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GLOBAL SOLVABILITY OF THE KIRCHHOFF EQUATION WITH
GEVREY DATA

TOKIO MATSUYAMA AND MICHAEL RUZHANSKY

Abstract. This paper is devoted to proving the global solvability of the Cauchy
problem for the Kirchhoff equation in the Gevrey space γ∞L2 . More precise results
are derived for solutions in the s-Gevrey classes γsL2 . Furthermore, similar results
are obtained for the initial-boundary value problems in bounded domains and in
exterior domains with compact boundary.

1. Introduction

G. Kirchhoff proposed the equation

(1.1) ∂2
t u−

(
1 +

∫
Ω

|∇u(t, y)|2 dy
)

∆u = 0 (t ∈ R, x ∈ Ω)

in his book on mathematical physics in 1883, as a model equation for transversal mo-
tion of the elastic string, where Ω is a domain in Rn (see Kirchhoff [26, Chap. 29, §7],
and for finite dimensional approximation problem, see Nishida [37]). Since then, first
it was in 1940 that Bernstein proved the existence of global in time analytic solutions
on an interval of the real line in his celebrated paper [5]. After him, Pohozhaev ex-
tended Bernstein’s result to several space dimensions (see [39]). Arosio and Spagnolo
proved analytic well-posedness for the degenerate Kirchhoff type equation (see [4],
and also D’Ancona and Spagnolo [11] and Kajitani and Yamaguti [25]).

As it is well known, this equation has a Hamiltonian structure, nevertheless it
involves a challenging problem whether or not, one can prove the existence of time
global solutions corresponding to data in Gevrey classes, and standard Sobolev spaces
without any smallness condition. Up to now there is no solution to these problems,
and even the existence of local solutions in Sobolev spaces Hσ for 1 ≤ σ < 3/2 is still
unclear.

The global existence of quasi-analytic solutions is known from Nishihara, and Ghisi
and Gobbino (see [38, 17]). Here quasi-analytic classes are a slight relaxation of the
analytic class as opposed to the C∞-class. Manfrin discussed the time global solutions
in Sobolev spaces corresponding to non-analytic data having a spectral gap (see [29]),
and a similar result is obtained by Hirosawa (see [21]).
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On the other hand, global well-posedness in the Sobolev space H3/2, or H2 with
small data is well established in [6, 12, 13, 14, 19, 24, 30, 31, 41, 45, 46]. There,
the classes of small data consist of compactly supported functions (see [19]), or more
generally, they are characterised by some weight conditions (see [6, 12, 13, 14]) or
oscillatory integrals (see [20, 24, 30, 31, 40, 41, 45, 46]). Recently, the authors stud-
ied the global well-posedness for Kirchhoff systems with small data (see [33]), and
generalised all the previous results in the framework of small data, both for the Kirch-
hoff equation and Kirchhoff type systems. Here, the class of data in [33] consists of
Sobolev space (H1)m, m being the order of system, and is characterised by some
oscillatory integrals. The precise statements of the known results can be found in the
survey paper [34]. Scattering results are also available, see [32].

The goal of this paper is to show the global existence of solutions to (1.2) with
Gevrey data in Rn without smallness assumptions, see Theorem 1.1 and Theorem 1.2.
Furthermore, we indicate how to modify the proof to also yield the global existence
for the initial-boundary value problem in exterior domains, and in bounded domains
(see Theorem 4.1 and Theorem 4.2, respectively).

The method of our proof is quite novel for this area. Namely, we assume that a
solution blows up in finite time and arrive at a contradiction. The contradiction ar-
gument involves considering data in different regions (according to relations between
their size and regularity), an energy estimate for local solutions with a controllable
loss, the Schauder-Tychonoff fixed point theorem, lower bounds for life spans of local
solutions, and the exploration of the Hamiltonian structure of the equation.

We note that our proof can be extended to treat more general equations of Kirchhoff
type, for example of the form

∂2
t u− Φ

(∫
Rn
|∇u(t, y)|2 dy

)
∆u = 0,

for a Lipschitz function Φ ≥ α > 0. For the sake of simplicity here we treat the main
example of such equations, the classical equation (1.1).

Thus, in this paper we consider the Cauchy problem for the Kirchhoff equation

(1.2)

 ∂2
t u−

(
1 +

∫
Rn
|∇u(t, y)|2 dy

)
∆u = 0, t > 0, x ∈ Rn,

u(0, x) = u0(x), ∂tu(0, x) = u1(x), x ∈ Rn.

Equation (1.2) has a Hamiltonian structure. More precisely, let us define the energy:

H (u; t) :=
1

2

{
‖∇u(t)‖2

L2 + ‖∂tu(t)‖2
L2

}
+

1

4
‖∇u(t)‖4

L2 .

Then we have

H (u; t) = H (u; 0)

as long as a solution exists (see Lemma 3.1). We shall now recall the definition of
Gevrey class of L2 type. For s ≥ 1, we denote by γsL2 = γsL2(Rn) the Gevrey–Roumieu
class of order s on Rn:

γsL2 =
⋃
η>0

γsη,L2 ,
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where f belongs to γsη,L2 if and only if∫
Rn
eη|ξ|

1/s|f̂(ξ)|2 dξ <∞.

Here f̂(ξ) stands for the Fourier transform of f(x). In the particular case s = 1, γ1
L2

corresponds to the analytic class. The space γsL2 is equipped with the inductive limit
topology. As to the inclusion relation among the classes γsL2 , we have

γs1L2 $ γs2L2 if 1 < s1 < s2

(see also Lemma A.1 in Appendix A). We will use the norms

‖f‖γs
η,L2

=

[∫
Rn
eη|ξ|

1/s|f̂(ξ)|2 dξ
]1/2

and

‖(f, g)‖γs
η,L2×γsη,L2

=

[∫
Rn
eη|ξ|

1/s
{
|f̂(ξ)|2 + |ĝ(ξ)|2

}
dξ

]1/2

for η > 0. The Gevrey class γ∞L2 is defined as the union

(1.3) γ∞L2 =
⋃
s≥1

γsL2 .

Locally the space γ∞L2 is ‘almost’ the space C∞ of smooth functions but it appears
to be more natural than C∞ already for linear problems. For example, the Cauchy
problem for the linear wave equation

(1.4) ∂2
t v − a(t)∆v = 0, v(0) = v0, ∂tv(0) = v1,

with propagation speed a = a(t) may not be well-posed in C∞:

• if v0, v1 ∈ C∞ but a > 0 is Hölder Cα, 0 < α < 1, then (1.4) may have
non-unique solutions, see Colombini, Jannelli and Spagnolo [8];
• if v0, v1 ∈ C∞ and a ≥ 0 is in C∞ then (1.4) may have no distributional

solutions, see Colombini and Spagnolo [9].

However, the Cauchy problem (1.4) is still well-posed in Gevrey spaces, see Colombini,
de Giorgi and Spagnolo [7]. While such situations do not happen in our case (the
linearised nonlinearity is strictly positive and can be shown to have derivative in L1

loc),
it shows that classes of the type γ∞L2 may naturally enter such problems. Here, our
first main result is:

Theorem 1.1. Let u0, u1 ∈ γ∞L2. Then the Cauchy problem (1.2) admits a unique
solution u ∈ C1

(
[0,∞); γ∞L2

)
.

Starting with this theorem, we can summarise the main results of this paper as
follows:

• The global solvability of the Kirchhoff equation (1.2) in γ∞L2 is given in Theo-
rem 1.1. There is no smallness assumption on data in this result.
• In turn, Theorem 1.1 is a consequence of a more refined solvability statement

in classes γsL2 given in Theorem 1.2 below.
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• While the statement of Theorem 1.2 is enough to yield the global solvability in
γ∞L2 , there is an arbitrarily small (but positive) loss of regularity for solutions
in Theorem 1.2. This can be refined further and we can show that no such loss
occurs for data in the ‘more regular’ part of γsL2 where the precise meaning of
‘more regular’ depends on the size of the Cauchy data: the ‘larger’ the data
is, the higher regularity is required. However, all the regularity that comes
under consideration here occurs within the same class γsL2 , see Corollary 3.6
for a precise statement.
• In Section 4 we explain how these results can be extended to hold for initial-

boundary value problem for the Kirchhoff equation in bounded domains and in
exterior domains. Compared with the previous literature on exterior problems
(for example for small data), the results in the present paper do not require
the geometrical condition that the compliment of an exterior domain is star-
shaped with respect to the origin.

As we mentioned above, Theorem 1.1 is an immediate consequence of the definition
(1.3) and of the following:

Theorem 1.2. Let s > 1. Then for any u0, u1 ∈ γsL2 the Cauchy problem (1.2)

admits a unique solution u ∈ C1
(
[0,∞); γs

′

L2

)
for every s′ > s.

The statement of Theorem 1.2 will be refined further in Theorem 3.5 with respect
to the regularity within the classes γsL2 .

This paper is organised as follows: in §2 energy estimates for linear equations with
time-dependent coefficients will be derived, and these estimates will be applied to
get a priori estimates. In §3 we state the known result on local existence theorem as
Theorem A and continue to prove Theorem 1.2. In §4 global existence for (1.2) with
Gevrey data to the initial-boundary value problems will be discussed.

Acknowledgements. The authors would like to express their sincere gratitude to
Professors Taeko Yamazaki, Kenji Nishihara, Makoto Nakamura and Dr Tsukasa
Iwabuchi for fruitful discussions. The authors would like to thank also Professors
Kiyoshi Mochizuki, Hiroshi Uesaka and Masaru Yamaguchi for giving them many
useful advices.

2. Energy estimate for linear equation

In this section we shall derive energy estimates for solutions of the linear Cauchy
problem with time-dependent coefficients. These estimates will be fundamental tools
in the proof of the theorems.

Let us consider the linear Cauchy problem

(2.1)

{
∂2
t u− c(t)2∆u = 0, t ∈ (0, T ), x ∈ Rn,

u(0, x) = u0(x), ∂tu(0, x) = u1(x), x ∈ Rn.

The assumptions for the following estimates are related with Theorem 2 from Colom-
bini, Del Santo and Kinoshita [10]. However, here we need more precise conclusions
on the behaviour of constants.
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Proposition 2.1. Let σ ≥ 1 and 1 ≤ s < q/(q − 1) for some q > 1. Assume that
c = c(t) ∈ Liploc([0, T )) satisfies

(2.2) m0 ≤ c(t) ≤M, t ∈ [0, T ],

(2.3) |c′(t)| ≤ K

(T − t)q
, a.e. t ∈ [0, T ),

for some 0 < m0 < M and K > 0. If ((−∆)σ/2u0, (−∆)(σ−1)/2u1) ∈ γsη,L2 × γsη,L2 for
some η satisfying

(2.4) η >
2Km−1

0

q − 1
+ 4M2m−1

0 ,

then the Cauchy problem (2.1) admits a unique solution

u ∈
1⋂
j=0

Cj
(
[0, T ]; (−∆)−(σ−j)/2γsη′,L2

)
such that

m2
0‖(−∆)σ/2u(t)‖2

γs
η′,L2

+ ‖(−∆)(σ−1)/2∂tu(t)‖2
γs
η′,L2

(2.5)

≤max{M2, 1}e4M2m−1
0 max{1,T 1−(qs−s)}‖((−∆)σ/2u0, (−∆)(σ−1)/2u1)‖2

γs
η,L2×γsη,L2

for t ∈ [0, T ], where

η′ = η −
(

2Km−1
0

q − 1
+ 4M2m−1

0

)
> 0.

Proof. Let v = v(t, ξ) be a solution of the Cauchy problem{
∂2
t v + c(t)2|ξ|2v = 0, t ∈ (0, T ),

v(0, ξ) = û0(ξ), ∂tv(0, ξ) = û1(ξ).

We define

c∗(t, ξ) =


c(T ) if T |ξ|1/(qs−s) ≤ 1,

c(t) if T |ξ|1/(qs−s) > 1 and 0 ≤ t ≤ T − |ξ|−1/(qs−s),

c(T − |ξ|−1/(qs−s)) if T |ξ|1/(qs−s) > 1 and T − |ξ|−1/(qs−s) < t ≤ T ,

and

α(t, ξ) = 2Mm−1
0 |c∗(t, ξ)− c(t)||ξ|+

2|c′∗(t, ξ)|
c∗(t, ξ)

.

We adopt an energy for v as

E(t, ξ) =
{
|v′(t)|2 + c∗(t, ξ)

2|ξ|2|v(t)|2
}
k(t, ξ),

where

k(t, ξ) = |ξ|2(σ−1) exp

(
−
∫ t

0

α(τ, ξ) dτ + η|ξ|1/s
)

and η is as in (2.4). We put

E(t) =

∫
Rn
E(t, ξ) dξ.
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Hereafter we concentrate on estimating the integral of α(t, ξ). When T |ξ|1/(qs−s) ≤ 1,
we can estimate, by using assumption (2.2) on c(t),∫ t

0

α(τ, ξ) dτ =

∫ T

0

2Mm−1
0 |c∗(τ, ξ)− c(τ)||ξ| dτ(2.6)

≤4M2m−1
0 T |ξ|

≤4M2m−1
0 T 1−(qs−s),

and when T |ξ|1/(qs−s) > 1, we can estimate

∫ t

0

α(τ, ξ) dτ ≤
∫ T−|ξ|−1/(qs−s)

0

2|c′(τ)|
c(τ)

dτ +

∫ T

T−|ξ|−1/(qs−s)
2Mm−1

0 |c∗(τ, ξ)− c(τ)||ξ| dτ

≤
∫ T−|ξ|−1/(qs−s)

0

2Km−1
0

(T − τ)q
dτ + 4M2m−1

0 |ξ|1−1/(qs−s)(2.7)

≤2Km−1
0 |ξ|1/s

q − 1
+ 4M2m−1

0 |ξ|1−1/(qs−s).

Since 1− 1/(qs− s) < 1/s, it follows that

|ξ|1−1/(qs−s) ≤ 1 + |ξ|1/s.

Consequently, we get

k(t, ξ) ≥ e−4M2m−1
0 max{1,T 1−(qs−s)}|ξ|2(σ−1)e

(
η−

2Km−1
0

q−1
−4M2m−1

0

)
|ξ|1/s

,

and hence,

(2.8) E(t) ≥ e−4M2m−1
0 max{1,T 1−(qs−s)}×∫
Rn
e

(
η−

2Km−1
0

q−1
−4M2m−1

0

)
|ξ|1/s
|ξ|2(σ−1){m2

0|ξ|2|v(t)|2 + |v′(t)|2} dξ.

We compute the derivative of E(t, ξ):

E ′(t, ξ) =[
2Re

{
v′′(t)v′(t)

}
+ 2c∗(t, ξ)c

′
∗(t, ξ)|ξ|2|v(t)|2 + 2c∗(t, ξ)

2|ξ|2Re
{
v′(t)v(t)

}]
k(t, ξ)

− {c∗(t, ξ)2|ξ|2|v(t)|2 + |v′(t)|2}α(t, ξ)k(t, ξ)

=
[
2{c∗(t, ξ)2 − c(t)2}|ξ|2Re

{
v′(t)v(t)

}
+ 2c∗(t, ξ)c

′
∗(t, ξ)|ξ|2|v(t)|2

]
k(t, ξ)

− α(t, ξ)E(t, ξ).
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Then we can estimate the right hand side as[
2|c∗(t, ξ)2 − c(t)2||ξ|

c∗(t, ξ)
|v′(t)| · c∗(t, ξ)|ξ| |v(t)|+ 2

|c′∗(t, ξ)|
c∗(t, ξ)

c∗(t, ξ)
2|ξ|2|v(t)|2

]
k(t, ξ)

− α(t, ξ)E(t, ξ)

≤2Mm−1
0 |c∗(t, ξ)− c(t)||ξ|E(t, ξ) +

2|c′∗(t, ξ)|
c∗(t, ξ)

E(t, ξ)− α(t, ξ)E(t, ξ)

=0,

which implies that E ′(t, ξ) ≤ 0 for t ∈ (0, T ), and we find that

E(t) ≤ E(0).

Thus the required estimate (2.5) follows from this estimate and (2.8). The proof of
Proposition 2.1 is now finished. �

3. Proof of Theorem 1.2

First we discuss possible properties of the life span of local solutions to (1.2).
Among other things, let us introduce the local existence theorem for the Cauchy
problem (1.2). We often use the norm of solution u(t) as follows:

E3/2(u; t) :=
(
1 + ‖∇u(t)‖2

L2

)
‖u(t)‖2

Ḣ3/2 + ‖∂tu(t)‖2
Ḣ1/2 .

Here we denote by
Hσ = Hσ(Rn) = 〈D〉−σL2(Rn)

for σ ∈ R the standard Sobolev spaces, and 〈D〉 = (1 − ∆)1/2. Their homogeneous
version is

Ḣσ = Ḣσ(Rn) = (−∆)−σ/2L2(Rn).

The following result is proved by Arosio and Garavaldi (see [2], and also [3]).

Theorem A (Arosio and Garavaldi [2]). Let (u0, u1) ∈ Hσ×Hσ−1 for some σ ≥ 3/2.
Then there exists a life span Tu = Tu(u0, u1) > 0 such that the Cauchy problem (1.2)

admits a unique maximal solution u ∈
1⋂
j=0

Cj([0, Tu);H
σ−j), and at least one of the

following statements is valid :

(a) Tu = +∞;
(b) Tu <∞ and lim sup

t↗Tu
E3/2(u; t) =∞. In this case the life span Tu is estimated

from below as

(3.1) Tu ≥ T0 :=
1

2E3/2(u; 0)
.

We remark that the life span Tu = Tu(u0, u1) is to be understood as follows:

Tu = sup
{
t : H3/2-solution u(τ, ·) to (1.2) with data (u0, u1) exists for 0 ≤ τ < t

}
.

Let us mention also a known result on the local existence of solutions. Before
Theorem A was proved, Medeiros and Miranda exhibited the local solvability for Eq.
(1.2) in H3/2 ×H1/2 (see [35]). It should be noted that, however large the regularity
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of data is, Tu depends only on the norm of the data in H3/2×H1/2. This means that
when one would show the global existence of solutions to (1.2), it suffices to obtain
that the norm of solutions in H3/2 ×H1/2 is bounded on [0, Tu).

Kirchhoff equation has a Hamiltonian structure. Namely, we have:

Lemma 3.1. Let u ∈
1⋂
j=0

Cj([0, Tu);H
(3/2)−j) be the solution of (1.2). Then we have

H (u; t) = H (u; 0), ∀t ∈ [0, Tu),

where we recall that

H (u; t) =
1

2

{
‖∇u(t)‖2

L2 + ‖∂tu(t)‖2
L2

}
+

1

4
‖∇u(t)‖4

L2 .

Proof. The proof is elementary. Multiplying equation (1.2) by ∂tu and integrating,
we get

d

dt
H (u; t) = 0,

as desired. �

We now establish a local existence theorem for (1.2) in Gevrey classes (see also
[16, 18, 22, 23]).

Proposition 3.2. Let s > 1 and η > 0. Let (u0, u1) ∈ 〈D〉−3/2γsη,L2 × 〈D〉−1/2γsη,L2.

Then there exists a life span Tu = Tu(u0, u1) > 0 depending only on H (u; 0) and
E3/2(u; 0) such that the Cauchy problem (1.2) admits a unique solution u in the class

1⋂
j=0

Cj
(
[0, Tu); 〈D〉−(3/2)+jγsη,L2

)
,

and one of the following statements is valid:

(a) Tu =∞;
(b) Tu <∞ and lim sup

t↗Tu
E3/2(u; t) =∞. Furthermore, we have

(3.2) Tu ≥
1

2E3/2(u; 0)
.

Proof. Let us interpret the initial data as elements of the space H3/2 ×H1/2. From
Theorem A of the case for (u0, u1) ∈ H3/2×H1/2, we know that the Cauchy problem

(1.2) admits a unique maximal solution u ∈
1⋂
j=0

Cj([0, Tu);H
(3/2)−j), where the life

span Tu satisfies either the assertion (a) or (b). We adopt an energy for

v(t) = |ξ|1/2û(t, ξ)

as

E(t, ξ) =
{
|v′(t)|2 + c̃(t)2|ξ|2|v(t)|2

}
eη|ξ|

1/s

,
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where

c̃(t) =

√
1 +

∫
Rn
|∇u(t, x)|2 dx.

We notice that v(t) satisfies the equation

(3.3) v′′(t) + c̃(t)2|ξ|2v(t) = 0.

We put

E(t) =

∫
Rn
E(t, ξ) dξ.

By using (3.3), we compute the derivative of E(t, ξ) with respect to t;

E ′(t, ξ) =
[
2Re

{
v′′(t)v′(t)

}
+ 2c̃(t)c̃′(t)|ξ|2|v(t)|2 + 2c̃(t)2|ξ|2Re

{
v′(t)v(t)

}]
eη|ξ|

1/s

=2c̃(t)c̃′(t)|ξ|2|v(t)|2eη|ξ|1/s

≤2|c̃′(t)|
c̃(t)

E(t, ξ);

thus we find from Gronwall’s lemma that

E(t) ≤ E(0) exp

(∫ t

0

2|c̃′(τ)|
c̃(τ)

dτ

)
for any t ∈ [0, Tu). Hence on any subinterval [0, t] ⊂ [0, Tu) we have the energy
estimate with the same η, and so the Cauchy problem (1.2) admits a unique solution
u in the class

1⋂
j=0

Cj
(
[0, Tu); 〈D〉−(3/2)+jγsη,L2

)
.

Finally, inequality (3.2) comes from (3.1). The proof of Proposition 3.2 is now
complete. �

We introduce the class of blow-up data in the Gevrey class. The final aim will be
to show that this set is empty by arriving at a contradiction. Let us define the class
of blow-up data:

Bsη :=
{

(u0, u1) ∈ 〈D〉−3/2γsη,L2 × 〈D〉−1/2γsη,L2 : Tu(u0, u1) <∞
}

and also
Bs :=

⋃
η>0

Bsη.

In the lemma below the number M2

4
− 1 can be replaced by any positive number but

we write it in this form to be able to apply the statement directly in the sequel.

Lemma 3.3. Let M > 2 and η > 0. If{
(u0, u1) ∈ Bsη : 2H (u; 0) ≤ M2

4
− 1

}
6= ∅,

then

(3.4) inf
(u0,u1)∈Bsη : 2H (u;0)≤M2

4
−1

Tu(u0, u1) = 0.
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Proof. By virtue of Lemma 3.1, we have

(3.5) 2H (u; t) = 2H (u; 0) ≤ M2

4
− 1

for all t ∈ [0, Tu(u0, u1)). Also, thanks to Proposition 3.2, the solution u(t, x) to (1.2)
enjoys the property that

(3.6) (u(t), ∂tu(t)) ∈ 〈D〉−3/2γsη,L2 × 〈D〉−1/2γsη,L2

for all t ∈ [0, Tu(u0, u1)) with the same value for η. To prove (3.4), we put

(3.7) α := inf
(u0,u1)∈Bsη : 2H (u;0)≤M2

4
−1

Tu(u0, u1).

Let u = u(t, x) ∈
1⋂

k=0

Ck([0, Tu(u0, u1)); 〈D〉−(3/2)+kγsη,L2) be the solution to (1.2) with

data (u0, u1) ∈ Bsη satisfying 2H (u; 0) ≤ M2

4
− 1. For every ε > 0 this u(t) = u(t, ·)

at t = Tu(u0, u1)− ε satisfies

(u(Tu(u0, u1)− ε), ∂tu(Tu(u0, u1)− ε)) ∈ Bsη
in view of (3.6). It also satisfies (3.5). Hence it follows from (3.7) that

Tu(u(Tu(u0, u1)− ε), ∂tu(Tu(u0, u1)− ε)) ≥ α.

On the other hand, we have

Tu(u(Tu(u0, u1)− ε), ∂tu(Tu(u0, u1)− ε)) = ε.

Thus we must have α = 0. This completes the proof of Lemma 3.3. �

Though we can define Bsη for any η > 0, we will encounter with the restriction of

η to be η > 4M2 in Proposition 3.4 below.

Let us now turn to prove the theorem. Given exponents s and q related by

(3.8) 1 < s < q/(q − 1) and q > 1,

let us take a pair of data v0, v1 ∈ γsL2 . For this pair (v0, v1) we consider the linear
Cauchy problem in the strip (0, Tu(v0, v1))× Rn:

(3.9) ∂2
t v − c(t)2∆v = 0, t ∈ (0, Tu(v0, v1)), x ∈ Rn,

with initial condition

(3.10) v(0, x) = v0(x), ∂tv(0, x) = v1(x).

Here c = c(t) belongs to a class K defined as follows:

Class K (T ). Let 0 < T ≤ Tu(v0, v1). Given constants q > 1, M > 2 and K0 > 0, we
say that c(t) belongs to K (T ) = K (T,K0) = K (q,M,K0, T, Tu(v0, v1)) if c = c(t)
belongs to Liploc([0, Tu(v0, v1))) and satisfies

1 ≤ c(t) ≤M, t ∈ [0, T ],

|c′(t)| ≤ K0

{Tu(v0, v1)− t}q
, a.e. t ∈ [0, Tu(v0, v1)).

Sometimes we may abbreviate the notation by simply writing K (T ) or K .
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By the energy estimate (2.5) from Proposition 2.1, if c(t) ∈ K(Tu(v0, v1)) and
(v0, v1) belongs to the class

(−∆)−3/4γsη,L2 × (−∆)−1/4γsη,L2

for some η satisfying

η >
2K0

q − 1
+ 4M2,

then the Cauchy problem (3.9)–(3.10) admits a unique solution v(t, x) in the class

(3.11)
1⋂
j=0

Cj
(
[0, Tu(v0, v1)]; (−∆)−(3/4)+(j/2)γsη′,L2

)
,

provided that s and q satisfy (3.8), where η′ is the real number such that

(3.12) η′ = η −
(

2K0

q − 1
+ 4M2

)
> 0.

If we define the functional

c̃(t) =

√
1 +

∫
Rn
|∇v(t, x)|2 dx,

this defines the mapping
Θ : c(t) 7→ c̃(t).

We will show the convexity and compactness of K(Tu(v0, v1)) in L∞loc([0, Tu(v0, v1))).
If we show that Θ maps continuously K(Tu(v0, v1)) into itself, the Schauder-Tychonoff
fixed point theorem will allow us to progress with the proof. But first we look into
the structure of the blow up.

Keeping Lemma 3.3 in mind, let us introduce a subset of the blow-up class Bs for
s > 1 as follows:

Bsη,C1
:=
{

(u0, u1) ∈ 〈D〉−3/2γsη,L2 × 〈D〉−1/2γsη,L2 : Tu(u0, u1) ≤ C1

}
for C1 > 0. Let us give some remarks on the properties of Bsη,C1

.

(i) If u0, u1 ∈ γ1
L2 , then the known results of [5, 39] imply that

Tu(u0, u1) =∞.
Thus, for the analytic class we have B1

η,C1
= ∅ for all η and C1, so we may

restrict considering s > 1. However, we note that the argument works also
well for s = 1.

(ii) Observing from (3.1) in Theorem A, one can see that if E3/2(u; 0) → 0, then
Tu(u0, u1) → ∞. This means that Tu(u0, u1) is unbounded near (0, 0) in
Ḣ3/2 × Ḣ1/2. But, one could not exclude the case that Tu(u0, u1) would be
bounded for some small data (u0, u1) in Ḣ3/2×Ḣ1/2. Also, one does not know
whether Bs is empty or not. So, there is a possibility that Tu(u0, u1) = ∞
even if data (u0, u1) are very large. From this point of view, assuming Bs 6= ∅,
we will employ the fixed point argument.

We shall prove here the following:
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Proposition 3.4. Let s be related to the exponent q as follows:

(3.13) s =
1

q − 1
and 1 < q < 2.

Assume that M > 2 and η > 4M2, and set

(3.14) ε0 :=

{
(q − 1)(η − 4M2)

4e4M2

} 1
q−1

.

Let (v0, v1) belong to

(−∆)−3/4γsη,L2 × (−∆)−1/4γsη,L2

and satisfy

(3.15) 2H (v; 0) ≤ M2

4
− 1.

If there exists a constant C1 ∈ (0, ε0) such that

(3.16) (v0, v1) belong to Bsη,C1

and satisfy

(3.17)
∥∥((−∆)3/4v0, (−∆)1/4v1

)∥∥2

γs
η,L2×γsη,L2

<
(q − 1)(η − 4M2)

2Cq
1M

2e4M2 ,

then, setting

(3.18) K0 := Cq
1M

2e4M2 ∥∥((−∆)3/4v0, (−∆)1/4v1

)∥∥2

γs
η,L2×γsη,L2

,

we have the following statement: For any c(t) ∈ K (Tu(v0, v1), K0), let v be the
solution to the Cauchy problem (3.9)–(3.10) satisfying (3.11). Then

(3.19) 1 ≤ c̃(t) ≤M, t ∈ [0, Tu(v0, v1)],

(3.20) |c̃′(t)| ≤ K0

{Tu(v0, v1)− t}q
, t ∈ [0, Tu(v0, v1)).

Let us give a few remarks on assumptions in Proposition 3.4.

(i) Observing (3.2) in Proposition 3.2, if (v0, v1) belong to Bsη,C1
, we have

E3/2(v; 0) ≥ 1

2C1

.

Also, assumption (3.15) on the Hamiltonian implies that

1 + ‖∇v0‖2
L2 ≤

M2

4
.

Hence, going back to the definition of E3/2(v; 0) and combining the previous
inequalities, we get

1

2C1

≤ M2

4

(
‖v0‖2

Ḣ3/2 + ‖v1‖2
Ḣ1/2

)
.

Obviously, we have∥∥((−∆)3/4v0, (−∆)1/4v1

)∥∥2

γs
η,L2×γsη,L2

≥ ‖v0‖2
Ḣ3/2 + ‖v1‖2

Ḣ1/2 .
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Then, combining this inequality with (3.17), we see that C1 must satisfy

1

2C1

<
M2

4
· (q − 1)(η − 4M2)

2Cq
1M

2e4M2 ,

which means that

0 < C1 < ε0,

where ε0 is the constant given in (3.14).
(ii) It is not restrictive to assume that C1 > 0 is small also from the point of view

of Lemma 3.3.
(iii) One does not know whether or not, (3.15) and (3.16)–(3.17) are compatible.

Certainly, we can specify some data in the previous remark (i) that the two
conditions (3.15) and (3.17) are compatible. But we have no knowledge to
prove this incompatibility for any data. To make it clear, assuming that any
data satisfies both (3.16) and (3.17), we will lead to a contradiction in the
argument after the proof of this proposition.

We now turn to prove Proposition 3.4.

Proof of Proposition 3.4. For the sake of simplicity, we write

Tu = Tu(v0, v1).

Notice that, by virtue of (v0, v1) ∈ Bsη,C1
, it follows that

(3.21) Tu ≤ C1.

First, we prove (3.20). One can readily see that

2c̃(t)c̃′(t) = 2Re
(
(−∆)3/4v(t), (−∆)1/4∂tv(t)

)
L2 ,

and hence, we have

|c̃′(t)| ≤ ‖v(t)‖Ḣ3/2 ‖∂tv(t)‖Ḣ1/2

≤
∥∥(−∆)3/4v(t)

∥∥
γs
η′,L2

∥∥(−∆)1/4∂tv(t)
∥∥
γs
η′,L2

for any η′ > 0, since c̃(t) ≥ 1. Notice that (v0, v1) satisfy (3.17). Then, by the
definition (3.18) of K0 and (3.17), we have the following inequality:

η >
2K0

q − 1
+ 4M2.

Hence, if η′ is chosen as in (3.12), then, applying the energy estimate (2.5) from
Proposition 2.1 to the right hand side of the previous estimate, we can write

(3.22) |c̃′(t)| ≤M2e4M2 max{1,T 1−(qs−s)
u } ∥∥((−∆)3/4v0, (−∆)1/4v1

)∥∥2

γs
η,L2×γsη,L2

for t ∈ [0, Tu]. Since 1− (qs− s) = 0 by assumption (3.13), it follows that

(3.23) e4M2 max{1,T 1−(qs−s)
u } = e4M2

.
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Hence, by using inequality (3.21) and recalling the definition (3.18) of K0, we conclude
from (3.22)–(3.23) that

|c̃′(t)| ≤M2e4M2

T qu
∥∥((−∆)3/4v0, (−∆)1/4v1

)∥∥2

γs
η,L2×γsη,L2

· 1

T qu

≤M2e4M2

Cq
1

∥∥((−∆)3/4v0, (−∆)1/4v1

)∥∥2

γs
η,L2×γsη,L2

· 1

(Tu − t)q

=
K0

(Tu − t)q

for t ∈ [0, Tu). This proves (3.20).

Finally we prove (3.19). In this case, we will not use the energy estimate (2.5) from
Proposition 2.1. Our assumption (3.15) implies that

1 ≤ c̃(0) ≤
√

1 + 2H (v; 0) ≤ M

2
.

Since c̃(t) is continuous, there exists a time t1 < Tu such that

1 ≤ c̃(t) ≤M

for 0 ≤ t ≤ t1. Fixing data (v0, v1) satisfying (3.13)–(3.17), we can show that the
class K(t1, K0) is the convex and compact subset of the Banach space L∞([0, t1]), and
resorting to (3.20), we can also prove that Θ is continuous from K(t1, K0) into itself.
This argument will be also done in the whole interval [0, Tu] in the last step, where
we give its details. Then Schauder’s fixed point theorem allows us to conclude that
Θ has a fixed point in K(t1, K0):

c(t) = Θ(c(t)) = c̃(t)

for 0 ≤ t ≤ t1. This means that solution v(t, x) to the linear Cauchy problem (3.9)–
(3.10) is also a solution to the nonlinear Cauchy problem (1.2) with data (v0, v1) on
[0, t1]. Hence it follows from Lemma 3.1 and assumption (3.15) that

2H (v; t) = 2H (v; 0) ≤ M2

4
− 1, t ∈ [0, t1],

and as a result, we deduce that

1 ≤ c̃(t) ≤
√

1 + 2H (v; t) ≤ M

2

for 0 ≤ t ≤ t1. Therefore, by the continuity of c̃(t), there exists a time t2 ∈ (t1, Tu)
such that

1 ≤ c̃(t) ≤M

for 0 ≤ t ≤ t2. Hence, we can develop the previous fixed point argument; the solution
v(t, x) to the linear Cauchy problem (3.9)–(3.10) is also a solution to the nonlinear
Cauchy problem (1.2) with data (v0, v1) on [0, t2] satisfying

2H (v; t) = 2H (v; 0) ≤ M2

4
− 1, t ∈ [0, t2],
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where we have used assumption (3.15) in the last step. Now, we define a time t∗ by
the maximal time such that

1 ≤ c̃(t) ≤M

for 0 ≤ t ≤ t∗. Suppose that t∗ < Tu. Then, after employing the fixed point argument
on the interval [0, t∗], we deduce from Lemma 3.1 and assumption (3.15) that

2H (v; t∗) = 2H (v; 0) ≤ M2

4
− 1,

and hence, we get

1 ≤ c̃(t∗) ≤
M

2
.

Therefore, the fixed point argument will be also applicable, and v(t, x) coincides with
the solution to (1.2) with data (v0, v1) on some interval [0, t∗∗] strictly containing
[0, t∗]. This implies that c̃(t) is bounded by M on [0, t∗∗]. But this contradicts the
maximality of t∗. Thus we must have the required estimate (3.19). The proof of
Proposition 3.4 is now complete. �

Based on Proposition 3.4, let us prove the following theorem.

Theorem 3.5. Let s > 1, M > 2 and η > 4M2. Let (u0, u1) belong to 〈D〉−3/2γsη,L2×
〈D〉−1/2γsη,L2 and satisfy

(3.24) 2H (u; 0) ≤ M2

4
− 1.

Then the Cauchy problem (1.2) admits a unique solution u in the class

1⋂
j=0

Cj
(
[0,∞); 〈D〉−(3/2)+jγsη,L2

)
.

One problem that we will encounter later in the proof of Theorem 1.2 (in particular
leading to the appearance of s′ > s there) is that we need η to be sufficiently large in
Theorem 3.5, namely, to satisfy η > 4M2 for M > 2 also satisfying (3.24). Writing
these conditions as η > 4M2 > 16 and η > 4M2 ≥ 4(8H (u; 0) + 4), Theorem 3.5
gives the following

Corollary 3.6. Let s > 1. Let us write

γsL2 = Γs−(ν) ∪ Γs+(ν), where Γs−(ν) =
⋃

0<η≤ν

γsη,L2 , Γs+(ν) =
⋃
η>ν

γsη,L2 .

If 〈D〉3/2u0, 〈D〉1/2u1 ∈ Γs+(ν) for ν > max{16, 4(8H (u; 0) + 4)}, then the Cauchy
problem (1.2) admits a unique solution

u ∈ C1 ([0,∞); γsL2) .

Proof of Theorem 3.5. Assuming that (u0, u1) satisfy (3.16)–(3.17) from Proposition
3.4, we lead to a contradiction. Hereafter, we write

Tu = Tu(u0, u1) and K = K(Tu, K0).
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First, we notice that if {(u0, u1) ∈ Bsη : 2H (u; 0) ≤ M2

4
− 1} 6= ∅ for some η > 4M2,

then we have (3.4) from Lemma 3.3:

inf
(u0,u1)∈Bsη : 2H (u;0)≤M2

4
−1

Tu(u0, u1) = 0.

Letting c = c(t) ∈ K , where s and q are related by (3.13), we consider the linear
Cauchy problem (3.9) with data (u0, u1), and we put

c̃(t) =

√
1 +

∫
Rn
|∇v(t, x)|2 dx.

Then it follows from Proposition 3.4 that the mapping

Θ : c(t) 7→ c̃(t)

maps from K into itself. Now K may be regarded as the convex subset of the Fréchet
space L∞loc([0, Tu)), and we endow K with the induced topology. We shall prove the
compactness of K and continuity of the mapping Θ. Then the Schauder-Tychonoff
theorem allows us to conclude the proof.

Compactness of K . We show that K is uniformly bounded and equicontinuous
on every compact interval of [0, Tu). Let {ck(t)}∞k=1 be a sequence in K so that

(3.25) 1 ≤ ck(t) ≤M, t ∈ [0, Tu],

(3.26) |c′k(t)| ≤
K0

(Tu − t)q
, a.e. t ∈ [0, Tu).

Observing

ck(t)− ck(t′) =

∫ t

t′
c′k(τ) dτ,

we obtain from (3.26) that

|ck(t)− ck(t′)| ≤
K0

q − 1

{
1

(Tu − t)q−1
− 1

(Tu − t′)q−1

}
for 0 ≤ t′ < t < Tu. Since 1/(Tu − t)q−1 is uniformly continuous on every compact
interval of [0, Tu), the sequence {ck(t)}∞k=1 is equicontinuous on that interval. Thus
one can deduce from the Ascoli-Arzelà theorem that K is compact in L∞loc([0, Tu)),
and hence, every sequence {ck(t)}∞k=1 in K has a subsequence, denoted by the same,
converging to some c(·) ∈ L∞loc([0, Tu)):

(3.27)


ck(·) →

(k→∞)
c(·) in L∞loc([0, Tu));

1 ≤ c(t) ≤M for every compact interval in [0, Tu);

|c(t)− c(t′)| ≤ K0

q − 1

{
1

(Tu − t)q−1
− 1

(Tu − t′)q−1

}
, 0 ≤ t′ < t < Tu.

The last statement of (3.27) implies that c(t) is in Liploc([0, Tu)), since the function
(Tu − t)−(q−1) is in Liploc([0, Tu)). Furthermore, c(t) must be bounded by M even at
t = Tu,

(3.28) 1 ≤ c(t) ≤M, t ∈ [0, Tu].
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Indeed, if

lim sup
t↗Tu

c(t) > M,

there exists a sequence {tj} such that

(3.29) tj ↗ Tu and c(tj) > M, (j = 1, 2, . . .).

Going back to (3.25), and resorting to the first statement of (3.27), we have

c(tj) = lim
k→∞

ck(tj) ≤M, (∀ j).

This contradicts (3.29). Thus we conclude that c(t) satisfies (3.28) and

c(·) ∈ Liploc([0, Tu)),

and the derivative c′(t) exists for a.e. t ∈ [0, Tu). Now, for the derivative c′(t), if we
prove that

(3.30) |c′(t)| ≤ K0

(Tu − t)q
, a.e. t ∈ [0, Tu),

then c(t) ∈ K , which proves the compactness of K . We prove (3.30). Let t0 ∈ (0, Tu)
be an arbitrary point where c(t) is differentiable. Since we have, by using (3.26),∣∣∣∣ck(t0 + h)− ck(t0 − h)

2h

∣∣∣∣ =

∣∣∣∣ 1

2h

∫ t0+h

t0−h
c′k(t) dt

∣∣∣∣
≤ K0

2h(q − 1)

{
1

(Tu − (t0 − h))q−1
− 1

(Tu − (t0 + h))q−1

}
for h > 0, we can take the limit in this equation with respect to k, so that∣∣∣∣c(t0 + h)− c(t0 − h)

2h

∣∣∣∣ ≤ K0

2h(q − 1)

{
1

(Tu − (t0 − h))q−1
− 1

(Tu − (t0 + h))q−1

}
.

Then, letting h→ +0, we conclude that

|c′(t0)| ≤ K0

(Tu − t0)q
.

Since t0 is arbitrary, we get (3.30).

Continuity of Θ on K . Let us take a sequence {ck(·)} in K such that

ck(·)→ c(·) ∈ K in L∞loc([0, Tu)) (k →∞),

and let vk(t, x) and v(t, x) be the corresponding solutions to the linear Cauchy prob-
lem (3.9)–(3.10) with coefficients ck(t) and c(t), respectively, with fixed data (u0, u1).
Then it is sufficient to prove that the images c̃k(t) := Θ(ck(t)) and c̃(t) := Θ(c(t))
satisfy

(3.31) c̃k(·)→ c̃(·) in L∞loc([0, Tu)) (k →∞).

The functions wk := vk − v, k = 1, 2, . . ., solve the following Cauchy problem:{
∂2
twk − c(t)2∆wk = {ck(t)2 − c(t)2}∆vk, (t, x) ∈ (0, Tu)× Rn,

wk(0, x) = 0, ∂twk(0, x) = 0, x ∈ Rn.
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Differentiate the energy E (wk(t)) for wk with respect to t, where

E (wk(t)) = ‖∂twk(t)‖2
L2 + c(t)2‖∇wk(t)‖2

L2 .

Then we get

E ′(wk(t)) =− 2
{
ck(t)

2 − c(t)2
}

Re (∆vk(t), ∂twk(t))L2(3.32)

+ 2c(t)c′(t) ‖∇wk(t)‖2
L2

≤2
∣∣ck(t)2 − c(t)2

∣∣ ‖vk(t)‖Ḣ3/2‖∂twk(t)‖Ḣ1/2 + 2
|c′(t)|
c(t)

E (wk(t)).

Here, we see from (2.5) in Proposition 2.1 and assumption (3.13) on s and q that

‖vk(t)‖Ḣ3/2‖∂twk(t)‖Ḣ1/2

≤M2e4M2 max{1,T 1−(qs−s)
u }‖((−∆)3/2u0, (−∆)1/2u1)‖2

γs
η,L2×γsη,L2

=M2e4M2‖((−∆)3/2u0, (−∆)1/2u1)‖2
γs
η,L2×γsη,L2

for 0 ≤ t ≤ Tu. Then we integrate (3.32) and apply Gronwall’s lemma to obtain

E (wk(t)) ≤ 2M2e4M2‖((−∆)3/2u0, (−∆)1/2u1)‖2
γs
η,L2×γsη,L2

×(∫ t

0

∣∣ck(τ)2 − c(τ)2
∣∣ dτ) exp

(
2

∫ t

0

|c′(τ)|
c(τ)

dτ

)
for t ∈ [0, Tu), which implies that

∇vk(t)→ ∇v(t)

∂tvk(t)→ ∂tv(t)

}
in L∞loc([0, Tu);L

2) as k →∞.

Hence we get (3.31), which proves the continuity of Θ.

We are now in a position to conclude the proof.

Let (u0, u1) ∈ 〈D〉−3/2γsη,L2 × 〈D〉−1/2γsη,L2 satisfy (3.13) and (3.24) for some η >

4M2. Then the previous results assure that Θ is continuous from K into itself,
provided that the data (u0, u1) is assumed to satisfy (3.16)–(3.17) from Proposition
3.4. Since K is the convex and compact subset of the Fréchet space L∞loc([0, Tu)), the
Schauder-Tychonoff theorem implies that Θ has a fixed point in K , and hence, we
conclude that solution v(t, x) to the linear Cauchy problem (3.9)–(3.10) with data
(u0, u1) is also a solution u(t, x) to the nonlinear Cauchy problem (1.2) with data
(u0, u1) on [0, Tu] satisfying

lim sup
t↗Tu

E3/2(u; t) <∞.

Therefore, resorting to Proposition 3.2, we must have Tu(u0, u1) = ∞. This contra-
dicts the assumption (3.16) in Proposition 3.4 that (u0, u1) ∈ Bsη,C1

. Therefore, for

(u0, u1) ∈ 〈D〉−3/2γsη,L2 × 〈D〉−1/2γsη,L2 satisfying (3.13) and (3.24), we conclude that

either assumption (3.16) or (3.17) is false. Namely, the class of

(u0, u1) ∈ 〈D〉−3/2γsη,L2 × 〈D〉−1/2γsη,L2



KIRCHHOFF EQUATION 19

satisfying (3.13) and (3.24) leads to the following two alternatives: for any C̃ ∈ (0, ε0),
either

(i) (u0, u1) /∈ Bs
η,C̃

,

or

(ii)
∥∥((−∆)3/4u0, (−∆)1/4u1

)∥∥2

γs
η,L2×γsη,L2

≥ (q − 1)(η − 4M2)

2C̃qM2e4M2
,

where ε0 is the constant given in (3.14). If the assertion (ii) is satisfied for a sequence
of C̃ accumulating to 0, by letting C̃ → 0,∥∥((−∆)3/4u0, (−∆)1/4u1

)∥∥2

γs
η,L2×γsη,L2

=∞,

and hence, we conclude that (u0, u1) /∈ (−∆)−3/4γsη,L2 × (−∆)−1/4γsη,L2 . Therefore,

(ii) never occurs in some interval [0, ε1) for some 0 < ε1 < ε0. As a result, any pair
of data (u0, u1) ∈ 〈D〉−3/2γsη,L2×〈D〉−1/2γsη,L2 fulfilling (3.13) and (3.24) satisfies only

the assertion (i). Now, the assertion (i) implies that for ε1 > 0, we have

T (u0, u1) > ε1

for any (u0, u1) ∈ 〈D〉−3/2γsη,L2 × 〈D〉−1/2γsη,L2 satisfying (3.13) and (3.24). But this

contradicts (3.4), and hence, we must have

(3.33) Bsη ∩
{

2H (u; 0) ≤ M2

4
− 1

}
= ∅.

We finally remove the condition 2H (u; 0) ≤ M2

4
− 1. We note that throughout the

argument, M was a fixed constant > 2. Suppose Bsη 6= ∅ so that there exists some

(u0, u1) ∈ Bsη. Setting, for example, M :=
√

8H (u; 0) + 4 + 1, we have M > 2 and

also 2H (u; 0) ≤ M2

4
− 1. Hence we also have (u0, u1) ∈ Bsη ∩ {2H (u; 0) ≤ M2

4
− 1}

which contradicts (3.33). Thus we arrive at Bsη = ∅.
In conclusion, for any data (u0, u1) ∈ 〈D〉−3/2γsη,L2 × 〈D〉−1/2γsη,L2 satisfying (3.13)

and (3.24), with η > 4M2, M > 2, we have Tu(u0, u1) =∞. Therefore, we conclude
from Proposition 3.2 that the Cauchy problem (1.2) admits a unique solution u in
the class

1⋂
j=0

Cj
(
[0,∞); 〈D〉−(3/2)+jγsη,L2

)
.

The proof of Theorem 3.5 is now finished. �

We now prove Theorem 1.2.

Proof of Theorem 1.2. Theorem 1.2 is an immediate consequence of Theorem 3.5 and
Lemma A.1 in Appendix A. In fact, let s > 1, and suppose that there exists η′ > 0
such that (u0, u1) ∈ 〈D〉−3/2γs−εη′,L2 × 〈D〉−1/2γs−εη′,L2 for some 0 < ε < s − 1. Assume
that

2H (u; 0) ≤ M2

4
− 1.
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Then Lemma A.1 assures that (u0, u1) ∈ 〈D〉−3/2γsη,L2 × 〈D〉−1/2γsη,L2 for some η >

4M2. Therefore, thanks to Theorem 3.5, the corresponding Gevrey class solution to
(1.2) with data (u0, u1) exists globally on [0,∞), and belongs to the class

1⋂
j=0

Cj
(
[0,∞); 〈D〉−(3/2)+jγsη,L2

)
.

The uniqueness follows from Proposition 3.2. The proof of Theorem 1.2 is now
complete. �

4. Initial-boundary value problem for the Kirchhoff equation

The argument in the proof of Theorem 1.2 is also applicable for the initial-boundary
value problems in an open set Ω in Rn. In this section we discuss the global exis-
tence for the initial-boundary value problem to the Kirchhoff equation in exterior
domains and in bounded domains. The results in this section can be proved by the
generalised Fourier transform method in exterior domains, and the Fourier series
expansion method in bounded domains.

It is known from the spectral theorem that a self-adjoint operator on a separable
Hilbert space is unitarily equivalent to a multiplication operator on some L2(M, µ),
where (M, µ) is a measure space. Then L2(Ω) is unitarily equivalent to L2(Rn).
This means that the Fourier transform method in Rn is available for L2 space on an
open set Ω in Rn; any multiplier acting on L2(Rn) is unitarily transformed into an
multiplier acting on L2(Ω).

4.1. The case: Ω is an exterior domain. Replacing the Fourier transform over
Rn by the generalised Fourier transform over exterior domains and applying exactly
the same argument of Theorems 1.2, we can also prove a similar result for the initial-
boundary value problem in exterior domains. More precisely, we consider the follow-
ing problem:

(4.1)


∂2
t u−

(
1 +

∫
Ω

|∇u(t, y)|2 dy
)

∆u = 0, t > 0, x ∈ Ω,

u(0, x) = u0(x), ∂tu(0, x) = u1(x), x ∈ Ω,

u(t, x) = 0, x ∈ ∂Ω.

Here, Ω is a domain of Rn such that Rn \ Ω is compact and its boundary ∂Ω is
analytic. The latter assumption may be in principle relaxed but this would require
an extension of known analytic solvability results to the Gevrey setting, so we omit
it for this moment, and refer to [1] and [27] for further details.

Following Wilcox [43], let us define the generalised Fourier transforms in an arbi-
trary exterior domain Ω. Let A be a self-adjoint realisation of the Dirichlet Laplacian
−∆ with domain H2(Ω)∩H1

0 (Ω). Then A is non-negative on L2(Ω), and we can define
the square root A1/2 of A. We recall the resolvent operators R(|ξ|2 ± i0):

R(|ξ|2 ± i0) = lim
ε→+0

(A− (|ξ|2 ± iε))−1,

and R(|ξ|2 ± i0) are bounded from L2(Ω, 〈x〉sdx) to H2(Ω, 〈x〉−sdx) for each ξ ∈ Rn

and some s > 1/2, where 〈x〉 = (1 + |x|)1/2 (see, e.g., Mochizuki [36]; note that this
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result does not require Rn \Ω to be star-shaped). Introducing a function j = j(x) ∈
C∞(Rn) vanishing in a neighbourhood of Rn \ Ω and equal to one for large |x|, we
define the generalised Fourier transforms as follows:

(F±f)(ξ) := lim
L→∞

(2π)−n/2
∫

Ω∩{|x|<L}
ψ±(x, ξ)f(x) dx in L2(Rn),

where we put
ψ±(x, ξ) = j(x)eix·ξ + [R(|ξ|2 ± i0)Mξ(·)](x)

with Mξ(x) = −(A− |ξ|2)(j(x)eix·ξ).

Notice that we can write formally

Mξ(x) = {∆j(x) + 2iξ · ∇j(x)}eix·ξ.
The kernels ψ±(x, ξ) are called eigenfunctions of the operator A with eigenvalue |ξ|2
in the sense that, formally,

(A− |ξ|2)ψ±(x, ξ) = 0,

but ψ±(x, ξ) /∈ L2(Ω). Similarly, the inverse transforms are defined by

(F ∗
±g)(x) = lim

L→∞
(2π)−n/2

∫
{|ξ|<L}

ψ±(x, ξ)g(ξ) dξ in L2(Ω).

We treat F+f only and drop the subscript +, since F−f can be dealt with by
essentially the same method. The transform Ff thus defined obeys the following
properties (see, e.g., Shenk II [42, Theorem 1 and Corollary 5.1]):

(i) F is a unitary mapping

F : L2(Ω)→ L2(Rn).

Hence
FF ∗ = I.

(ii) F satisfies the generalised Parseval identity:

(Ff,Fg)L2(Rn) = (f, g)L2(Ω), f, g ∈ L2(Ω).

(iii) F diagonalizes the operator A in the sense that

F (ϕ(A)f)(ξ) = ϕ(|ξ|2)(Ff)(ξ),

where ϕ(A) is the operator defined by the spectral representation theorem for
self-adjoint operators.

We say that f ∈ γsL2(Ω) for s ≥ 1 if and only if there exists η > 0 such that

(4.2)

∫
Rn
eη|ξ|

1/s|(Ff)(ξ)|2 dξ <∞.

We denote by
Hσ(Ω) = 〈D〉−σL2(Ω)

for σ ∈ R the Sobolev spaces over Ω, and 〈D〉 = (1 + A)1/2. Their homogeneous
version is

Ḣσ(Ω) = A−σ/2L2(Ω).
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To state the results, we need to introduce the analytic compatibility condition.

The Gevrey compatibility condition. f satisfies the Gevrey compatibility con-
dition if and only if f ∈ γsL2(Ω) satisfies

Akf ∈ H1
0 (Ω), k = 0, 1, · · · .

Based on the properties (i)–(iii) of the generalised Fourier transform, we have:

Theorem 4.1. Assume that Ω is an exterior domain of Rn with analytic boundary
such that Rn \ Ω is compact. Let s > 1. Then for any u0, u1 ∈ γsL2(Ω) satisfying
the Gevrey compatibility condition, the initial-boundary value problem (4.1) admits a
unique solution

u ∈ C1
(

[0,∞); γs
′

L2(Ω)
)

for every s′ > s.

In the previous known results of Sobolev well-posedness (for small data) on exterior
problems, the differentiation of generalised Fourier transform with respect to spectral
parameter is a powerful tool (see [20, 30, 31, 40]). There, some geometrical condition,
say, star-shaped assumption on the set of obstacles, would be necessary for getting
appropriate a priori estimates for solutions (see [20, 30, 31, 40]). Compared with
the previous literature, Theorem 4.1 does not require any geometrical condition on
Ω. This is because we need not differentiate the generalised Fourier transform of the
data.

4.2. The case: Ω is a bounded domain. Replacing Fourier transform by Fourier
series expansion and applying exactly the same argument of the proof of Theorem
1.2, we can prove a similar result for the initial-boundary value problem in [0,∞)×Ω,
where Ω is a bounded domain in Rn with analytic boundary ∂Ω.

Let {wk}∞k=1 be a complete orthonormal system of eigenfunctions of the operator
−∆ whose domain is H2(Ω)∩H1

0 (Ω), and let λk be eigenvalues corresponding to wk.
Namely, {wk, λk} satisfy the elliptic equations:{−∆wk = λkwk in Ω,

wk = 0 on ∂Ω.

Then (wk, w`)L2(Ω) = δk` and

0 < λ1 ≤ λ2 ≤ · · ·λk ≤ · · · and λk →∞,

where (φ, ψ)L2(Ω) stands for the inner product of φ and ψ in L2(Ω). We say that
f ∈ Hσ(Ω) for real σ if

∞∑
k=1

λ2σ
k

∣∣(f, wk)L2(Ω)

∣∣2 <∞,
and f ∈ γsL2(Ω) for s ≥ 1 if and only if there exists η > 0 such that

∞∑
k=1

eηλ
1/s
k

∣∣(f, wk)L2(Ω)

∣∣2 <∞.
Then we have:
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Theorem 4.2. Assume that Ω is a bounded domain with analytic boundary. Let
s > 1. Then for any u0, u1 ∈ γsL2(Ω) satisfying the Gevrey compatibility condition,
the initial-boundary value problem (4.1) admits a unique solution u in the class

C1
(

[0,∞); γs
′

L2(Ω)
)

for every s′ > s.

Appendix A.

Here we briefly recall the inclusion relation among the classes γsL2 .

Lemma A.1. Let s > s′ ≥ 1. Then

(A.1) γs
′

η′,L2 $ γsη,L2

for every η, η′ > 0.

Although this property is well known, we give a short proof for completeness.

Proof. Let us consider the characteristic function χ(ξ) on the set

{ξ ∈ Rn : |ξ| ≥ (η/η′)σ},
where σ is defined as 1

σ
= 1

s′
− 1

s
. Then we can estimate∫

Rn
χ(ξ)eη|ξ|

1/s|f̂(ξ)|2 dξ ≤
∫
Rn
χ(ξ)eη

′|ξ|1/σ |ξ|1/s|f̂(ξ)|2 dξ ≤
∫
Rn
eη
′|ξ|1/s′ |f̂(ξ)|2 dξ,

since η ≤ η′|ξ|1/σ on the support of χ(ξ). On the support of 1 − χ(ξ), we have
|ξ| ≤ (η/η′)σ, and hence,∫

Rn
[1− χ(ξ)]eη|ξ|

1/s|f̂(ξ)|2 dξ ≤
∫
Rn

[1− χ(ξ)]eη(η/η′)(σ/s)|f̂(ξ)|2 dξ

≤eη(η/η′)(σ/s)
∫
Rn
eη
′|ξ|1/s′ |f̂(ξ)|2 dξ.

Summarising the above estimates, we get∫
Rn
eη|ξ|

1/s|f̂(ξ)|2 dξ ≤
{

1 + eη(η/η′)(σ/s)
}∫

Rn
eη
′|ξ|1/s′ |f̂(ξ)|2 dξ,

which proves (A.1). �
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