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Abstract. We discuss the sculpture and embedding problems concerning Kummer theories

for algebraic tori. This article is a sequel of the previous works [10] and [11], where we treated

the Kummer, Artin-Schreier, Kummer-Artin-Schreier and Artin-Schreier-Witt theories. The

unit group scheme of a group algebra plays an important role, as was pointed out by Serre in

⟨Groupes algébriques et corps de classes⟩.

Introduction

The inverse Galois problem is nowadays a very attractive topic and there is a vast accumula-

tion of results concerning the problem. We can divide the problem into two parts:

(A) Given a field k and a finite group Γ , examine the existence of Galois extensions of k with

group Γ ;

(B) Given a field k and a finite group Γ , construct Galois extensions of k with group Γ .

The Kummer theory is the simplest example of affirmative solution for the inverse Galois

problem. It provides us with an explicit way to construct the cyclic extensions of degree n

when n is invertible in k and k contains all the n-th roots of unity. We have several manners to

establish the Kummer theory, and it would be the most elementary to verify the Kummer theory

by Lagrange resolvents. Serre [8, Ch.VI, 8] formulated this method, combining the normal basis

theorem and the unit group scheme of a group algebra.

In the previous articles [10] and [11], we examine several theories of Kummer type, formulating

Serre’s method as the sculpture problem and adding the embedding problem. Now we explain

briefly a point of our argument.

Let Γ be a finite group, and let U(Γ ) denote the unit group scheme of the group algebra of

Γ . (For the definition of U(Γ ), see Section 1.) It is the starting point of our argument that

the morphism U(Γ )→ U(Γ )/Γ is a versal family of unramified Γ -extensions with normal basis.

That is to say, we have the following assertion:

(A) Let R be a ring, Γ a finite group and S/R an unramified Galois extension with group

Γ . Then the Galois extension S/R has a normal basis if and only if there exist morphisms
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SpecS → U(Γ ) and SpecR→ U(Γ )/Γ such that the diagram

SpecS −−−→ U(Γ )y y
SpecR −−−→ U(Γ )/Γ

is cartesian.

In [8, Ch.VI, 8] Serre established this assertion over a field, however it is not difficult to

paraphrase his argument over a ring. Furthermore it would be interesting to propose a problem

if the following assertions hold true:

(Sculpture problem) Let Γ be a finite group and R a ring. Given an affine group R-scheme G

and a homomorphism i : Γ → G, there exists a commutative diagram

Γ −−−→ U(Γ )Ry≀
y

Γ
i−−−→ G.

(Embedding problem) Let Γ be a finite group and R a ring. Given an affine group R-scheme G

and a homomorphism i : Γ → G, there exists a commutative diagram

Γ
i−−−→ Gy≀

y
Γ −−−→ U(Γ )R.

If both the sculpture and embedding problems are affirmative for i : Γ → G, then the

morphism G → G/Γ is a versal family of unramified Γ -extensions with normal basis. In the

previous works we treated

(1) the Kummer theory ([10, Corollary 2.3]);

(2) the Kummer-Artin-Schreier theory ([10, Corollary 2.7]);

(3) the Artin-Schreier theory ([10, Corollary 2.10]);

(4) the quadratic-twisted Kummer theory of odd degree ([10, Corollary 3.6]);

(5) the quadratic-twisted Kummer theory of even degree ([10, Corollary 3.12]);

(6) the quadratic-twisted Kummer-Artin-Schreier theory ([10, Corollary 4.4]);

(7) the Artin-Schreier-Witt theory ([11, Theorem 2.5]).

In this article, we study Kummer theories for algebraic tori and analogues in the Kummer-

Artin-Schreier theory. It should be mentioned that this work is inspired by Kida [2], [3]. Now

we explain the organization of the article.

In Section 1 we recall the sculpture and embedding problems. In Section 2 we recall needed

facts on algebraic tori and on group algebras. In fact, Remark 2.10 is the key to Theorem 3.6,

Remark 2.7 to Proposition 4.4, and Remark 2.12 to Theorem 4.5. Our argument may seem too

general to study Kummer theories for algebraic tori. However we would get a wide viewpoint

for the subjects as the prospect from a hill gives us a pleasant vista.
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The Kummer theory for Weil restrictions is treated in Section 3, and the Kummer theory for

norm tori is treated in Section 4. It would be worthwhile to remark that Propostion 3.4 and

Proposition 4.4 reveal an evident difference between the Kummer theories for Weil restrictions

and for norm tori.

In Section 5 we mention the isogeny problem concerning Kummer theories for algebraic tori,

which is the main subject of Kida [2], [3]. We conclude the article, by discussing the sculpture

and embedding problems for analogues of norm tori in the Kummer-Artin-Schreier theory in

Section 6.

Notation

For a ring R (not necessarily commutative), R× denotes the multiplicative group of invertible

elements of R. A ring is commutative unless otherwise mentioned.

For an A-algebra B, which is projective of finite type as A-module,
∏

B/A denotes the Weil

restriction functor with respect to the ring extension B/A.

Ga,A: the additive group scheme over A

Gm,A: the multiplicative group scheme over A

U(Γ ): recalled in 1.3∏(1)
B/AGm,B: defined in 2.6∏(1)
Z[ζ]/Z G

(λ): defined in 6.7

χd : U(Γ )→
∏

Z[ζd]/ZGm,Z[ζd]: defined in 2.1

G(λ): recalled in 6.1

α(λ) : G(λ) → Gm,A: recalled in 6.1

χ̃ : Ker[ε : U(Γ )→ Gm,Z]→
∏

Z[ζ]/Z G(λ): defined in 6.3

s : U(Γ )→ Ker[ε : U(Γ )→ Gm,Z]: defined in 6.3

1. Sculpture problem and embedding problem

In this section we recall the sculpture and embedding problems, referring to the previous

articles [10] and [11] for details. We refer to [1] or [17] on formalisms of affine group schemes

and Hopf algebras .

1.1. As usual we denote by Gm = SpecZ[U, 1/U ] the multiplicative group scheme and by Ga =

SpecZ[T ] the additive group scheme, respectively. The multiplication is defined by U 7→ U ⊗U ,

and the addition is defined by T 7→ T ⊗ 1 + 1⊗ T .

1.2. Let Γ be a finite group. The functor R 7→ R[Γ ] is represented by the ring scheme A(Γ )

defined by

A(Γ ) = SpecZ[Tγ ; γ ∈ Γ ]

with

(a) the addition: Tγ 7→ Tγ ⊗ 1 + 1⊗ Tγ ;
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(b) the multiplication: Tγ 7→
∑

γ′γ′′=γ

Tγ′ ⊗ Tγ′′ .

Put now

U(Γ ) = SpecZ[Tγ ,
1

∆Γ
; γ ∈ Γ ],

where∆Γ = det(Tγγ′) denotes the determinant of the matrix (Tγγ′)γ,γ′∈Γ (the group determinant

of Γ ). Then U(Γ ) is an open subscheme of A(Γ ), and the functor R 7→ R[Γ ]× is represented by

the group scheme U(Γ ).

We denote also by Γ , for the abbreviation, the constant group scheme defined by Γ . More

precisely, Γ = SpecZΓ and the law of multiplication is defined by eγ 7→
∑

γ′γ′′=γ

eγ′ ⊗ eγ′′ . Here

ZΓ denotes the functions from Γ to Z, and (eγ)γ∈Γ is a basis of ZΓ over Z defined by

eγ(γ
′) =

1 (γ′ = γ)

0 (γ′ ̸= γ).

The canonical injection Γ → R[Γ ]× is represented by the homomorphism of group schemes

i : Γ → U(Γ ) defined by

Tγ 7→ eγ : Z[Tγ ,
1

∆Γ
]→ ZΓ .

It is readily seen that Γ → U(Γ ) is a closed immersion. Moreover the right multiplication by

γ ∈ Γ on U(Γ ) is defined by the automorphism γ : Tγ′ 7→ Tγ′γ−1 of Z[Tγ , 1/∆Γ ].

If Γ = {1}, then U(Γ ) is nothing but the multiplicative group scheme Gm,Z = SpecZ[U, 1/U ].

Definition 1.3. Let R be a ring, Γ a finite group and S an R-algebra. We shall say that:

(1) S/R is an unramified Galois extension with group Γ if SpecS has a structure of right Γ -torsor

over SpecR;

(2) an unramified Galois extension S/R with group Γ has a normal basis if there exists s ∈ S

such that (γs)γ∈Γ is a basis of R-module S.

In particular, an unramified Galois extension S/R with group Γ is called an unramified cyclic

extension of degree n if Γ is a cyclic group of order n.

Example 1.4. Let S = Z[Tγ , 1/∆Γ ; γ ∈ Γ ], and let R = SΓ denote the invariants in S under

the action of Γ . Then S/R is an unramified Galois extension with group Γ , and (Tγ−1)γ∈Γ is a

nomal basis of the Galois extension S/R.

1.5. The morphism U(Γ )→ U(Γ )/Γ is a versal family of unramified Γ -extension with normal

basis. That is to say, the following assertion holds ture:

(A) Let R be a ring, Γ a finite group and S/R an unramified Galois extension with group

Γ . Then the Galois extension S/R has a normal basis if and only if there exist morphisms
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SpecS → U(Γ ) and SpecR→ U(Γ )/Γ such that the diagram

SpecS −−−→ U(Γ )y y
SpecR −−−→ U(Γ )/Γ

is cartesian.

The assertion (A) implies the following assertions:

(B) Let R be a ring, G an affine group scheme and Γ a constant finite subgroup scheme of G.

(1) Let S/R be an unramified Galois extension with group Γ . Assume that there exists a

commutative diagram

Γ
i−−−→ U(Γ )y≀

y
Γ −−−→ G.

Then, if the Galois extension S/R has a normal basis, there exist morphisms SpecS → G and

SpecR→ G/Γ such that the diagram

SpecS −−−→ Gy y
SpecR −−−→ G/Γ

is cartesian.

(2) Let S/R be the unramified Galois extension with group Γ defined by a cartesian diagram

SpecS −−−→ Gy y
SpecR −−−→ G/Γ.

Assume that there exists a commutative diagram

Γ −−−→ Gy≀
y

Γ
i−−−→ U(Γ ).

Then the Galois extension S/R has a normal basis.

It is now interesting to propose a problem if the following assertions hold true:

(1) Let Γ be a finite group and R a ring. Given an affine group R-scheme G and a homomorphism

i : Γ → G, there exists a commutative diagram

Γ −−−→ U(Γ )Ry≀
y

Γ
i−−−→ G.
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(2) Let Γ be a finite group and R a ring. Given an affine group R-scheme G and a homomorphism

i : Γ → G, there exists a commutative diagram

Γ
i−−−→ Gy≀

y
Γ −−−→ U(Γ )R.

The problems shall be called respectively sculpture problem and embedding problem for the

embedding of group schemes i : Γ → G.

If both the sculpture and embedding problems are affirmative for i : Γ → G, then the

morphism G→ G/Γ is a versal family of unramified Γ -extension with normal basis.

2. Algebraic tori

In this section we recall needed facts on algebraic tori and group algebras. We refer to

Demazure-Gabriel [1, Ch.IV, 1] concerning generalities on algebraic tori.

Definition 2.1. Let A be a ring and Γ a finitely generated commutative group. Then the

group algebra A[Γ ] is a Hopf A-algebra equipped with the comultiplication γ 7→ γ⊗γ. Moreover

D(Γ )A = SpecA[Γ ] is a commutative group A-scheme．For example, if Γ = Z, then D(Γ )A =

Gm,A.

Definition 2.2. Let A be a ring and V a group A-scheme of finite type. We say that V

is diagonalizable if there exists a finitely generated commutative group Γ such that D(Γ )A

is isomorphic to V . Furthermore we say that V is of multiplicative type if there exists an

unramified Galois extension B/A such that V ⊗R B is a diagonalizable group B-scheme. Then

HomB−gr(VB,Gm,B) has a left action by Gal(B/A).

Let V be a group A-scheme of multiplicative type. Assume that SpecA is connected, and

let Π denote the fundamental group. Then HomA−gr(V,Gm,A) has a continuous left action of

Π. The correspondence V 7→ HomA−gr(V,Gm,A) gives rise to an anti-equivalence between the

category of group A-schemes of multiplicative type and the category of discrete left Π-modules,

finitely generated as Z-module. We call the left Π-module HomA−gr(V,Gm,A) the character

group of the group A-scheme V of multiplicative type. In particular, V is called an algebraic

torus if the character group of V is a free Z-module.

Example 2.3. Let A be a ring, B/A an unramified Galois extension and G = Gal(B/A). Then

the Weil restriction
∏

B/AGm,B is an algebraic torus with character group Z[G] (for example,

see [13, Theorem 7.5]). Therefore, if SpecA is connected, we have

EndA−gr(
∏
B/A

Gm,B) = (EndZ[G]Z[G])◦ = Z[G].
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Furthermore let H be a subgroup of G, and put A′ = BH . Then the Weil restriction∏
A′/AGm,A′ is an algebraic torus with character group Z[G/H].

Notation 2.4. Let G be a finite group. We define a homomorphism of left Z[G]-modules

εG : Z[G]→ Z by ∑
g∈G

agg 7→
∑
g∈G

ag.

We put

IG = Ker
[
εG : Z[G]→ Z

]
.

Furthermore let H be a subgroup of G. Then, tensoring Z[G]⊗Z[H] with the exact sequence

of left Z[H]-modules

0 −→ IH −→ Z[H]
εH−→ Z −→ 0,

we obtain an exact sequece of left Z[G]-modules

0 −→ Z[G]⊗Z[H] IH −→ Z[G]
IG⊗εH−→ Z[G]⊗Z[H] Z −→ 0.

(Here IG stands for the identiy map of Z[G].) The correspondence g ⊗ 1 7→ [g] gives rise to an

isomorphism of left Z[G]-modules

Z[G]⊗Z[H] Z
∼−→ Z[G/H].

Under the identification Z[G] ⊗Z[H] Z
∼→ Z[G/H], the map IG ⊗ εH : Z[G] → Z[G] ⊗Z[H] Z is

identified with the homomorphism of left Z[G]-modules Z[G]→ Z[G/H] defined by∑
g∈G

agg 7→
∑
g∈G

ag[g].

Now define a homomorhism of left Z[G]-modules εG/H : Z[G/H]→ Z by∑
γ∈G/H

aγγ 7→
∑

γ∈G/H

aγ .

Then we have εG = εG/H ◦ (IG ⊗ εH). We put

IG/H = Ker
[
εG/H : Z[G/H]→ Z

]
Then left Z[G]-module IG/H is a free Z-module with basis {γ − 1 ; γ ∈ G/H, γ ̸= 1}.

We define now a homomorphism of right Z[G]-modules εH\G : Z[H\G]→ Z by∑
γ∈H\G

aγγ 7→
∑

γ∈H\G

aγ ,

and we put

IH\G = Ker
[
εH\G : Z[H\G]→ Z

]
.

The right Z[G]-module IH\G is a free Z-module with basis {γ − 1 ; γ ∈ H\G, γ ̸= 1}.
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Definition 2.5. Let G be a finite group. We define a homomorphism of left Z[G]-modules

νG : Z→ Z[G] by

1 7→
∑
g∈G

g,

and we put

JG = Coker
[
νG : Z→ Z[G]

]
.

The left Z[G]-module JG is a free Z-module with basis {[g] ; g ∈ G, g ̸= 1}.

Furthermore let H be a subgroup of G. Then, tensoring Z[G]⊗Z[H] with the exact sequence

of left Z[H]-modules

0 −→ Z νH−→ Z[H] −→ JH −→ 0,

we obtain an exact sequence of left Z[G]-modules

0 −→ Z[G]⊗Z[H] Z
IG⊗νH−→ Z[G] −→ Z[G]⊗Z[H] JH −→ 0.

Under the identification Z[G] ⊗Z[H] Z
∼→ Z[G/H], the map IG ⊗ νH : Z[G] ⊗Z[H] Z → Z[G] is

identified with the homomorphism of left Z[G]-modules Z[G/H]→ Z[G] defined by∑
γ∈G/H

aγγ 7→
∑

γ∈G/H

aγ
(∑
g∈γ

g
)
.

Now define a homomorphism of left Z[G]-modules νG/H : Z→ Z[G/H] by

1 7→
∑

γ∈G/H

γ.

Then we have νG = (IG ⊗ νH) ◦ νG/H . We put

JG/H = Coker
[
νG/H : Z→ Z[G/H]

]
.

The left Z[G]-module JG/H is a free Z-module with basis {[γ] ; γ ∈ G/H, γ ̸= 1}.

Now we translate the statements of 2.5 into the language of algebraic tori.

Definition 2.6. Let A be a ring, B/A an unramified Galois extension and G = Gal(B/A). The

the exact sequence of left Z[G]-modules

0 −→ Z ν−→ Z[G] −→ JG −→ 0

defines an exact sequence of algebraic tori over A

0 −→
∏
B/A

(1)
Gm,B −→

∏
B/A

Gm,B

NrB/A−→ Gm,A −→ 0.

The algebraic torus ∏
B/A

(1)
Gm,B = Ker[NrB/A :

∏
B/A

Gm,B → Gm,A]
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is called the norm torus associated to the unramified Galois extension B/A. If SpecA is con-

nected, we have

EndA−gr(
∏
B/A

(1)
Gm,B) = (EndZ[G]JG)

◦ = JG.

Remark 2.7. Let G be a finite group and H be a subgroup of G. Then the correspondence

φ 7→ φ(1) gives rise to a group isomorphism

HomZ[G](JG,Z[G/H])
∼−→ IG/H .

In particular, the correspondence φ 7→ φ(1) gives rise to a group isomorphism

HomZ[G](JG,Z[G])
∼−→ IG.

The statements of 2.7 are translated into the language of algebraic tori as follows.

Remark 2.8. Let B be a ring, B/A an unramified Galois extension and G = Gal(B/A). Let H

be a subgroup of G and A′ = BH . Then, if SpecA is connected, we obtain a group isomorphism

HomA−gr(
∏
A′/A

Gm,A′ ,
∏
B/A

(1)
Gm,B)

∼−→ IG/H

since
∏

A′/AGm,A′ is an algebraic torus with caharacter group Z[G/H]. In particular, we obtain

a group isomorphism

HomA−gr(
∏
B/A

Gm,B,
∏
B/A

(1)
Gm,B)

∼−→ IG.

Remark 2.9. Let G be a group, H a subgroup of G and φ ∈ HomZ[G](Z[G/H],Z[G]). Then

φ(1) is expressed uniquely in the form of

φ(1) =
∑

γ∈H\G

aγ
(∑
g∈γ

g
)
.

The correspondence

φ 7→
∑

γ∈H\G

aγγ

gives rise to a group isomorphism

HomZ[G](Z[G/H],Z[G])
∼−→ Z[H\G].

In particular, IG ⊗ νH ∈ HomZ[G](Z[G/H],Z[G]) corresponds to 1 ∈ Z[H\G].

Furthermore, if H is a normal subgroup of G, the isomorphism HomZ[G](Z[G/H],Z[G])
∼→

Z[G/H] is compatible with the right action of the group algebra Z[G/H]. Therefore any Z[G]-

homomorphism of Z[G/H]→ Z[G] is expressed uniquely in the form of

(IG ⊗ νH)α, α ∈ Z[G/H].

The statements of 2.9 are translated into the language of algebraic tori as follows.
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Remark 2.10. Let A be a ring, B/A an unramified Galois extension and G = Gal(B/A). Let H

be a subgroup of G and A′ = BH . Then, if SpecA is connected, we obtain a group isomorphism

HomA−gr(
∏
B/A

Gm,B,
∏
A′/A

Gm,A′)
∼−→ Z[H\G].

In particular, if H is a normal subgroup, any homomorphism
∏

B/AGm,B →
∏

A′/AGm,A′ are

expressed uniquely in the form of

α ◦NrB/A′ , α ∈ Z[G/H] = EndA−gr(
∏
A′/A

Gm,A′).

Remark 2.11. Let G be a finite group, H a subgroup of G and φ ∈ HomZ[G](Z[G/H], JG).

Then φ(1) is expressed uniquely in the form of

φ(1) =
∑

γ∈H\G
γ ̸=H

aγ
(∑
g∈γ

g
)
.

The correspondence

φ 7→
∑

γ∈H\G

aγγ

gives rise to a group isomorphism

HomZ[G](Z[G/H], JG)
∼−→ IH\G = Ker

[
εH\G : Z[H\G]→ Z

]
.

In particular, if H is a normal subgroup of G, the isomorphism HomZ[G](Z[G/H], JG)
∼→

IG/H = Ker
[
εG/H : Z[G/H] → Z

]
is compatible with the right action of the group algebra

Z[G/H]. Therefore any Z[G]-homomorphism Z[G/H]→ JG is expressed in the form of

π ◦ (IG ⊗ νH)α, α ∈ Z[G/H].

Here π : Z[G]→ JG = Z[G]/Z denotes the canonical surjection.

Finally the statements of 2.11 are translated into the language of algebraic tori as follows.

Remark 2.12. Let A be a ring, B/A an unramified Galois extension and G = Gal(B/A). Let H

be a subgroup of G and A′ = BH . Then, if SpecA is connected, we obtain a group isomorphism

HomA−gr(
∏
B/A

(1)
Gm,B,

∏
A′/A

Gm,A′)
∼−→ IH\G = Ker

[
εH\G : Z[H\G]→ Z

]
.

In particular, if H is a normal subgroup of G, any homomorphism
∏(1)

B/AGm,B →
∏

A′/AGm,A′

is expressed in the form of

α ◦NrB/A′ , α ∈ Z[G/H] = EndA−gr(
∏
A′/A

Gm,A′).

We conclude the section by mentioning the work of Mazur-Rubin-Silverberg [4].



KUMMER THEORY 11

Notation 2.13. Let A be a ring, B/A an unramified Galois extension and G = Gal(B/A). Let

R be a ring (not necessarily commutative) and π : Z[G] → R be a ring homomorphism. Then

by restriction of scalars all the left R-modules can be considered as left Z[G]-module. Then a

group A-scheme of multiplicative type is defined for any left R-module, finitely generated as

Z-module.

For example, let ρ : G → GL(n,Z) be a linear representation of G over Z, and put Rρ =

Im[ρ : Z[G]→ M(n,Z)]. We denote by Gm(ρ) the algebraic torus over A with character group

Rρ. If SpecA is connected, then we have EndA−grGm(ρ) = Rρ.

Remark 2.14. Let A be a ring, B/A an unramified Galois extension and G = Gal(B/A). Let

V be a commutative group A-scheme of finite type. Then a ring homomorphism

Z[G] = EndZ[G]Z[G]→ EndA−gr(
∏
B/A

VB)

is defined. For an irreducible representation ρ of G, the twist Vρ of V by ρ is defined as is

described in Mazur-Rubin-Silverberg [4]. The twist of Gm,A by ρ is nothing but Gm(ρ).

In [4] their argument is developed for algebaic groups over a field, but it is not difficult to

paraphrase the arugument on a ring. For example, the assertion of [4, Remark 5.11] holds ture

for a ring.

Theorem 2.15. (Mazur-Rubin-Silverberg) Let A be a ring, B/A an unramified cyclic extension

of degree m and G = Gal(B/A). Let V be a commutative group A-scheme of finite type. Take a

generator g of G and let ρ : G→ C× denote the character of G defined by ρ(g) = e2πi/m. Then

we have

Vρ =
∩

A⊂A′⊊B

Ker[NrB/A′ :
∏
B/A

VB →
∏
A′/A

VA′ ].

3. Kummer theory for Weil restrictions

In this section, n denotes a positive integer, Γ a cyclic group of order n and γ a generator of

Γ . We put ζ = ζn = e2πi/n and µn = {1, ζ, . . . , ζn−1}.

3.1. Let R be ring. For a positive divisor d of n, we define a ring homomorphism χd : R[Γ ]→
R⊗Z Z[ζd] and a group homomorphism χd,R : (R[Γ ])× → (R⊗Z Z[ζd])× by

χd,R :

n−1∑
k=0

akγ
k 7→

n−1∑
k=0

ak ⊗ ζkd .

The group homomorphism χd,R : (R[Γ ])× → (R ⊗Z Z[ζd])× is represented by a homomorphism

of group schemes

χd : U(Γ )→
∏

Z[ζd]/Z

Gm,Z[ζd].
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Put

χ = (χd)d|n : U(Γ )→
∏
d|n

∏
Z[ζd]/Z

Gm,Z[ζd].

Then χ is an isomorphism of group schemes over Z[1/n]. Indeed, the inverse is given by

(αd)d|n 7→
1

n

n−1∑
j=0

{∑
d|n

TrR⊗ZZ[ζd]/R(1⊗ ζ−j
d )αd

}
γj .

Remark 3.2. Put G = Gal(Q(ζ)/Q). Then, as is mentioned in 2.3, the Weil restriction(∏
Z[ζ]/ZGm,Z[ζ]

)
⊗Z Z[1/n] is an algebraic torus over Z[1/n] with character group Z[G] since

Z[ζ, 1/n] is unramified over Z[1/n].
Furthermore, for each positive divisor d of n, put Gd = Gal(Q(ζd)/Q). Then Z[Gd] is con-

sidered as Z[G]-module through the canonical surjection Z[G] → Z[Gd]. The Weil restriction(∏
Z[ζd]/ZGm,Z[ζd]

)
⊗Z Z[1/n] is an algebraic torus over Z[1/n] with character group Z[Gd], and

therefore U(Γ )Z[1/n] is an algebraic torus over Z[1/n] with character group
⊕

d|n Z[Gd].

Observation 3.3. Let R be a ring. Then the correspondence γ 7→ 1 ⊗ ζ defines a group

homomorphism Γ → (R ⊗Z Z[ζ])×. The homomorphism Γ → (R ⊗Z Z[ζ])× is represented by a

homorphism of group schemes Γ →
∏

Z[ζ]/ZGm,Z[ζ].

Propostion 3.4. Let n be a positive integer.

(a) If n is odd, the homomorophism Γ →
∏

Z[ζ]/ZGm,Z[ζ] is an embedding of group schemes.

Furthermore the diagram
Γ −−−→ U(Γ )∥∥∥ yχn

Γ −−−→
∏

Z[ζ]/Z

Gm,Z[ζ]

is commutative, that is to say, the sculpture problem is affirmative over Z for the embedding

Γ →
∏

Z[ζ]/ZGm,Z[ζ].

(b) If n is even, the homomorphism Γ →
(∏

Z[ζ]/ZGm,Z[ζ]
)
⊗Z Z[1/2] is an embedding of group

schemes over Z[1/2]. Furthermore the diagram

Γ −−−→ U(Γ )Z[1/2]∥∥∥ yχn

Γ −−−→
( ∏
Z[ζ]/Z

Gm,Z[ζ]
)
⊗Z Z[1/2]

is commutative, that is to say, the sculpture problem is affirmative over Z[1/2] for the embedding

Γ →
(∏

Z[ζ]/ZGm,Z[ζ]
)
⊗Z Z[1/2].

Proof．Let R be a ring, and let i, j ∈ Z. Then {1⊗ ζi, 1⊗ ζj} ⊂ R⊗Z Z[ζ] is free over R if and

only if ζj ̸= ±ζj . Hence the homomorphism Γ → {1⊗ 1, 1⊗ ζ, 1⊗ ζ2, . . . , 1⊗ ζn−1} is bijective
if n is odd or if R is a Z[1/2]-algebra.
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Remark 3.5. There exists uniquely i(g) ∈ (Z/nZ)× such that g(ζ) = ζi(g) for each g ∈ G =

Gal(Q(ζ)/Q). As is well known, the correspondence g 7→ i(g) gives rise to a group isomorphim

Gal(Q(ζ)/Q)
∼→ (Z/nZ)×. Moreover we denote by Z/nZ(1) the left Z[G]-module Z/nZ equipped

with the action (g, l) 7→ i(g)l. Then the constant group scheme Γ over Z[1/n] is a group

scheme of multiplicative type with character group Z/nZ(1). The embedding of group schemes

of multiplicative type i : Γ →
(∏

Z[ζ]/ZGm,Z[ζ]
)
⊗Z Z[1/n] induces the Z[G]-homomorphism

ηn : Z[G]→ Z/nZ(1), which is defined by 1 7→ 1 mod n.

As is remarked in 3.2, the group scheme U(Γ )Z[1/n] is an algebraic torus over Z[1/n] with
character group ⊕d|nZ[Gd]. Furthermore 1 7→ n/d mod n defines a Z[G]-homomorphism ηd :

Z[Gd]→ Z/nZ(1). The homomorphim of the character groups corresponding to the embedding

i : Γ → U(Γ )Z[1/n] is defined by

η =
∑
d|n

ηd :
⊕
d|n

Z[Gd]→ Z/nZ(1).

Theorem 3.6. Let n be an integer ≥ 2. Then the following conditions are equivalent.

(a) The embedding problem is affirmative over Z[1/n] for the embedding Γ →
∏

Z[ζ]/ZGm,Z[ζ].

(b) The embedding problem is affirmative over Q for the embedding Γ →
∏

Z[ζ]/ZGm,Z[ζ].

(c) For each positive divisor d of n, the map NrQ(ζn)/Q(ζd) induces a surjection µn → µd.

Proof．(a)⇒(b) Clear. (b)⇒(c) By the assumption, there exists a homomorphism of group

scheme σ :
∏

Q(ζ)/QGm,Q(ζ) → U(Γ )Q such that the diagram

Γ −−−→
∏

Q(ζn)/Q

Gm,Q(ζn)y≀
yσ

Γ −−−→ U(Γ )Q

is commutative. Now let d be a positive divisor n. Then the homomorphism of group schemes

χd : U(Γ )Q →
∏

Q(ζd)/Q

Gm,Q(ζd)

induces a surjection Γ → µd, and therefore the homomorphism

χd ◦ σ :
∏

Q(ζn)/Q

Gm,Q(ζn) →
∏

Q(ζd)/Q

Gm,Q(ζd)

induces a sujection Γ = µn → µd. As is remarked in 2.10, any homomorphism
∏

Q(ζn)/QGm,Q(ζn)

→
∏

Q(ζd)/QGm,Q(ζd) is expressed uniquely in the form of

α ◦NrQ(ζn)/Q(ζd), α ∈ EndQ−gr(
∏

Q(ζd)/Q

Gm,Q(ζd)).

Put χd ◦ σ = α ◦ NrQ(ζn)/Q(ζd). Then α induces a surjection µd → µd. Moreovoer α induces a

bijection of µd to µd since µd is a finite group. Therefore NrQ(ζn)/Q(ζd) induces a surjection of

µn to µd.
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(c)⇒(a) By the assumption, for each positive divisor d of n, there exists an integer ld such that

NrQ(ζn)/Q(ζd)(ζ
ld
n ) = ζd. Furtheremore, putting

σ = ((NrZ(ζn)/Z(ζd))
ld)d|n :

∏
Z[ζn]/Z

Gm,Z[ζn] →
∏
d|n

∏
Z[ζd]/Z

Gm,Z(ζd),

we obtain a commutative diagram of group schemes over Z[1/n]

Γ −−−→
( ∏
Z[ζn]/Z

Gm,Z[ζn]

)
⊗Z Z[1/n]y≀

yσ

Γ −−−→ U(Γ )Z[1/n] =
(∏
d|n

∏
Z[ζd]/Z

Gm,Z[ζd]

)
⊗Z Z[1/n]

.

Example 3.7. If n is even ≥ 4, the embedding problem is negative over Q for the embedding

Γ →
∏

Z[ζ]/ZGm,Z[ζ].

Indeed, NrQ(ζn)/Q(ζ2) : µn → µ2 = {±1} is not surjective since NrQ(ζn)/Q(ζ) = 1．

Example 3.8. For n = 15, the embedding problem is affirmative over Z[1/n] for the embedding

Γ →
∏

Z[ζ]/ZGm,Z[ζ].

Indeed, NrQ(ζ15)/Q(ζ3) : µ15 → µ3 and NrQ(ζ15)/Q(ζ5) : µ15 → µ5 are both surjective since

NrQ(ζ15)/Q(ζ3)(ζ15) = ζ−1
3 and NrQ(ζ15)/Q(ζ5)(ζ15) = ζ−1

5 ．

Example 3.9. For n = 21, the embedding problem is negative over Q for the embedding

Γ →
∏

Z[ζ]/ZGm,Z[ζ].

Indeed, NrQ(ζ21)/Q(ζ3) : µ21 → µ3 is not surjective since NrQ(ζ21)/Q(ζ3)(ζ21) = 1．

Example 3.10. Let p be a prime number > 2, and put n = pr. Then the embedding problem

is affirmative over Z[1/p] for the embedding Γ →
∏

Z[ζ]/ZGm,Z[ζ].

Indeed，let R be a Z[1/p]-algebra. Then the group homomorphism

(
R⊗Z[1/p] Z[ζpr , 1/p]

)× → R[Γ ]× : a 7→ 1

pr

pr−1∑
j=0

{ r∑
l=0

TrR⊗ZZ[ζpl ]/R
(
ζ−j
pl

NrR⊗ZZ[ζpr ]/R⊗ZZ[ζpl ]a
)}

γj

is represented by a homomorphism of group schemes

σ :
(∏
A/Z

Gm,A

)
⊗Z Z[1/p]→ U(Γ )Z[1/p].

We obtain a commutative diagram of group schemes

Γ −−−→
( ∏
Z[ζpr ]/Z

Gm,Z[ζpr ]

)
⊗Z Z[1/p]

y≀
yσ

Γ −−−→ U(Γ )Z[1/p] =
( r∏
l=0

∏
Z[ζ

pl
]/Z

Gm,Z[ζ
pl
]

)
⊗Z Z[1/p]
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since NrQ(ζpr )/Q(ζpr−1 )ζpr = ζpr−1 .

4. Kummer theory for norm tori

In this section, n denotes a positive integer, Γ a cyclic group of order n and γ a generator of

Γ . We put ζ = ζn = e2πi/n.

Notation 4.1. Let R be a ring. The map Nr : Z[ζ] → Z induces a homomorphism of mul-

tiplicative groups Nr : (R ⊗Z Z[ζ])× → R×. The homomorphism Nr : (R ⊗Z Z[ζ])× → R× is

represented by a homomorphism of group schemes

Nr :
∏

Z[ζ]/Z

Gm,Z[ζ] → Gm,Z.

Put now ∏
Z[ζ]/Z

(1)
Gm,Z[ζ] = Ker[Nr :

∏
Z[ζ]/Z

Gm,Z[ζ] → Gm,Z].

Then the homomorphism of group schemes Γ →
∏

Z[ζ]/ZGm,Z[ζ] is factorized as

Γ −→
∏

Z[ζ]/Z

(1)
Gm,Z[ζ]

inclusion−→
∏

Z[ζ]/Z

Gm,Z[ζ]

since NrQ(ζ)/Qζ = 1.

Remark 4.2. Put G = Gal(Q(ζ)/Q). As is remarked in 2.6,
(∏(1)

Z[ζ]/ZGm,Z[ζ]
)
⊗Z Z[1/n] is an

algebraic torus over Z[1/n] with character group JG = Z[G]/Z.

Proposition 4.3. If n is odd ≥ 3, the sculpture problem is affirmative over Z[1/n] for the

embedding Γ →
∏(1)

Z[ζ]/ZGm,Z[ζ].

Proof．There exists g ∈ G = Gal(Q(ζ)/Q) such that g(ζ) = ζ2 since n is odd. Defining

a homomorphism of Z[G]-modules ξ : JG = Z[G]/Z → Z[G] by [1] 7→ g − 1, we obtain a

commutative diagram of Z[G]-modules

Z/nZ(1) ←−−−
η

Z[G]x≀
xξ

Z/nZ(1) ←−−−
η

JG

,

and therefore a commutaive diagram of group schemes over Z[1/n]

Γ −−−→
∏

Z[ζ]/Z

Gm,Z[ζ]y≀
yξ̃

Γ −−−→
∏

Z[ζ]/Z

(1)
Gm,Z[ζ]

.
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We have gotten the conclusion, combining the above diagram with the commutative diagram of

group schemes over Z[1/n]
Γ −−−→ U(Γ )y≀

yχn

Γ −−−→
∏

Z[ζ]/Z

Gm,Z[ζ]

.

Propostion 4.4. If n is even ≥ 4, the sculpture problem is negative over Q for the embedding

problem Γ →
∏(1)

Z[ζ]/ZGm,Z[ζ].

Proof．Assume that there exists a commutative diagram of group schemes over Q

Γ −−−→ U(Γ )Qy≀
yξ̃

Γ −−−→
∏

Q(ζ)/Q

(1)
Gm,Q(ζ)

.

Then we obtain a commutative diagram of Z[G]-modules

Z/nZ(1) η←−−−
⊕
d|n

Z[Gd]x≀
xξ

Z/nZ(1) ←−−−
ηn

JG

.

Now put

ξ = (ξd)d|n : JG −→
⊕
d|n

Z[Gd].

As is remarked in 2.7, for each positive divisor d of n, we have

ξd ∈ IGd
= Ker[ε : Z[Gd]→ Z].

Moreover i(g) ∈ Z/nZ is odd for each g ∈ G since n is even. This implies that (n/2)ηd(ξd(1)) = 0

for each positeive divisor d of n since IGd
is generated by g − 1 (g ∈ Gd). Hence the homo-

morphism of Z[G]-modules η ◦ ξ : JG →
⊕

d|n Z[Gd]→ Z/nZ(1) is not surjecitve. However this

contradicts the commutativity of the above diagaram.

Theorem 4.5. Let n be an integer ≥ 3. Then the embedding problem is affirmative over Z[1/n]
for Γ →

∏(1)
Z[ζ]/ZGm,Z[ζ] if and only if the embedding problem is affirmative over Z[1/n] for

Γ →
∏

Z[ζ]/ZGm,Z[ζ].

Proof. We can verify the if-part, weaving the embedding

Γ −→
∏

Z[ζ]/Z

(1)
Gm,Z[ζ] −→

∏
Z[ζ]/Z

Gm,Z[ζ]



KUMMER THEORY 17

into the commutative diagram

Γ −−−→
∏

Z[1/n,ζ]/Z[1/n]

Gm,Z[1/n,ζ]y≀
yξ̃

Γ −−−→ U(Γ )Z[1/n]

.

We now prove the only if-part. By the assumption, there exists a homomorphism of group

schemes σ :
∏(1)

Q(ζ)/QGm,Q(ζ) → U(Γ )Q such that the diagram

Γ −−−→
∏

Q(ζn)/Q

(1)
Gm,Q(ζn)y≀
yσ

Γ −−−→ U(Γ )Q

is commutative. Let d be a positive divisor of n. Then the homomorphism of group schemes

χd : U(Γ )Q →
∏

Q(ζd)/Q

Gm,Q(ζd)

induces a surjection Γ → µd, and therefore, the homomorphism of group schemes

χd ◦ σ :
∏

Q(ζn)/Q

(1)
Gm,Q(ζn) →

∏
Q(ζd)/Q

Gm,Q(ζd)

induces also a surjection Γ = µn → µd. As is mentioned in 2.12, the homomorphism of group

schemes of χd ◦ σ :
∏

Q(ζn)/QGm,Q(ζn) →
∏

Q(ζd)/QGm,Q(ζd) is expressed in the form of

α ◦NrQ(ζn)/Q(ζd), α ∈ EndQ−gr(
∏

Q(ζd)/Q

Gm,Q(ζd)).

Then α induces a surjection µd → µd. Therefore the map NrQ(ζn)/Q(ζd) induces a surjection

µn → µd. It follows from Theorem 3.6 that the embedding problem is affirmative over Z[1/n]
for Γ →

∏
Z[ζ,1/n]/Z[1/n]Gm,Z[ζ,1/n].

5. Isogeny problem

5.1. Let Γ be a cyclic group of order n. It is an interesting problem to ask if the constant

group scheme Γ is isomorphic over Z[1/n] to the kernel of an endomorphism of
∏

Z[ζ]/ZGm,Z[ζ]

or
∏(1)

Z[ζ]/ZGm,Z[ζ], which shall be called isogeny problem. Here ζ = e2πi/n.

Put now G = Gal(Q(ζ)/Q). Then the isogeny problem is equivalent to the question if the

kernel of the surjective Z[G]-homorphism η : Z[G]→ Z/nZ(1) or η : JG → Z/nZ(1) is a principal

ideal. Evidently, if the isogeny problem is affirmative for Γ →
∏

Z[ζ]/ZGm,Z[ζ], then the isogeny

problem is affirmative also for Γ →
∏(1)

Z[ζ]/ZGm,Z[ζ].

The isogeny problem for Weil restrictions is studied in [3], and the isogeny problem for norm

tori in [2]. More precisely, let k be a subfield of Q(ζ) or Fp(ζ) with (n, p) = 1, where ζ is a

primitive n-th root of unity. Put K = k(ζn) and G = Gal(K/k). In [3] Kida examined, when G
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is cyclic, the isogeny problem for the embedding Γ →
∏

K/k Gm,K . It would be remarkable that

he has gotten affirmative answers in the cases of k = Q and n = 3, 5, 7, 11. In [2] Kida examined

the isogeny problem for the embedding Γ →
∏(1)

K/k Gm,K when G is cyclic and the embedding

Γ →
∏

K/k Gm,K is factorized as Γ →
∏(1)

K/k Gm,K →
∏

K/k Gm,K .

It would be remarkable also that, if G is cyclic of prime order l with (l, n) = 1 and NrK/kζ = 1,

the isogeny problems are equivalent for Γ →
∏

K/k Gm,K and for Γ →
∏(1)

K/k Gm,K (cf. [3,

Proposition 4.1]).

Now we consider another kind of isogeny problem.

5.2. Let p denote a prime number > 2, Γ a cyclic group of order p, γ a generator of Γ and

ζ = e2πi/p.

Put G = Gal(Q(ζ)/Q), and let g be a generator of G. Define a character ρ : G → C× by

ρ(g) = e2πi/(p−1). Then we have Im[ρ : Z[G] → C] = Z[ζp−1]. Let Gm(ρ) denote the algebraic

torus over Z[1/p] with character group Z[ζp−1]. Then, by the theorem of Mazur-Rubin-Silverberg

(recalled as Theorem 2.15), we have

Gm(ρ) =

( ∩
Q⊂K⊂Q(ζ)
K ̸=Q(ζ)

Ker
[
NrZ(ζ)/OK

:
∏

Z[ζ]/Z

Gm,Z[ζ] →
∏

OK/Z

Gm,OK

])
⊗Z Z[1/p].

Here OK stands for the ring of integers in K.

The embedding Γ → (
∏

Z[ζ]/ZGm,Z[ζ])⊗Z Z[1/p] is factorized as

Γ −→ Gm(ρ) −→ (
∏

Z[ζ]/Z

Gm,Z[ζ])⊗Z Z[1/p]

since NrQ(ζ)/K(ζ) = 1 for any subextension K ̸= Q(ζ) of Q(ζ)/Q. The isogeny problem for

the embedding Γ → Gm(ρ) is equivalent to the question if a prime ideal of Z[ζp−1] over p is

principal.

Swan [12] established a criterion for rationality of the function field of the homogeneous space

U(Γ )Q/Γ : if a prime ideal of Z[ζp−1] over p is not principal, then U(Γ )Q/Γ is not rational as an

algebraic variety over Q. In [12] Swan showed the cases p = 47, 113, 233 as counterexamples for

the Noether problem on rationality of invariant fields, which are also counterexamples for the

isogeny problem for Γ → Gm(ρ).

Here are a few examples. We owe Kida [3, Example 4.3 and Example 4.4] the results con-

cerning the isogeny problem for Weil restrictions, though modifying the isogenies slightly.

Example 5.3. p = 5, ζ = e2πi/5.

Define g ∈ Gal(Q(ζ)/Q) by g(ζ) = ζ2. Then G = Gal(Q(ζ)/Q) is generated by g. Moreover

define a Z[G]-homomorphism η : Z[G] → Z/5Z(1) by g 7→ 2 mod 5. Then η is surjective.

Furthermore a sequence of Z[G]-modules

0 −→ Z[G]
1+g−g3−→ Z[G]

η−→ Z/5Z(1) −→ 0.
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is exact. We obtain also exact sequences of Z[G]-modules

0 −→ JG
2+2g+g2−→ JG

η−→ Z/5Z(1) −→ 0

and

0 −→ OK
1+2g−→ OK

η−→ Z/5Z(1) −→ 0,

noting that JG = Z[G]/(g4 + g3 + g2 + g + 1) and OK = Z[G]/(g2 + 1).

Example 5.4. p = 7, ζ = e2πi/7.

Define g ∈ Gal(Q(ζ)/Q) by g(ζ) = ζ3. Then G = Gal(Q(ζ)/Q) is generated by g. Moreover

define a Z[G]-homomorphism η : Z[G] → Z/7Z(1) by g 7→ 3 mod 7. Then η is surjective.

Furthermore a sequence of Z[G]-modules

0 −→ Z[G]
−g+g3+g4−→ Z[G]

η−→ Z/7Z(1) −→ 0

is exact. We obtain also exact sequences of Z[G]-modules

0 −→ JG
−g+g3+g4−→ JG

η−→ Z/7Z(1) −→ 0

and

0 −→ OK
1−2g−→ OK

η−→ Z/7Z(1) −→ 0,

noting that JG = Z[G]/(g6 + g5 + g4 + g3 + g2 + g + 1) and OK = Z[G]/(g2 − g + 1).

6. Kummer-Artin-Schreier theory

In this section, p denotes a prime number and Γ = {1, γ, . . . , γp−1} a cyclic group of order p.

First we recall the Kummer-Artin-Schreier sequence (cf. [13], [7]).

Notation 6.1. Let A be a ring and λ ∈ A. A commutative group A-scheme G(λ) is defined by

G(λ) = SpecA
[
T,

1

1 + λT

]
with multiplication

T 7→ T ⊗ 1 + 1⊗ T + λT ⊗ T.

Furthermore a homorphism of group A-schemes

α(λ) : G(λ) = SpecA
[
T,

1

1 + λT

]
→ Gm,A = SpecA

[
U,

1

U

]
is defined by

U 7→ 1 + λT.

If λ is invertible in A, then α(λ) is an isomorphism. On the other hand, if λ is not invertible

in A, then G(λ) ⊗A A0 is nothing but the additive group scheme Ga,A0 . Here A0 denotes the

residue ring A/(λ).

Hereafter we put ζ = e2πi/p, λ = ζ − 1 and A = Z[ζ].
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6.2. A homomorphism of group Z[ζ]-scheme

Ψ : G(λ) = SpecA
[
T,

1

1 + λT

]
→ G(λp) = SpecA

[
T,

1

1 + λpT

]
is defined by

T 7→ (1 + λT )p − 1

λp
.

It is readily seen that Ker[Ψ : G(λ) → G(λp)] is isomophic to the constant group scheme Z/pZ.
Moreover the diagram of group A-schemes with exact raws

0 −−−→ Z/pZ −−−→ G(λ) Ψ−−−→ G(λp) −−−→ 0y yα(λ)

yα(λp)

0 −−−→ µp,Z[ζ] −−−→ Gm,Z[ζ] −−−→
p

Gm,Z[ζ] −−−→ 0

is commutative. Hence the sequence

[0 −→ Z/pZ −→ G(λ) Ψ−→ G(λp) −→ 0]⊗Z[ζ] Q(ζ)

is isomorphic to the Kummer sequence

0 −→ µp,Q(ζ) −→ Gm,Q(ζ)
p−→ Gm,Q(ζ) → 0.

On the other hand, we have Fp = Z[ζ]/(λ). Moreover the sequence

[0 −→ Z/pZ −→ G(λ) Ψ−→ G(λp) −→ 0]⊗Z[ζ] Fp

is nothing but the Artin-Schreier sequence

0 −→ Z/pZ −→ Ga,Fp

F−1−→ Ga,Fp −→ 0

since {(1 + λT )p − 1}/λp ≡ T p − T mod λ.

To sum up, the exact sequence

0 −→ Z/pZ −→ G(λ) Ψ−→ G(λp) −→ 0

unifies the Kummer and Artin-Schreier sequences (cf. [14], [7], [5]).

Now we examine the sculpture and embedding problems for the Weil restriction
∏

Z[ζ]/Z G(λ).

6.3. For simplicity, we put

χ = χp : U(Γ )→
∏

Z[ζ]/Z

Gm,Z[ζ]

and

ε = χ1 : U(Γ )→ Gm,Z.

Let R be a ring. Then the homomorphism χ induces a homomorphism of multiplicative

groups

R[Γ ]× → (R⊗Z Z[ζ])× :

p−1∑
k=0

akγ
k 7→

p−1∑
k=0

ak ⊗ ζk,
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and the homomorphism ε induces a homomorphism of multiplicative groups

R[Γ ]× → R× :

p−1∑
k=0

akγ
k 7→

p−1∑
k=0

ak.

All the elements of Ker[ε : R[Γ ]× → R×] are expressed uniquely in the form of

1 + a1(γ − 1) + a2(γ
2 − 1) + · · ·+ ap−1(γ

p−1 − 1) (a1, a2, . . . , ap−1 ∈ R).

The homomorphism χ : Ker[ε : U(Γ )→ Gm,Z]→
∏

Z[ζ]/ZGm,Z[ζ] is factorized as

Ker[ε : U(Γ )→ Gm,Z]
χ̃−→

∏
Z[ζ]/Z]

G(λ)
∏

Z[ζ]/Z α(λ)

−→
∏

Z[ζ]/Z

Gm,Z[ζ].

Indeed, the homomorphism of group schemes χ : Ker[ε : U(Γ ) → Gm,Z] →
∏

Z[ζ]/ZGm,Z[ζ]

gives a homomorphism of multiplicative groups

R[Γ ]× → (R⊗Z Z[ζ])× : 1 +

p−1∑
k=1

ak(γ
k − 1) 7→ 1 +

p−1∑
k=1

ak ⊗ (ζk − 1).

By the definition of G(λ), we have

p−1∑
k=1

ak ⊗
ζk − 1

ζ − 1
∈ G(λ)(R⊗Z Z[ζ])

and ∏
Z[ζ]/Z

α(λ) :

p−1∑
k=1

ak ⊗
ζk − 1

ζ − 1
7→ 1 + (1⊗ λ)

(p−1∑
k=1

ak ⊗
ζk − 1

ζ − 1

)
= 1 +

p−1∑
k=1

ak ⊗ (ζk − 1).

It is readily seen that the constant group scheme Γ is contained in Ker[ε : U(Γ )→ Gm,Z] and

χ̃(γk) = 1⊗ ζk − 1

ζ − 1

for each k. Furthemore χ̃ : Ker[ε : U(Γ ) → Gm,Z] −→
∏

Z[ζ]/Z] G(λ) is an isomorphism of group

schemes. Indeed, the inverse of χ̃ is defined by

p−1∑
k=1

ak ⊗
ζk − 1

ζ − 1
7→
(
1−

p−1∑
k=1

ak

)
+

p−1∑
k=1

akγ
k

Moreover, define a homomorphism of group schemes

s : U(Γ )→ Ker[ε : U(Γ )→ Gm,Z]

by
p−1∑
k=0

akγ
k 7→

p−1∑
k=0

akγ
k
/ p−1∑

k=0

ak.

Then s gives a splitting of the exact sequence

0 −→ Ker[ε : U(Γ )→ Gm,Z]
i−→ U(Γ )

ε−→ Gm,Z −→ 0.

Therefore we obtain the following assertions:
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Propostion 6.4. Both the sculpture and embedding problems are affirmative over Z for the

embedding Γ →
∏

Z[ζ]/Z G(λ). Indeed, the diagrams

Γ −−−→ U(Γ )∥∥∥ yχ̃◦s

Γ −−−→
∏

Z[ζ]/Z

G(λ)

and
Γ −−−→

∏
Z[ζ]/Z

G(λ)∥∥∥ yi◦χ̃−1

Γ −−−→ U(Γ )

are commutative.

Now we describe the homomorphim
∏

Z[ζ]/Z α
(λ) :

∏
Z[ζ]/Z G(λ) →

∏
Z[ζ]/ZGm,Z[ζ] more pre-

cisely.

6.5. Description of U(Γ ). Put

∆p(T0, T1, . . . , Tp−1) = ∆Γ (T0, T1, . . . , Tp−1) =

∣∣∣∣∣∣∣∣∣∣∣

T0 T1 . . . Tp−1

T1 T2 . . . T0

...
...

. . .
...

Tp−1 T0 . . . Tp−2

∣∣∣∣∣∣∣∣∣∣∣
.

Then we have

∆p(T0, T1, . . . , Tp−1) = (−1)(p−1)/2
p−1∏
j=0

(T0 + ζjT1 + ζ2jT2 + · · ·+ ζ(p−1)jTp−1).

Furthermore we have

U(Γ ) = SpecZ[T0, T1, . . . , Tp−1,
1

∆p(T0, T1, . . . , Tp−1)
].

The multiplication is defined by

Ti 7→
∑

j+k≡i
mod p

Tj ⊗ Tk (1 ≤ i ≤ p− 1).

6.6. Description of
∏

Z[ζ]/ZGm,Z[ζ]. Let R be a ring. Then all the elements of R ⊗Z Z[ζ] are
expressed uniquely in the form of

a1 ⊗ ζ + a2 ⊗ ζ2 + · · ·+ ap−1 ⊗ ζp−1 (a1, a2, . . . , ap−1 ∈ R)

since {ζ, ζ2, . . . , ζp−1} is a basis of Z[ζ] over Z.
Put now

Np(X1, X2, . . . , Xp−1) =

p−1∏
j=1

(p−1∑
k=1

ζjkXk

)
.



KUMMER THEORY 23

Then Np(X1, X2, . . . , Xp−1) ∈ Z[X1, X2, . . . , Xp−1]. Furthermore,

p−1∑
k=1

ak ⊗ ζk ∈ (R⊗Z Z[ζ])× ⇔ Np(a1, a2, . . . , ap−1) ∈ R×.

Hence we obtain∏
Z[ζ]/Z

Gm,Z[ζ] = SpecZ[X1, X2, . . . , Xp−1,
1

Np(X1, X2, . . . , Xp−1)
],

where the multiplication is given by

Xi 7→ −
∑

j+k≡0
mod p

Xj ⊗Xk +
∑

j+k≡i
mod p

Xj ⊗Xk (1 ≤ i ≤ p− 1).

The homomorphism of group schemes

χ = χp : U(Γ ) = SpecZ
[
T0, T1, . . . , Tp−1,

1

∆p(T0, T1, . . . , Tp−1)
]

−→
∏

Z[ζ]/Z

Gm,Z[ζ] = SpecZ[X1, X2, . . . , Xp−1,
1

Np(X1, X2, . . . , Xp−1)
]

is defined by

Xi 7→ Ti − T0 (1 ≤ i ≤ p− 1).

Furthermore the homorphism of group schemes

Nr :
∏

Z[ζ]/Z

Gm,Z[ζ] = SpecZ[X1, X2, . . . , Xp−1,
1

Np(X1, X2, . . . , Xp−1)
]→ Gm,Z = SpecZ[U,

1

U
]

is defined by

U 7→ Np(X1, X2, . . . , Xp−1).

Hence we obtain∏
Z[ζ]/Z

(1)
Gm,Z[ζ] = SpecZ[X1, X2, . . . , Xp−1]/(Np(X1, X2, . . . , Xp−1)− 1).

6.7. Description of
∏

Z[ζ]/Z G(λ). Let R be a ring. Then all the elements of R ⊗Z Z[ζ] are
expressed uniquely in the form of

a1⊗1+a2⊗(1+ζ)+· · ·+ap−1⊗(1+ζ+· · ·+ζp−2) = a1⊗
ζ − 1

ζ − 1
+a2⊗

ζ2 − 1

ζ − 1
+· · ·+ap−1⊗

ζp−1 − 1

ζ − 1

(a1, a2, . . . , ap−1 ∈ R).

since {1, 1 + ζ, . . . , 1 + ζ + · · ·+ ζp−2} is a basis of Z[ζ] over Z. Noting that

1⊗1+(1⊗λ)
{p−1∑

i=1

ai⊗
ζi − 1

ζ − 1

}
= 1⊗1+

p−1∑
i=1

ai⊗(ζi−1) =
p−1∑
i=1

(−1+a1+· · ·+2ai+· · ·+ap−1)⊗ζi,
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we can verify that:

p−1∑
k=1

ak ⊗
ζk − 1

ζ − 1
∈ G(λ)(R⊗Z Z[ζ]) ⇔

Np(−1+2a1+ a2+ · · ·+ap−1,−1+a1+2a2+ · · ·+ap−1, . . . ,−1+a1+a2 + · · ·+2ap−1) ∈ R×.

Put now

F (X1, X2, . . . , Xp−1) =

Np(−1+2X1+X2 + · · ·+Xp−1,−1+X1+2X2+ · · ·+Xp−1, . . . ,−1+X1+X2+ · · ·+2Xp−1).

Then we have

F (X1, X2, . . . , Xp−1) ≡ 1 mod p.

Indeed, by the definition of Np(X1, X2, . . . , Xp−1) and F (X1, X2, . . . , Xp−1), we obtain

F (X1, X2, . . . , Xp−1) =

p−1∏
j=1

{
1 +

p−1∑
k=1

(ζk − 1)Xk

}
.

This implies that

F (X1, X2, . . . , Xp−1) ≡ 1 mod λ.

There we obtain the result, noting that F (X1, X2, . . . , Xp−1) ∈ Z[X0, X1, . . . , Xp−1].

Define Ñp(X1, X2, . . . , Xp−1) ∈ Z[X1, X2, . . . , Xp−1] by

F (X1, X2, . . . , Xp−1) = 1 + pÑp(X1, X2, . . . , Xp−1).

Then we arrive at the assertion:

p−1∑
k=1

ak ⊗
ζk − 1

ζ − 1
∈ G(λ)(R⊗Z Z[ζ]) ∈ (R⊗Z Z[ζ])× ⇔ 1 + pÑp(a1, a2, . . . , ap−1) ∈ R×.

Hence we obtain∏
Z[ζ]/Z

G(λ) = SpecZ[X1, X2, . . . , Xp−1,
1

1 + pÑp(X1, X2, . . . , Xp−1)
],

where the multiplication is defined by

Xi 7→ Xi ⊗ (1−X1 −X2 − · · · −Xp−1) + (1−X1 −X2 − · · · −Xp−1)⊗Xi +
∑

j+k≡i
mod p

Xj ⊗Xk

(1 ≤ i ≤ p− 1).

The homomorphism of group schemes∏
Z[ζ]/Z

α(λ) :
∏

Z[ζ]/Z

G(λ) = SpecZ[X1, X2, . . . , Xp−1,
1

1 + pÑp(X1, X2, . . . , Xp−1)
]

−→
∏

Z[ζ]/Z

Gm,Z[ζ] = SpecZ[X1, X2, . . . , Xp−1,
1

Np(X1, X2, . . . , Xp−1)
]
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is defined by

Xi 7→ Xi + (−1 +X1 +X2 + · · ·+Xp−1) (1 ≤ i ≤ p− 1).

The homomorphism
∏

Z[ζ]/Z

α(λ) is isomorphic over Z[1/p]. Indeed, the inverse is given by

Xi 7→ Xi +
1

p
(1−X1 − · · · −Xp−1) (1 ≤ i ≤ p− 1).

Furhtemore the homomorphism

χ̃ ◦ s : U(Γ ) = SpecZ[T0, T1, . . . , Tp−1,
1

∆p(T0, T1, . . . , Tp−1)
]

→
∏

Z[ζ]/Z

G(λ) = SpecZ[X1, X2, . . . , Xp−1,
1

1 + pÑp(X1, X2, . . . , Xp−1)
]

is defined by

Xj 7→ Tj/(T0 + T1 + · · ·+ Tp−1) (j = 1, 2, . . . , p− 1),

and the homomorphism

i ◦ χ̃−1 :
∏

Z[ζ]/Z

G(λ) = SpecZ[X1, X2, . . . , Xp−1,
1

1 + pÑp(X1, X2, . . . , Xp−1)
]

→ U(Γ ) = SpecZ[T0, T1, . . . , Tp−1,
1

∆p(T0, T1, . . . , Tp−1)
]

is defined by

Tj 7→

1−X1 − . . .−Xp−1 (j = 0)

Xj (j > 0)
.

Example 6.8. Here are a few examples of Np and Ñp.

(1) In the case of p = 3, we have

Np(X1, X2) = X2
1 −X1X2 +X2

2

and

Ñp(X1, X2) = −X1 −X2 +X2
1 +X1X2 +X2

2 .

(2) In the case of p = 5, we have

Np(X1, X2, X3, X4) =

(X4
1 +X4

2 +X4
3 +X4

4 )− (X3
1X2 +X3

2X4 +X3
4X3 +X3

3X1)

− (X1X
3
2 +X2X

3
4 +X4X

3
3 +X3X

3
1 )− (X3

2X3 +X3
4X1 +X3

3X2 +X1
2X4)

+ (X2
1X

2
2 +X2

2X
2
4 +X2

4X
2
3 +X2

3X
2
1 ) + (X2

1X
2
4 +X2

2X
2
3 )

+ 2(X2
1X2X3 +X2

2X4X1 +X2
4X3X2 +X2

3X1X4)

+ 2(X1X2X
2
3 +X2X4X

2
1 +X4X3X

2
2 +X3X1X

2
4 )

− 3(X1X
2
2X3 +X2X

2
4X1 +X4X

2
3X2 + 3X3X

2
1X4)−X1X2X3X4
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and

Ñp(X1, X2, X3, X4) =

− (X1 +X2 +X4 +X3) + 2(X2
1 +X2

2 +X2
4 +X2

3 )

+ 4(X1X2 +X2X4 +X4X3 +X3X1) + 3(X1X4 +X2X3)

− 2(X3
1 +X3

2 +X3
4 +X3

3 )− 6(X2
1X2 +X2

2X4 +X2
4X3 +X2

3X1)

− 5(X1X
2
2 +X2X

2
4 +X4X

2
3 +X3X

2
1 )− 3(X2

2X3 +X2
4X1 +X2

3X2 +X2
1X4)

− 9(X1X2X3 +X2X4X1 +X4X3X2 +X3X1X4)

+ (X4
1 +X4

2 +X4
4 +X4

3 ) + 4(X2
1X

2
2 +X2

2X
2
4 +X2

4X
2
3 +X2

3X
2
1 ) + (X2

1X
2
4 +X2

2X
2
3 )

+ 2(X1X
3
2 +X2X

3
4 +X4X

3
3 +X3X

3
1 ) + (X3

2X3 +X3
4X1 +X3

3X2 +X3
1X4)

+ 3(X3
1X2 +X3

2X4 +X3
4X3 +X3

3X1)

+ 7(X2
1X2X3 +X2

2X4X1 +X2
4X3X2 +X2

3X1X4)

+ 4(X1X
2
2X3 +X2X

2
4X1 +X4X

2
3X2 +X3X

2
1X4)

+ 6(X1X2X
2
3 +X2X4X

2
1 +X4X3X

2
2 +X3X1X

2
4 ) + 11X1X2X3X4.

We conclude the article, by mentioning the sculpture and embedding problems for the ana-

logues of norm tori in the Kummer-Artin-Schreier theory.

6.9. Put G = Gal(Q(ζ)/Q), and let g be a generator G. Let R be a ring. Then a homomorphism

of multiplicative group gR : (R ⊗Z Z[ζ])× → (R ⊗Z Z[ζ])× is defined by r ⊗ a 7→ r ⊗ g(a). The

homomorphism gR : (R⊗Z Z[ζ])× → (R⊗Z Z[ζ])× is represented by a homomorphism of group

schemes g :
∏

Z[ζ]/ZGm,Z[ζ] →
∏

Z[ζ]/ZGm,Z[ζ].

Now we decribe the endomorphism g of
∏

Z[ζ]/ZGm,Z[ζ] in terms of Hopf algebras. Take an

integer i(g) so that g(ζ) = ζi(g). Then the homomorphism

g :
∏

Z[ζ]/Z

Gm,Z[ζ] = SpecZ[X1, X2, . . . , Xp−1,
1

Np(X1, X2, . . . , Xp−1)
]→

∏
Z[ζ]/Z

Gm,Z[ζ] = SpecZ[X1, X2, . . . , Xp−1,
1

Np(X1, X2, . . . , Xp−1)
]

is defiend by

Xj 7→ Xi(g)−1j (j = 1, 2, . . . , p− 1).

Here i(g)−1j stands for the integer l ∈ {1, 2, . . . , p− 1} such that i(g)l ≡ j mod p.

Furthermore, for θ ∈ Z[G], an endomorphism θ of
∏

Z[ζ]/ZGm,Z[ζ] is defined since the group

law of
∏

Z[ζ]/ZGm,Z[ζ] is commutative. More explicitly, let

θ =

p−2∑
k=0

nkg
k ∈ Z[G],
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and let R be a ring. Then the homorphism of multiplicative groups θR : (R ⊗Z Z[ζ])× →
(R⊗Z Z[ζ])× is given by

θR(r ⊗ α) =

p−2∏
k=0

(
r ⊗ gk(α)

)nk .

6.10. Now define a morphism of affine schemes

g :
∏

Z[ζ]/Z

G(λ) = SpecZ[X1, X2, . . . , Xp−1,
1

1 + pÑp(X1, X2, . . . , Xp−1)
]→

∏
Z[ζ]/Z

G(λ) = SpecZ[X1, X2, . . . , Xp−1,
1

1 + pÑp(X1, X2, . . . , Xp−1)
]

by

Xj 7→ Xi(g)−1j (j = 1, 2, . . . , p− 1).

Then it is verified without difficulty that g :
∏

Z[ζ]/Z G(λ) →
∏

Z[ζ]/Z G(λ) is a homomorphism of

group schemes. Furthermore the diagram∏
Z[ζ]/Z

G(λ) g−−−→
∏

Z[ζ]/Z

G(λ)

∏
Z[ζ]/Z α(λ)

y y∏
Z[ζ]/Z α(λ)∏

Z[ζ]/Z

Gm,Z[ζ] −−−→
g

∏
Z[ζ]/Z

Gm,Z[ζ]

is commutative.

More generally, for θ ∈ Z[G], an endomorphism θ of
∏

Z[ζ]/Z G(λ) is defined since the group

law of
∏

Z[ζ]/Z G(λ) is commutative. Furthermore the diagram

∏
Z[ζ]/Z

G(λ) θ−−−→
∏

Z[ζ]/Z

G(λ)

∏
Z[ζ]/Z α(λ)

y y∏
Z[ζ]/Z α(λ)∏

Z[ζ]/Z

Gm,Z[ζ] −−−→
θ

∏
Z[ζ]/Z

Gm,Z[ζ]

is commutative.

Example 6.11. Assume that p > 2. Put

ν = 1 + g + · · ·+ gp−1 ∈ Z[G]

and ∏
Z[ζ]/Z

(1)
G(λ) = Ker

[
ν :

∏
Z[ζ]/Z

G(λ) →
∏

Z[ζ]/Z

G(λ)
]
.
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Then we obtain a commutative diagram with exact raws

0 −−−→
∏

Z[ζ]/Z

(1)
G(λ) −−−→

∏
Z[ζ]/Z

G(λ) ν−−−→
∏

Z[ζ]/Z

G(λ)y y∏
Z[ζ]/Z α(λ)

y∏
Z[ζ]/Z α(λ)

0 −−−→
∏

Z[ζ]/Z

(1)
Gm,Z[ζ] −−−→

∏
Z[ζ]/Z

Gm,Z[ζ] −−−→
ν

∏
Z[ζ]/Z

Gm,Z[ζ]

.

The induced homomorphism
∏

Z[ζ]/Z α
(λ) :

∏(1)
Z[ζ]/Z G

(λ) →
∏(1)

Z[ζ]/ZGm,Z[ζ] is isomorphic over

Z[1/p].
We have also

∏
Z[ζ]/Z

(1)
G(λ) = SpecZ[X1, X2, . . . , Xp−1]/(Ñp(X1, X2, . . . , Xp−1)),

where the multiplication is defined by

Xi 7→ Xi ⊗ (1−X1 −X2 − · · · −Xp−1) + (1−X1 −X2 − · · · −Xp−1)⊗Xi +
∑

j+k≡i
mod p

Xj ⊗Xk

(1 ≤ i ≤ p− 1).

It is worthwhile to remark that
∏

Z[ζ]/Z
(1)G(λ) is smooth over Z, while

∏
Z[ζ]/Z

(1)Gm,Z[ζ] is not

smooth at the locus (p).

Proposition 6.12. Assume that p > 2. Then both the sculpture and embedding problems are

affirmative over Z for the embedding Γ →
∏

Z[ζ]/Z
(1)G(λ).

Proof. The embedding problem for Γ →
∏

Z[ζ]/Z
(1)G(λ) is affirmative since the embedding

problem for Γ →
∏

Z[ζ]/Z G(λ) is affirmative.

Now we prove that the sculpture problem for Γ →
∏

Z[ζ]/Z
(1)G(λ) is affirmative. Put σ =

g − 1 ∈ Z[G]. Then the homomorhism σ :
∏

Z[ζ]/Z G(λ) →
∏

Z[ζ]/Z G(λ) is factorized as

∏
Z[ζ]/Z

G(λ) σ−→
∏

Z[ζ]/Z

(1)
G(λ) inclusion−→

∏
Z[ζ]/Z

G(λ)

since νσ = (1 + g + · · ·+ gp−2)(1− g) = 0 in Z[G]. Moreover σ induces an automorphism of Γ

since σ = g − 1 : γ 7→ γi(g)−1. Hence we obtain a commutative diagram

Γ −−−→
∏

Z[ζ]/Z

Gm,Z[ζ]y≀
yσ

Γ −−−→
∏

Z[ζ]/Z

(1)
Gm,Z[ζ]

,
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and therefore, a commutative diagram

Γ −−−→ U(Γ )y≀
yσ

Γ −−−→
∏

Z[ζ]/Z

(1)
Gm,Z[ζ]

,

combining with the commutative diagram

Γ −−−→ U(Γ )∥∥∥ yχ̃◦s

Γ −−−→
∏

Z[ζ]/Z

G(λ)
.

Example 6.13. Assume that p > 2. For each positive divisor d of p− 1 (d ̸= p− 1), put

νd = 1 + gd + g2d + · · ·+ g(p−1)−d ∈ Z[G].

Put

Gp =
∩

d|(p−1)
d ̸=p−1

Ker
[
νd :

∏
Z[ζ]/Z

G(λ) →
∏

Z[ζ]/Z

G(λ)
]
.

Then Gp⊗ZZ[1/p] is an algebraic torus over Z[1/p] with character group Z[ζp−1] as is remarked

in 5.2.

Theorem 6.14. Assume that p > 2. Then both the sculpture and embedding problems are

affirmative over Z for the embedding Γ → Gp.

Proof. The embedding problem for Γ → Gp is affirmative since the embedding problem for

Γ →
∏

Z[ζ]/Z G(λ) is affirmative.

Now we prove that the sculpture problem for Γ → Gp is affirmative. Put

σ̃ =
∏

d|(p−1)
d ̸=p−1

Φd(g) ∈ Z[G].

Then the homomorhism σ̃ :
∏

Z[ζ]/Z G(λ) →
∏

Z[ζ]/Z G(λ) is factorized as∏
Z[ζ]/Z

G(λ) σ̃−→ Gp
inclusion−→

∏
Z[ζ]/Z

G(λ)

since

νd σ̃ =
{ ∏
d′|(p−1)

d∤d′

Φd′(g)
}{ ∏

d′|(p−1)
d′ ̸=p−1

Φd′(g)
}
= 0 in Z[G]

for all positive divisor d of p− 1 (d ̸= p− 1). Moreover σ̃ induces an automorphism of Γ .

Indeed, put

F (T ) =
∏

d|(p−1)
d̸=p−1

Φd(T ).
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Then we have in Fp[T ]

F (T ) =
∏
a∈F×

p

the order of a ̸= p− 1

(T − a).

Moreover i(g) is a primitive root of Fp. Then we have F (i(g)) ̸= 0 in Fp. Then σ̃(ζ) = ζF (i(g)) ̸=
1.

Hence we obtain a commutative diagram

Γ −−−→
∏

Z[ζ]/Z

Gm,Z[ζ]y≀
yσ̃

Γ −−−→ Gp

,

and therefore, a commutative diagram

Γ −−−→ U(Γ )y≀
yσ

Γ −−−→ Gp

,

combining with the commutative diagram

Γ −−−→ U(Γ )∥∥∥ yχ̃◦s

Γ −−−→
∏

Z[ζ]/Z

G(λ)
.
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