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A small remark on flat functions
Kazuo MASUDA and Yoshihiko MITSUMATSU

Abstract

We remark that there is no smooth flat function f (x) on [0, ∞)
such that for a fixed interval (0, α) (α > 0) on which the derivative of
any higher order is positive.

We consider smooth functions on the half line [0, ∞) which are flat at
the origin, namely of class C∞ and any derivative f (n)(x) converges to 0
when x → 0 + 0. Eventually it is equivalent to say that f extends to the
whole real line as a smooth function by defining f (x) = 0 for x < 0. In this
tiny note we make a small remark on the asymptotics of higher derivatives
around the origin.

Among non-tirivial flat functions the most well-known might be the
one which is defined as follows.

f (0) = 0 and f (x) = e−
1
x for x > 0

If we imagine its graph, of course it seems smooth enough, and it can
be extended as constantly 0 on (−∞, 0] as a smooth function on the real
line R. Its first derivative is positive on (0, ∞), but the second derivative
vanishes at x = 1

2 = x2 and the third vanishes at x3 = 1−1/
√

3
2 < x2, and so

on. That is, setting xn = min{x ; f (n)(x) = 0, x > 0} for n = 2, 3, 4, . . . ,
it is clear that {xn} is strictly decreasing, and in fact limn→∞ xn = 0. More
over, if we fix any interval [0, α) (α > 0), f (n)(x) tend to behave more and
more wildly when n → ∞ on the interval.

Also, if we take g0(x) = f (x)(sin( 1
x ) + 1) and

gn(x) =
∫ x

0

∫ tn−1

0
· · ·

∫ t1

0
g0(t0)dt0 · · · dtn−2dtn−1 ,

then for n = 1, 2, 3, · · · , gn(x) is positive on (0, ∞) and is flat at x = 0,
and apparently g(k)n (x) > 0 when x > 0 for 0 ≤ k ≤ n − 1 but there is no
interval (0, α) on which g(n)n (x) is positive.

They present some features of a general property of positive flat func-
tions, which is formulated as follows.

Theorem 1 Let f (x) be a smooth function on [0, ∞) which is flat at x =
0. Then there does not exist positive real number α such that for any higher
derivatives (i.e., for ∀n ∈ N), f (n)(x) > 0 holds on (0, α].

Lemma 2 Let n be an integer and g(x) be a function on [0, 1] of class
Cn+1 with the following properties.
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(1) g(k)(0) = 0 for k = 0, ... , n, and g(1) = 1,

(2) g(n+1)(x) > 0 for x > 0.

Then g(x) < xn holds on (0, 1).

Proof of Theorem. The theorem is easily deduced from the lemma by con-
tradiction. Assume for some α > 0 that f (x) is smooth on [0, α], is flat at
x = 0, and that its n-th derivative is positive on (0, α] for any n ∈ N. We
adjust the function f into g(x) = f (α)−1 f (αx). Then g(x) satisfies the con-
dition of the lemma for any n ∈ N. Therefore g(x) ≡ 0 on [0, 1), and we
obtained a contradiction. □

Proof of Lemma. It is enough to show that g(x)/xn is increasing on [0, 1].

As
d

dx

(
g(x)
xn

)
=

xg′(x)− ng(x)
xn+1 , it is also sufficient to show that the nu-

merator xg′(x)− ng(x) is positive on (0, 1).
Then because (xg′(x) − ng(x))(n) = xg(n+1)(x) is positive on (0, 1]

from our condition, we see successively that each k-th derivative (xg′(x)−
ng(x))(k) = xg(k+1)− (n− k)g(k)(x) vanishes at x = 0 and therefore is pos-
itive on (0, 1] for k = n − 1, n − 2, . . . , k = 0. This completes the proof. □
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