\omega t}(|\tau-\sigma|+\|x-y\|)
\end{aligned}
$$

for $(\tau, x),(\sigma, y) \in \Omega$ and $t \in[0, \infty)$. Hence, condition (E3) is satisfied by $\{U(t, \tau)\}_{(t, \tau) \in \Delta}$.
Remark 1. The kinds of conditions $(\Omega 1)$ and $(\Omega 2)$ were found by Nagumo [13] and Okamura [14], respectively.

Remark 2. Our proof of Theorem 1 is suggested by Evans-Massey [3].
Acknowledgements. The author wishes to express her gratitude to Professor Yoshikazu Kobayashi and Professor Naoki Tanaka for their helpful comments.

References

[1] V. Barbu, Nonlinear semigroups and differential equations in Banach spaces. Translated from the Romanian. Editura Academiei Republicii Socialiste Romania, Bucharest; Noordhoff International Publishing, Leiden, 1976.
[2] K. Deimling, Ordinary differential equations in Banach spaces. Lecture Notes in Math.,596. SpringerVerlag, Berlin-New York, 1977.
[3] L. C. Evans and F. J. Massey III, A remark on the construction of nonlinear evolution operators. Houston J. Math. 4 (1978), No. 1, 35-40.
[4] S. Kato, Some remarks on nonlinear ordinary differential equations in a Banach space. Nonlinear Anal. 5 (1981), No. 1, 81-93.
[5] N. Kenmochi and T. Takahashi, Nonautonomous differential equations in Banach spaces. Nonlinear Anal. 4 (1980), No. 6, 1109-1121.
[6] Y. Kobayashi and N. Tanaka, Semigroups of Lipschitz operators. Adv. Differential Equations 6 (2001), No. 5, 613-640.
[7] Y. Kobayashi, N. Tanaka and Y. Tomizawa, Nonautonomous differential equations and Lipschitz evolution operators in Banach spaces. In preparation.
[8] V. Lakshmikantham, A. R. Mitchell and R. W. Mitchell, Differential equations on closed subsets of a Banach space. Trans. Amer. Math. Soc. 220 (1976), 103-113.
[9] R. H. Martin Jr., Lyapunov functions and autonomous differential equations in a Banach space. Math. Systems Theory, 7 (1973), 66-72.
[10] R. H. Martin Jr., Nonlinear operators and differential equations in Banach spaces. Pure and Applied Mathematics. Wiley-Interscience [JohnWiley \& Sons], New York-London-Sydney, 1976.
[11] I. Miyadera, Nonlinear Semigroups, Translations of mathematical monographs 109, American Mathematical Society, 1992.
[12] H. Murakami, On nonlinear ordinary and evolution equations. Funk. Ekvacioj 9 (1966), 151-162.
[13] M. Nagumo, Über die Lage der Integralkurvengewöhnlicher Differentialgleichungen. Proc. Phys. -Math. Soc. Japan (3) 24, (1942), 551-559.
[14] H. Okamura, Condition ńecessaire et suffisante remplie par les équations différentielles ordinaires sans points de Peano. Mem. Coll. Sci. Kyoto Imp. Univ. Ser. A. 24, (1942), 21-28.

Department of Mathematics, Graduate School of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan

E-mail address: tomizawa@gug.math.chuo-u.ac.jp

