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Nonautonomous differential equations and
Lipschitz evolution operators in Banach spaces

Yoshikazu Kobayashi, Naoki Tanaka and Yukino Tomizawa

Abstract. A new class of Lipschitz evolution operators is introduced
and a characterization of continuous infinitesimal generators of such
evolution operators is given. It is shown that a continuous mapping A
from a subset Ω of [a, b) × X into X, where [a, b) is a real half-open
interval and X is a real Banach space, is the infinitesimal generator of
a Lipschitz evolution operator if and only if it satisfies a sub-tangential
condition, a general type of quasi-dissipative condition with respect to a
metric-like functional and a connectedness condition. An application of
the results to the initial value problem for the quasilinear wave equation
with dissipation is also given.

1. Introduction and Main Theorems

Throughout this paper, R denotes the set of all real numbers.
Let X be a real Banach space with norm ∥ · ∥. For a subset Q of
R×X, Q(t) denotes the section of Q at t ∈ R, that is, Q(t) = {x ∈
X ; (t, x) ∈ Q}.

Let [a, b) be a subinterval of R and Ω a subset of [a, b)×X such
that −∞ < a < b ≤ ∞ and Ω(t) ̸= ∅ for t ∈ [a, b). Let A be a
continuous mapping from Ω to X. Given (τ, z) ∈ Ω, we consider the
following initial value problem:

(IVP; τ, z)

{
u′(t) = A

(
t, u(t)

)
for τ ≤ t < b,

u(τ) = z.

Suppose that the problem (IVP; τ, z) has a unique solution u(·) on
[τ, b) for every (τ, z) ∈ Ω. Defining U(t, τ)z = u(t), we have the
following properties from the uniqueness of solutions:

(E1) U(τ, τ)z = z and U(t, s)U(s, τ)z = U(t, τ)z for z ∈ Ω(τ)
and a ≤ τ ≤ s ≤ t < b.
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Set ∆ = {(t, τ); a ≤ τ ≤ t < b}. Usually, we have also the following
properties from the continuous dependence of solutions on the initial
data (τ, z) ∈ Ω:

(E2) Let (t, τ) ∈ ∆, z ∈ Ω(τ), (tn, τn) ∈ ∆ and zn ∈ Ω(τn) for
n = 1, 2, . . .. If (tn, τn) → (t, τ) and zn → z as n → ∞,
then U(tn, τn)zn → U(t, τ)z as n → ∞.

By an evolution operator on Ω, we mean a family {U(t, τ)}(t,τ)∈∆ of
operators U(t, τ) : Ω(τ) → Ω(t) satisfying (E1) and (E2). Such a
family {U(t, τ)}(t,τ)∈∆ is called a Lipschitz evolution operator on Ω,
if the following additional condition is satisfied:

(E3) There exist a number L ≥ 1 and a continuous function
ω : [a, b) → [0,∞) such that

∥U(t, τ)x− U(t, τ)y∥ ≤ L exp

(∫ t

τ

ω(θ)dθ

)
∥x− y∥

for x, y ∈ Ω(τ) and (t, τ) ∈ ∆.

The main purpose of this paper is to establish the conditions on the
continuous mapping A which are necessary and sufficient to guaran-
tee the existence of the Lipschitz evolution operator associated with
A. The obtained results extend that of Kobayashi and Tanaka in [8]
concerning the autonomous case where A is independent of t. In par-
ticular, a type of generalized quasi-dissipativity condition on A with
respect to a metric-like functional is shown to be necessary for the
existence of the Lipschitz evolution operator. Sufficient conditions
on A for the existence of evolution operators have been studied by
many authors and this paper is related with the works of Iwamiya
[4], Kato [5], [6], Kenmochi and Takahashi [7], Lakshmikantham,
Mitchell and Mitchell [10], Martin [11], [12], [13] , Murakami [15],
Pavel and Vrabie [19], Pavel [18] and Cârjă, Necula and Vrabie [22].
Several types of generalized quasi-dissipativity conditions on A are
introduced and investigated in [15], [12], [10] , [6], [20] and [2]. Such
a kind of generalized quasi-dissipativity conditions was first found by
Okamura [17] as a uniqueness criteria for ordinary differential equa-
tions. See [1] or [24]. Our results extend the most of them. As in [7],
[6] and [4], the domain Ω is allowed to be genuinely noncylindrical
and the subtangential condition, which was first found by Nagumo
[16], is used to construct approximate solutions to (IVP; τ, z). The
advantage of these assumptions is illustrated by an application of the
results to the initial value problems for nonlinear wave equations.

Let J ⊂ [a, b) be a subinterval of the form [τ, c] or [τ, c). An
X-valued continuous function u : J → X is called a solution to
(IVP;τ, z) on J , if u(τ) = z,

(
t, u(t)

)
∈ Ω for t ∈ J, u is differentiable

on J and u′(t) = A
(
t, u(t)

)
for t ∈ J . A solution to (IVP; τ, z) on

[τ, b) is called a global solution.
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Let d(x,D) denote the distance from x ∈ X to D ⊂ X, i.e.,
d(x,D) = inf{∥x − y∥ ; y ∈ D}. We consider the following condi-
tions.

(Ω1) A is continuous on Ω.
(Ω2) If (tn, xn) ∈ Ω, tn ↑ t ∈ [a, b) in R and xn → x in X as

n → ∞, then (t, x) ∈ Ω.
(Ω3) lim infh↓0 h

−1d
(
x+ hA(t, x),Ω(t+ h)

)
= 0 for (t, x) ∈ Ω.

(Ω4) There exists a functional V : [a, b)×X ×X → [0,∞) satis-
fying the following properties (V 1)–(V 4) and a continuous
function ω : [a, b) → [0,∞) such that

D+V (t, x, y)
(
A(t, x), A(t, y)

)
≤ ω(t)V (t, x, y)

for x, y ∈ Ω(t) and t ∈ [a, b). Here, for (t, x, y) ∈ [a, b) ×
X ×X and (ξ, η) ∈ X ×X,

D+V (t, x, y)(ξ, η) = lim inf
h↓0

1

h

(
V (t+ h, x+ hξ, y + hη)− V (t, x, y)

)
,

where the values ∞ and −∞ are not excluded.
(V 1) There exists a number L > 0 such that |V (t, x, y) −

V (t, x̂, ŷ)| ≤ L(∥x − x̂∥ + ∥y − ŷ∥) for (x, y), (x̂, ŷ) ∈
X ×X and t ∈ [a, b).

(V 2) V (t, x, x) = 0 for t ∈ [a, b) and x ∈ Ω(t).
(V 3) If {tn} is a sequence in [a, b) and {(xn, yn)} is a se-

quence in X×X such that (xn, yn) ∈ Ω(tn)×Ω(tn) for
n ≥ 1, tn → t ∈ [a, b) and (xn, yn) → (x, y) ∈ Ω(t) ×
Ω(t) as n → ∞, then V (t, x, y) ≤ lim inf

n→∞
V (tn, xn, yn).

(V 4) If {tn} is a sequence in [a, b) and {(xn, yn)} is a se-
quence in X×X such that (xn, yn) ∈ Ω(tn)×Ω(tn) for
n ≥ 1, tn → t ∈ [a, b) and V (tn, xn, yn) → 0 as n → ∞,
then ∥xn − yn∥ → 0 as n → ∞.

(Ω5) For any (τ, z) ∈ Ω, there exists a connected component C
of Ω such that (τ, z) ∈ C and C(t) ̸= ∅ for t ∈ (τ, b).

Remark 1. Condition (V 1) with (V 2) implies the following:

|V (t, x, y)| ≤ L∥x−y∥ for (x, y) ∈ Ω(t)×Ω(t) and t ∈ [a, b).

The following are our main theorems.

Theorem 1. Let A be a mapping from Ω into X such that
conditions (Ω1)–(Ω4) are satisfied. Let C be a connected component
of Ω and set d = sup{t ∈ [a, b) ; C(t) ̸= ∅}. Then the following
assertions hold true:

(i) For (τ, z) ∈ C, (IVP; τ, z) has a unique solution u(t; τ, z)
on [τ, d) and the interval [τ, d) is the maximal interval of
existence of solution.
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(ii) For z, ẑ ∈ C(τ) and t ∈ [τ, d),

V (t, u(t; τ, z), u(t; τ, ẑ)) ≤ exp

(∫ t

τ

ω(θ)dθ

)
V (τ, z, ẑ).

Theorem 2. Let A be a mapping from Ω into X such that (Ω1)
and (Ω2) are satisfied. Then there exists a Lipschitz evolution op-
erator {U(t, τ)}(t,τ)∈∆ on Ω such that u(t) := U(t, τ)z is a global
solution to (IVP; τ, z) for any (τ, z) ∈ Ω if and only if conditions
(Ω3)–(Ω5) are satisfied, where condition (V 4) is replaced by the fol-
lowing condition:

(V 4)′ For any t ∈ [a, b) and x, y ∈ Ω(t), ∥x− y∥ ≤ V (t, x, y).

Theorem 1 consists of the uniqueness and local existence of so-
lutions to initial value problems (IVP; τ, z) and the global existence
theorem as well as the continuous dependence of solutions on initial
data. They are discussed in Sections 2 and 3 respectively. The proof
of Theorem 2 is given in Section 4. An application of our results to
the initial value problem for quasi-linear wave equations is given in
Section 5.

2. Uniqueness and Local Existence of Solutions

In this section, we construct the solutions to the initial value
problem (IVP; τ, z). We assume that conditions (Ω1)–(Ω4). The
following proposition ensures the uniqueness of solutions.

Proposition 1. Let [τ, c) ⊂ [a, b) and zi ∈ Ω(τ) for i = 1, 2.
Let ui be solutions to (IVP; τ, zi) on [τ, c), for i = 1, 2, respectively.
Then

V
(
t, u1(t), u2(t)

)
≤ exp

(∫ t

τ

ω(s)ds
)
V (τ, z1, z2)

for t ∈ [τ, c). In particular, if z1 = z2, then u1(t) = u2(t) for
t ∈ [τ, c).

Proof. Set w(t) = V
(
t, u1(t), u2(t)

)
for t ∈ [τ, c). From (V 3)

we see that w is lower semi-continuous on [τ, c). Let t ∈ [τ, c) and
h ∈ (0, c− t). From (V 1) it follows that

(w(t+ h)− w(t))/h−
(
V (t+ h, u1(t) + hA(t, u1(t)), u2(t) + hA(t, u2(t)))

− V (t, u1(t), u2(t))
)
/h ≤

∣∣V (t+ h, u1(t+ h), u2(t+ h))

− V (t+ h, u1(t) + hA(t, u1(t)), u2(t) + hA(t, u2(t)))
∣∣/h

≤ L
(
∥u1(t+ h)− u1(t)− hA

(
t, u1(t)

)
∥/h

+ ∥u2(t+ h)− u2(t)− hA
(
t, u2(t)

)
∥/h

)
.
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Taking the inferior limit as h ↓ 0 yields

lim inf
h↓0

(w(t+h)−w(t))/h ≤ D+V (t, u1(t), u2(t))(A(t, u1(t)), A(t, u2(t))).

From (Ω4) we have D+w(t) ≤ ω(t)w(t), where D+w(t) denotes the
lower right derivative of w(t). Therefore, we see that the function

t → exp
(
−
∫ t

τ

ω(s) ds
)
w(t)

is lower semicontinuous on [τ, c) and D+

(
exp

(
−
∫ t

τ
ω(s) ds

)
w(t)

)
≤

0 for t ∈ [τ, c). By [3, Lemma 6.3], we have w(t) ≤ exp
(∫ t

τ
ω(s)ds

)
w(τ)

for t ∈ [τ, c). Refer to [9] or [21] for the same kind of differential in-
equalities. □

For each (t, x) ∈ R×X and r > 0, we define Sr(t, x) = {(s, y) ∈
R × X ; |s − t| < r, ∥y − x∥ < r}. We need the following lemmas
which are proved in [7] without using condition (Ω4).

Lemma 1 ( [7, Lemma 1]). Let (t, x) ∈ Ω and η > 0. Let
r > 0 be a number such that ∥A(s, y) − A(t, x)∥ ≤ η for (s, y) ∈
Ω ∩ Sr(t, x). Let M > 0 be a number such that ∥A(s, y)∥ ≤ M for
(s, y) ∈ Ω ∩ Sr(t, x). Set h0 = min{r, r/M, b− t}. Then

d
(
x+ hA(t, x),Ω(t+ h)

)
≤ hη for h ∈ (0, h0).

Lemma 2 ( [7, Lemma 2]). Let (t, x) ∈ Ω and ε ∈ (0, 1). Let
r > 0 and M > 0 be numbers such that t + r < b and such that
∥A(s, y)−A(t, x)∥ ≤ ε/3 and ∥A(s, y)∥ ≤ M for (s, y) ∈ Ω∩Sr(t, x).
Let h ∈ (0, r/(M + 1)]. Let {sk}nk=0 be a partition of [t, t + h] : t =
s0 < s1 < · · · < sn = t+ h. Then there exists a sequence {yk}nk=0 of
elements in X such that

(i) y0 = x and (sk, yk) ∈ Ω for 0 ≤ k ≤ n;
(ii) ∥yk − x∥ ≤ (M + ε)(sk − t) for 0 ≤ k ≤ n;
(iii) ∥yk−1 + (sk − sk−1)A(sk−1, yk−1)− yk∥ ≤ ε(sk − sk−1) for

1 ≤ k ≤ n.

We also need the following lemma.

Lemma 3. Let (t, x) ∈ Ω and ε ∈ (0, 1). Let r > 0 and M > 0
be numbers such that t + r < b and ∥A(s, y)∥ ≤ M for (s, y) ∈
Ω ∩ Sr(t, x). Let σ ∈ (0, r/(M + 1)]. Then the following assertions
hold true:

(i) If a sequence {(si, yi)}ni=0 in Ω satisfies

t = s0 < s1 < · · · < sn ≤ t+ σ, (2.1)

∥yi−1 + (si − si−1)A(si−1, yi−1)− yi∥ ≤ ε(si − si−1)

for 1 ≤ i ≤ n, where y0 = x, (2.2)
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then

∥yi − yj∥ ≤ (M + ε)(si − sj) for 0 ≤ j ≤ i ≤ n,

∥A(si, yi)∥ ≤ M for 0 ≤ i ≤ n.

Moreover, if η > 0 and ∥A(s, y)− A(t, x)∥ ≤ η for (s, y) ∈
Ω ∩ Sr(t, x), then

∥x+ (sn − t)A(t, x)− yn∥ ≤ (ε+ η)(sn − t). (2.3)

(ii) Let η > 0 and ∥A(s, y) − A(t, x)∥ ≤ η for (s, y) ∈ Ω ∩
Sr(t, x). If a sequence {(si, yi)}∞i=0 in Ω satisfies

t = s0 < s1 < · · · < si < · · · < t+ σ and lim
i→∞

si = t+ σ, (2.4)

∥yi−1 + (si − si−1)A(si−1, yi−1)− yi∥ ≤ ε(si − si−1)

for i ≥ 1, where y0 = x, (2.5)

then ŷ = limi→∞ yi exists in X, ŷ ∈ Ω(t+ σ) and

∥x+ σA(t, x)− ŷ∥ ≤ (ε+ η)σ. (2.6)

Proof. To prove (i), let {(si, yi)}ni=0 be a sequence in Ω satisfy-
ing (2.1) and (2.2). We first show inductively that (si, yi) ∈ Sr(t, x)
for 0 ≤ i ≤ n. It is obvious that (s0, y0) ∈ Sr(t, x). Let k be a non-
negative integer such that k < n and assume that (si, yi) ∈ Sr(t, x)
for 0 ≤ i ≤ k. From (2.2) we obtain

∥yi−1 − yi∥ ≤ (si − si−1)∥A(si−1, yi−1)∥+ ε(si − si−1)

for 1 ≤ i ≤ n. Since ∥A(si, xi)∥ ≤ M for 0 ≤ i ≤ k by assumption,
we have

∥yi − yi−1∥ ≤ (M + ε)(si − si−1)

for 1 ≤ i ≤ k+1. Summing up this inequality from i = 1 to i = k+1,
we find that

∥yk+1 − x∥ ≤ (M + ε)(sk+1 − t) < (M + 1)σ ≤ r.

It is obvious that sk+1 − t ≤ σ < σ(M + 1) ≤ r. These mean that
(sk+1, yk+1) ∈ Sr(t, x). Thus, we inductively prove that (si, yi) ∈
Sr(t, x) for 0 ≤ i ≤ n.

Since (sk, yk) ∈ Sr(t, x) for 0 ≤ k ≤ n, we have ∥A(sk, yk)∥ ≤ M
for 0 ≤ k ≤ n and ∥yk − yk−1∥ ≤ (M + ε)(sk − sk−1) for 1 ≤ k ≤ n.
Therefore, we find that

∥yi − yj∥ ≤ (M + ε)(si − sj)

for 0 ≤ j ≤ i ≤ n. To prove (2.3), let η > 0 and assume that
∥A(s, y)− A(t, x)∥ ≤ η for (s, y) ∈ Ω ∩ Sr(t, x). Since {(si, yi) ; 0 ≤



Nonautonomous differential equations 7

i ≤ n} ⊂ Ω∩Sr(t, x), we have ∥A(si, yi)−A(t, x)∥ ≤ η for 0 ≤ i ≤ n.
From (2.2) we see that

∥yi−1 + (si − si−1)A(t, x)− yi∥
≤ ∥yi−1 + (si − si−1)A(si−1, yi−1)− yi∥
+ ∥(si − si−1)

(
A(t, x)− A(si−1, yi−1)

)
∥

≤ ε(si − si−1) + η(si − si−1) = (ε+ η)(si − si−1)

for 1 ≤ i ≤ n. Hence

∥x+ (sn − t)A(t, x)− yn∥ ≤
n∑

i=1

∥yi−1 + (si − si−1)A(t, x)− yi∥

≤ (ε+ η)(sn − t).

To prove (ii), let {(si, yi)}∞i=0 be a sequence in Ω satisfying (2.4) and
(2.5). From (i) we obtain ∥yi − yj∥ ≤ (M + ε)(si − sj) for 0 ≤ j ≤ i.
This implies that ŷ = limi→∞ yi exists in X and is in Ω(t + σ) by
(Ω2). By (i) again, we note that the inequality (2.3) holds for n ≥ 0.
Passing to the limit in (2.3) as n → ∞, we obtain

∥x+ σA(t, x)− ŷ∥ = lim
n→∞

∥x+ (sn − t)A(t, x)− yn∥

≤ lim
n→∞

(ε+ η)(sn − t) = (ε+ η)σ,

namely, the desired inequality (2.6) is proved. □

The local existence of approximation solutions to (IVP; τ, z) is
given by the following proposition, which is essentially shown in [7]
and [4]. We give the proof for completeness.

Proposition 2. Let (t, x) ∈ Ω and ε ∈ (0, 1). Let r > 0 and
M > 0 be numbers such that t + r < b and ∥A(s, y)∥ ≤ M for
(s, y) ∈ Ω ∩ Sr(t, x). Let σ ∈ (0, r/(M + 1)]. Then there exists a
sequence {(si, yi)}∞i=0 in Ω such that

(i) t = s0 < s1 < · · · < si < · · · < t+ σ and limi→∞ si = t+ σ;
(ii) si − si−1 ≤ ε for i ≥ 1;
(iii) ∥yi−1 + (si − si−1)A(si−1, yi−1) − yi∥ ≤ ε(si − si−1)/2 for

i ≥ 1, where y0 = x;
(iv) if (s, y) ∈ Ω ∩ S(M+1)(si−si−1)(si−1, yi−1), then

∥A(s, y)− A(si−1, yi−1)∥ ≤ ε/4 for i ≥ 1.

Proof. Set (s0, y0) = (t, x). Let k be a positive integer and
assume that there exists a sequence {(si, yi)}k−1

i=0 in Ω which satisfies
the first half of (i) and (ii)–(iv) for 1 ≤ i ≤ k − 1. We consider a

nonnegative number ĥk defined by the supremum of h ∈ [0, ε] such
that h < t+ σ − sk−1 and

∥A(s, y)− A(sk−1, yk−1)∥ ≤ ε/4 for (s, y) ∈ Ω ∩ Sh(M+1)(sk−1, yk−1).
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By the continuity of A, we have ĥk > 0. Thus there exists a number
hk ∈ (0, ε] such that ĥk/2 < hk < t+ σ − sk−1 and

∥A(s, y)− A(sk−1, yk−1)∥ ≤ ε/4 for (s, y) ∈ Ω ∩ Srk(sk−1, yk−1),
(2.7)

where rk = hk(M + 1). Set sk = sk−1 + hk. Then sk−1 < sk < t+ σ
and conditions (ii) and (iv) with i = k are satisfied. By Lemma 3,
∥A(si, yi)∥ ≤ M for 0 ≤ i ≤ k− 1. The inequality (2.7) implies that
∥A(s, y)∥ ≤ M + ε/4 for (s, y) ∈ Ω∩Srk(sk−1, yk−1). Hence, Lemma
1, with (t, x), r,M and η replaced by (sk−1, yk−1), rk,M + ε/4 and
ε/4 respectively, implies that

d
(
yk−1 + hkA(sk−1, yk−1),Ω(sk)

)
≤ εhk/4.

Thus there exists an element yk ∈ Ω(sk) satisfying (iii) with i = k.
We shall show that limi→∞ si = t + σ. Assume to the contrary

that ŝ = limi→∞ si < t + σ. By Lemma 3 (i) we obtain ∥yi − yj∥ ≤
(M + ε/2)(si − sj) for 0 ≤ j ≤ i. Hence, limi→∞ yi exists in X, and
we denote its limit by ŷ. Since (ŝ, ŷ) = limi→∞(si, yi) in R×X and
(si, yi) ∈ Ω for i ≥ 1, we have (ŝ, ŷ) ∈ Ω by (Ω2). The continuity of
A enables us to choose η ∈ (0, ε] such that

η ≤ t+ σ − ŝ and ∥A(s, y)− A(ŝ, ŷ)∥ ≤ ε/8 for (s, y) ∈ Ω ∩ Sr̂(ŝ, ŷ),

where r̂ = 2(M +1)η. Choose an integer i0 ≥ 1 so that ŝ− si−1 ≤ η
and ∥ŷ − yi−1∥ ≤ (M + 1)η for i ≥ i0. Then, for i ≥ i0 and (s, y) ∈
S(M+1)η(si−1, yi−1), we have

|s− ŝ| ≤ |s− si−1|+ |si−1 − ŝ| < (M + 1)η + η ≤ 2(M + 1)η,

∥y − ŷ∥ ≤ ∥y − yi−1∥+ ∥yi−1 − ŷ∥ < 2(M + 1)η.

Hence S(M+1)η(si−1, yi−1) ⊂ Sr̂(ŝ, ŷ) for i ≥ i0. By the choice of η,
we see that if i ≥ i0, then

∥A(s, y)− A(si−1, yi−1)∥ ≤ ∥A(s, y)− A(ŝ, ŷ)∥+ ∥A(ŝ, ŷ)− A(si−1, yi−1)∥
≤ ε/8 + ε/8 = ε/4

for (s, y) ∈ Ω ∩ S(M+1)η(si−1, yi−1). Since η < t+ σ − si−1 for i ≥ 1,

the definition of ĥi implies that η ≤ ĥi < 2hi = 2(si−si−1) for i ≥ i0
and the right-hand side tends to zero as i → ∞. This contradicts
the fact that η is positive. □

In what follows, we write ω([â, b̂]) = sups∈[â,b̂] ω(s) for [â, b̂] ⊂
[a, b). To prove the convergence of the approximate solutions, we
need the following Propositions, which are the refinements of the
results in [11], [10], [6] and [8].
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Proposition 3. Let t ∈ [a, b), (x, x̂) ∈ Ω(t) × Ω(t) and η, η̂ ∈
(0, 1). Let r > 0 and M > 0 be numbers such that t+ r < b,

∥A(s, z)∥ ≤ M and ∥A(s, z)− A(t, x)∥ ≤ η/4 for (s, z) ∈ Ω ∩ Sr(t, x),

∥A(s, ẑ)∥ ≤ M and ∥A(s, ẑ)− A(t, x̂)∥ ≤ η̂/4 for (s, ẑ) ∈ Ω ∩ Sr(t, x̂).

Let σ ∈ (0, r/(M + 1)]. Then there exists a pair (y, ŷ) ∈ Ω(t+ σ)×
Ω(t+ σ) such that

∥x+ σA(t, x)− y∥ ≤ ησ, (2.8)

∥x̂+ σA(t, x̂)− ŷ∥ ≤ η̂σ, (2.9)

V (t+ σ, y, ŷ) ≤ exp
(
σω([t, t+ σ])

)(
V (t, x, x̂) + L(η + η̂)σ

)
. (2.10)

Proof. We shall show that there exist two sequences {(sj, zj)}∞j=0

and {(sj, ẑj)}∞j=0 in Ω such that

t = s0 < s1 < · · · < sj < · · · < t+ σ and lim
j→∞

sj = t+ σ,

(2.11)

∥zj−1 + (sj − sj−1)A(sj−1, zj−1)− zj∥ ≤ 3η(sj − sj−1)/4

for j ≥ 1, where z0 = x, (2.12)

∥ẑj−1 + (sj − sj−1)A(sj−1, ẑj−1)− ẑj∥ ≤ 3η̂(sj − sj−1)/4

for j ≥ 1, where ẑ0 = x̂, (2.13)

(V (sj, zj, ẑj)− V (sj−1, zj−1, ẑj−1))/(sj − sj−1)

≤ ω(sj−1)V (sj−1, zj−1, ẑj−1) + L(η + η̂) for j ≥ 1. (2.14)

Set (s0, z0, ẑ0) = (t, x, x̂) and assume that sequences {(sj, zj)}i−1
j=0 and

{(sj, ẑj)}i−1
j=0 in Ω with i ≥ 1 satisfy the first half of (2.11) and (2.12)–

(2.14) for 1 ≤ j ≤ i − 1. Then we need to show that there exist
si ∈ R, zi ∈ Ω(si) and ẑi ∈ Ω(si) such that si−1 < si < t + σ and

(2.12)–(2.14) with j = i are satisfied. Let ĥi denote the supremum
of all h ≥ 0 such that h < t+ σ − si−1 and

V (si−1 + h, zi−1 + hA(si−1, zi−1), ẑi−1 + hA(si−1, ẑi−1))

− V (si−1, zi−1, ẑi−1) ≤ h
(
ω(si−1)V (si−1, zi−1, ẑi−1) + (η + η̂)L/4

)
.

Since ĥi > 0 by (Ω4), there exists a number hi > 0 such that ĥi/2 <
hi < t+ σ − si−1 and

V (si−1 + h, zi−1 + hA(si−1, zi−1), ẑi−1 + hA(si−1, ẑi−1))

−V (si−1, zi−1, ẑi−1) ≤ h
(
ω(si−1)V (si−1, zi−1, ẑi−1) + (η + η̂)L/4

)
.

(2.15)

Set si = si−1 + hi. It is obvious that si−1 < si < t + σ. To prove
that S(M+1)hi

(si−1, zi−1) ⊂ Sr(t, x), we note by Lemma 3 (i) with
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ε = 3η/4 that

∥zi−1 − x∥ ≤ (M + 3η/4)(si−1 − t) < (M + 1)(si−1 − t).

If (s, z) ∈ S(M+1)hi
(si−1, zi−1), then

|s− t| ≤ |s− si−1|+ |si−1 − t| < (M + 1)(hi + si−1 − t)

= (M + 1)(si − t) ≤ (M + 1)σ ≤ r

and

∥z − x∥ ≤ ∥z − zi−1∥+ ∥zi−1 − x∥ < (M + 1)(hi + si−1 − t) ≤ r.

This means that S(M+1)hi
(si−1, zi−1) ⊂ Sr(t, x). By assumption, we

have

∥A(s, z)∥ ≤ M and ∥A(s, z)− A(t, x)∥ ≤ η/4 (2.16)

for (s, z) ∈ Ω ∩ S(M+1)hi
(si−1, zi−1). From the second inequality of

(2.16), we see that if (s, z) ∈ Ω ∩ S(M+1)hi
(si−1, zi−1), then

∥A(s, z)− A(si−1, zi−1)∥ ≤ ∥A(s, z)− A(t, x)∥+ ∥A(si−1, zi−1)− A(t, x)∥
≤ η/4 + η/4 = η/2.

Hence, by Lemma 1 with r = (M + 1)hi, (t, x) = (si−1, zi−1) and
h = hi, we find that

d(zi−1 + hiA(si−1, zi−1),Ω(si)) ≤ hiη/2 = η(si − si−1)/2.

This implies that there exists zi ∈ Ω(si) such that (2.12) holds true
for j = i. Similarly, we can show that there exists ẑi ∈ Ω(si) satis-
fying (2.13) with j = i.

By (V 1) we obtain (2.14) with j = i by the inequality (2.15)
combined with (2.12) and (2.13) with j = i. Indeed, we have(
V (si, zi, ẑi)− V (si−1, zi−1, ẑi−1)

)
/hi

=
(
V (si, zi, ẑi)− V (si, zi−1 + hiA(si−1, zi−1), ẑi−1 + hiA(si−1, ẑi−1))

)
/hi

+
(
V (si, zi−1 + hiA(si−1, zi−1), ẑi−1 + hiA(si−1, ẑi−1))

− V (si−1, zi−1, ẑi−1)
)
/hi

≤ L(∥zi − (zi−1 + hiA(si−1, zi−1))∥+ ∥ẑi − (ẑi−1 + hiA(si−1, ẑi−1))∥)/hi

+ ω(si−1)V (si−1, zi−1, ẑi−1) + (η + η̂)L/4

≤ 3(η + η̂)L/4 + ω(si−1)V (si−1, zi−1, ẑi−1) + (η + η̂)L/4

≤ ω(si−1)V (si−1, zi−1, ẑi−1) + L(η + η̂).

It remains to prove the second half of (2.11). Assume to the contrary
that s∞ = limj→∞ sj < t + σ. Lemma 3 (i) asserts that {zj} and
{ẑj} are Cauchy sequences in X, since

lim sup
i,j→∞

∥zi − zj∥ ≤ lim sup
i,j→∞

(M + 3η/4)(si − sj) = 0,

lim sup
i,j→∞

∥ẑi − ẑj∥ ≤ lim sup
i,j→∞

(M + 3η̂/4)(si − sj) = 0.
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This implies that z∞ = limj→∞ zj and ẑ∞ = limj→∞ ẑj exist in X
and are in Ω(s∞) by (Ω2). By (Ω4), we choose a number h > 0 so
that h < t+ σ − s∞ and

{V (s∞ + h, z∞ + hA(s∞, z∞), ẑ∞ + hA(s∞, ẑ∞))− V (s∞, z∞, ẑ∞)}/h
≤ ω(s∞)V (s∞, z∞, ẑ∞) + (η + η̂)L/8. (2.17)

Let rj = s∞+h− sj−1 for j ≥ 1. Then we have rj < t+σ− sj−1 for

j ≥ 1 and rj → h as j → ∞. Since ĥj < 2hj = 2(sj − sj−1) → 0 as

j → ∞, there exists an integer j0 ≥ 1 such that ĥj < rj for j ≥ j0.

By the definition of ĥj, we have

{V (sj−1 + rj, zj−1 + rjA(sj−1, zj−1), ẑj−1 + rjA(sj−1, ẑj−1))

− V (sj−1, zj−1, ẑj−1)}/rj > ω(sj−1)V (sj−1, zj−1, ẑj−1) + (η + η̂)L/4

for j ≥ j0. Since sj−1 → s∞, zj−1 → z∞, ẑj−1 → ẑ∞ and rj → h as
j → ∞ and sj−1 + rj = s∞ + h for j ≥ 1, from (V 1) and (V 3) we
obtain

{V (s∞ + h, z∞ + hA(s∞, z∞), ẑ∞ + hA(s∞, ẑ∞))− V (s∞, z∞, ẑ∞)}/h
≥ ω(s∞)V (s∞, z∞, ẑ∞) + (η + η̂)L/4,

which contradicts to (2.17).
We now turn to the proof of the existence of pair (y, ŷ) ∈ Ω(t)×

Ω(t) satisfying (2.8)–(2.10). We apply Lemma 3 (ii) to show that
y = limj→∞ zj and ŷ = limj→∞ ẑj exist in X and are in Ω(t+σ) and
that they satisfy (2.8) and (2.9), that is,

∥x+ σA(t, x)− y∥ ≤ (3η/4 + η/4)σ ≤ ησ,

∥x̂+ σA(t, x̂)− ŷ∥ ≤ (3η̂/4 + η̂/4)σ ≤ η̂σ.

We note here that 1 + t ≤ et for t ≥ 0. We deduce from (2.14) that

V (sj, zj, ẑj) ≤ exp
(
hjω([t, t+ σ])

)(
V (sj−1, zj−1, ẑj−1) + hjL(η + η̂)

)
for j ≥ 1. Hence, we inductively show that

V (sj, zj, ẑj) ≤ exp
(
(sj − t)ω([t, t+ σ])

)(
V (t, x, x̂) + L(η + η̂)(sj − t)

)
for j ≥ 0. Thus we obtain (2.10) by letting j → ∞. □

Proposition 4. Let (τ, z) ∈ Ω and λ, µ ∈ (0, 1/2). Let R > 0
and M > 0 be numbers such that τ + R < b and ∥A(s, y)∥ ≤ M for
(s, y) ∈ Ω∩SR(τ, z). Let σ ∈ (0, R/(M+1)]. For each ε ∈ {λ, µ}, let
{(tεi , xε

i )}∞i=0 be a sequence in Ω satisfying the following conditions:

(i) τ = tε0 < tε1 < · · · < tεi < · · · < τ + σ and limi→∞ tεi =
τ + σ;

(ii) tεi − tεi−1 ≤ ε for i ≥ 1;
(iii) ∥xε

i−1 + (tεi − tεi−1)A(t
ε
i−1, x

ε
i−1)− xε

i∥ ≤ ε(tεi − tεi−1)/2 for
i ≥ 1, where xε

0 = z;
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(iv) if (s, y) ∈ Ω ∩ S(M+1)(tεi−tεi−1)
(tεi−1, x

ε
i−1), then

∥A(s, y)− A(tεi−1, x
ε
i−1)∥ ≤ ε/4 for i ≥ 1.

Let {sk}∞k=0 be a sequence such that sk < sk+1 for k ≥ 0 and

{sk ; k = 0, 1, 2, . . .} = {tλi ; i = 0, 1, 2, . . .} ∪ {tµj ; j = 0, 1, 2, . . .}.

Then there exists a sequence {(zλk , z
µ
k )}∞k=0 in X×X such that (zλk , z

µ
k ) ∈

Ω(sk) × Ω(sk) for each k ≥ 0 and the following three properties are
satisfied:

(a) if sk = tλi , then zλk = xλ
i ; if sk = tµj , then zµk = xµ

j ;
(b) for each ε = λ, µ, we have

k∑
j=q

∥zεj−1 + (sj − sj−1)A(sj−1, z
ε
j−1)− zεj∥

≤ 2ε(sk − sq−1) + 3ε
∑

tεi∈{sq ,...,sk}

(tεi − tεi−1)

for 1 ≤ q ≤ k and k ≥ 1;
(c) for k ≥ 0,

V (sk, z
λ
k , z

µ
k ) ≤ exp

(
(sk − τ)ω([τ, sk])

){
2L(λ+ µ)(sk − τ) + ηk(λ, µ)

}
,

where

ηk(λ, µ) = 3L
(
λ

∑
tλi ∈{s1,...,sk}

(tλi − tλi−1) + µ
∑

tµj ∈{s1,...,sk}

(tµj − tµj−1)
)
.

Proof. Set zε0 = z for each ε = λ, µ. Assume that sequences
{(sk, zλk )}l−1

k=0 and {(sk, zµk )}
l−1
k=0 in Ω with l ≥ 1 satisfy properties

(a)–(c) for 0 ≤ k ≤ l − 1. Let i and j be positive integers such
that tλi−1 < sl ≤ tλi and tµj−1 < sl ≤ tµj , respectively. By Lemma 3

(i) with ε = λ/2 we obtain ∥xλ
i−1 − z∥ ≤ (M + λ/2)(tλi−1 − τ). If

(s, y) ∈ S(M+1)(tλi −tλi−1)
(tλi−1, x

λ
i−1), then we get

|s− τ | ≤ |s− tλi−1|+ |tλi−1 − τ | < (M + 1)(tλi − tλi−1) + (tλi−1 − τ)

≤ (M + 1)σ ≤ R

and

∥y − z∥ ≤ ∥y − xλ
i−1∥+ ∥xλ

i−1 − z∥
< (M + 1)(tλi − tλi−1) + (M + λ/2)(tλi−1 − τ) < (M + 1)σ ≤ R.

Hence S(M+1)(tλi −tλi−1)
(tλi−1, x

λ
i−1) ⊂ SR(τ, z). This implies that

∥A(s, y)∥ ≤ M for (s, y) ∈ Ω ∩ S(M+1)(tλi −tλi−1)
(tλi−1, x

λ
i−1). (2.18)

We shall show that for each ε = λ, µ,

∥A(s, y)∥ ≤ M and ∥A(s, y)− A(sl−1, z
ε
l−1)∥ ≤ ε/2 (2.19)
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for (s, y) ∈ Ω ∩ S(M+1)(sl−sl−1)(sl−1, z
ε
l−1). By the definition of {sk}

we observe that

tλi−1 ≤ sl−1 < sl ≤ tλi , tµj−1 ≤ sl−1 < sl ≤ tµj ,

tλi−1 = sp for some 0 ≤ p ≤ l − 1, and tµj−1 = sq for some 0 ≤ q ≤ l − 1.

By the hypothesis (a) of induction, we have zλp = xλ
i−1 and zµq = xµ

j−1.

If 0 ≤ p < l − 1, then the set {sp+1, . . . , sl−1} contains no points tλi .
By the hypothesis (b) of induction, we have

∥zλk−1 + (sk − sk−1)A(sk−1, z
λ
k−1)− zλk∥ ≤ 2λ(sk − sk−1) (2.20)

for k = p + 1, . . . , l − 1. By (2.18) and (2.20), we use Lemma 3 (i)
with (t, x) = (tλi−1, x

λ
i−1) = (sp, z

λ
p ), ε = 2λ and r = (M+1)(tλi −tλi−1)

to obtain ∥zλl−1−zλp∥ ≤ (M+2λ)(sl−1−sp). This is valid for p = l−1.

If (s, y) ∈ S(M+1)(sl−sl−1)(sl−1, z
λ
l−1), then we get

|s− tλi−1| ≤ |s− sl−1|+ |sl−1 − tλi−1|
< (M + 1)(sl − sl−1) + (sl−1 − tλi−1) ≤ (M + 1)(tλi − tλi−1),

∥y − xλ
i−1∥ ≤ ∥y − zλl−1∥+ ∥zλl−1 − xλ

i−1∥
< (M + 1)(sl − sl−1) + (M + 2λ)(sl−1 − sp) ≤ (M + 1)(tλi − tλi−1).

This means that

S(M+1)(sl−sl−1)(sl−1, z
λ
l−1) ⊂ S(M+1)(tλi −tλi−1)

(tλi−1, x
λ
i−1). (2.21)

Thus, the claim (2.19) with ε = λ follows from (2.18) and condition
(iv). Indeed,

∥A(s, y)− A(sl−1, z
λ
l−1)∥

≤ ∥A(s, y)− A(tλi−1, x
λ
i−1)∥+ ∥A(tλi−1, x

λ
i−1)− A(sl−1, z

λ
l−1)∥

≤ λ/4 + λ/4 = λ/2

for (s, y) ∈ Ω ∩ S(M+1)(sl−sl−1)(sl−1, z
λ
l−1). We apply the above argu-

ment again, with p and i replaced by q and j, to show that (2.19)
holds true for ε = µ.

By virtue of (2.19), we deduce from Proposition 3 with t = sl−1,
(x, x̂) = (zλl−1, z

µ
l−1), η = 2λ, η̂ = 2µ and r = (M + 1)(sl − sl−1) that

there exists a pair (yλl , y
µ
l ) ∈ Ω(sl−1 + (sl − sl−1)) × Ω(sl−1 + (sl −

sl−1)) = Ω(sl)× Ω(sl) satisfying

∥zεl−1 + (sl − sl−1)A(sl−1, z
ε
l−1)− yεl ∥ ≤ 2ε(sl − sl−1) for ε = λ, µ,

(2.22)

V (sl, y
λ
l , y

µ
l ) ≤ exp

(
(sl − sl−1)ω([sl−1, sl])

)
×

(
V (sl−1, z

λ
l−1, z

µ
l−1) + 2L(λ+ µ)(sl − sl−1)

)
.
(2.23)
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We define (zλl , z
µ
l ) ∈ Ω(sl)× Ω(sl) by

zλl =

{
yλl for sl < tλi ,
xλ
i for sl = tλi

and zµl =

{
yµl for sl < tµj ,
xµ
j for sl = tµj .

If sl = tλi , then by condition (iii) we have

∥xλ
i−1 + (sl − tλi−1)A(t

λ
i−1, x

λ
i−1)− zλl ∥ ≤ (sl − tλi−1)λ/2,

while in view of (2.18) and (iv) we find, by applying Lemma 3 (i),
with ε = 2λ, η = λ/4, r = (M+1)(tλi −tλi−1) and (t, x) = (tλi−1, x

λ
i−1),

to (2.20) and (2.22), that

∥xλ
i−1 + (sl − tλi−1)A(t

λ
i−1, x

λ
i−1)− yλl ∥ ≤ (2λ+ λ/4)(sl − tλi−1).

These inequalities together yield

∥zλl − yλl ∥ ≤ ∥xλ
i−1 + (sl − tλi−1)A(t

λ
i−1, x

λ
i−1)− yλl ∥

+ ∥xλ
i−1 + (sl − tλi−1)A(t

λ
i−1, x

λ
i−1)− zλl ∥

≤ (9/4 + 1/2)λ(sl − tλi−1) ≤ 3λ
∑
tλi =sl

(tλi − tλi−1). (2.24)

Similarly, we get

∥zµl − yµl ∥ ≤ 3µ
∑
tµj =sl

(tµj − tµj−1). (2.25)

Combining (2.24) and (2.25) with (2.22), and adding the resulting
inequality to the inequality (b) with k = l− 1, we conclude that the
desired property (b) holds true for k = l.

Finally, we show that (c) is true for k = l. Using (2.24), (2.25)
and (V 1) we have

|V (sl, z
λ
l , z

µ
l )− V (sl, y

λ
l , y

µ
l )| ≤ L

(
∥zλl − yλl ∥+ ∥zµl − yµl ∥

)
≤ 3L

(
λ
∑
tλi =sl

(tλi − tλi−1) + µ
∑
tµj =sl

(tµj − tµj−1)

)
.
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Combining this and (2.23), we obtain

V (sl, z
λ
l , z

µ
l ) ≤ V (sl, y

λ
l , y

µ
l ) + 3L

(
λ
∑
tλi =sl

(tλi − tλi−1) + µ
∑
tµj =sl

(tµj − tµj−1)

)
≤ exp

(
(sl − sl−1)ω([sl−1, sl])

)(
V (sl−1, z

λ
l−1, z

µ
l−1) + 2L(λ+ µ)(sl − sl−1)

)
+ 3L

(
λ
∑
tλi =sl

(tλi − tλi−1) + µ
∑
tµj =sl

(tµj − tµj−1)

)
≤ exp

(
(sl − τ)ω([τ, sl])

)(
2L(λ+ µ)(sl − τ) + ηl−1(λ, µ)

)
+ 3L

(
λ
∑
tλi =sl

(tλi − tλi−1) + µ
∑
tµj =sl

(tµj − tµj−1)

)
≤ exp

(
(sl − τ)ω([τ, sl])

)(
2L(λ+ µ)(sl − τ) + ηl(λ, µ)

)
.

This means that (c) is true for k = l, and the proof is completed. □
The following is a local existence theorem of solutions to (IVP; τ, z).

Theorem 3. Let (τ, z) ∈ Ω. Let R > 0 and M > 0 be numbers
such that τ + R < b and ∥A(s, y)∥ ≤ M for (s, y) ∈ Ω ∩ SR(τ, z).
Let σ ∈ (0, R/(M +1)]. Then there exists a solution u to (IVP; τ, z)
on [τ, τ + σ] such that

∥u(t)− u(s)∥ ≤ M |t− s| for t, s ∈ [τ, τ + σ].

Proof. Let ε ∈ (0, 1/2). Then, by Proposition 2, there exists
a sequence {(tεi , xε

i )}∞i=0 in Ω satisfying (i)–(iv) of Proposition 4. Let
uε : [τ, τ + σ) → X be the function defined by uε(t) = xε

i for t ∈
[tεi , t

ε
i+1) and i ≥ 0. We want to prove that the family {uε} converges

in X uniformly on [τ, τ + σ) as ε ↓ 0.
Let λ, µ ∈ (0, 1/2) and let {sk}∞k=0 be a sequence defined as in

Proposition 4. Then there exists a sequence {(zλk , z
µ
k )} in X×X sat-

isfying (zλk , z
µ
k ) ∈ Ω(sk)×Ω(sk) for k ≥ 0 and (a)–(c) of Proposition

4. We first prove that

sup
k≥0

∥zλk − zµk∥ → 0 as λ, µ ↓ 0. (2.26)

Assume to the contrary that there exist ε0 > 0, two null sequences
{λn} and {µn} of positive numbers, and a sequence {kn} of nonneg-
ative integers such that

∥zλn
kn

− zµn

kn
∥ ≥ ε0 for n ≥ 1. (2.27)

Since the sequence {skn} is bounded as n → ∞, it has a convergent

subsequence {sknl
}. Since (z

λnl
knl

, z
µnl
knl

) ∈ Ω(sknl
) × Ω(sknl

) for l ≥ 1,

and since

V (sknl
, z

λnl
knl

, z
µnl
knl

) ≤ 5L exp(σω([τ, τ + σ]))(λnl
+ µnl

)σ for l ≥ 1
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by Proposition 4 (c), we deduce from condition (V 4) that liml→∞ ∥zλnl
knl

−
z
µnl
knl

∥ = 0. This is a contradiction to (2.27).

Let t ∈ [τ, τ+σ). Let k ≥ 1 be an integer such that t ∈ [sk−1, sk).
Let i and j be positive integers such that tλi−1 ≤ sk−1 < sk ≤ tλi and
tµj−1 ≤ sk−1 < sk ≤ tµj , respectively. Then we have, in a similar way

to the derivation of (2.21), ∥zλk−1 − xλ
i−1∥ ≤ (M + 1)(tλi − tλi−1) and

∥zµk−1 − xµ
j−1∥ ≤ (M + 1)(tµj − tµj−1). Since

∥uλ(t)− uµ(t)∥ ≤ ∥xλ
i−1 − zλk−1∥+ ∥zλk−1 − zµk−1∥+ ∥zµk−1 − xµ

j−1∥
≤ (M + 1)(λ+ µ) + ∥zλk−1 − zµk−1∥,

we observe from (2.26) that the family {uε(t)} is uniformly Cauchy
on [τ, τ + σ). By Lemma 3 (i) we obtain

∥uε(t)− uε(s)∥ ≤ (M + ε/2)(|t− s|+ 2ε) for t, s ∈ [τ, τ + σ)

and ε ∈ (0, 1/2). These facts imply that there exists a continuous
function u defined on [τ, τ+σ] such that supt∈[τ,τ+σ) ∥uε(t)−u(t)∥ →
0 as ε ↓ 0. It is clear that u(τ) = z and ∥u(t)− u(s)∥ ≤ M |t− s| for
t, s ∈ [τ, τ + σ]. Let τ ε : [τ, τ + σ) → R be the function defined by
τ ε(t) = tεi for t ∈ [tεi , t

ε
i+1) and i ≥ 0. Then τ ≤ τ ε(t) ≤ t < τ+σ and

lim
ε↓0

τ ε(t) = t for t ∈ [τ, τ + σ). From Proposition 4 (iii) we deduce

that∥∥∥∥uε(tεi )− uε(0)−
∫ tεi

τ

A(τ ε(s), uε(s)) ds

∥∥∥∥ ≤ ε(tεi − τ)/2 ≤ εσ/2

(2.28)

for i ≥ 0. Since (τ ε(t), uε(t)) ∈ Ω and ∥A(τ ε(t), uε(t))∥ ≤ M for
t ∈ [τ, τ+σ) and since (τ ε(t), uε(t)) → (t, u(t)), we have (t, u(t)) ∈ Ω
and A(τ ε(t), uε(t)) → A(t, u(t)) for t ∈ [τ, τ + σ) as ε ↓ 0, by (Ω2)
and (Ω1) respectively. From (2.28) we obtain

u(t)− u(0) =

∫ t

τ

A(s, u(s)) ds

for t ∈ [τ, τ + σ). Since t → A(t, u(t)) is continuous on [τ, τ + σ], u
is a solution to (IVP;τ, z) on [τ, τ + σ]. Since the uniqueness follows
from Proposition 1, the proof is completed. □

3. Global Existence of Solutions

In this section we investigate the intervals where the solutions
to (IVP; τ, z) exist under assumptions (Ω1)–(Ω4). We follow the
arguments in [4], [6] and [7].

Proposition 5. Let (τ, z) ∈ Ω. Then there exists c0 ∈ (τ, b)
such that for any c ∈ (τ, c0), the following properties are satisfied:

(i) (IVP; τ, z) has a solution u on [τ, c].
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(ii) For any ε > 0, there exists a number r ∈ (0, c − τ) which
satisfies the following:
(a) (IVP; t, x) has a solution v on [t, c] for any (t, x) ∈

Ω ∩ Sr(τ, z),
(b) if (t, x), (t̂, x̂) ∈ Ω ∩ Sr(τ, z), v and v̂ are solutions to

(IVP; t, x) on [t, c] and (IVP; t̂, x̂) on [t̂, c] respectively,
then V

(
s, v(s), v̂(s)

)
< ε for s ∈ [t, c] ∩ [t̂, c].

Proof. Let R > 0 and M > 0 be numbers such that τ +R < b
and ∥A(t, x)∥ ≤ M for (t, x) ∈ Ω ∩ SR(τ, z), and set c0 = τ +
R/(M + 1). We shall show that for any number c ∈ (τ, c0), the
desired properties are satisfied. The first property (i) follows from
Theorem 3.

We shall show that such a number c has the second property

(ii). Let ε > 0. We take δ > 0 so that exp
(∫ s

τ

ω(θ)dθ
)
δ < ε for

any s ∈ [a, c]. Next, we choose r > 0 so small that τ + r < c ≤
τ + (R− r)/(M + 1)− r and

2L(M + 1)r ≤ exp
(∫ s

τ

ω(θ)dθ
)
δ (3.1)

for s ∈ [τ−r, τ+r]∩ [a, b). To prove (a), let (t, x) ∈ Ω∩Sr(τ, z). Set
r̂ = R− r. Since τ + r < c < τ +R/(M +1) < τ +R, we have r̂ > 0.
Moreover, we have t+ r̂ = (t− τ) + τ + r̂ ≤ r + τ + r̂ = τ +R < b.
For (s, y) ∈ Sr̂(t, x), we have

|s− τ | ≤ |s− t|+ |t− τ | < r̂ + r = R

and

∥y − z∥ ≤ ∥y − x∥+ ∥x− z∥ < r̂ + r = R.

Thus Sr̂(t, x) ⊂ SR(τ, z). Since ∥A(s, y)∥ ≤ M for (s, y) ∈ Ω ∩
Sr̂(t, x) and t+ r̂ < b, (IVP; t, x) has a solution v on [t, t+ r̂/(M+1)]
by Theorem 3. Since t+ r̂/(M + 1) > τ − r+ (R− r)/(M + 1) ≥ c,
we certainly infer that v is defined on [t, c].

To prove (b), let v̂ be a solution to (IVP; t̂, x̂) on [t̂, c] with (t̂, x̂) ∈
Ω ∩ Sr(τ, z). Assume that t̂ ≤ t without loss of generality. Then

∥v̂(t)− v(t)∥ = ∥v̂(t)− x∥ ≤ ∥v̂(t)− x̂∥+ ∥x̂− z∥+ ∥z − x∥
≤ ∥v̂(t)− v̂(t̂)∥+ 2r ≤ M(t− t̂) + 2r

= M((t− τ) + (τ − t̂)) + 2r ≤ 2(M + 1)r.

By Remark 1 and (3.1), we have

V
(
t, v(t), v̂(t)

)
≤ 2L(M + 1)r ≤ exp

(∫ t

τ

ω(θ)dθ
)
δ.
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Thus, by Proposition 1, we obtain

V
(
s, v(s), v̂(s)

)
≤ exp

(∫ s

t

ω(θ)dθ
)
V
(
t, v(t), v̂(t)

)
≤ exp

(∫ s

τ

ω(θ)dθ
)
δ < ε

for s ∈ [t, c]. □

Let (τ, z) ∈ Ω and let u be a solution to (IVP; τ, z) which is
noncontinuable to the right. We denote its final time by T (τ, z). It
is clear that τ < T (τ, z) ≤ b and u is a solution to (IVP; τ, z) on
[τ, T (τ, z)). Since (IVP; τ, z) has a unique solution, T (τ, z) ∈ (τ, b] is
well-defined for every (τ, z) ∈ Ω. We consider T as a function from
the metric space Ω into the extended real line R ∪ {∞} endowed
with the usual topology.

Proposition 6. Let (τ, z) ∈ Ω and let d be a number such that
τ < d < T (τ, z). Then there exists a number r > 0 with τ + r < b
such that T (t, x) > d for any (t, x) ∈ Ω ∩ Sr(τ, z).

Proof. Let (τ, z) ∈ Ω and let d be a number such that τ <
d < T (τ, z). Let u be a solution to (IVP; τ, z) on [τ, d]. Since the
set {

(
s, u(s)

)
; s ∈ [τ, d]} is compact in Ω and A is continuous on

Ω, there exists a number M > 0 such that ∥A
(
s, u(s)

)
∥ < M for

s ∈ [τ, d].
We first prove that there exists a number R > 0 such that

∥A(s, x)∥ ≤ M for any s ∈ [τ, d] and x ∈ Ω(s) satisfying V
(
s, x, u(s)

)
<

R. Assume to the contrary that for any n ≥ 1 there exist sn ∈ [τ, d]
and xn ∈ Ω(sn) such that V

(
sn, xn, u(sn)

)
< 1/n and ∥A(sn, xn)∥ >

M . Since the sequence {sn} is bounded, there exists a convergent
subsequence {snk

} converging to some number s ∈ [τ, d]. Since
V
(
snk

, xnk
, u(snk

)
)
→ 0 as k → ∞, we have ∥xnk

− u(snk
)∥ → 0

as k → ∞ by (V 4). Since u(snk
) → u(s) as k → ∞, we have

(snk
, xnk

) → (s, u(s)) as k → ∞. Thus, by (Ω1), we have ∥A
(
s, u(s)

)
∥ ≥

M . This contradicts to the definition of M .
By Proposition 5, we can choose a number c such that τ < c < d

and properties (i) and (ii) in Proposition 5 are satisfied for (τ, z). Let

ε > 0 be a number such that ε exp
(∫ s

c

ω(θ)dθ
)
≤ R for s ∈ [c, d],

and then choose r > 0 so that τ + r < c and Proposition 5 (ii) is
satisfied for the number ε. Let (t, x) ∈ Ω∩Sr(τ, z). We want to show
that d < T (t, x). To this end, assume to the contrary that T (t, x) ≤
d and let v be a noncontinuable solution to (IVP; t, x). Note by
Proposition 5 (ii) that [t, c] ⊂ [t, T (t, x)) and V

(
c, v(c), u(c)

)
< ε.
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By Proposition 1, we have

V
(
s, v(s), u(s)

)
≤ V

(
c, v(c), u(c)

)
exp

(∫ s

c

ω(θ)dθ
)

< ε exp
(∫ s

c

ω(θ)dθ
)
≤ R

for s ∈
[
c, T (t, x)

)
. From the fact proved first, we observe that

∥A
(
s, v(s)

)
∥ ≤ M for s ∈

[
c, T (t, x)

)
. Thus ∥v(t)−v(s)∥ ≤ M |t−s|

for t, s ∈
[
c, T (t, x)

)
. Therefore, w = lims↑T (t,x) v(s) exists in X and

(T (t, x), w) ∈ Ω by (Ω2). In view of Theorem 3, this contradicts
the fact that v is noncontinuable to the right of T (t, x). Hence
T (t, x) > d. □

Proposition 7. Let (τ, z) ∈ Ω and let {(τn, zn)}n≥1 be a se-
quence in Ω converging to (τ, z) as n → ∞. For n ≥ 1, let un

be a noncontinuable solution to (IVP; τn, zn), and let u be a non-
continuable solution to (IVP; τ, z). Assume that d ∈ (τ, b) satisfies
d < T (τn, zn) for n ≥ 1. Then the following assertions hold:

(i) d < T (τ, z).
(ii) For any σ ∈ (τ, d), the sequence {un} converges to u uni-

formly on [σ, d] as n → ∞.

Proof. Let c ∈ (τ, d) be a number with the properties (i) and
(ii) in Proposition 5, and let τ < σ < c. We may assume that
τn < σ < c < d < T (τn, zn) for n ≥ 1, because limn→∞ τn = τ < d.
Let ε > 0. Let r ∈ (0, c − τ) be a number with the property (ii) in
Proposition 5 for the number ε. Since (τn, zn) → (τ, z) as n → ∞,
there exists an integer n0 ≥ 1 such that (τn, zn) ∈ Ω ∩ Sr(τ, z) for
n ≥ n0. By Proposition 5 (ii-b) we observe that if n,m ≥ n0, then
V
(
s, um(s), un(s)

)
≤ ε for s ∈ [σ, c] and

V
(
t, um(t), un(t)

)
≤ exp

(∫ t

c

ω(θ)dθ
)
V
(
c, um(c), un(c)

)
≤ ε exp

(
(d− c)ω([c, d])

)
for t ∈ [c, d]. By (V 4), the sequence {un} is uniformly Cauchy on
[σ, d]. Define û(t) = limn→∞ un(t) for t ∈ [σ, d]. Then we observe
that û′(t) = A(t, û(t)) for t ∈ [σ, d]. By Proposition 5, we observe
that if n ≥ n0, then V

(
s, un(s), u(s)

)
≤ ε for s ∈ [σ, c]. Thus,

we have û(σ) = limn→∞ un(σ) = u(σ). Hence û is a solution to(
IVP; σ, u(σ)

)
on [σ, d]. Note that u is a solution to

(
IVP; τ, z

)
on

[τ, σ]. Since the function v : [τ, d] → X defined by v(t) = u(t) for
t ∈ [τ, σ] and v(t) = û(t) for t ∈ [σ, d] is a solution to

(
IVP; τ, z

)
on [τ, d], we have T (τ, z) > d. Since v(t) = u(t) for t ∈ [τ, d]
by uniqueness, we observe that the sequence {un} converges to u
uniformly on [σ, d] as n → ∞. □
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Proposition 8. T is a continuous function from Ω into R ∪
{∞}.

Proof. Let (τ, z) ∈ Ω and let {(tn, xn)}n≥1 be a sequence in Ω
converging to (τ, z). Let τ < d < T (τ, z). Since limn→∞(tn, xn) =
(τ, z), we deduce from Proposition 6 that d < T (tn, xn) for suffi-
ciently large integers n. Thus d ≤ lim infn→∞ T (tn, xn). Since d is
arbitrary, we obtain T (τ, z) ≤ lim infn→∞ T (tn, xn). Note that

τ < T (τ, z) ≤ lim inf
n→∞

T (tn, xn) ≤ lim sup
n→∞

T (tn, xn),

and let d satisfy τ < d < lim supn→∞ T (tn, xn). Then there ex-
ists a subsequence {(tnk

, xnk
)}k≥1 of {(tn, xn)}n≥1 such that d <

T (tnk
, xnk

) for k ≥ 1. Since (tnk
, xnk

) → (τ, z) as k → ∞, it follows
from Proposition 7 that d < T (τ, z). Since d is arbitrary chosen,
we conclude that lim supn→∞ T (tn, xn) ≤ T (τ, z). Hence, we obtain
limn→∞ T (tn, xn) = T (τ, z). □

A global existence theorem is given as follows.

Theorem 4. Let C be a connected component of Ω and set
d = sup{t ∈ [a, b) ; C(t) ̸= ∅}. Then for each (τ, z) ∈ C, (IVP; τ, z)
has a unique solution on [τ, d) and the interval [τ, d) is the maximal
interval of existence of solution. In particular, if Ω is connected,
then for (τ, z) ∈ Ω, (IVP; τ, z) has a unique solution on [τ, b).

Proof. We shall show that T : Ω → R ∪ {∞} takes the con-
stant value d on C. To prove that T (C) is a singleton set, let
c, ĉ ∈ T (C) = {T (t, x) ; (t, x) ∈ C}. Without loss of generality,
we assume that c ≤ ĉ, and set

C1 = {(t, x) ∈ C ; T (t, x) ≤ c} and C2 = {(t, x) ∈ C ; T (t, x) > c}.
If C = C1, then ĉ ≤ c, and so T (C) is a singleton set {c}. To
prove that C = C1, we have only to prove that C2 = ∅ because C1

and C2 are disjoint. To this end, assume to the contrary that C2 is
nonempty. Since T is continuous on C by Proposition 8, C2 is an
open subset of C. Let {(tn, xn)}n≥1 be a sequence in C2 converging
to (t, x) ∈ C. By the definition of C2, we have c < T (tn, xn) for
n ≥ 1. Proposition 7 asserts that c < T (t, x). This implies that C2

is a closed subset of C. It follows that C = C1 ∪ C2, and C1 and C2

are disjoint, nonempty and open in C. This is impossible because C
is connected, and so we conclude that C2 = ∅.

Since T (C) is a singleton set, we can write T (C) = {c} for some
c ∈ R ∪ {∞}. Since t < T (t, x) = c for (t, x) ∈ C, we obtain
d = sup{t ; C(t) ̸= ∅} ≤ c. On the other hand, let s < c. Note
that c = T (t, x) for some (t, x) ∈ C. If t < s then a noncontinuable
solution u to (IVP; t, x) satisfies (s, u(s)) ∈ C, and so C(s) ̸= ∅. This
implies that s ≤ d. If s ≤ t then s ≤ t ≤ d because C(t) ̸= ∅. Since
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s is arbitrarily chosen such that s < c, we have c ≤ d. Consequently,
we get T (C) = {d}. □

Theorem 1 is a consequence of Proposition 1 and Theorems 3
and 4.

4. Proof of Theorem 2

Proof of the necessity part. Let (τ, z) ∈ Ω and u(t) =
U(t, τ)z for t ∈ [τ, b). Let C be a connected component of Ω such
that (τ, z) ∈ C. Since {(t, u(t)); t ∈ [τ, b)} is a connected set in Ω
containing (τ, z), we have (t, u(t)) ∈ C for t ∈ [τ, b) by the maximal-
ity of C; hence C(t) ̸= ∅ for t ∈ [τ, b). This means that (Ω5) holds
true. Since u(τ + h) ∈ Ω(τ + h) for h ∈ (0, b− τ), we have

h−1d(z + hA(τ, z),Ω(τ + h)) ≤ h−1∥z + hA(τ, z)− u(τ + h)∥
= ∥A(τ, u(τ))− h−1(u(τ + h)− u(τ))∥
→ ∥A(τ, u(τ))− u′(τ)∥ = 0

as h ↓ 0. Thus, (Ω3) also holds true. It remains to show that (Ω4)
holds true. We set

V0(t, x, y) = sup
σ∈[t,b)

{
exp

(
−
∫ σ

t

ω(θ) dθ

)
∥U(σ, t)x− U(σ, t)y∥

}
for t ∈ [a, b) and x, y ∈ Ω(t). From (E1) and (E3) we see that

∥x− y∥ ≤ V0(t, x, y) ≤ L∥x− y∥ for t ∈ [a, b) and x, y ∈ Ω(t).
(4.1)

For any x, y ∈ X, t ∈ [a, b) and x′, y′ ∈ Ω(t), we have

V0(t, x
′, y′)− L (∥x− x′∥+ ∥y − y′∥)

≤ L∥x′ − y′∥ − L (∥x− x′∥+ ∥y − y′∥) ≤ L∥x− y∥.

Thus, we can define V : [a, b)×X ×X → [0,∞) by

V (t, x, y) = sup
(x′,y′)∈Ω(t)×Ω(t)

{
max

(
0, V0(t, x

′, y′)− L (∥x− x′∥+ ∥y − y′∥)
)}

for (t, x, y) ∈ [a, b)×X ×X. Since

V0(t, x
′, y′) ≤ V0(t, x

′, x) + V0(t, x, y) + V0(t, y, y
′)

≤ V0(t, x, y) + L (∥x− x′∥+ ∥y − y′∥)

for t ∈ [a, b) and (x, y), (x′, y′) ∈ Ω(t) × Ω(t), we have V (t, x, y) ≤
V0(t, x, y) for t ∈ [a, b) and (x, y) ∈ Ω(t) × Ω(t). The converse
inequality follows readily from the definition of V . Thus V (t, x, y) =
V0(t, x, y) for t ∈ [a, b) and (x, y) ∈ Ω(t)×Ω(t). This combined with
(4.1) implies that the functional V satisfies (V 4)′ and (V 2).
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Let (x, y), (x̂, ŷ) ∈ X × X and t ∈ [a, b). For any (x′, y′) ∈
Ω(t)× Ω(t), we have

V0(t, x
′, y′)− L (∥x− x′∥+ ∥y − y′∥)

−
(
V0(t, x

′, y′)− L (∥x̂− x′∥+ ∥ŷ − y′∥)
)

= L (∥x̂− x′∥+ ∥ŷ − y′∥)− L (∥x− x′∥+ ∥y − y′∥)
≤ L (∥x̂− x∥+ ∥ŷ − y∥) ,

which implies that

V0(t, x
′, y′)− L (∥x− x′∥+ ∥y − y′∥) ≤ V (t, x̂, ŷ) + L(∥x̂− x∥+ ∥ŷ − y∥)

and

V (t, x, y) ≤ V (t, x̂, ŷ) + L(∥x̂− x∥+ ∥ŷ − y∥).

Thus, we obtain (V 1).
To prove (V 3), let tn ∈ [a, b) with tn → t ∈ [a, b) as n → ∞ and

let (xn, yn) ∈ Ω(tn) × Ω(tn) with (xn, yn) → (x, y) ∈ Ω(t) × Ω(t) as
n → ∞. Let σ ∈ (t, b) and N a number such that σ > tn for n ≥ N .
Then we have

V0(tn, xn, yn) ≥ exp

(
−
∫ σ

tn

ω(θ) dθ

)
∥U(σ, tn)xn − U(σ, tn)yn∥ for n ≥ N .

Taking the inferior limit as n → ∞, we have

lim inf
n→∞

V0(tn, xn, yn) ≥ exp

(
−
∫ σ

t

ω(θ) dθ

)
∥U(σ, t)x− U(σ, t)y∥.

By (4.1), we have V0(tn, xn, yn) ≥ ∥xn − yn∥ for n ≥ 1. Taking the
inferior limit as n → ∞, we see that the above inequality is also
valid for σ = t. Thus, we have

lim inf
n→∞

V0(tn, xn, yn) ≥ V0(t, x, y).

Finally, we prove the dissipativity condition

D+V (t, x, y)(A(t, x), A(t, y)) ≤ ω(t)V (t, x, y) for x, y ∈ Ω(t) and t ∈ [a, b).

For this purpose, let t ∈ [a, b) and x, y ∈ Ω(t). Since

∥U(σ, t+ h)U(t+ h, t)x− U(σ, t+ h)U(t+ h, t)y∥

= exp

(∫ σ

t

ω(θ) dθ

)
· exp

(
−
∫ σ

t

ω(θ) dθ

)
∥U(σ, t)x− U(σ, t)y∥

≤ exp

(∫ σ

t

ω(θ) dθ

)
V0(t, x, y)

= exp

(∫ t+h

t

ω(θ) dθ

)
· exp

(∫ σ

t+h

ω(θ) dθ

)
V0(t, x, y)
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for h ∈ (0, b− t) and σ ∈ [t+ h, b), we have

V0(t+ h, U(t+ h, t)x, U(t+ h, t)y) ≤ exp

(∫ t+h

t

ω(θ) dθ

)
V0(t, x, y)

(4.2)

for h ∈ (0, b − t). Since V (t, x, y) = V0(t, x, y) for t ∈ [a, b) and
x, y ∈ Ω(t) and since V (t, ·, ·) is Lipschitz continuous on X×X with
Lipschitz constant L, by (4.2) we have

(V (t+ h, x+ hA(t, x), y + hA(t, y))− V (t, x, y))/h

≤ (V (t+ h, U(t+ h, t)x, U(t+ h, t)y)− V (t, x, y))/h

+ L(∥x+ hA(t, x)− U(t+ h, t)x∥+ ∥y + hA(t, y)− U(t+ h, t)y∥)/h

≤ 1

h

(
exp

(∫ t+h

t

ω(θ) dθ

)
− 1

)
V (t, x, y)

+ L(∥x+ hA(t, x)− U(t+ h, t)x∥+ ∥y + hA(t, y)− U(t+ h, t)y∥)/h
→ ω(t)V (t, x, y) as h ↓ 0.

This means that the desired dissipativity condition holds true. □
Proof of the sufficiency part. By condition (Ω5), Theorem

4 asserts that for any (τ, z) ∈ Ω, there exists a unique global solu-
tion u = u(·; τ, z) to (IVP;τ, z) on [τ, b). Define {U(t, τ)}(t,τ)∈∆ by
U(t, τ)z = u(t; τ, z) for (τ, z) ∈ Ω and t ∈ [τ, b). Then we see that
for each (t, τ) ∈ ∆, U(t, τ) maps Ω(τ) to Ω(t). We immediately ob-
tain (E1) from the uniqueness of solutions to initial value problem
(IVP;τ, z). By Proposition 1, we find, noting (V 4)′, that

∥U(t, τ)z − U(t, τ)ẑ∥ ≤ V (t, U(t, τ)z, U(t, τ)ẑ)

≤ exp

(∫ t

τ

ω(θ)dθ

)
V (τ, z, ẑ) ≤ L exp

(∫ t

τ

ω(θ)dθ

)
∥z − ẑ∥

for z, ẑ ∈ Ω(τ) and (t, τ) ∈ ∆, namely, (E3) holds true.
It remains to show that (E2) holds true. Let (tn, τn), (t, τ) ∈ ∆,

zn ∈ Ω(τn) and z ∈ Ω(τ) and suppose that (tn, τn) → (t, τ) and zn →
z as n → ∞. We have to show that u(tn; τn, zn) = U(tn, τn)zn →
u(t; τ, z) = U(t, τ)z as n → ∞. First, we assume that t > τ . Let
d ∈ (τ, b) be a number such that t < d and take σ ∈ (τ, t). Since
tn → t as n → ∞, we may assume that tn ∈ [σ, d] for n ≥ 1. Then,
we deduce from Proposition 7 that limn→∞ u(·; τn, zn) = u(·; τ, z)
uniformly on [σ, d], and hence u(tn; τn, zn) → u(t; τ, z) as n → ∞.
Next, we assume that t = τ . Since u(t; τ, z) = U(t, τ)z = z, we need
to show that u(tn; τn, zn) → z as n → ∞. To this end, let M > 0
and R > 0 be numbers such that τ + R < b and ∥A(s, y)∥ ≤ M for
(s, y) ∈ Ω ∩ SR(τ, z). Since (τn, zn) → (τ, z) as n → ∞, there exists
an integer N ≥ 1 such that τn + R/2 < b and (τn, zn) ∈ SR/2(τ, z)
for n ≥ N . Take r = R/2. Thus, we observe that if n ≥ N , then
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Sr(τn, zn) ⊂ SR(τ, z) and ∥A(s, y)∥ ≤ M for (s, y) ∈ Ω ∩ Sr(τn, zn).
Let σ ∈ (0, r/(M + 1)). Thus, we deduce from Theorem 3 that if
n ≥ N then

∥u(s; τn, zn)− u(ŝ; τn, zn)∥ ≤ M |s− ŝ|

for s, ŝ ∈ [τn, τn + σ]. Since τn → τ and tn → t = τ as n → ∞,
we find that tn ∈ [τn, τn + σ] for sufficient large n, and so the above
inequality implies that

∥u(tn; τn, zn)− zn∥ ≤ M |tn − τn|

for sufficient large n. Since zn → z as n → ∞, we conclude that
u(tn; τn, zn) → z as n → ∞. □

5. Application to Wave Equations

In this section, we apply Theorem 1 to the initial value problem
for nonlinear wave equation with dissipation:{

∂tu = ∂xv, ∂tv = ∂xσ(t, u)− γv,
u(0, x) = u0(x), v(0, x) = v0(x) for x ∈ R and t ∈ [0,∞).

(5.1)

Here γ is a positive constant and σ(·, ·) a real-valued smooth function
on [0,∞) × R satisfying σ(t, 0) = 0 for t ∈ [0,∞). We make the
following assumptions on the function σ.

(i) There exists a positive constant δ0 such that σr(t, r) ≥ δ0
for (t, r) ∈ [0,∞)× R.

(ii) There exists a constant L0 > 0 such that

∥σr(t, ·)∥L∞ ≤ L0, ∥σrr(t, ·)∥L∞ ≤ L0

and ∥σrrr(t, ·)∥L∞ ≤ L0 for t ∈ [0,∞).

(iii) There exists a continuous integrable function h : [0,∞) →
[0,∞) such that

∥σtr(t, ·)∥L∞ ≤ h(t) for t ∈ [0,∞).

Let X = L2(R) × L2(R) with the standard norm ∥(u, v)∥ =
(∥u∥2L2 + ∥v∥2L2)1/2, and define H : [0,∞)×H2(R)×H2(R) → R by

H(t, u, v) = H(0)(t, u, v) +H(1)(t, u, v) +H(2)(t, u, v)

=

∫ ∞

−∞

(∫ u

0

σ(t, r)dr +
1

2
v2
)
dx

+
1

2

∫ ∞

−∞

(
σr(t, u)(∂xu)

2 + (γu+ ∂xv)
2
)
dx

+
1

2

∫ ∞

−∞

(
σr(t, u)(∂

2
xu)

2 + (γ∂xu+ ∂2
xv)

2
)
dx
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for (u, v) ∈ H2(R)×H2(R) and t ∈ [0,∞). The assumptions imply
that there exist constants C0 ≥ c0 > 0 such that

c0∥(u, v)∥2H2×H2 ≤ H(t, u, v) ≤ C0∥(u, v)∥2H2×H2 (5.2)

for (u, v) ∈ H2(R)×H2(R) and t ∈ [0,∞). The following proposition
will be used in order to convert the problem (5.1) into the initial value
problem for a continuous mapping A : Ω (⊂ [0,∞)×X) → X.

Proposition 9. Let t ∈ [0,∞) and (u0, v0) ∈ H2(R)×H2(R).
Then there exists λ0 > 0 such that for any λ ∈ (0, λ0], the problem

(uλ − u0)/λ = ∂xvλ, (5.3)

(vλ − v0)/λ = σr(t, u0)∂xuλ − γvλ (5.4)

has a solution (uλ, vλ) ∈ H3(R) × H3(R) satisfying the following
properties:

(i) The family {(uλ, vλ)} converges to (u0, v0) in H2(R)×H2(R)
as λ ↓ 0.

(ii) There exists a nondecreasing continuous function g : [0,∞) →
[0,∞) with g(0) = 0, depending only γ and σ(·, ·), such that

1

λ

(
H(t+ λ, uλ, vλ)−H(t, u0, v0)

)
≤ 1

2λ

(∫ t+λ

t

h(s)ds

)
∥uλ∥2H2 − γδ0∥∂xuλ∥2H1

+ (1 + λ2)g(∥(u0, v0)∥H2×H2 ∨ ∥(uλ, vλ)∥H2×H2)

× (∥∂xu0∥H1 ∨ ∥∂xuλ∥H1)2 (5.5)

for λ ∈ (0, λ0].

Here and subsequently, we use notation a ∨ b = max{a, b} for a, b ∈
R.

Proof. Let t ∈ [0,∞) and (u0, v0) ∈ H2(R) × H2(R). Define
D(L(t)) = H1(R)×H1(R) and

L(t)(u, v) = (∂xv, σr(t, u0)∂xu− γv)

for (u, v) ∈ D(L(t)). Let β0 be a positive number such that β0 ≥
L0∥∂xu0∥L∞ /(2

√
δ0). Since

∥∂x
(
σr(t, u0)

)
∥L∞

2
√
δ0

=
∥σrr(t, u0)∂xu0∥L∞

2
√
δ0

≤ β0,

we deduce from [8, Proposition 5.7] that L(t)−β0I ism-dissipative in
X = L2(R)×L2(R) with inner product

(
(u, v), (û, v̂)

)
= (

∫∞
−∞ σr(t, u0)uû+

vv̂dx)1/2 for (u, v), (û, v̂) ∈ X. Choose λ0 > 0 so that λ0β0 < 1.

Then, for λ ∈ (0, λ0], (uλ, vλ) :=
(
I − λL(t)

)−1
(u0, v0) satisfies (5.3)

and (5.4). Note that D(L(t)k) = Hk(R)×Hk(R) for k = 2, 3. It fol-
lows from the proof of [8, Proposition 5.7] that (uλ, vλ) ∈ D

(
L(t)3

)
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and L(t)k(uλ, vλ) = (I−λL(t))−1L(t)k(u0, v0) for k = 0, 1, 2 and that
the family {L(t)k(uλ, vλ)} converges to L(t)k(u0, v0) in X as λ ↓ 0,
for k = 0, 1, 2. Hence the family {(uλ, vλ)} converges to (u0, v0) in
H2(R)×H2(R) as λ ↓ 0.

We shall show (ii). Since σ(t, 0) = 0, we have σ(t, uλ) ∈ H1(R)
and ∂xσ(t, uλ) = σr(t, uλ)∂xuλ. By (5.4), we get

1

λ
(vλ − v0) = ∂xσ(t, uλ)− γvλ +

(
σr(t, u0)− σr(t, uλ)

)
∂xuλ.

We multiply this equality and (5.3) by vλ and σ(t, uλ), respectively.
The sum of these two equations gives us

1

λ
σ(t, uλ)(uλ − u0) +

1

λ
vλ(vλ − v0)

= ∂x
(
vλσ(t, uλ)

)
− γv2λ + vλ

(
σr(t, u0)− σr(t, uλ)

)
∂xuλ.

Integrating this equality, we have

1

λ

∫ ∞

−∞
σ(t, uλ)(uλ − u0)dx+

1

λ

∫ ∞

−∞
vλ(vλ − v0)dx

= −γ

∫ ∞

−∞
v2λdx+

∫ ∞

−∞
vλ
(
σr(t, u0)− σr(t, uλ)

)
∂xuλdx

≤ 1

4γ

∫ ∞

−∞

(
σr(t, u0)− σr(t, uλ)

)2
(∂xuλ)

2dx

≤ L2
0

4γ

∫ ∞

−∞
(u0 − uλ)

2(∂xuλ)
2dx =

λ2L2
0

4γ

∫ ∞

−∞
(∂xvλ)

2(∂xuλ)
2dx

≤ λ2L2
0

4γ
∥∂xvλ∥2H1

∫ ∞

−∞
(∂xuλ)

2dx.

Since the function r → σ(t, r) is nondecreasing, we have

1

λ

∫ ∞

−∞

(∫ uλ

u0

σ(t, r)dr

)
dx+

1

2λ

∫ ∞

−∞
(v2λ − v20)dx

≤ λ2L2
0

4γ
∥∂xvλ∥2H1

∫ ∞

−∞
(∂xuλ)

2dx,

or

1

λ

(
H(0)(t+ λ, uλ, vλ)−H(0)(t, u0, v0)

)
≤ 1

λ

∫ ∞

−∞

(∫ uλ

0

(
σ(t+ λ, r)− σ(t, r)

)
dr

)
dx

+
λ2L2

0

4γ
∥∂xvλ∥2H1

∫ ∞

−∞
(∂xuλ)

2dx.
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The first term on the right-hand side is estimated as follows:

1

λ

∫ ∞

−∞

(∫ uλ

0

(
σ(t+ λ, r)− σ(t, r)

)
dr

)
dx

=
1

λ

∫ t+λ

t

(∫ ∞

−∞

(∫ uλ

0

σt(s, r)dr

)
dx

)
ds

=
1

λ

∫ t+λ

t

(∫ ∞

−∞

(∫ uλ

0

(∫ 1

0

σtr(s, θr) dθ
)
rdr

)
dx

)
ds

≤ 1

2λ

(∫ t+λ

t

h(s)ds

)
∥uλ∥2L2 .

Hence

1

λ

(
H(0)(t+ λ, uλ, vλ)−H(0)(t, u0, v0)

)
≤ 1

2λ

(∫ t+λ

t

h(s)ds

)
∥uλ∥2L2 +

λ2

4γ
L2
0∥∂xvλ∥2H1∥∂xuλ∥2L2 . (5.6)

Differentiating (5.3) and (5.4), we have

1

λ
(∂xuλ − ∂xu0) = ∂x(∂xvλ), (5.7)

1

λ

(
(γuλ + ∂xvλ)− (γu0 + ∂xv0)

)
= ∂x(σr(t, u0)∂xuλ). (5.8)

We multiply (5.7) and (5.8) by σr(t, u0)∂xuλ and γuλ+∂xvλ, respec-
tively. The sum of these two equations gives us

1

2λ
σr(t, u0)

(
(∂xuλ)

2 − (∂xu0)
2
)
+

1

2λ

(
(γuλ + ∂xvλ)

2 − (γu0 + ∂xv0)
2
)

≤ ∂x
(
σr(t, u0)∂xuλ∂xvλ

)
+ γuλ∂x(σr(t, u0)∂xuλ).

Integrating this equality, we have

1

2λ

∫ ∞

−∞
σr(t, u0)

(
(∂xuλ)

2 − (∂xu0)
2
)
dx

+
1

2λ

∫ ∞

−∞

(
(γuλ + ∂xvλ)

2 − (γu0 + ∂xv0)
2
)
dx

≤ −γ

∫ ∞

−∞
(∂xuλ)(σr(t, u0)∂xuλ)dx.

Thus

1

λ

(
H(1)(t+ λ, uλ, vλ)−H(1)(t, u0, v0)

)
≤ 1

2λ

∫ ∞

−∞

(
σr(t+ λ, uλ)− σr(t, u0)

)
(∂xuλ)

2 dx− γ

∫ ∞

−∞
σr(t, u0)(∂xuλ)

2dx.
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Since∣∣σr(t+ λ, uλ)− σr(t, u0)
∣∣ ≤ ∣∣σr(t+ λ, uλ)− σr(t, uλ)

∣∣+ ∣∣σr(t, uλ)− σr(t, u0)
∣∣

≤
∣∣∣∣∫ t+λ

t

σtr(s, uλ) ds

∣∣∣∣+ L0

∣∣uλ − u0

∣∣ ≤ ∫ t+λ

t

h(s) ds+ λL0|∂xvλ|,

(5.9)

we have

1

λ

(
H(1)(t+ λ, uλ, vλ)−H(1)(t, u0, v0)

)
≤ 1

2λ

(∫ t+λ

t

h(s)ds

)
∥∂xuλ∥2L2 +

1

2
L0∥∂xvλ∥H1∥∂xuλ∥2L2

− γδ0∥∂xuλ∥2L2 . (5.10)

Differentiating (5.7) and (5.8), we have

1

λ
(∂2

xuλ − ∂2
xu0) = ∂x(∂

2
xvλ), (5.11)

1

λ

(
(γ∂xuλ + ∂2

xvλ)− (γ∂xu0 + ∂2
xv0)

)
= ∂x(σrr(t, u0)∂xu0∂xuλ + σr(t, u0)∂

2
xuλ). (5.12)

We multiply (5.11) and (5.12) by σr(t, u0)∂
2
xuλ and γ∂xuλ + ∂2

xvλ,
respectively. The sum of these two equations gives us

1

2λ
σr(t, u0)

(
(∂2

xuλ)
2 − (∂2

xu0)
2
)
+

1

2λ

(
(γ∂xuλ + ∂2

xvλ)
2 − (γ∂xu0 + ∂2

xv0)
2
)

≤ ∂x(σr(t, u0)∂
2
xuλ∂

2
xvλ) + γ∂xuλ∂x(σr(t, u0)∂

2
xuλ)

+(∂2
xvλ + γ∂xuλ)∂x(σrr(t, u0)∂xu0∂xuλ).

Integrating this equality, we have

1

2λ

∫ ∞

−∞
σr(t, u0)

(
(∂2

xuλ)
2 − (∂2

xu0)
2
)
dx

+
1

2λ

∫ ∞

−∞

(
(γ∂xuλ + ∂2

xvλ)
2 − (γ∂xu0 + ∂2

xv0)
2
)
dx

≤ −γ

∫ ∞

−∞
σr(t, u0)(∂

2
xuλ)

2 dx+

∫ ∞

−∞
(γ∂xuλ + ∂2

xvλ)∂x(σrr(t, u0)∂xu0∂xuλ)dx

= −γ

∫ ∞

−∞
σr(t, u0)(∂

2
xuλ)

2 dx− γ

∫ ∞

−∞
∂2
xuλ(σrr(t, u0)∂xu0∂xuλ) dx

+

∫ ∞

−∞
(∂2

xvλ)∂x(σrr(t, u0)∂xu0∂xuλ)dx.
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Hence
1

λ

(
H(2)(t+ λ, uλ, vλ)−H(2)(t, u0, v0)

)
≤ 1

2λ

∫ ∞

−∞

(
σr(t+ λ, uλ)− σr(t, u0)

)
(∂2

xuλ)
2dx− γ

∫ ∞

−∞
σr(t, u0)(∂

2
xuλ)

2dx

− γ

∫ ∞

−∞
∂2
xuλ(σrr(t, u0)(∂xu0)∂xuλ)dx

+

∫ ∞

−∞
(∂2

xvλ)∂x(σrr(t, u0)∂xu0∂xuλ)dx. (5.13)

The third term on the right-hand side is estimated by

− γ

∫ ∞

−∞
∂2
xuλ(σrr(t, u0)(∂xu0)∂xuλ)dx

≤ γL0∥∂2
xuλ∥L2∥∂xu0∥L∞∥∂xuλ∥L2 ≤ γL0∥u0∥H2∥∂xuλ∥2H1 .

Since

∂x(σrr(t, u0)∂xu0∂xuλ)

= σrrr(t, u0)(∂xu0)
2∂xuλ + σrr(t, u0)∂

2
xu0∂xuλ + σrr(t, u0)∂xu0∂

2
xuλ,

we have ∫ ∞

−∞
(∂2

xvλ)∂x(σrr(t, u0)∂xu0∂xuλ)dx

≤ L0∥∂2
xvλ∥L2

(
∥∂xu0∥2L∞∥∂xuλ∥L2

+ ∥∂2
xu0∥L2∥∂xuλ∥L∞ + ∥∂xu0∥L∞∥∂2

xuλ∥L2

)
≤ L0∥vλ∥H2

(
∥u0∥H2∥∂xu0∥H1∥∂xuλ∥L2

+ ∥∂xu0∥H1∥∂xuλ∥H1 + ∥∂xu0∥H1∥∂2
xuλ∥L2

)
≤ L0∥vλ∥H2

(
∥u0∥H2 + 2

)
∥∂xu0∥H1∥∂xuλ∥H1 .

We estimate the first term on the right-hand side of (5.13) by (5.9),
and combine the resulting inequality and the inequalities obtained
above. This yields

1

λ

(
H(2)(t+ λ, uλ, vλ)−H(2)(t, u0, v0)

)
≤ 1

2λ

(∫ t+λ

t

h(s)ds

)
∥∂2

xuλ∥2L2 +
L0

2
∥∂xvλ∥H1∥∂2

xuλ∥2L2 − γδ0∥∂2
xuλ∥2L2

+ L0

(
γ∥u0∥H2 + ∥vλ∥H2

(
∥u0∥H2 + 2

))
(∥∂xu0∥H1 ∨ ∥∂xuλ∥H1)2.

Combining this inequality with (5.6) and (5.10) we observe that the
desired inequality (5.5) is satisfied for the function

g(r) = L0r

{(
L0r

4γ

)
∨
(
3 + γ + r

)}
for r ≥ 0.

□
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Let c0 be the constant in (5.2), and define Ĥ : [0,∞)×H2(R)×
H2(R) → R by

Ĥ(t, u, v) = exp

(
− 1

c0

∫ t

0

h(s)ds

)
H(t, u, v)

for (t, u, v) ∈ [0,∞)×H2(R)×H2(R). Then we have

Ĥ(t, u, v) ≤ H(t, u, v) ≤ exp

(
1

c0

∫ ∞

0

h(s)ds

)
Ĥ(t, u, v) (5.14)

for (t, u, v) ∈ [0,∞) × H2(R) × H2(R). Since g is continuous and
g(0) = 0, we choose a number R0 > 0 so small that

if r ≥ 0 and r2 ≤ R0

c0
exp

(
1

c0

∫ ∞

0

h(s) ds

)
then g(r) < γδ0, (5.15)

and define a subset Ω of [0,∞)×X by

Ω = {(t, (u, v)) ∈ [0,∞)× (H2(R)×H2(R)) ; Ĥ(t, u, v) ≤ R0}.

Let r0 =
√

R0/C0, where C0 is the constant in (5.2). Then, by (5.2)
we have

S0 := {(u, v) ∈ H2(R)×H2(R) ; ∥(u, v)∥H2×H2 ≤ r0} ⊂ Ω(t)
(5.16)

for any t ∈ [0,∞), and there exists a connected component C of Ω
such that [0,∞)×S0 ⊂ C ⊂ Ω. Let R′

0 be the positive number such

that (R′
0)

2 =
R0

c0
exp

(
1

c0

∫ ∞

0

h(s) ds

)
. Then, by (5.2) and (5.14)

we have

Ω(t) ⊂ S ′
0 := {(u, v) ∈ H2(R)×H2(R) ; ∥(u, v)∥H2×H2 ≤ R′

0}
(5.17)

for any t ∈ [0,∞). Let V be the functional on [0,∞)×X×X defined
by

V
(
t, (u, v), (û, v̂)

)
=

(∫ ∞

−∞
(v̂ − v)2 +

(∫ û

u

√
σr(t, r)dr

)2

dx

) 1
2

for (u, v), (û, v̂) ∈ X and t ∈ [0,∞). It is easily seen that conditions
(V 1)–(V 4) are satisfied. In particular, we see that for each t ∈
[0,∞), V (t, ·, ·) is a metric on X and

min{1,
√

δ0}∥(u, v)− (û, v̂)∥ ≤ V
(
t, (u, v), (û, v̂)

)
≤ (1 ∨

√
L0)∥(u, v)− (û, v̂)∥

for (u, v), (û, v̂) ∈ X. Consider the operator A : Ω → X defined by

A(t, (u, v)) = (∂xv, ∂xσ(t, u)− γv)

for (t, (u, v)) ∈ Ω. Then the nonlinear wave equation with dissi-
pation (5.1) is converted into the initial value problem for A. We
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can prove that the initial value problem for A is globally well-posed,
by Theorem 1 combined with the following theorem which will be
proved by a sequence of propositions.

Theorem 5. The operator A satisfies (Ω1)–(Ω4).

In view of (5.16) and (5.17), we are in a position to state the
global solvability of the nonlinear wave equation with dissipation
(5.1).

Corollary 1. For any (u0, v0) such that ∥(u0, v0)∥H2×H2 ≤ r0,
there exists a unique time global solution (u(·), v(·)) to (5.1) such that

(u(·), v(·)) ∈ C1([0,∞);L2(R)×L2(R))∩L∞(0,∞;H2(R)×H2(R)).

Remark 2. Similar results are obtained in Yamada [23] and
Matsumura [14].

For the proof of Theorem 5 we follow the argument in [8]. We
note here that

∥∂xw∥2L2 ≤ ∥w∥L2∥∂2
xw∥L2 for w ∈ H2(R). (5.18)

Proposition 10. The operator A is continuous on Ω.

Proof. Let
(
t, (u, v)

)
,
(
t̂, (û, v̂)

)
∈ Ω. Since σ(t, 0) = 0, we

have

σ(t, u(x))− σ(t̂, u(x)) = u(x)

∫ 1

0

(
σr(t, θ̂u(x))− σr(t̂, θ̂u(x))

)
dθ̂

and

∥σ(t, u)− σ(t̂, u)∥2L2

=

∫ ∞

−∞

(
(t− t̂)u(x)

∫ 1

0

∫ 1

0

σtr(t̂+ θ(t− t̂), θ̂u(x)) dθ dθ̂

)2

dx

≤
∫ ∞

−∞

(
|t− t̂| · |u(x)|

∫ 1

0

h(t̂+ θ(t− t̂)) dθ

)2

dx

=

(∫ t

t̂

h(s) ds

)2

∥u∥2L2 .

Since ∥u∥L2 ≤ R′
0 by (5.17) and ∥σr(t̂, ·)∥L∞ ≤ L0, we get

∥σ(t, u)− σ(t̂, û)∥L2 ≤ ∥σ(t, u)− σ(t̂, u)∥L2 + ∥σ(t̂, u)− σ(t̂, û)∥L2

≤
∣∣∣∣∫ t

t̂

h(s) ds

∣∣∣∣∥u∥L2 + L0∥u− û∥L2

≤ R′
0

∣∣∣∣∫ t

t̂

h(s) ds

∣∣∣∣+ L0∥u− û∥L2 .
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By (5.17) we have ∥∂2
x(v − v̂)∥L2 ≤ ∥∂2

xv∥L2 + ∥∂2
xv̂∥L2 ≤ 2R′

0. Since

∂2
xσ(t, u(x)) = ∂x(σr(t, u(x))∂xu(x))

= σrr(t, u(x))(∂xu(x))
2 + σr(t, u(x))∂

2
xu(x),

we get, by using the inequality ∥w∥L∞ ≤ ∥w∥H1 for w ∈ H1(R),

∥∂2
x

(
σ(t, u)− σ(t̂, û)

)
∥L2 ≤ ∥∂2

xσ(t, u)∥L2 + ∥∂2
xσ(t̂, û)∥L2

≤ L0(∥(∂xu)2∥L2 + ∥(∂xû)2∥L2) + L0(∥∂2
xu∥L2 + ∥∂2

xû∥L2)

≤ L0(∥∂xu∥L∞∥∂xu∥L2 + ∥∂xû∥L∞∥∂xû∥L2) + 2L0R
′
0

≤ 2L0(R
′
0)

2 + 2L0R
′
0.

Thus, using (5.18), we have

∥A(t, (u, v))− A(t̂, (û, v̂))∥2

≤ ∥∂x(v − v̂)∥2L2 + ∥∂x
(
σ(t, u)− σ(t̂, û)

)
− γ(v − v̂)∥2L2

≤ ∥∂x(v − v̂)∥2L2 + 2∥∂x
(
σ(t, u)− σ(t̂, û)

)
∥2L2 + 2γ2∥v − v̂∥2L2

≤ ∥v − v̂∥L2∥∂2
x(v − v̂)∥L2 + 2γ2∥v − v̂∥2L2

+ 2∥σ(t, u)− σ(t̂, û)∥L2∥∂2
x

(
σ(t, u)− σ(t̂, û)

)
∥L2

≤ 2R′
0∥v − v̂∥L2 + 2γ2∥v − v̂∥2L2

+ 4L0R
′
0

(
1 +R′

0

)(
R′

0

∣∣∣∣∫ t

t̂

h(s) ds

∣∣∣∣+ L0∥u− û∥L2

)
,

which implies the continuity of A on Ω. □

Proposition 11. Condition (Ω2) is satisfied for the set Ω.

Proof. Let tn ∈ [0,∞) with tn ↑ t ∈ [0,∞) as n → ∞. Let
(u, v) ∈ X and let {(un, vn)} be a sequence in X such that (un, vn) ∈
Ω(tn) for n ≥ 1 and (un, vn) → (u, v) in X as n → ∞. We have to
show that (u, v) ∈ Ω(t). Since the sequence {(un, vn)} is bounded
in H2(R) × H2(R) it follows that (u, v) ∈ H2(R) × H2(R) and the
sequence {(un, vn)} converges weakly to (u, v) in H2(R)×H2(R) as
n → ∞. By (5.18), we see that the sequence {(un, vn)} converges to
(u, v) in H1(R)×H1(R) as n → ∞. Moreover, {(un, vn)} converges

to (u, v) in L∞(R)×L∞(R) as n → ∞. Since Ĥ(tn, un, vn) ≤ R0 for
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n ≥ 1, we have

R0 exp

(
1

c0

∫ tn

0

h(s) ds

)
≥

∫ ∞

−∞

(∫ un

0

σ(tn, r)dr +
1

2
v2n

)
dx

+
1

2

∫ ∞

−∞

(
σr(tn, un)(∂xun)

2 + (γun + ∂xvn)
2
)
dx

+
1

2

∫ ∞

−∞

(
σr(tn, un)(∂

2
xun)

2 + (γ∂xun + ∂2
xvn)

2
)
dx

=

∫ ∞

−∞

(∫ un

0

σ(t, r)dr +
1

2
v2n

)
dx+

1

2

∫ ∞

−∞

{
σr(t, u)

(
(∂xun)

2

+ (∂2
xun)

2
)
+ (γun + ∂xvn)

2 + (γ∂xun + ∂2
xvn)

2
}
dx

+

∫ ∞

−∞

(∫ un

0

(σ(tn, r)− σ(t, r))dr
)
dx

+
1

2

∫ ∞

−∞

{(
σr(tn, un)− σr(t, u)

)(
(∂xun)

2 + (∂2
xun)

2
)}

for n ≥ 1.

(5.19)

Since∣∣∣∣∫ ∞

−∞

(∫ un

0

(σ(tn, r)− σ(t, r))dr
)
dx

∣∣∣∣
=

∣∣∣∣∫ ∞

−∞
(tn − t)

(∫ un

0

(∫ 1

0

∫ 1

0

σtr(t+ θ(tn − t), θ̂r) dθ dθ̂
)
r dr

)
dx

∣∣∣∣
≤

∣∣∣∣∫ ∞

−∞
(tn − t)

(∫ un

0

(∫ 1

0

h(t+ θ(tn − t)) dθ
)
r dr

)
dx

∣∣∣∣
=

∥un∥2L2

2

∣∣∣∣∫ tn

t

h(s) ds

∣∣∣∣
and∣∣∣∣σr(tn, un)− σr(t, u)

∣∣∣∣ ≤ ∣∣∣∣σr(tn, un)− σr(tn, u)

∣∣∣∣+ ∣∣∣∣σr(tn, u)− σr(t, u)

∣∣∣∣
≤ L0∥un − u∥L∞ +

∣∣∣∣∫ tn

t

h(s) ds

∣∣∣∣
for n ≥ 1, we have R0 ≥ Ĥ(t, u, v) by taking the inferior limit in
(5.19) as n → ∞. □

Proposition 12. There exists a real-valued continuous func-
tion ω defined on [0,∞) such that

D+V
(
t, (u, v), (û, v̂)

)
(A(t, (u, v)), A(t, (û, v̂)) ≤ ω(t)V

(
t, (u, v), (û, v̂)

)
for (u, v), (û, v̂) ∈ Ω(t) and t ∈ [0,∞).
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Proof. Let (u, v), (û, v̂) ∈ Ω(t) for t ∈ [0,∞). Let (ξ, η), (ξ̂, η̂) ∈
X. Then we get

2D+V
(
t, (u, v), (û, v̂)

)(
(ξ, η), (ξ̂, η̂)

)
V
(
t, (u, v), (û, v̂)

)
= lim inf

h↓0

1

h

(
V
(
t+ h, (u, v) + h(ξ, η), (û, v̂) + h(ξ̂, η̂)

)2 − V
(
t, (u, v), (û, v̂)

)2)
= lim inf

h↓0

1

h

{∫ ∞

−∞

(
(v̂ + hη̂ − (v + hη))2 − (v̂ − v)2

)
dx

+

∫ ∞

−∞

((∫ û+hξ̂

u+hξ

√
σr(t+ h, r) dr

)2

−
(∫ û

u

√
σr(t, r) dr

)2
)
dx

}
=

∫ ∞

−∞

(
2(v̂ − v)(η̂ − η) + 2

∫ û

u

√
σr(t, r) dr

{(
ξ̂
√
σr(t, û)− ξ

√
σr(t, u)

)
+

∫ û

u

σtr(t, r)

2
√
σr(t, r)

dr
})

dx. (5.20)

Substituting (ξ, η) = A(t, (u, v)) and (ξ̂, η̂) = A(t, (û, v̂)) into (5.20)
yields

D+V
(
t, (u, v), (û, v̂)

)(
A(t, (u, v)), A(t, (û, v̂)

)
V
(
t, (u, v), (û, v̂)

)
=

∫ ∞

−∞

(
(v̂ − v)

(
∂x(σ(t, û)− σ(t, u))− γ(v̂ − v)

)
+

∫ û

u

√
σr(t, r) dr

((
∂xv̂

√
σr(t, û)− ∂xv

√
σr(t, u)

)
+

∫ û

u

σtr(t, r)

2
√
σr(t, r)

dr
))

dx

= −γ

∫ ∞

−∞
(v̂ − v)2 dx−

∫ ∞

−∞
∂x(v̂ − v)(σ(t, û)− σ(t, u)) dx

+

∫ ∞

−∞

(∫ û

u

√
σr(t, r) dr

((
∂xv̂

√
σr(t, û)− ∂xv

√
σr(t, u)

)))
dx

+

∫ ∞

−∞

(∫ û

u

√
σr(t, r) dr

∫ û

u

σtr(t, r)

2
√
σr(t, r)

dr

)
dx

= −γ

∫ ∞

−∞
(v̂ − v)2 dx+

∫ ∞

−∞

(∫ û

u

√
σr(t, r) dr

∫ û

u

σtr(t, r)

2
√
σr(t, r)

dr

)
dx

+

∫ ∞

−∞
∂xv̂

∫ û

u

(√
σr(t, r)

√
σr(t, û)− σr(t, r)

)
dr dx

+

∫ ∞

−∞
∂xv

∫ u

û

(√
σr(t, r)

√
σr(t, u)− σr(t, r)

)
dr dx.
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The second term on the right-hand side is estimated as follows:∣∣∣∣∫ ∞

−∞

(∫ û

u

√
σr(t, r) dr

∫ û

u

σtr(t, r)

2
√
σr(t, r)

dr

)
dx

∣∣∣∣ ≤ √
L0h(t)

2
√
δ0

∫ ∞

−∞
(û− u)2 dx.

The third and fourth terms are estimated as follows:∣∣∣∣∫ ∞

−∞
∂xv̂

∫ û

u

(√
σr(t, r)

√
σr(t, û)− σr(t, r)

)
dr dx

∣∣∣∣
≤ ∥∂xv̂∥L∞

∫ ∞

−∞

∣∣∣∣∫ û

u

√
σr(t, r)(σr(t, û)− σr(t, r))√

σr(t, û) +
√

σr(t, r)
dr

∣∣∣∣ dx
≤ L0∥v̂∥H2

∫ ∞

−∞

∣∣∣∣∫ û

u

|û− r| dr
∣∣∣∣ dx = L0∥v̂∥H2∥û− u∥2/2

and∣∣∣∣∫ ∞

−∞
∂xv

∫ u

û

(√
σr(t, r)

√
σr(t, u)− σr(t, r)

)
dr dx

∣∣∣∣ ≤ L0∥v∥H2∥û− u∥2/2.

Setting ω(t) = C ′
0(1 + h(t)) for a suitable positive number C ′

0, we
conclude that

D+V
(
t, (u, v), (û, v̂)

)(
A(t, (u, v)), A(t, (û, v̂))

)
≤ ω(t)V

(
t, (u, v), (û, v̂)

)
for (u, v), (û, v̂) ∈ Ω(t) and t ∈ [0,∞). □

Proposition 13. For any t ∈ [0,∞) and (u0, v0) ∈ Ω(t),

lim inf
λ↓0

1

λ
d
(
(u0, v0) + λA(t, (u0, v0)),Ω(t+ λ)

)
= 0. (5.21)

Proof. Let t ∈ [0,∞) and (u0, v0) ∈ Ω(t). By (5.15) and
(5.17), we note that

−γδ0 + g(∥(u0, v0)∥H2×H2) < 0. (5.22)

By Proposition 9, there exists λ0 > 0 such that for any λ ∈ (0, λ0],
the problem {

(uλ − u0)/λ = ∂xvλ,
(vλ − v0)/λ = σr(t, u0)∂xuλ − γvλ

has a solution (uλ, vλ) ∈ H3(R)×H3(R) satisfying the properties (i)
and (ii) in Proposition 9. If it is proved that (uλ, vλ) ∈ Ω(t+ λ) for
sufficiently small λ > 0, then the subtangential condition (5.21) is
shown to be satisfied by using the property (i) in Proposition 9.

We shall prove that (uλ, vλ) ∈ Ω(t + λ) for sufficiently small
λ > 0. By (5.2) and (5.5), we have

1

λ

((
1− 1

2c0

∫ t+λ

t

h(s)ds

)
H(t+ λ, uλ, vλ)−H(t, u0, v0)

)
≤ (1 + λ2)g(∥(u0, v0)∥H2×H2 ∨ ∥(uλ, vλ)∥H2×H2)(∥∂xu0∥H1 ∨ ∥∂xuλ∥H1)2

− γδ0∥∂xuλ∥2H1 (5.23)
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for λ ∈ (0, λ0]. Choose λ1 ∈ (0, λ0] so that
1

c0

∫ t+λ

t

h(s)ds ≤ 1 for

λ ∈ (0, λ1] and t ∈ [0,∞). Noting that e−2r ≤ 1− r for 0 ≤ r ≤ 1/2,
we have

exp

(
− 1

c0

∫ t+λ

t

h(s)ds

)
≤ 1− 1

2c0

∫ t+λ

t

h(s)ds

for λ ∈ (0, λ1]. Hence

1

λ
(Ĥ(t+ λ, uλ, vλ)− Ĥ(t, u0, v0)) ≤ exp

(
− 1

c0

∫ t

0

h(s)ds

)(
−γδ0∥∂xuλ∥2H1

+ (1 + λ2)g(∥(u0, v0)∥H2×H2 ∨ ∥(uλ, vλ)∥H2×H2)(∥∂xu0∥H1 ∨ ∥∂xuλ∥H1)2
)

(5.24)

for λ ∈ (0, λ1]. Since (uλ, vλ) → (u0, v0) in H2(R)×H2(R) as λ ↓ 0,
we have

lim sup
λ↓0

1

λ

(
Ĥ(t+ λ, uλ, vλ)− Ĥ(t, u0, v0)

)
≤ exp

(
− 1

c0

∫ t

0

h(s)ds

)(
−γδ0 + g(∥(u0, v0)∥H2×H2)

)
∥∂xu0∥2H1 .

(5.25)

If ∥∂xu0∥H1 ̸= 0, then we have (−γδ0+g(∥(u0, v0)∥H2×H2))∥∂xu0∥H2 <

0 by (5.22). Hence (5.25) implies that Ĥ(t+λ, uλ, vλ) < Ĥ(t, u0, v0) ≤
R0 and (uλ, vλ) ∈ Ω(t+λ) for sufficiently small λ > 0. If ∥∂xu0∥H1 =
0, then (5.24) implies that

1

λ
(Ĥ(t+ λ, uλ, vλ)− Ĥ(t, u0, v0)) ≤ exp

(
− 1

c0

∫ t

0

h(s)ds

)
×
(
−γδ0 + (1 + λ2)g(∥(u0, v0)∥H2×H2 ∨ ∥(uλ, vλ)∥H2×H2)

)
∥∂xuλ∥2H1

for λ ∈ (0, λ1]. Since

lim
λ↓0

(
−γδ0 + (1 + λ2)g(∥(u0, v0)∥H2×H2 ∨ ∥(uλ, vλ)∥H2×H2)

)
= −γδ0 + g(∥(u0, v0)∥H2×H2) < 0,

the right-hand side of the above inequality is less than or equal to
zero for sufficient small λ > 0; hence Ĥ(t+λ, uλ, vλ) ≤ Ĥ(t, u0, v0) ≤
R0 and (uλ, vλ) ∈ Ω(t+ λ) for sufficient small λ > 0. □
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