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BESOV SPACES ON OPEN SETS

TSUKASA IWABUCHI, TOKIO MATSUYAMA AND KOICHI TANIGUCHI

Abstract. This paper is devoted to giving definitions of Besov spaces on an arbi-
trary open set of Rn via the spectral theorem for the Schrödinger operator with the
Dirichlet boundary condition. The crucial point is to introduce some test function
spaces on ⌦. The fundamental properties of Besov spaces are also shown, such as
embedding relations and duality, etc. Furthermore, the isomorphism relations are
established among the Besov spaces in which regularity of functions is measured by
the Dirichlet Laplacian and the Schrödinger operators.

1. Introduction

In 1959–61 Besov introduced the Besov spaces in his papers [2, 3]. There are a lot
of literatures on characterization of Besov spaces, and we refer to the books of Triebel
[37, 38, 40] for history of Besov spaces. It was by Peetre that the Fourier transform
was employed to study the Besov spaces on Rn (see [27–29], and also Frazier and
Jawerth [11,12]). On a general domain, if the boundary is bounded and smooth, the
theory of Besov spaces is well established by extending functions on the domain to
those on Rn. Otherwise, the situation is quite di↵erent as is indicated in previous
studies (see e.g. [37,39]), and there appear to be considerable di�culties to construct
such theory.

Let ⌦ be an open set of Rn with n � 1. Our aim is to define the Besov spaces
on ⌦ based on the spectral theory by referring to Peetre’s idea. If the boundary @⌦
of ⌦ is smooth, then some basic notions are available; the restriction method of the
function on Rn to ⌦, the zero extension to the outside of ⌦, and certain intrinsic
characterization (see [25, 32, 33, 36–41]). Recently, Bui, Duong and Yan introduced
some test function spaces to define the Besov spaces Ḃs

p,q generated by the Dirichlet
Laplacian on an arbitrary open set, where s, p and q satisfy |s| < 1 and 1  p, q  1
(see [4]). They also proved the equivalence relation among the Besov spaces generated
by the Laplacian and some operators, including the Schrödinger operators, on the
whole space Rn, n � 3 with some additional conditions such as Hölder continuity for
the kernel of semi-group generated by them. As to the results on the Besov spaces
generated by the elliptic operators on manifolds, or Hermite operators, we refer to
[1,4–7,10,23] and the references therein. To the best of our knowledge, it is necessary
to impose some smoothness assumptions on the boundary @⌦ in order to define the
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Besov spaces Bs
p,q and Ḃs

p,q with all indices s, p, q satisfying s 2 R and 1  p, q  1.

In this paper we shall define the Besov spaces Bs
p,q and Ḃs

p,q generated by the
Schrödinger operator �� + V with the Dirichlet boundary condition for all indices
s, p, q without any geometrical and smoothness assumption on the boundary @⌦, and
shall prove the fundamental properties such as embedding relations and lifting, etc.
Furthermore, regarding the Besov spaces generated by the Dirichlet Laplacian as the
standard one, and adopting the potential V belonging to the Lorentz space L

n
2 ,1(⌦),

we shall establish the equivalence relation between the Besov spaces generated by the
Dirichlet Laplacian ��|D and Schrödinger operator ��|D + V . The motivation of
the study of such properties and equivalence relation comes from their applications
to partial di↵erential equations, and one can consult the papers of D’Ancona and
Pierfelice (see [9]), Georgiev and Visciglia (see [14]) and Jensen and Nakamura (see
[21,22]).

Let us consider the Schrödinger operator

��+ V (x) = �
nX

j=1

@2

@x2
j

+ V (x)

on an arbitrary open set ⌦ with the Dirichlet boundary condition, where V (x) is
a real-valued measurable function on ⌦. In this paper we adopt potentials whose
negative parts belong to the Kato class. More precisely, let us assume that the
potential V satisfies

V = V+ � V�, V± � 0, V+ 2 L1
loc(⌦) and V� 2 Kn(⌦). (1.1)

Here, the negative part V� of V is said to belong to the Kato class Kn(⌦) if V�
satisfies 8>>>>>>><

>>>>>>>:

lim
r!0

sup
x2⌦

Z
⌦\{|x�y|<r}

|V�(y)|
|x� y|n�2

dy = 0, n � 3,

lim
r!0

sup
x2⌦

Z
⌦\{|x�y|<r}

log(|x� y|�1)|V�(y)| dy = 0, n = 2,

sup
x2⌦

Z
⌦\{|x�y|<1}

|V�(y)| dy < 1, n = 1.

Then ��+V has a self-adjoint realization on L2(⌦) (see Lemma A.2 in appendix A).
Throughout this paper, we use the following notation:

Notation. We denote by AV the self-adjoint realization of ��+V with the domain

D(AV ) =
�
f 2 H1

0 (⌦)
��pV+f, AV f 2 L2(⌦)

 
, (1.2)

where H1
0 (⌦) is the completion of C1

0 (⌦) with respect to the norm

kfkL2(⌦) + krfkL2(⌦).
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By the spectral theorem there exists a spectral resolution {EAV (�)}�2R of the
identity and AV is written as

AV =

Z 1

�1
� dEAV (�).

For a Borel measurable function �(�) on R, �(AV ) is defined by letting

�(AV ) =

Z 1

�1
�(�) dEAV (�)

with the domain

D(�(AV )) =

⇢
f 2 L2(⌦)

���
Z 1

�1
|�(�)|2dkEAV (�)(f)k2

L2(⌦) < 1
�

.

Due to such a spectral resolution, we can define the Sobolev spaces Hs(AV ) by letting

Hs(AV ) =
�
f 2 L2(⌦)

�� (I + AV )
s
2 f 2 L2(⌦)

 
for s � 0. (1.3)

Then, the regularity and boundary value of functions in Hs(AV ) are determined by
AV . General approach to Hs(AV ) on bounded open sets is discussed in Ruzhansky
and Tokmagambetov [31], where the operator does not have to be self-adjoint. Here-
after, we call Hs(AV ) the Sobolev spaces by AV -regularity. In particular case ⌦ = Rn

and V = 0, the Sobolev spaces defined in (1.3) coincide with the Bessel-potential
spaces defined via the Fourier transform.

We shall apply the above characterization of Hs(AV ) to those of the inhomoge-
neous and homogeneous Besov spaces (see Theorem 2.5 below). For the Besov spaces
by this characterization, we obtain fundamental properties of the spaces (see Propo-
sitions 3.1–3.4 below) and find a su�cient condition on the integrability of V such
that the isomorphism holds between the Besov spaces by A0 and AV -regularity (see
Proposition 3.5 below). It should be noted that our framework on open sets ⌦ of Rn

is the most general setting. The crucial point is to introduce test function spaces on
⌦.

Let us recall the definitions of the test function spaces on Rn and the classical
Besov spaces, i.e., spaces when ⌦ = Rn and V = 0. It is well known that the
inhomogeneous Besov spaces and homogeneous ones are characterized as subspaces
of S 0(Rn) and Z 0(Rn) by the Littlewood-Paley dyadic decomposition of the spectrum
of
p
��, namely, Bs

p,q and Ḃs
p,q consist of all f 2 S 0(Rn) and Z 0(Rn) such that

kfkBs
p,q

=
��F�1 (|⇠|)Ff

��
Lp(Rn)

+
���2sjkF�1�(2�j|⇠|)FfkLp(Rn)

 
j2N

��
`q(N)

< 1,

kfkḂs
p,q

=
���2sjkF�1�(2�j|⇠|)FfkLp(Rn)

 
j2Z

��
`q(Z)

< 1,

respectively, for some smooth functions  ,� with compact supports. Here S 0(Rn)
is the space of the tempered distributions on Rn, which is the topological dual of
the Schwartz space S(Rn). The space S(Rn) consists of rapidly decreasing functions
equipped with the family of semi-norms

sup
x2Rn

(1 + |x|2)M
2

X
|↵|M

|@↵x f(x)|, M = 1, 2, · · · . (1.4)
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Z 0(Rn) is the dual space of Z(Rn), which is the subspace of S(Rn) defined by letting

Z(Rn) :=
n

f 2 S(Rn)
���
Z

Rn

x↵f(x)dx = 0 for all ↵ 2 (N [ {0})n
o

(1.5)

endowed with the induced topology of S(Rn). It is known that Z 0(Rn) is characterized
by the quotient space of S 0(Rn) modulo polynomials, i.e.,

Z 0(Rn) ' S 0(Rn)/P(Rn),

where P(Rn) is the set of all polynomials of n real variables (see e.g. [16, 37]).

Now, when ⌦ 6= Rn, a question naturally arises what the spaces corresponding to
S 0(Rn) and Z 0(Rn) are. We introduce such a kind of spaces as X 0

V (⌦) and Z 0
V (⌦) in

§§2.1. There we will encounter with two problems in the formulations:

(a) To handle the neighborhood of zero spectrum in the definition of the homo-
geneous Besov spaces;

(b) To develop the dyadic resolution of identity operators on our spaces X 0
V (⌦)

and Z 0
V (⌦); dyadic resolution lifted from L2(⌦).

Let us explain the problem (a). Looking at the definition (1.5) of Z(Rn), one
understands that the low frequency part of f is treated byZ

Rn

x↵f(x)dx = 0 for any ↵ 2 (N [ {0})n. (1.6)

However, when ⌦ 6= Rn it seems di�cult to get an idea corresponding to (1.6). To
overcome this di�culty, instead of (1.6), we propose

sup
j0

2M |j|k�j(
p

AV )fkL1(⌦) < 1, M = 1, 2, · · · (1.7)

in (2.4) below, where we put �j(
p

AV ) := �(2�j
p

AV ). This is probably a main nov-
elty in our work. The condition (1.7) seems one of important ingredients to introduce
test function spaces for not only Besov spaces but also other ones of homogeneous
type.

We turn to explain the problem (b). For the sake of simplicity, let us consider the
case when V = 0. Clearly, in this case, AV becomes the Dirichlet Laplacian A0. As
is well-known, the identity operator is resolved by the dyadic decomposition of the
spectrum for the Dirichlet Laplacian in L2(⌦), namely,

I =  (A0) +
X
j2N

�j(
p

A0), (1.8)

which is assured by the spectral theorem, where  is a smooth function such that

 (�2) +
X
j2N

�j(�) = 1 for any � � 0.

Initially, the resolution (1.8) holds in L2(⌦), and then, it is lifted to the space X 0
0(⌦).

This argument is accomplished in Lemma 4.5 below. When one considers Z 0
0(⌦),
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(1.8) is replaced by

I =
X
j2Z

�j(
p

A0). (1.9)

Thanks to these resolutions (1.8) and (1.9), the well known methods in the classical
Besov spaces on Rn work well also in the present case. The starting point of this
argument is to extend the spectral restriction operators �j(

p
A0) on L2(⌦) to those

on L1(⌦). There, the uniform boundedness on L1(⌦) of {�j(
p

A0)}j, i.e.,

sup
j
k�j(

p
A0)kL1(⌦)!L1(⌦) < 1 (1.10)

plays a crucial role in proving (1.8) in X 0
0(⌦) and (1.9) in Z 0

0(⌦), respectively. For
the proof, see Proposition A.1 in appendix A (see also [19, 20]). Furthermore, (1.10)
guarantees the independence of the choice of {�j}j2Z [ { }, when we define spaces
X0(⌦), X 0

0(⌦), Z0(⌦), Z 0
0(⌦) and Besov spaces defined in §2.

This paper is organized as follows. In §2, we state a main result on the Besov
spaces by AV -regularity. §3 is devoted to stating some fundamental properties of
Besov spaces. In §4, we introduce key lemmas and fundamental properties of test
function spaces on ⌦, which are essential for our theory. §5–§9 are devoted to the
proof of our results. In appendix A, we show the uniform Lp-boundedness of �(✓AV ),
the self-adjointness of AV and the pointwise estimate for the kernel of e�tAV which
are verified with some modifications of our previous work [19]. Finally, we prove in
appendix B that zero is not an eigenvalue of AV under some smallness condition on
the negative part of V .

2. Statement of results

In this section we shall state several results on the Besov spaces by AV -regularity.
We divide this section into two subsections: the introduction of test function spaces,
and statement of the result.

2.1. Definitions of test function spaces on ⌦. In this subsection we shall define
“test function spaces” consisting of functions smooth and integrable on ⌦ and spaces
of a kind of “tempered distributions” as follows:

Let �0(·) 2 C1
0 (R) be a non-negative function on R such that

supp�0 ⇢ {� 2 R | 2�1  �  2 },
X
j2Z

�0(2
�j�) = 1 for � > 0, (2.1)

and {�j}j2Z is defined by letting

�j(�) = �0(2
�j�) for � 2 R. (2.2)

Definition 2.1. (i) (Linear topological spaces XV (⌦) and X 0
V (⌦)). Assume that

the measurable potential V satisfies (1.1). Then a linear topological space
XV (⌦) is defined by letting

XV (⌦) :=
�
f 2 L1(⌦) \D(AV )

��AM
V f 2 L1(⌦) \D(AV ) for all M 2 N
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equipped with the family of semi-norms {pV,M(·)}1M=1 given by

pV,M(f) := kfkL1(⌦) + sup
j2N

2Mjk�j(
p

AV )fkL1(⌦).

X 0
V (⌦) denotes the topological dual of XV (⌦) and X 0

V
hf, giXV is the duality

pair of f 2 X 0
V (⌦) and g 2 XV (⌦). A sequence {fN}1N=1 in X 0

V (⌦) is said to
converge to f 2 X 0

V (⌦) if

X 0
V
hfN , giXV ! X 0

V
hf, giXV as N !1 for any g 2 XV (⌦).

(ii) (Linear topological spaces ZV (⌦) and Z 0
V (⌦)). Assume that the measurable

potential V satisfies (1.1) and8<
:

V� = 0 if n = 1, 2,

sup
x2⌦

Z
⌦

|V�(y)|
|x� y|n�2

dy <
⇡

n
2

�(n/2� 1)
if n � 3.

(2.3)

Then a linear topological space ZV (⌦) is defined by letting

ZV (⌦) :=
n

f 2 XV (⌦)
��� sup

j0
2M |j|���j

�p
AV

�
f
��

L1(⌦)
< 1 for all M 2 N

o

equipped with the family of semi-norms {qV,M(·)}1M=1 given by

qV,M(f) := kfkL1(⌦) + sup
j2Z

2M |j|k�j(
p

AV )fkL1(⌦). (2.4)

Z 0
V (⌦) denotes the topological dual of ZV (⌦) and Z0V hf, giZV is the duality

pair of f 2 Z 0
V (⌦) and g 2 ZV (⌦). A sequence {fN}1N=1 in Z 0

V (⌦) is said to
converge to f 2 Z 0

V (⌦) if

Z0V hfN , giZV ! Z0V hf, giZV as N !1 for any g 2 ZV (⌦).

(iii) (Spaces generated by the Dirichlet Laplacian). In particular case V = 0, we
write XV (⌦), X 0

V (⌦), ZV (⌦) and Z 0
V (⌦) as

X0(⌦), X 0
0(⌦), Z0(⌦) and Z 0

0(⌦),

respectively.

We notice from assumption (2.3) that AV is non-negative on L2(⌦) and that zero is
not an eigenvalue of AV as well as the Dirichlet Laplacian. In fact, these results hold
for a more general assumption (B.1) in appendix B. We also note that assumption
(2.3) excludes the potential V like

V (x) = �c|x|�2, c > 0.

For more details, see the remark after the statement of Proposition A.1 in appendix A.

Functions in the Lebesgue spaces are regarded as elements in X 0
V (⌦) and Z 0

V (⌦)
analogously to the case for S 0(Rn) and Z 0(Rn), respectively. Lemma 4.6 below assures
that Z

⌦

��f(x)g(x)
�� dx < 1

for any f 2 Lp(⌦), 1  p  1, and g 2 XV (⌦) (g 2 ZV (⌦) resp.). So, we define:
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Definition 2.2. For f 2 L1(⌦) + L1(⌦), we identify f as an element in X 0
V (⌦)

(Z 0
V (⌦) resp.) by letting

X 0
V
hf, giXV =

Z
⌦

f(x)g(x) dx

✓
Z0V hf, giZV =

Z
⌦

f(x)g(x) dx resp.

◆

for any g 2 XV (⌦) (ZV (⌦) resp.).

For a mapping �(AV ) on XV (⌦) (ZV (⌦) resp.), we define the dual operator of
�(AV ) on X 0

V (⌦) (Z 0
V (⌦) resp.) induced naturally from that on L2(⌦).

Definition 2.3. (i) For a mapping �(AV ) : XV (⌦) ! XV (⌦), we define �(AV ) :
X 0

V (⌦) ! X 0
V (⌦) by letting

X 0
V

⌦
�(AV )f, g

↵
XV

:= X 0
V

⌦
f,�(AV )g

↵
XV

for all g 2 XV (⌦). (2.5)

(ii) For a mapping �(AV ) : ZV (⌦) ! ZV (⌦), we define �(AV ) : Z 0
V (⌦) ! Z 0

V (⌦)
by letting

Z0V
⌦
�(AV )f, g

↵
ZV

:= Z0V
⌦
f,�(AV )g

↵
ZV

for all g 2 ZV (⌦). (2.6)

It is shown in Lemma 4.2 below that XV (⌦) and ZV (⌦) are complete, and hence,
they are Fréchet spaces. Needless to say, it is not possible to define an operator

p
AV

if the spectrum of AV contains negative real numbers. However, since �j(�) = 0 for
�  0, we define �j(

p
AV ) as

�j(
p

AV ) =

Z 1

0

�j(
p
�)dEAV (�).

Let us give a few remarks on properties of X0(⌦) and Z0(⌦) as follows:

• When ⌦ = Rn and V = 0, the Schwartz space S(Rn) is contained in X0(Rn),
and the inclusion for tempered distributions are just opposite. Namely, it can
be readily checked from Definition 2.1 that

S(Rn) ,! X0(Rn) ,! X 0
0(Rn) ,! S 0(Rn), (2.7)

Z(Rn) ,! Z0(Rn) ,! Z 0
0(Rn) ,! Z 0(Rn),

C1
0 (Rn) ⇢ X0(Rn), C1

0 (Rn) 6⇢ Z0(Rn).

• When ⌦ = Rn and V = 0, the restriction of low frequency in the definition
(2.4) of q0,M(f) is natural, since one can show that any element f 2 S(Rn)
belongs to Z(Rn) if and only if q0,M(f) < 1 for M = 1, 2, . . . .

• When ⌦ 6= Rn, any f 2 X0(⌦) or Z0(⌦) satisfies

f ⌘ 0 on @⌦,

since f 2 H1
0 (⌦). Hence, the condition p0,M(f) < 1 not only determines

smoothness and integrability of f but also assures the Dirichlet boundary
condition. Also, such an f contacts with @⌦ of order infinity in the following
way:

AM
0 f ⌘ 0 on @⌦, M = 0, 1, 2, · · · .

The same assertion holds for XV (⌦), ZV (⌦) and AV .
• In order to simplify the argument, instead of the polynomial weights appearing

on semi-norms (1.4) in S(Rn), we adopted the integrability condition on f .
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Based on Definitions 2.1–2.3, we establish the definition of Besov spaces on an
arbitrary open set of Rn in §§2.2.

2.2. Statement of the main result. We are in this subsection to state the result.
Let {�j}j2Z [ { } be the Littlewood-Paley dyadic decomposition, namely, the se-
quence {�j}j2Z is defined by (2.2), and  is a smooth function with compact support
around the origin. Here, we note that if V satisfies assumption (1.1), then the spec-
trum of AV may admit to be negative. It is shown in Lemma A.2 in appendix A that
there exists a positive constant �0 such that

AV � ��2
0I. (2.8)

Then we need to choose the function  such that

 (�) = 1 for � 2 [��2
0, 0],  (�2) +

X
j2N

�j(�) = 1 for � � 0. (2.9)

Based on this choice of  , let us introduce the definition of the Besov spaces by
AV -regularity.

Definition 2.4. For s 2 R and 1  p, q  1, we define the inhomogeneous and
homogeneous Besov spaces as follows:

(i) Bs
p,q(AV ) is defined by letting

Bs
p,q(AV ) := {f 2 X 0

V (⌦) | kfkBs
p,q(AV ) < 1},

where

kfkBs
p,q(AV ) := k (AV )fkLp(⌦) +

���2sjk�j(
p

AV )fkLp(⌦)

 
j2N

��
`q(N)

.

(ii) Ḃs
p,q(AV ) is defined by letting

Ḃs
p,q(AV ) := {f 2 Z 0

V (⌦) | kfkḂs
p,q(AV ) < 1},

where
kfkḂs

p,q(AV ) :=
���2sjk�j(

p
AV )fkLp(⌦)

 
j2Z

��
`q(Z)

.

Our main result can now be formulated in the following way:

Theorem 2.5. For any s, p, q with s 2 R and 1  p, q  1, the following assertions
hold:

(i) (Inhomogeneous Besov spaces) Assume that the measurable potential V satis-
fies (1.1). Then:
(i-a) Bs

p,q(AV ) is independent of the choice of { } [ {�j}j2N satisfying (2.1),
(2.2) and (2.9), and enjoys the following:

XV (⌦) ,! Bs
p,q(AV ) ,! X 0

V (⌦). (2.10)

(i-b) Bs
p,q(AV ) is the Banach space.

(ii) (Homogeneous Besov spaces) Assume that the measurable potential V satisfies
(1.1) and (2.3). Then:
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(ii-a) Ḃs
p,q(AV ) is independent of the choice of {�j}j2Z satisfying (2.1) and

(2.2), and enjoys the following:

ZV (⌦) ,! Ḃs
p,q(AV ) ,! Z 0

V (⌦). (2.11)

(ii-b) Ḃs
p,q(AV ) is the Banach space.

Let us give a remark on the theorem. It is meaningful to consider the space X 0
V (⌦)

(Z 0
V (⌦) resp.), when one defines the spaces Bs

p,q(AV ) (Ḃs
p,q(AV ) resp.). In fact, when

⌦ = Rn and V = 0, we see from (2.7) that

C1
0 (Rn) ⇢ S(Rn) ,! X0(Rn) ,! X 0

0(Rn) ,! S 0(Rn).

Since C1
0 (Rn) is dense in the classical Besov spaces Bs

p,q for s 2 R and 1  p, q < 1,
Bs

p,q as subspaces of X 0
0(Rn) are isomorphic to those as subspaces of S 0(Rn). Similarly,

Ḃs
p,q as subspaces of Z 0

0(Rn) are isomorphic to those as subspaces of Z 0(Rn).

3. Dual spaces, embedding relations, lifting properties and
isomorphic properties

In this section, we shall introduce important properties of Besov spaces. Let us
consider the dual spaces of Besov spaces, lifting properties and embedding relations.

The following proposition is concerned with the dual spaces.

Proposition 3.1. Assume that V satisfies the same assumptions as in Theorem 2.5.
Let s 2 R, 1  p, q < 1, 1/p + 1/p0 = 1 and 1/q + 1/q0 = 1. Then the dual spaces of
Bs

p,q(AV ) and Ḃs
p,q(AV ) are B�s

p0,q0(AV ) and Ḃ�s
p0,q0(AV ), respectively.

We have the lifting properties and embedding relations of our Besov spaces.

Proposition 3.2. Assume that V satisfies the same assumptions as in Theorem 2.5.
Let �0 be the constant as in (2.8), i.e., AV � ��2

0I. Let s, s0 2 R and 1  p, q, q0, r 
1. Then the following assertions hold:

(i) The inhomogeneous Besov spaces enjoy the following properties:�
(�2

0 + 1)I + AV

 s0/2
f 2 Bs�s0

p,q (AV ) for any f 2 Bs
p,q(AV );

Bs+"
p,q (AV ) ,! Bs

p,q0
(AV ) for any " > 0;

Bs
p,q(AV ) ,! Bs0

p,q(AV ) if s � s0;

B
s+n( 1

r�
1
p )

r,q (AV ) ,! Bs
p,q0

(AV ) if 1  r  p  1 and q  q0.

(ii) The homogeneous Besov spaces enjoy the following properties:

As0/2
V f 2 Ḃs�s0

p,q (AV ) for any f 2 Ḃs
p,q(AV );

Ḃ
s+n( 1

r�
1
p )

r,q (AV ) ,! Ḃs
p,q0

(AV ) if 1  r  p  1 and q  q0.

The Besov and Lebesgue spaces have the inclusion relation with each other.

Proposition 3.3. Assume that V satisfies the same assumptions as in Theorem 2.5.
Then the following continuous embeddings hold:
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(i) Lp(⌦) ,! B0
p,2(AV ), Ḃ0

p,2(AV ) if 1 < p  2.

(ii) B0
p,2(AV ), Ḃ0

p,2(AV ) ,! Lp(⌦) if 2  p < 1.

As was stated in §1, the classical homogeneous Besov spaces are considered as
subspaces of quotient space S 0(Rn)/P(Rn). The following proposition states that the
homogeneous Besov spaces with some indices s, p, q are characterized by subspaces
of X 0

V (⌦) which is not a quotient space. Such characterization is known in the case
of ⌦ = Rn (see, e.g. [24]).

Proposition 3.4. Assume that V satisfies (1.1) and (2.3). Let s 2 R and 1 
p, q  1. If either s < n/p or (s, q) = (n/p, 1), then the homogeneous Besov spaces
Ḃs

p,q(AV ) are regarded as subspaces of X 0
V (⌦) according to the following isomorphism:

Ḃs
p,q(AV ) '

n
f 2 X 0

V (⌦)
��� kfkḂs

p,q(AV ) < 1, f =
X
j2Z

�j(
p

AV )f in X 0
V (⌦)

o
.

We conclude this section by stating a result on the equivalence relation among the
Besov spaces by A0 and AV -regularity with V 2 L

n
2 ,1(⌦). For the definition of the

Lorentz space L
n
2 ,1(⌦), see §9.

Proposition 3.5. Let n, s, p, q be such that

n � 2, 1  p, q  1, �min
n

2, n
⇣
1� 1

p

⌘o
< s < min

nn

p
, 2
o

.

In addition to the same assumption on V as in Theorem 2.5, we further assume that(
V 2 L1(⌦) if n = 2,

V 2 L
n
2 ,1(⌦) if n � 3.

(3.1)

Then

Bs
p,q(AV ) ' Bs

p,q(A0),

Ḃs
p,q(AV ) ' Ḃs

p,q(A0).

Let us give some remarks on Proposition 3.5.

(i) Proposition 3.5 implies not only the equivalence of norms, but also that of
the following two approximations of the identity

f =
X
j2Z

�j(
p

A0)f in Z 0
0(⌦), f =

X
j2Z

�j(
p

AV )f in Z 0
V (⌦),

for f belonging to the homogeneous Besov spaces. Analogous approximations
in X 0

0(⌦) and X 0
V (⌦) are also equivalent for the inhomogeneous Besov spaces.

(ii) By considering the Lorentz spaces, it is possible to treat the potential V like

V (x) = c|x|�2, c > 0,

which, in fact, V 2 L
n
2 ,1(⌦).

(iii) If V is smooth more and more, then, s can be taken bigger and bigger so that
the isomorphism holds. For instance, this comes from the following identity:

(��+ V )2f = (��)2f + (��)(V f) + V (��)f + V 2f

when we consider the case s = 4. In fact, the term (��)(V f) requires the
di↵erentiability of V .
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4. Key lemmas

In this section we introduce some tools and prove fundamental properties of XV (⌦)
and ZV (⌦), which are important in later arguments. Here and below, we denote by
k · kLp the norm of Lp(⌦) and k · kLp(Rn) the norm of Lp(Rn).

We start with the functional calculus; Lp-boundedness of operators  (AV ) and
�j(
p

AV ) for 1  p  1. In the previous work [19] we have established such kind of
estimates for some potential V when n � 3. We improve them by some slight modi-
fications, and obtain Lp-estimates under more general conditions on our potential V
in all space dimensions (see Proposition A.1 in appendix A).

Based on Proposition A.1, we have the following useful lemma.

Lemma 4.1. Let 1  r  p  1. Assume that the measurable potential V satisfies
(1.1). Then we have the following assertions:

(i) For any � 2 C1
0 (R) and m 2 N[ {0} there exists a constant C > 0 such that

kAm
V �(AV )fkLp  CkfkLr (4.1)

for all f 2 Lr(⌦).
(ii) For any � 2 C1

0 ((0,1)) and ↵ 2 R there exists a constant C > 0 such that

kA↵
V �(2�j

p
AV )fkLp  C2n( 1

r�
1
p )j+2↵jkfkLr (4.2)

for all j 2 N and f 2 Lr(⌦).
(iii) Assume further that V satisfies (2.3). Then for any � 2 C1

0 ((0,1)) and
↵ 2 R there exists a constant C > 0 such that

kA↵
V �(2�j

p
AV )fkLp  C2n( 1

r�
1
p )j+2↵jkfkLr (4.3)

for all j 2 Z and f 2 Lr(⌦).

Proof. Let m 2 N [ {0} and ↵ 2 R. To begin with, we note that the following
inequality

kAm
V �(AV )gkLp  CkgkLp (4.4)

holds for any g 2 Lp(⌦). In fact, writing

Am
V �(AV ) = {Am

V eAV �(AV )}e�AV ,

and noting
�met��(�) 2 C1

0 (R),

we conclude from Proposition A.1 that (4.4) holds. In a similar way, we get

kA↵
V �(2�j

p
AV )gkLp  CkgkLp (4.5)

for any j 2 N and g 2 Lp(⌦), provided that � 2 C1
0 ((0,1)).

Taking account of these considerations, we show (4.1). Let Gt(x) be the function
of Gaussian type appearing in the pointwise estimate (A.7) of kernel of e�tAV from
Lemma A.4, i.e.,

Gt(x) = Ct�
n
2 exp

✓
� |x|

2

Ct

◆
, t > 0, x 2 Rn,
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where C is a certain positive constant. We write

�(2�j
p

AV )f = e�2�2jAV
�
e2�2jAV �(2�j

p
AV )

 
f.

By using pointwise estimate (A.7) for e�tAV , we have
��e�2�2jAV f(x)

�� 
Z

Rn

G2�2j(x� y)
��f̃(y)

�� dy, j 2 N, x 2 ⌦, (4.6)

where f̃ is a zero extension of f outside of ⌦. Let r0 be such that 1/p = 1/r0+1/r�1.
Then we conclude from the estimates (4.4), (4.6) and Young’s inequality that

kAm
V �(AV )fkLp =

���Am
V eAV �(AV )

 
e�AV f

��
Lp

 Cke�AV fkLp

 CkG1 ⇤ |f̃ |kLp(Rn)

 CkG1kLr0 (Rn)kf̃kLr(Rn)

 CkfkLr .

This proves (4.1).
As to (4.2), again by using (4.5), (4.6) and Young’s inequality, we get

kA↵
V �(2�j

p
AV )fkLp = 22↵j

���(2�2jAV )↵e2�2jAV �(2�j
p

AV )
 
e�2�2jAV f

��
Lp

 C22↵jke�2�2jAV fkLp

 C22↵jkG2�2j ⇤ |f̃ |kLp(Rn)

 C22↵jkG2�2jkLr0 (Rn)kf̃kLr(Rn)

 C22↵j2n( 1
r�

1
p )jkfkLr

for any j 2 N, which proves (4.2). The estimate (4.3) is also proved in the analo-
gous way to the above argument by applying (A.2) in Proposition A.1 and (A.8) in
Lemma A.4 instead of (A.1) in Proposition A.1 and (A.7) in Lemma A.4, respectively.
The proof of Lemma 4.1 is finished. ⇤

The second lemma concerns with the completeness of test function spaces.

Lemma 4.2. Assume that the measurable potential V satisfies (1.1). Then XV (⌦)
is complete. In addition to the assumption (1.1), if V satisfies (2.3), then ZV (⌦) is
complete.

Proof. We first show the completeness of XV (⌦). Let {fN}1N=1 be a Cauchy sequence
in XV (⌦). Then, for M = 1, 2, . . . , there exists CM > 0 such that

pV,M(fN)  CM for all N 2 N. (4.7)

Since {fN} is a Cauchy sequence in L1(⌦), there exists a function f 2 L1(⌦) such
that

fN ! f in L1(⌦) as N !1.

Combining this convergence with the boundedness of 2Mj�j(
p

AV ) from L1(⌦) to
itself, which is assured by (4.2) for ↵ = 0 and (4.7), we have

2Mjk�j(
p

AV )fkL1 = lim
N!1

2Mjk�j(
p

AV )fNkL1 ,
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and hence,
pV,M(f)  CM

for M = 1, 2, . . . . Hence we get f 2 XV (⌦). We next show the convergence of fN to
f in XV (⌦). For each M , let us take a subsequence {fN(k)}1k=1 such that

pV,M(fN(k) � fN(k�1))  2�k,

where we put fN(0) = 0. Hence we have
1X

k=1

pV,M(fN(k) � fN(k�1)) < 1. (4.8)

Since {fN(k)}1k=1 is a Cauchy sequence in L1(⌦), f is written by

f = lim
L!1

fN(L) = lim
L!1

LX
k=1

(fN(k) � fN(k�1)) in L1(⌦). (4.9)

Then (4.8) and (4.9) yield the convergence of pV,M(fN(L)� f) to zero as L !1, and
hence,

pV,M(fN � f) ! 0 as N !1 for M = 1, 2, · · · .

Therefore, XV (⌦) is complete.
We next show the completeness of ZV (⌦). Let {fN}1N=1 be a Cauchy sequence in

ZV (⌦). Since ZV (⌦) is a subspace of XV (⌦) and XV (⌦) is complete, {fN}1N=1 is also
a Cauchy sequence in XV (⌦) and there exists an element f 2 XV (⌦) such that fN

converges to f in XV (⌦) as N !1. In order to prove f 2 ZV (⌦), we show that

sup
j0

2M |j|k�j(
p

AV )fkL1 < 1 for M = 1, 2, · · · . (4.10)

Since fN converges to f in L1(⌦) as N !1 and �j(
p

AV ) is bounded on L1(⌦) for
each j 2 Z by (4.3) for ↵ = 0, it follows that

lim
N!1

k�j(
p

AV )fNkL1 = k�j(
p

AV )fkL1 for any j 2 Z.

Since {fN}1N=1 is a Cauchy sequence in ZV (⌦), {qV,M(fN)}1N=1 is a bounded sequence
for each M and there exists a constant CM > 0 depending only on M such that

2M |j|k�j(
p
��)fNkL1  CM for all j  0 and N = 1, 2, · · · .

By taking the limit as N ! 1 in the above inequality, we conclude that f satisfies
(4.10), and hence, f 2 ZV (⌦). Finally, the convergence of fN to f in ZV (⌦) follows
from the analogous argument to (4.8) and (4.9):

1X
k=1

qV,M(fN(k) � fN(k�1)) < 1,

f = lim
L!1

LX
k=1

(fN(k) � fN(k�1)) in L1(⌦),

which imply that

qV,M(fN � f) ! 0 as N !1 for M = 1, 2, · · · .

Thus we conclude that ZV (⌦) is complete. The proof of Lemma 4.2 is finished. ⇤
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The third lemma is useful in proving Lemma 4.5.

Lemma 4.3. Assume that the measurable potential V satisfies (1.1). Then the fol-
lowing assertions hold:

(i) For any f 2 X 0
V (⌦), there exist a number M0 2 N and a constant Cf > 0

such that ��X 0
V
hf, giXV

��  Cf pV,M0(g) for any g 2 XV (⌦).

(ii) In addition to the assumption (1.1), if V satisfies (2.3), then for any f 2
Z 0

V (⌦), there exist a number M1 2 N and a constant Cf > 0 such that��Z0V hf, giZV

��  CfqV,M1(g) for any g 2 ZV (⌦).

Proof. Suppose that (i) is not true. Then for any m 2 N there exists gm 2 XV (⌦)
such that ��X 0

V
hf, gmiXV

�� > mpV,m(gm). (4.11)

Put

egm :=
gm

mpV,m(gm)
.

Noting that pV,k(egm) is monotonically increasing in k 2 {1, 2, . . . , m}, we have

pV,k(egm)  pV,m(egm) =
1

m
for k = 1, 2, · · · , m.

Hence it follows that for any fixed k 2 N
pV,k(egm) ! 0 as m !1;

thus we find that

egm ! 0 in XV (⌦) as m !1.

The above convergence yields that��X 0
V
hf, egmiXV

��! 0 as m !1. (4.12)

However, the assumption (4.11) implies that��X 0
V
hf, egmiXV

�� > 1 for all m 2 N;

therefore this inequality contradicts (4.12). Thus the assertion (i) holds. The asser-
tion (ii) follows analogously. This ends the proof of Lemma 4.3. ⇤

The following lemma states that the mapping �(AV ) is well-defined on XV (⌦),
ZV (⌦) and their duals.

Lemma 4.4. Assume that the measurable potential V satisfies (1.1). Then the fol-
lowing assertions hold:

(i) For any � 2 C1
0 (R), �(AV ) maps continuously from XV (⌦) into itself, and

maps continuously from X 0
V (⌦) into itself.

(ii) In addition to the assumption (1.1), if V satisfies (2.3), then for any � 2
C1

0 ((0,1)), �(AV ) maps continuously from ZV (⌦) into itself, and maps con-
tinuously from Z 0

V (⌦) into itself.
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Proof. First we prove the assertion (i). Let f 2 XV (⌦). It follows from (4.1) in
Lemma 4.1 that

Am
V �(AV )f 2 D(AV ), pV,M(�(AV )f)  CpV,M(f) (4.13)

for m = 0, 1, 2, . . .; M = 1, 2, . . . . This proves that �(AV ) is continuous from XV (⌦)
into itself. The continuity of �(AV ) from X 0

V (⌦) into itself follows from the definition
(2.5).

As to the assertion (ii), since V satisfies (1.1), �(AV ) enjoys the assertion (i), and
hence, we conclude that

�(AV )f 2 XV (⌦) for any f 2 ZV (⌦).

We show that
qV,M(�(AV )f)  CqV,M(f) (4.14)

for M = 1, 2, . . .. Indeed, recalling the definition (2.4) of qV,M(f) and noting that

qV,M(�(AV )f)pV,M(�(AV )f) + sup
j0

2M |j|k�j(
p

AV )�(AV )fkL1 ,

we apply (4.13) to the first term to obtain

pV,M(�(AV )f)  CpV,M(f)  CqV,M(f).

For the second term in qV,M(�(AV )f), again applying (4.1) for m = 0, we estimate

sup
j0

2M |j|k�j(
p

AV )�(AV )fkL1 C sup
j0

2M |j|k�j(
p

AV )fkL1

CqV,M(f)

for M = 1, 2, . . . . Therefore, the above two estimates imply (4.14), which concludes
the continuity of �(AV ) from ZV (⌦) into itself. Finally, the continuity of �(AV )
from Z 0

V (⌦) into itself follows from the definition (2.6). The proof of Lemma 4.4 is
finished. ⇤

The approximation of identity is established by the following lemma.

Lemma 4.5. Assume that the measurable potential V satisfies (1.1). Then the fol-
lowing assertions hold:

(i) For any f 2 XV (⌦), we have

f =  (AV )f +
X
j2N

�j(
p

AV )f in XV (⌦). (4.15)

Furthermore, for any f 2 X 0
V (⌦), we have also the identity (4.15) in X 0

V (⌦),
and  (AV )f and �j(

p
AV )f are regarded as elements in L1(⌦).

(ii) In addition to the assumption (1.1), if V satisfies (2.3), then for any f 2
ZV (⌦), we have

f =
X
j2Z

�j(
p

AV )f in ZV (⌦). (4.16)

Furthermore, for f 2 Z 0
V (⌦), we have also the identity (4.16) in Z 0

V (⌦), and
�j(
p

AV )f are regarded as elements in L1(⌦).
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Proof. First we prove the assertion (i). Let f 2 XV (⌦). Then we have f 2 L2(⌦),
and f is written as

f =  (AV )f +
X
j2N

�j(
p

AV )f in L2(⌦).

It is su�cient to verify that the series in the right member is absolutely convergent
in XV (⌦). Let M 2 N be arbitrarily fixed. Applying (4.2) for ↵ = 0, 1 from Lemma
4.1, we have

pV,M

�
 (AV )f

�
 CpV,M(f),

pV,M

�
�j(

p
AV )f

�
C2�2jpV,M

�
AV �j(

p
AV )f

�
C2�2jpV,M+2(f),

which imply thatX
j2N

pV,M

�
�j(

p
AV )f

�
 CpV,M+2(f)

X
j2N

2�2j < 1. (4.17)

Hence (4.15) holds for f 2 XV (⌦). As to the expansion (4.15) for f 2 X 0
V (⌦),

applying the identity (4.15) for g 2 XV (⌦), we have formally the following identity:

X 0
V
hf, giXV = X 0

V
hf, (AV )giXV +

X
j2N

X 0
V
hf,�j(

p
AV )giXV

= X 0
V
h (AV )f, giXV +

X
j2N

X 0
V
h�j(

p
AV )f, giXV ,

(4.18)

where the second equality is valid due to the definition (2.5). We must prove the
absolute convergence of the series in (4.18). By Lemma 4.3 (i), there exist M0 2 N
and C > 0 such that��X 0

V
h�j(

p
AV )f, giXV

�� =
��X 0

V
hf,�j(

p
AV )giXV

��
CfpV,M0(�j(

p
AV )g).

Then, the above estimate and (4.17) yield the absolute convergence of the series in
(4.18).

For the proof of  (AV )f 2 L1(⌦), we begin by proving that��X 0
V
h (AV )f, giXV

��  CkgkL1 for all g 2 XV (⌦). (4.19)

By the definition (2.5), Lemma 4.3 (i) and (4.1) for m = 0, there exist M0 2 N and
Cf , Cf, > 0 such that ��X 0

V
h (AV )f, giXV

�� =
��X 0

V
hf, (AV )giXV

��
CfpV,M0( (AV )g)

Cf, kgkL1 ,

which proves (4.19). Thanks to (4.19), the Hahn-Banach theorem allows us to deduce
that the mapping

X 0
V
h (AV )f, ·iXV : XV (⌦) ! C
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is extended as a mapping from L1(⌦) to C. Since L1(⌦)⇤ = L1(⌦), there exists a
function F 2 L1(⌦) such that

X 0
V
h (AV )f, giXV =

Z
⌦

F (x)g(x) dx for all g 2 XV (⌦).

Then we conclude that  (AV )f 2 L1(⌦). In a similar way, it is possible to prove
that �j(

p
AV )f 2 L1(⌦). The proof of (i) is now complete.

As to the assertion (ii), noting that any f 2 ZV (⌦) is in L2(⌦), we first prove that

f =
X
j2Z

�j(
p

AV )f in L2(⌦) (4.20)

for any f 2 L2(⌦). Put

gL :=

Z 1

�1

⇣
1�

X
j�L

�j(
p
�)
⌘
dEAV (�)f. (4.21)

It is readily checked that {gL} is a Cauchy sequence in L2(⌦), so we put

g := lim
L!�1

gL in L2(⌦).

Noting that AV is non-negative on L2(⌦) and that the support of 1�
P

j�L �j(
p
�)

is contained in the interval (�1, 22L], we find that

kAV gLk2
L2 =

Z 22L

�1

����⇣1�
X
j�L

�j(
p
�)
⌘���2dkEAV (�)fk2

L2

C24Lkfk2
L2 ! 0 as L ! �1.

Hence we deduce that

g 2 D(AV ), AV g = 0 in L2(⌦)

by the fact that gL 2 D(AV ), the definition of g, and the closeness of AV on L2(⌦).
Since zero is not an eigenvalue of AV by Lemma B.1, we conclude that g = 0, which
proves (4.20) for any f 2 L2(⌦).

Now, as in the previous argument, it is su�cient to show that the series in the
right member of (4.20) is absolutely convergent in ZV (⌦). For the series (4.20) with
j � 1, the absolute convergence is obtained by the same argument as (4.17). For the
case j  0, it follows from (4.3) for ↵ = ±1 that

qV,M

�
�j(

p
AV )f

�
 C22jqV,M

�
A�1

V �j(
p

AV )f
�
 C22jqV,M+2(f),

which imply that X
j0

qV,M

�
�j(

p
AV )f

�
 CqV,M+2(f)

X
j0

22j < 1

for all M 2 N. Therefore, (4.16) is verified for f 2 ZV (⌦).
Finally, as to the identity (4.16) for f 2 Z 0

V (⌦), we proceed the analogous argument
to that with replacing the assertion (i) for pV,M and Lemma 4.3 (i) by qV,M and
Lemma 4.3 (ii), respectively. The proof of �j(

p
AV )f 2 L1(⌦) also follows from the

analogous argument to that of the assertion (i) as above. So we may omit the details.
The proof of Lemma 4.5 is complete. ⇤
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As a consequence of Lemmas 4.1 and 4.5, we have:

Lemma 4.6. The following inclusion relations hold:

XV (⌦) ⇢ L1(⌦) \ L1(⌦), (4.22)

Lp(⌦) ⇢ X 0
V (⌦) for any 1  p  1. (4.23)

As a consequence, we have

ZV (⌦) ⇢ L1(⌦) \ L1(⌦), (4.24)

Lp(⌦) ⇢ Z 0
V (⌦) for any 1  p  1. (4.25)

Proof. Once (4.22) and (4.23) are proved, (4.24) and (4.25) hold, since

ZV (⌦) ⇢ XV (⌦) and X 0
V (⌦) ⇢ Z 0

V (⌦).

We show the inclusion relation (4.22). Put

�j := �j�1 + �j + �j+1.

Let f 2 XV (⌦). Then it follows from the definition of semi-norms pV,M(·) that

kfkL1  pV,0(f).

As to the L1-norm, we deduce from the identities (4.15), �j = �j�j and the estimate
(4.2) for ↵ = 0 that

kfkL1 k (AV )fkL1 +
X
j2N

k�j(
p

AV )�j(
p

AV )fkL1

CkfkL1 + C
X
j2N

2�j · 2j2njk�j(
p

AV )fkL1

CpV,0(f) + C
X
j2N

2�j sup
k2N

2(n+1)kk�k(
p

AV )fkL1

CpV,n+1(f).

Summarizing the above estimates now, we conclude the inclusion relation (4.22).
Finally, we prove the inclusion relation (4.23). Let f 2 Lp(⌦) and g 2 XV (⌦).

Then it follows from Hölder’s inequality and the above two estimates thatZ
⌦

|f(x)g(x)|dx kfkLpkgkLp0

kfkLpkgkL1\L1

CkfkLppV,n+1(g),

where p0 is the conjugate exponent of p. This estimate means that f 2 Lp(⌦) belongs
to X 0

V (⌦). Hence we conclude (4.23). The proof of Lemma 4.6 is complete. ⇤

5. Proof of Theorem 2.5

In this section we prove Theorem 2.5.
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Proof of independence of the choice of  and {�j}. The proof of the indepen-
dence in (i-a) and (ii-a) is similar to that of Triebel [37]. As to (i-a), let us take

 =  (k), �j = �(k)
j (k = 1, 2) satisfying (2.1), (2.2) and (2.9). Since  (1) and �(1)

j

satisfy

 (1) =  (1)
�
 (2) + �(2)

1

�
, �(1)

1 = �(1)
1

�
 (2) + �(2)

1 + �(2)
2

�
,

�(1)
j = �(1)

j

�
�(2)

j�1 + �(2)
j + �(2)

j+1

�
for j = 2, 3, · · · , (5.1)

it follows from (4.1) and (4.2) in Lemma 4.1 that

k (1)(AV )fkLp + k�(1)
1 (

p
AV )fkLp  C

n
k (2)(AV )fkLp +

2X
k=1

k�(2)
k (

p
AV )fkLp

o
,

k�(1)
j (

p
AV )fkLp  C

1X
k=�1

k�(2)
j+k(

p
AV )fkLp for j = 2, 3, · · · ,

which imply that

k (1)(AV )fkLp +
���2sjk�(1)

j (
p

AV )fkLp

 
j2N

��
`q(N)

C
n
k (2)(AV )fkLp +

���2sjk�(2)
j (

p
AV )fkLp

 
j2N

��
`q(N)

o
.

This proves the independence in (i-1) for the inhomogeneous Besov spaces.
As to (ii-a), we use the identity (5.1) for all j 2 Z and apply (4.3) for ↵ = 0 in

Lemma 4.1 to get���2sjk�(1)
j (

p
AV )fkLp

 
j2Z

��
`q(Z)

 C
n���2sjk�(2)

j (
p

AV )fkLp

 
j2Z

��
`q(Z)

o
.

This ends the proof of the required independence of the choice of  and {�j}. ⇤

Proof of inclusion relations (2.10) and (2.11). Let p0 and q0 be such that 1/p +
1/p0 = 1 and 1/q + 1/q0 = 1. First we prove the embedding (2.10), namely,

XV (⌦) ,! Bs
p,q(AV ) ,! X 0

V (⌦).

Take  and �j such that

 :=  + �1, �1 :=  + �1 + �2, �j := �j�1 + �j + �j+1 for j = 2, 3, · · · .

Let M 2 N be such that M > s + n(1� 1/p). Then, for any f 2 XV (⌦), we deduce
from the identities �j = �j�j and the estimate (4.2) for ↵ = 0 in Lemma 4.1 that

kfkBs
p,q(AV ) = k (AV )fkLp +

nX
j2N

⇣
2sjk�j(

p
AV )�j(

p
AV )fkLp

⌘qo 1
q

 CkfkL1 + C
nX

j2N

⇣
2sj2n(1� 1

p )j2�Mj · 2Mjk�j(
p

AV )fkL1

⌘qo 1
q

 CpV,M(f) + C
nX

j2N

⇣
2sj2n(1� 1

p )j2�Mj
⌘qo 1

q
pV,M(f)

 CpV,M(f)
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for any f 2 XV (⌦). Thus we get the first embedding:

XV (⌦) ,! Bs
p,q(AV ). (5.2)

To prove the second embedding

Bs
p,q(AV ) ,! X 0

V (⌦), (5.3)

we take M 0 2 N such that M 0 > �s + n(1 � 1/p0). Applying Lemma 4.5 (i), the
identities  =   , �j = �j�j, Hölder’s inequality and the embedding (5.2) for s, p, q
replaced by �s, p0, q0, i.e.,

XV (⌦) ,! B�s
p0,q0(AV ),

we have, for f 2 Bs
p,q(AV ) and g 2 XV (⌦)

|X 0
V
hf, giXV | =

��� X 0
V

⌦
 (AV )f, (AV )g

↵
XV

+
X
j�1

X 0
V

⌦
�j(

p
AV )f,�j(

p
AV )g

↵
XV

���
 k (AV )fkLpk (AV )gkLp0

+
���2sjk�j(

p
AV )fkLp

 
j2N

��
`q(N)

���2�sjk�j(
p

AV )gkLp0
 

j2N

��
`q0 (N)

 CkfkBs
p,q(AV )kgkB�s

p0,q0 (AV )

 CkfkBs
p,q(AV )pM 0(g).

Therefore, (5.3) is proved, and as a result, we get the embedding (2.10).

Next we show the embedding (2.11), namely,

ZV (⌦) ,! Ḃs
p,q(AV ) ,! Z 0

V (⌦).

Put
�j := �j�1 + �j + �j+1 for all j 2 Z.

Let L 2 N be such that L > |s|+ n(1� 1/p). For any f 2 Z(⌦), we deduce from the
identity �j = �j�j and the estimate (4.3) for ↵ = 0 that

kfkḂs
p,q(AV ) =

nX
j2Z

⇣
2sjk�j(

p
AV )�j(

p
AV )fkLp

⌘qo 1
q

 C
n⇣X

j0

+
X
j�1

⌘⇣
2sj2n(1� 1

p )jk�j(
p

AV )fkL1

⌘qo 1
q

 C
⇣

sup
j0

2�Ljk�j(
p

AV )fkL1

⌘nX
j0

⇣
2sj2n(1� 1

p )j2Lj
⌘qo 1

q

+ C
⇣

sup
j�1

2Ljk�j(
p

AV )fkL1

⌘nX
j�1

⇣
2sj2n(1� 1

p )j2�Lj
⌘qo 1

q

 CqV,L(f),

which implies that
ZV (⌦) ,! Ḃs

p,q(AV ). (5.4)

To prove the second embedding

Ḃs
p,q(AV ) ,! Z 0

V (⌦),
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we take L0 2 N such that L0 > |s|+n(1�1/p0). For any f 2 Ḃs
p,q(AV ) and g 2 ZV (⌦),

using the identities �j = �j�j, Hölder’s inequality and the embedding (5.4) for s, p, q
replaced by �s, p0, q0, i.e.,

ZV (⌦) ,! Ḃ�s
p0,q0(AV ),

we estimate

|Z0V hf, giZV | =
���X

j2Z
Z0V
⌦
�j(

p
AV )f,�j(

p
AV )g

↵
ZV

���

���2sjk�j(

p
AV )fkLp

 
j2Z

��
`q(Z)

���2�sjk�j(
p

AV )gkLp0
 

j2Z

��
`q0 (Z)

 CkfkḂs
p,q(AV )kgkḂ�s

p0,q0 (AV )

 CkfkḂs
p,q(AV )qL0(g).

Thus we conclude (2.11). ⇤

It remains to show that Bs
p,q(AV ) and Ḃs

p,q(AV ) are Banach spaces. It is easy
to check that they are normed vector spaces, and hence, it su�ces to prove the
completeness.

Proof of the completeness of Bs
p,q(AV ) and Ḃs

p,q(AV ). We have only to prove

the completeness of the homogeneous Besov spaces Ḃs
p,q(AV ), since the inhomoge-

neous case is similar. The proof is done by the analogous argument to that by Triebel
[37]. Indeed, let {fN}1N=1 be a Cauchy sequence in Ḃs

p,q(AV ). We may assume that

kfN+1 � fNkḂs
p,q(AV )  2�N (5.5)

without loss of generality. Then {fN}1N=1 is also a Cauchy sequence in Z 0
V (⌦) by

the inclusion relation (2.11), and hence, there exists an element f 2 Z 0
V (⌦) with the

property that
fN ! f in Z 0

V (⌦) as N !1,

since Z 0
V (⌦) is complete. This together with the boundedness of �j(

p
AV ) on Z 0

V (⌦)
imply that

�j(
p

AV )fN ! �j(
p

AV )f in Z 0
V (⌦) as N !1, (5.6)

and we have �j(
p

AV )f 2 L1(⌦) by Lemma 4.5 (ii). Furthermore, fixing j 2 Z,
we see that {�j(

p
AV )fN}1N=1 is also a Cauchy sequence in Lp(⌦), and there exists

Fj 2 Lp(⌦) such that

�j(
p

AV )fN ! Fj in Lp(⌦) as N !1,

which implies that

Fj(x) = �j(
p

AV )f(x) almost every x 2 ⌦,

and the convergence (5.6) also holds in the topology of Lp(⌦).
It remains to show that f 2 Ḃs

p,q(AV ) and fN tends to f in Ḃs
p,q(AV ) for the above

f 2 Z 0
V (⌦). Since

�
{2sjk�j(

p
AV )fNkLp}j2Z

 1
N=1

is a Cauchy sequence in `q(Z) and

2sjk�j(
p

AV )fNkLp ! 2sjk�j(
p

AV )fkLp as N !1,

we get
kfkḂs

p,q(AV ) < 1,
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and hence,

f 2 Ḃs
p,q(AV ).

For the convergence of fN to f , writing

f =
1X

k=1

(fk � fk�1) = lim
N!1

fN in Z 0
V (⌦),

where f0 = 0, we conclude from (5.5) that the above series converges absolutely in
the topology of Ḃs

p,q(AV ). Thus the completeness of Ḃs
p,q(AV ) is proved. The proof

of Theorem 2.5 is now finished. ⇤

6. Proof of Proposition 3.1

In this section we prove Proposition 3.1. We treat only the homogeneous Besov
spaces Ḃs

p,q(AV ), since the inhomogeneous case follows analogously. We prove that

Ḃs
p,q(AV )⇤ = Ḃ�s

p0,q0(AV ) (6.1)

for any s 2 R and 1  p, q < 1. Let us first show that

Ḃ�s
p0,q0(AV ) ,! Ḃs

p,q(AV )⇤. (6.2)

Let {�j}j2Z be as in (2.2) and put

�j := �j�1 + �j + �j+1 for j 2 Z.

For any f 2 Ḃ�s
p0,q0(AV ), we define an operator Tf as

Tfg :=
X
j2Z

Z
⌦

⇣
�j(

p
AV )f

⌘
�j(

p
AV )g dx for g 2 Ḃs

p,q(AV ).

Then

|Tfg| 
��{2�sjk�j(

p
AV )fkLp0}j2Z

��
`q0 (Z)

��{2sjk�j(
p

AV )gkLp}j2Z
��
`q(Z)

 CkfkḂ�s
p0,q0 (AV )kgkḂs

p,q(AV ),

which implies that the operator norm kTfkḂs
p,q(AV )⇤ is bounded by CkfkḂ�s

p0,q0 (AV ).

This proves the inclusion (6.2).
We prove the converse inclusion:

Ḃs
p,q(AV )⇤ ,! Ḃ�s

p0,q0(AV ). (6.3)

Let F 2 Ḃs
p,q(AV )⇤. We define an operator

T : `q(Z ; Lp(⌦)) ! C

as follows. For G = {Gj}j2Z 2 `q(Z ; Lp(⌦)), we put

T (G) := F
⇣X

j2Z

2�sj�j(
p

AV )Gj

⌘
.
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Here we estimate���X
j2Z

2�sj�j(
p

AV )Gj

���
Ḃs

p,q(AV )

=
nX

k2Z

⇣
2sk

����k(
p

AV )
k+1X

j=k�1

2�sj�j(
p

AV )Gj

���
Lp

⌘qo 1
q

=
nX

k2Z

⇣
2sk

����k(
p

AV )
1X

r=�1

2�s(k+r)�k+r(
p

AV )Gk+r

���
Lp

⌘qo 1
q

C
1X

r=�1

2�sr
nX

k2Z

kGkkq
Lp

o 1
q

CkGk`qLp ,

where we used the estimate (4.3) for ↵ = 0 in Lemma 4.1. Hence we deduce that

|T (G)| kFkḂs
p,q(AV )⇤

���X
j2Z

2�sj�j(
p

AV )Gj

���
Ḃs

p,q(AV )

CkFkḂs
p,q(AV )⇤kGk`qLp .

Since (`qLp)⇤ = `q
0
Lp0 , there exists {Fj}j2Z 2 `q

0
Lp0 such that

T (G) =
X
j2Z

Z
⌦

Fj(x)Gj(x) dx and k{Fj}j2Zk`q0Lp0  CkFkḂs
p,q(AV )⇤ . (6.4)

Then for any g 2 Ḃs
p,q(AV ), let us take G = {Gj}j2Z as

Gj = 2sj�j(
p

AV )g.

It follows from g 2 Z 0
V (⌦), Lemma 4.5 (ii) and the identities �j = �j�j that

F (g) = F
⇣X

j2Z

2�sj�j(
p

AV )
�
2sj�j(

p
AV )g

�⌘

= T (G)

=
X
j2Z

Z
⌦

Fj(x)Gj(x) dx

=
X
j2Z

Z
⌦

Fj(x)2sj�j(
p

AV )g dx

=
X
j2Z

Z
⌦

⇣
2sj�j(

p
AV )Fj(x)

⌘
g dx.

Taking f as

f =
X
j2Z

2sj�j(
p

AV )Fj,
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we deduce from (6.4) that

kfkḂ�s
p0,q0 (AV ) Ck{Fj}j2Zk`q0Lp0

CkFkḂs
p,q(AV )⇤ ,

which implies that f 2 Ḃ�s
p0,q0(AV ). Hence F is regarded as an element in Ḃ�s

p0,q0(AV ),
and we get the inclusion (6.3); thus we conclude the isomorphism (6.1). This ends
the proof of Proposition 3.1.

7. Proof of Proposition 3.2

In this section we prove Proposition 3.2. The embedding relations are immediate
consequences of Lemma 4.1. The main point is to prove the lifting properties.

First we prove the homogeneous case, namely,

As0/2
V f 2 Ḃs�s0

p,q (AV ) for any f 2 Ḃs
p,q(AV ).

To begin with, we show that

As0/2
V is a continuous operator from Z 0

V (⌦) to itself. (7.1)

By the definition (2.6), it is su�cient to verify that As0/2
V is the continuous operator

from ZV (⌦) to itself. Let us take M0 2 N such that M0 > |s0|. It follows from (4.3)
for ↵ = s0/2 and (4.16) that

qV,M

�
As0/2

V g
�
 CqV,M+M0(g)

for any g 2 ZV (⌦), which implies that As0/2
V g 2 ZV (⌦). This proves (7.1). Hence, all

we have to do is to prove that f 2 Ḃs
p,q(AV ) satisfies

kAs0/2
V fk

Ḃ
s�s0
p,q (AV )

 CkfkḂs
p,q(AV ). (7.2)

In fact, let
�j := �j�1 + �j + �j+1.

We note that �j(�)�s0 2 C1
0 ((0,1)). Writing

�j(�)�s0 = 2s0j · �j(�) · (2�s0j�s0),

we get

k�j(
p

AV )As0/2
V fkLp =2s0j

����j(
p

AV )2�s0jAs0/2
V

 
�j(

p
AV )f

��
Lp

C2s0jk�j(
p

AV )fkLp .

Hence, multiplying 2(s�s0)j to the above inequality and taking the `q(Z)-norm, we
obtain the required inequality (7.2).

As to inhomogeneous case, we have to consider the operators

(�2
0 + 1 + AV )s0/2�j(

p
AV ).

The only di↵erent point from the homogeneous case is to show the following estimates:���(�2
0 + 1 + AV )s0/2�j(

p
AV )f

���
Lp
 C2s0j

����j(
p

AV )f
���

Lp
(7.3)
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for any j 2 N. We write

(�2
0 + 1 + AV )s0/2 =

h
2s0j

�
2�2j(�2

0 + 1) + 2�2jAV

 s0/2 � 2s0j
�
2�2jAV

�s0/2
i

+ 2s0j
�
2�2jAV

�s0/2

=:T1 + T2.

As to T2�j(
p

AV )f , it follows from (4.2) for ↵ = s0/2 in Lemma 4.1 that

kT2�j(
p

AV )fkLp  C2s0jk�j(
p

AV )fkLp .

Writing

T1 =2s0j

Z 2�2j(�2
0+1)

0

@✓(✓ + 2�2jAV )
s0
2 d✓

=2s0j

Z 2�2j(�2
0+1)

0

s0

2
(✓ + 2�2jAV )

s0
2 �1 d✓,

we estimate T1�j(
p

AV )f as
���T1�j(

p
AV )f

���
Lp
 C2s0j

Z 2�2j(�2
0+1)

0

���(✓ + 2�2jAV )
s0
2 �1�j(

p
AV )f

���
Lp

d✓.

When p = 2, we use the spectral theorem on the Hilbert space L2(⌦) to obtain
���(✓ + 2�2jAV )

s0
2 �1�j(

p
AV )f

���2

L2
=

Z 22(j+1)

22(j�1)

(✓ + 2�2j�)s0�2 d
���EAV (�)�j(

p
AV )f

���2

L2

C

Z 22(j+1)

22(j�1)

(2�2j�)s0�2 d
���EAV (�)�j(

p
AV )f

���2

L2

C
����j(

p
AV )f

���2

L2
,

since j 2 N and 0  ✓  2�2j(�2
0 + 1). When p 6= 2, we have to obtain the following

estimate: ���(✓ + 2�2jAV )
s0
2 �1�j(

p
AV )f

���
Lp
 C

����j(
p

AV )f
���

Lp
. (7.4)

Since ✓ is small compared with the spectrum of 2�2jAV �j(
p

AV ), ✓ is able to be
neglected. Hence, the proof of estimate (7.4) is done by the argument of our paper
[19]. So, we may omit the details. Summarizing the estimates obtained now, we
conclude the estimate (7.3). The proof of Proposition 3.2 is finished.

8. Proofs of Propositions 3.3 and 3.4

In this section we prove Propositions 3.3 and 3.4. Let us start by preparing two
lemmas.

Lemma 8.1. Let 1 < p  2. Then there exists a constant C > 0 such that

kfkB0
p,2(AV )  CkfkLp + C

���ke�2�2jAV fkLp

 
j2N

��
`2(N)

, (8.1)

kfkḂ0
p,2(AV )  C

���ke�2�2jAV fkLp

 
j2Z

��
`2(Z)

(8.2)

for any f 2 C1
0 (⌦).
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Proof. Since e2�2j�2
�j(�) is in C1

0 ((0,1)), it follows from (4.2) for ↵ = 0 that

k�j(
p

AV )fkLp =
���e2�2jAV �j(

p
AV )

�
e�2�2jAV fkLp (8.3)

Cke�2�2jAV fkLp

for any j 2 N. Then, taking the `2(N)-norm, we obtain (8.1). As to the homogeneous
case, thanks to (4.3) for ↵ = 0, inequality (8.3) is also valid for any j 2 Z, and hence,
taking the `2(Z)-norm, we conclude (8.2). ⇤

Lemma 8.2 (The Khinchine inequality). Let {rj(t)}1j=1 be a sequence of Rademacher
functions, that is,

rj(t) :=
2jX

k=1

(�1)k�1�[(k�1)2�j ,k2�j)(t) for t 2 [0, 1],

where �I denotes the characteristic function on the interval I. Then for any p with
1 < p < 1, there exists a constant C > 0 such that

C�1kak`2(N) 
���X

j2N

ajrj

���
Lp(0,1)

 Ckak`2(N) (8.4)

for all a = {aj}j2Z 2 `2(N).

Proof of Proposition 3.3 (i): The embedding

Lp(⌦) ,! Ḃ0
p,2(AV ) for 1 < p  2. (8.5)

It is su�cient to show that

kfkḂ0
p,2(AV )  CkfkLp for any f 2 C1

0 (⌦) (8.6)

due to the fact that C1
0 (⌦) is dense in Lp(⌦). Let {rj(t)} be the sequence of

Rademacher functions as in Lemma 8.2. If we show that there exists a constant
C > 0 such that

���
NX

j=1

rj(t)e
�2�2jAV f

���
Lp

+
���

�1X
j=�N

r�j(t)e
�2�2jAV f

���
Lp
 CkfkLp (8.7)

for all t 2 [0, 1] and N 2 N, then (8.6) is verified. Indeed, by using the Minkowski
inequality, we have⇣ X

|j|N

ke�2�2jAV fk2
Lp

⌘1/2

ke�AV fkLp +
���⇣

NX
j=1

|e�2�2jAV f |2
⌘1/2���

Lp
+
���⇣

�1X
j=�N

|e�2�2jAV f |2
⌘1/2���

Lp
.

Since ke�AV fkLp  CkfkLp by (A.8), and since the third term in the right member
of the above estimate is treated analogously to the second one, we may consider only
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the second term. By using (8.4) and (8.7), we estimate

���⇣
NX

j=1

|e�2�2jAV f |2
⌘1/2���

Lp
C

���⇣
Z 1

0

���
NX

j=1

rj(t)e
�2�2jAV f

���p dt
⌘1/p���

Lp

=C
⇣Z 1

0

���
NX

j=1

rj(t)e
�2�2jAV f

���p

Lp
dt
⌘1/p

C
⇣Z 1

0

kfkp
Lp dt

⌘1/p

=CkfkLp ,

which implies that⇣ X
|j|N

ke�2�2jAV fk2
Lp

⌘1/2

 CkfkLp for any N 2 N.

Taking the limit as N !1 in the above inequality, and combining the resultant with
the inequality (8.2) in Lemma 8.1, we obtain the required inequality (8.6). Thus, we
get the embedding (8.5).

We must show (8.7). Let ef be the zero extension of f to the outside of ⌦. Recall
that Gt(x) is the function of Gaussian type in the right member of (A.8). Noting
that

|rj(t)|  1 for all t 2 [0, 1],

we deduce from (A.8) that

���
NX

j=1

rj(t)e
�2�2jAV f

���+���
�1X

j=�N

rj(t)e
�2�2jAV f

���  C

Z
Rn

NX
j=�N

G2�2j(x�y)| ef(y)|dy (8.8)

for all t 2 [0, 1]. Here, it is certain to check that for each ↵ 2 (N [ {0})n

|x|n+|↵|��@↵x G2�2j(x)
��  C|2jx|n+|↵|��@↵x G1(2

jx)
��,

and hence,

sup
t2[0,1],N2N,x2Rn

|x|n+|↵|
���

NX
j=�N

@↵x G2�2j(x)
���  C

X
j2Z

|2jx|n+|↵|��@↵x G1(2
jx)

��
 C

X
j2Z

2(n+|↵|)je�c2�2j
< 1.

Then, applying the Lp-boundedness of the singular integral operators (see e.g. p.29
in [35]), we get

���
Z

Rn

NX
j=�N

G2�2j(x� y)| ef(y)|dy
���

Lp(Rn)
 Ck efkLp(Rn) = CkfkLp .

Hence the required inequality (8.7) is a consequence of (8.8) and the above estimate.
Therefore, the proof of the embedding (8.5) is completed. ⇤
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Proof of Proposition 3.3 (ii): The embedding

Ḃ0
p,2(AV ) ,! Lp(⌦) for 2  p < 1. (8.9)

Let p0 be such that 1/p + 1/p0 = 1. Then the embedding (8.9) is an immediate
consequence of 1 < p0  2, Lp0(⌦) ,! Ḃ0

p0,2(AV ), Lp0(⌦)⇤ = Lp(⌦) and Ḃ0
p0,2(AV )⇤ =

Ḃ0
p,2(AV ). ⇤

Proofs of Proposition 3.3 (i) and (ii) for the inhomogeneous Besov spaces.
Let 1 < p  2. Then all we have to do is to show that

kfkB0
p,2(AV )  CkfkLp for any f 2 C1

0 (⌦).

Referring to the estimate (8.1), we have only to show the corresponding estimate to
(8.7), that is,

���
NX

j=1

rj(t)e
�2�2jAV f

���
Lp
 CkfkLp ,

which is proved in the same way as in the proof of (8.7) by using the pointwise
estimate (A.7) for the kernel of e�tAV . Hence we have the embedding

Lp(⌦) ,! B0
p,2(AV ) for 1 < p  2. (8.10)

Finally, referring to the proof of (8.9), we obtain the embedding

B0
p,2(AV ) ,! Lp(⌦) for 2  p < 1

by taking the duality of Lp0(⌦) ,! B0
p0,2(AV ). The proof of Proposition 3.3 is now

finished. ⇤

We now turn to the proof of Proposition 3.4.

Proof of Proposition 3.4. Putting

Ẋs
p,q(AV ) :=

n
f 2 X 0

V (⌦)
��� kfkḂs

p,q(AV ) < 1, f =
X
j2Z

�j(
p

AV )f in X 0
V (⌦)

o
,

we see that

Ẋs
p,q(AV ) ⇢ Ḃs

p,q(AV ).

Hence it is su�cient to prove that

Ḃs
p,q(AV ) ,! Ẋs

p,q(AV ). (8.11)

Let f 2 Ḃs
p,q(AV ). Then f 2 Z 0

V (⌦), and thanks to Lemma 4.5 (ii), f is written as

f =
X
j0

�j(
p

AV )f +
X
j�1

�j(
p

AV )f in Z 0
V (⌦)

=: I + II.
(8.12)
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For the low frequency part, it follows from (4.3) for ↵ = 0 that

kIkL1 
X
j0

k�j(
p

AV )fkL1

C
X
j0

2
n
p jk�j(

p
AV )fkLp ,

where the right member is finite when (s, q) = (n/p, 1). In the case when s < n/p,
we estimate

kIkL1 C
X
j0

2(n
p�s)j sup

k0
2skk�k(

p
AV )fkLp

CkfkḂs
p,1(AV )

CkfkḂs
p,q(AV ),

where we used the embedding in Proposition 3.2 (ii) in the last step. Hence the
above two estimates and Lemma 4.6 imply that I belongs to X 0

V (⌦). As to II, since
the high frequency part of qV,M(·) is equivalent to that of pV,M(·), it follows that
II 2 X 0

V (⌦). Hence the identity (8.12) holds in the topology of X 0
V (⌦). Therefore,

we get f 2 Ẋs
p,q(AV ). Thus we conclude the embedding (8.11). This completes the

proof of Proposition 3.4. ⇤

9. Proof of Proposition 3.5

In this section we prove Proposition 3.5. We utilize the theory of Lorentz spaces
and introduce the following notations (see e.g. [15, 42]). Let f be a measurable
function on ⌦. We define the non-increasing rearrangement of f as

f ⇤(t) := inf{ � > 0 | mf (�)  t },
where mf (�) is the distribution function of f which is defined by the Lebesgue mea-
sure of the set {x 2 Rn | |f(x)| > � }. We define a function f ⇤⇤(t) on (0,1) as

f ⇤⇤(t) :=
1

t

Z t

0

f ⇤(t0) dt0.

Lorentz spaces Lp,q(⌦) are defined by letting

Lp,q(⌦) := { f : measurable on ⌦ | kfkLp,q < 1 },
where

kfkLp,q :=

8><
>:
nZ 1

0

�
t

1
p f ⇤⇤(t)

�q dt

t

o 1
q

if 1  p, q < 1,

sup
t>0

t
1
p f ⇤⇤(t). if 1  p  1, q = 1.

In what follows, we denote by k · kLp,q(Rn) the norm of Lp,q(Rn) only when ⌦ = Rn.
Note that

Lp,1(⌦) ,! Lp,q(⌦) if 1  p, q  1, (9.1)

Lp(⌦) = Lp,1(⌦) if p = 1,1,

Lp,1(⌦) ,! Lp(⌦) = Lp,p(⌦) ,! Lp,1(⌦) if 1 < p < 1.
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Let 1 < p < 1. We have the Hölder inequality and Young inequality in the Lorentz
spaces:

kfgkLp,q  kfkLp1,q1kgkLp2,q2 if
1

p
=

1

p1
+

1

p2
,

1

q
=

1

q1
+

1

q2
, (9.2)

kfgkL1  kfkLp1,q1kgkLp2,q2 if 1 =
1

p1
+

1

p2
=

1

q1
+

1

q2
, (9.3)

kf ⇤ gkLp,q(Rn)  kfkLp1,q1 (Rn)kgkLp2,q2 (Rn) (9.4)

if
1

p
=

1

p1
+

1

p2
� 1,

1

q
=

1

q1
+

1

q2
,

where 1  p1, p2, q, q1, q2  1. We often use the estimates in the Lorentz spaces on
Rn for functions on ⌦ extending them by zero extension to the outside of ⌦ when the
necessity arises.

We prove Proposition 3.5 only for the homogeneous Besov spaces Ḃs
p,q(AV ), since

the inhomogeneous case is proved in an analogous way.

We prepare the following four lemmas.

Lemma 9.1. Let 1  p0 < p < 1 and 1  q  1. Assume that V satisfies (1.1)
and (2.3). Then there exists a constant C > 0 such that

k�j(
p

AV )fkLp,q + k�j(
p

A0)fkLp,q  C2n( 1
p0
� 1

p )jkfkLp0 . (9.5)

for all j 2 Z and f 2 Lp0(⌦).

Proof. It is su�cient to consider the case q = 1 due to the embedding (9.1). Let p1

be such that 1/p = 1/p0 + 1/p1 � 1. Then it follows from the Young inequality (9.4)
and the same argument as Lemma 4.1 that

k�j(
p

AV )fkLp,1 =
��e�2�2jAV

�
e2�2jAV �j(

p
AV )

 
f
��

Lp,1

 kG2�2jkLp1,1(Rn)

���e2�2jAV �j(
p

AV )
 
f
��

Lp0,1

 C(p1)2
n( 1

p0
� 1

p )j���e2�2j��j(
p

AV )
 
f
��

Lp0

 C(p1)2
n( 1

p0
� 1

p )jkfkLp0 ,

(9.6)

where Gt is the function of Gaussian type appearing in the right member of (A.8),
and we used the fact that

kG2�2jkLp1,1 = C(p1)2
n( 1

p0
� 1

p )j for p1 > 1.

Here we note that the above constant C = C(p1) is finite if and only if p1 > 1, and
hence, we have to assume that p1 > 1, namely, p0 < p. The estimate for �j(

p
A0)f is

obtained in the same way. Thus the proof of of Lemma 9.1 is completed. ⇤

Lemma 9.2. Let {�j}j2Z be defined by (2.2). Assume that V satisfies (1.1), (2.3)
and (3.1). Let 1  p  1. Then

Am
V �j(

p
A0)f 2 Z 0

V (⌦) and Am
0 �j(

p
AV )f 2 Z 0

0(⌦)

for any j, m 2 Z and f 2 Lp(⌦).
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Proof. Let j 2 Z be fixed. Since �j(
p

A0)f 2 Lp(⌦) for any f 2 Lp(⌦) by (4.3) for
↵ = 0 in Lemma 4.1, it follows from (4.25) in Lemma 4.6 that �j(

p
A0)f 2 Z 0

V (⌦).
We proved the assertion (7.1) in the proof of Proposition 3.2; Am

V is the mapping
from Z 0

V (⌦) to itself. This proves the first assertion. In the same way, the second
assertion holds. The proof of Lemma 9.2 is complete. ⇤

Lemma 9.3. Let {�j}j2Z be defined by (2.2), and take �j := �j�1+�j+�j+1. Assume
that V satisfies (1.1), (2.3) and (3.1). Then the following assertions hold:

(i) Let p = 1 for n = 2 and 1  p < n/2 for n � 3. Then we have, for any
f 2 Lp(⌦)

k�j(
p

AV )�k(
p

A0)fkLp  C2�2(j�k)kfkLp , (9.7)

k�k(
p

A0)�j(
p

AV )fkLp  C2�2(k�j)kfkLp . (9.8)

(ii) Let p = 1 for n = 2 and n/(n � 2) < p  1 for n � 3. Then we have, for
any f 2 Lp(⌦)

k�j(
p

AV )�k(
p

A0)fkLp  C2�2(k�j)kfkLp , (9.9)

k�k(
p

A0)�j(
p

AV )fkLp  C2�2(j�k)kfkLp . (9.10)

Proof. We prove only (i), since the estimates (9.9) and (9.10) are obtained by the
duality argument for (9.8) and (9.7), respectively.

We first consider the case n = 2 and p = 1. We note from Lemma 9.2 that

�k(
p

A0)f = A�1
V AV�k(

p
A0)f in Z 0

V (⌦).

Thanks to the estimate (4.3) for ↵ = 1 and the assumption (3.1) on V , a formal
calculation implies that

k�j(
p

AV )�k(
p

A0)fkL1 =k�j(
p

AV )A�1
V AV�k(

p
A0)fkL1

C2�2j
n
kA0�k(

p
A0)fkL1 + kV �k(

p
A0)fkL1

o

C2�2j
n

22kkfkL1 + kV kL1k�k(
p

A0)fkL1

o
C2�2j22kkfkL1 ,

(9.11)

which proves (9.7). As to the estimate (9.8), again by using (4.3) and the assumption
(3.1) on V , we estimate

k�k(
p

A0)�j(
p

AV )fkL1

=k�k(
p

A0)A
�1
0 (AV � V )�j(

p
AV )fkL1

C2�2k
n
kAV�j(

p
AV )fkL1 + kV �j(

p
AV )fkL1

o

C2�2k
n

22jkfkL1 + kV kL1k�j(
p

AV )fkL1

o
C2�2k22jkfkL1 .

(9.12)

This proves (9.8). Thus the estimate (i) for n = 2 and p = 1 is obtained.



32 T. IWABUCHI, T. MATSUYAMA, K. TANIGUCHI

In the case when n � 3, we estimate by the use of the Lorentz spaces. As to the
estimate (9.7), by using the same argument as in (9.11), we get

k�j(
p

AV )�k(
p

A0)fkLp  C2�2j
�
22kkfkLp + kV �k(

p
A0)fkLp

 
. (9.13)

Here, the Hölder inequalities (9.3) and (9.2) together with the estimate (9.5) in
Lemma 9.1 imply that for p = 1,

kV �k(
p

A0)fkL1 kV k
L

n
2 ,1k�k(

p
A0)fkL

n
n�2 ,1 (9.14)

C22kkfkL1 ,

and for p > 1,

kV �k(
p

A0)fkLp kV k
L

n
2 ,1k�k(

p
A0)fkLp0,p (9.15)

C22kkfkLp ,

where p0 is a real number with 1/p = 2/n+1/p0. Then (9.7) is obtained by estimates
(9.13)–(9.15). It remains to prove the estimate (9.8). By the same argument as in
(9.12) we estimate

k�k(
p

A0)�j(
p

AV )fkLp  C2�2k
n

22jkfkLp + kV �j(
p

AV )fkLp

o
.

Here, it follows from the same argument as (9.14) and (9.15) that

kV �j(
p

AV )fkLp  C22jkfkLp .

Then, (9.8) is a consequence of the above two estimates. The proof of Lemma 9.3 is
complete. ⇤

Lemma 9.4. Under the same assumptions as Lemma 9.3, the following assertions
hold:

(i) Let 1  p < 1 and 0  ↵ < min{2, n/p}. Then we have

k�j(
p

AV )�k(
p

A0)fkLp  C2�↵(j�k)kfkLp , (9.16)

k�k(
p

A0)�j(
p

AV )fkLp  C2�↵(k�j)kfkLp . (9.17)

for any j, k 2 Z and f 2 Lp(⌦).
(ii) Let 1 < p  1 and 0  ↵ < min{2, n(1� 1/p)}. Then we have

k�j(
p

AV )�k(
p

A0)fkLp  C2�↵(k�j)kfkLp , (9.18)

k�k(
p

A0)�j(
p

AV )fkLp  C2�↵(j�k)kfkLp . (9.19)

for any j, k 2 Z and f 2 Lp(⌦).

Proof. The strategy of the proof is to apply the Riesz-Thorin interpolation theorem
to the estimates in Lemma 9.3 and the following uniform estimates:

k�j(
p

AV )�k(
p

A0)fkLq  CkfkLq , (9.20)

k�k(
p

A0)�j(
p

AV )fkLq  CkfkLq , (9.21)

for all j, k 2 Z, which are proved by (4.3) for ↵ = 0.
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Let 0  ↵ < min{2, n/p}. Then the proof of (9.16) for 1  p < n/2 is performed
by combining (9.7) and (9.20) with q = p. In fact, we estimate

k�j(
p

AV )�k(
p

A0)fkLp (9.22)

=k�j(
p

AV )�k(
p

A0)fk
↵
2
Lpk�j(

p
AV )�k(

p
A0)fk

1�↵
2

Lp

C{2�2(j�k)}↵
2 kfkLp

=C2�↵(j�k)kfkLp .

This proves (9.16). In a similar way, by using (9.8) and (9.21), we get the estimate
(9.17). When n/2  p  1, we apply the Riesz-Thorin interpolation theorem to
(9.20) with q = 1 and the estimate (9.7) together with the argument (9.22).

Finally, estimates (9.18) and (9.19) are proved in analogous way as in (9.16) and
(9.17), if we divide the cases into n/(n � 2) < p  1 and 1  p  n/(n � 2). The
proof of Lemma 9.4 is complete. ⇤

Remark. When (2.3) is not imposed on V , which is the assumption on the inhomo-
geneous Besov spaces, the same estimates in Lemmas 9.1–9.4 also hold for j, k 2 N,
since the proof is done analogously by applying (4.2), (A.7) instead of (4.3), (A.8),
respectively.

In what follows, we prove the equivalence relation between Ḃs
p,q(A0) and Ḃs

p,q(AV )
under the assumption on V in Proposition 3.5.

Proof of the isomorphism:

Ḃs
p,q(A0) ⇠= Ḃs

p,q(AV ). (9.23)

The case: s > 0. First we prove that

Ḃs
p,q(A0) ,! Ḃs

p,q(AV ) (9.24)

for any s > 0. To begin with, for any f 2 Ḃs
p,q(A0), we show that

f =
X
j2Z

�j(
p

AV )f in Z 0
V (⌦). (9.25)

To see (9.25), we consider the formal identity

Z0V hf, giZV =
X
j2Z

Z0V hf,�j(
p

AV )giZV =
X
j2Z

Z0V h�j(
p

AV )f, giZV , (9.26)

where the first identity is deduced from Lemma 4.5 (ii). Note that

f =
X
k2Z

�k(
p

A0)f in Z 0
0(⌦) (9.27)

by Lemma 4.5 (ii). Plugging (9.27) into (9.26), we can write formally

Z0V hf, giZV =
X
j2Z

X
k2Z

Z0V h�k(
p

A0)f,�j(
p

AV )giZV .
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Then it is su�cient to show that for any g 2 ZV (⌦)X
j2Z

X
k2Z

�� Z0V h�k(
p

A0)f,�j(
p

AV )giZV

��  CkfkḂs
p,q(A0)kgkḂ�s

p0,q0 (AV ), (9.28)

since

ZV (⌦) ,! Ḃ�s
p0,q0(AV ).

Let �j := �j�1 + �j + �j+1. By using �j = �j�j and Hölder’s inequality we estimateX
j2Z

X
k2Z

�� Z0V h�k(
p

A0)f,�j(
p

AV )giZV

�� (9.29)

=
X
j2Z

X
k2Z

�� Z0V h�j(
p

AV )�k(
p

A0)f,�j(
p

AV )giZV

��


nX

j2Z

⇣
2sj

X
k2Z

���j(
p

AV )�k(
p

A0)�k(
p

A0)f
��

Lp

⌘qo 1
q

⇥
nX

j2Z

⇣
2�sj

���j(
p

AV )g
��

Lp0

⌘q0o 1
q0

=:I(s, f)⇥ II(s, g).

The estimate of the second factor II(s, g) is an immediate consequence of the defini-
tion of norm of Besov spaces Ḃ�s

p0,q0(AV ), that is, we have

II(s, g)  CkgkḂ�s
p0,q0 (AV ). (9.30)

As to the first factor I(s, f), applying (9.16), we have, for any j 2 Z

���j(
p

AV )�k(
p

A0)�k(
p

A0)f
��

Lp  C

(
2�↵(j�k)k�k(

p
A0)fkLp if k  j,

k�k(
p

A0)fkLp if k � j,

where ↵ is a fixed constant such that s < ↵ < min{2, n/p}. For the sake of simplicity,
we put

ak := k�k(
p

A0)fkLp . (9.31)

When k  j, by using the above estimate, we estimate the first factor I(s, f) in (9.29)
as

I(s, f) C
nX

j2Z

⇣
2sj

X
kj

2�↵(j�k)ak

⌘qo 1
q

=C
nX

j2Z

⇣X
k0�0

2�(↵�s)k02s(j�k0)aj�k0

⌘qo 1
q

C
X
k0�0

2�(↵�s)k0
nX

j2Z

⇣
2s(j�k0)aj�k0

⌘qo 1
q

CkfkḂs
p,q

,

(9.32)
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and when k � j, we have

I(s, f) C
nX

j2Z

⇣
2sj

X
k�j

ak

⌘qo 1
q

=C
nX

j2Z

⇣X
k00

2sk02s(j�k0)aj�k0

⌘qo 1
q

C
X
k00

2sk0
nX

j2Z

⇣
2s(j�k0)aj�k0

⌘qo 1
q

CkfkḂs
p,q

.

(9.33)

Summarizing (9.30)–(9.33), we conclude that the series (9.26) is absolutely conver-
gent, and hence, the identity (9.25) is justified. Also, as a consequence of (9.32) and
(9.33), we obtain

kfkḂs
p,q(AV ) 

nX
j2Z

⇣
2sj

X
k2Z

���j(
p

AV )�k(
p

A0)f
��

Lp

⌘qo 1
q

CkfkḂs
p,q(A0).

Therefore, the embedding (9.24) holds.
It is also possible to show the embedding

Ḃs
p,q(AV ) ,! Ḃs

p,q(A0)

by the same argument as above, if we apply (9.17) instead of (9.16). The proof of
isomorphism (9.23) for s > 0 is complete.

The case: s < 0. In this case, the argument for s > 0 works well. The only di↵er-
ence is to obtain estimates corresponding to (9.32) and (9.33), so that we concentrate
on proving that

nX
j2Z

⇣
2sj

X
k2Z

���j(
p

AV )�k(
p

A0)�k(
p

A0)f
��

Lp

⌘qo 1
q  CkfkḂs

p,q(A0). (9.34)

It follows from (9.16) that for any j 2 Z

���j(
p

AV )�k(
p

A0)�k(
p

A0)f
��

Lp  C

(
k�k(

p
A0)fkLp if k  j,

2�↵(k�j)k�k(
p

A0)fkLp if k � j,
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where ↵ is a fixed constant such that |s| < ↵ < min{2, n(1� 1/p)}. Then, by using
the above estimate and recalling the definition (9.31) of ak, we have for k  j,

nX
j2Z

⇣
2sj

X
kj

���j(
p

AV )�k(
p

A0)�k(
p

A0)f
��

Lp

⌘qo 1
q

C
nX

j2Z

⇣
2sj

X
kj

ak

⌘qo 1
q

=C
nX

j2Z

⇣
2sj

X
k0�0

aj�k0

⌘qo 1
q

=C
nX

j2Z

⇣X
k0�0

2sk02s(j�k0)aj�k0

⌘qo 1
q

C
X
k0�0

2sk
nX

j2Z

⇣
2s(j�k0)aj�k0

⌘qo 1
q

CkfkḂs
p,q(A0),

and in the case when k � j, we estimate

nX
j2Z

⇣
2sj

X
k�j

���j(
p

AV )�k(
p

A0)�k(
p

A0)f
��

Lp

⌘qo 1
q

C
nX

j2Z

⇣
2sj

X
k�j

2�↵(k�j)ak

⌘qo 1
q

=C
nX

j2Z

⇣
2sj

X
k00

2↵k0aj�k0

⌘qo 1
q

=C
nX

j2Z

⇣X
k00

2(↵+s)k02s(j�k0)aj�k0

⌘qo 1
q

C
X
k00

2(↵+s)k0
nX

j2Z

⇣
2s(j�k0)aj�k0

⌘qo 1
q

CkfkḂs
p,q(A0).

Therefore, the estimate (9.34) is verified, and the proof of the isomorphism (9.23) for
s < 0 is finished.

The case: s = 0. In this case we have only to show the corresponding estimates
to (9.34). Since 1 < p < 1, Lemma 9.4 implies that

k�j(
p

AV )�k(
p

A0)fkLp  C2�↵|j�k|kfkLp ,

k�k(
p

A0)�j(
p

AV )fkLp  C2�↵|j�k|kfkLp ,
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where 0 < ↵ < min{2, n/p, n(1�1/p)}. Then it follows from Young’s inequality thatnX
j2Z

⇣X
k2Z

���j(
p

AV )�k(
p

A0)�k(
p

A0)f
��

Lp

⌘qo 1
q

C
nX

j2Z

⇣X
k2Z

2�↵|j�k|���k(
p

A0)f
��

Lp

⌘qo 1
q

C
⇣X

j2Z

2�↵|j|
⌘nX

k2Z

���k(
p

A0)f
��q

Lp

o 1
q

CkfkḂ0
p,q(A0).

Therefore, the case s = 0 also holds. Thus the proof of isomorphism (9.23) for
homogeneous case is finished. ⇤

Let us now prove the inhomogeneous case.

Proof of the isomorphism:

Bs
p,q(A0) ⇠= Bs

p,q(AV ). (9.35)

The proof of (9.35) is similar to the homogeneous case. Indeed, as to the proof of
the embedding

Bs
p,q(A0) ,! Bs

p,q(AV ),

the main point is to show that for any f 2 Bs
p,q(A0),

f =  (AV )f +
X
j2N

�j(
p

AV )f in X 0
V (⌦).

This identity is obtained by using the following estimate:�� X 0
V
h (A0)f, (AV ))giXV

��+
X
j2N

X
k2N

�� X 0
V
h�k(

p
A0)f,�j(

p
AV )giXV

��
+
X
j2N

�� X 0
V
h k(A0)f,�j(

p
AV )giXV

��+
X
k2N

�� X 0
V
h�k(

p
A0)f, (AV ))giXV

��
CkfkBs

p,q(AV )kgkB�s
p0,q0 (AV )

for any g 2 XV (⌦). The proof of the above estimate is analogous to those of (9.32)
and (9.33) by taking the sum over j, k 2 N. So we may omit the details. Thus we
conclude (9.35). ⇤

Appendix A. (Lp-boundedness, self-adjointness and pointwise
estimates for e�tAV )

We discuss the uniform Lp-boundedness of �(✓AV ) in this appendix.

Proposition A.1. Let � 2 S(R) and 1  p  1.

(i) Assume that V satisfies (1.1). Then

sup
0<✓1

k�(✓AV )kLp!Lp < 1. (A.1)
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(ii) Assume that V satisfies (1.1) and (2.3). Then

sup
0<✓<1

k�(✓AV )kLp!Lp < 1. (A.2)

Remark. We note that the potential like

V (x) ' �c|x|�2 as |x|!1, c > 0

is very interesting. However, it is excluded from assumption (2.3) on V . The reason
is that the uniform boundedness in Proposition A.1 would not be generally obtained,
since

lim
t!1

ke�tAV kLp!Lp = 1
for some p 6= 2 which was proved in [17,18].

The proof of Proposition A.1 is similar to that of our previous works [19, 20] by
using Lemmas A.2–A.4 below and we may omit the complete proof of Proposition
A.1. So, we shall concentrate on the proof of the self-adjointness of AV and the
pointwise estimate of integral kernel of e�tAV , which need certain adjustment to the
method in [20].

Let us prove that AV is self-adjoint on L2(⌦). Following the argument in [30] (see
also [19]), we consider the quadratic form q defined by letting

q(u, v) :=

Z
⌦

ru(x) ·rv(x) dx +

Z
⌦

V (x)u(x)v(x) dx, u, v 2 Q(q),

where Q(q) := {u 2 H1
0 (⌦) |

p
V+u 2 L2(⌦)}.

Lemma A.2. Assume that the measurable potential V satisfies (1.1). Then there
exists a self-adjoint operator AV on L2(⌦) such that8<
:
D(AV ) =

⇢
u 2 Q(q)

��� 9wu 2 L2(⌦) s.t.

Z
⌦

wuv dx = q(u, v) for all v 2 Q(q)

�
,

AV u = wu for u 2 D(AV ).

Moreover, AV is semi-bounded, i.e., there exists a constant �0 > 0 such that

AV � ��2
0I.

Remark. We define AV u 2 L2(⌦) for u 2 Q(q) if u 2 D(AV ). Then D(AV ) is
simply rewritten as

D(AV ) = {u 2 Q(q) |AV u 2 L2(⌦)}
= {u 2 H1

0 (⌦) |
p

V+u 2 L2(⌦), AV u 2 L2(⌦)}.
This is nothing but the identity (1.2) given in §1.

To prove Lemma A.2, we need the following lemma.

Lemma A.3. ([9,19,34]) Assume that V� is in the Kato class Kn(⌦). Then for any
" > 0 there exists �0 > 0 such thatZ

⌦

V�(x)|f(x)|2 dx  "krfk2
L2 + �2

0kfk2
L2 (A.3)
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for any f 2 H1
0 (⌦).

Proof. By the density argument, we may take f 2 C1
0 (⌦). Let f̃ and Ṽ� be the

zero extension of f and V� to Rn, respectively. Then (A.3) is equivalent toZ
Rn

Ṽ�(x)|f̃(x)|2 dx  "krf̃k2
L2(Rn) + �2

0kf̃k2
L2(Rn).

Since this inequality is proved in [9, 34], we may omit the details. The proof of
Lemma A.3 is finished. ⇤

Proof of Lemma A.2. It su�ces to show that the quadratic form q is closed and
semi-bounded by Theorem VIII.15 in [30] (see also Lemma 2.3 in [19]). We first show
that q is closed. Put

q1(u, v) =

Z
⌦

ru(x) ·rv(x) dx�
Z

⌦

V�(x)u(x)v(x) dx, u, v 2 Q(q1) := H1
0 (⌦),

q2(u, v) =

Z
⌦

V+(x)u(x)v(x) dx, u, v 2 Q(q2) := {u 2 L2(⌦) |
p

V+u 2 L2(⌦)}.

Then we get

q(u, v) = q1(u, v) + q2(u, v), u, v 2 Q(q) = Q(q1) \Q(q2).

Since q1 is closed (see Proposition 2.1 in [19]) and the sum of two closed quadratic
forms is also closed, it is enough to show that q2 is closed.

We show that q2 is closed. Put q2(u) = q2(u, u) for simplicity. Assume that

u 2 L2(⌦), uj 2 Q(q2), q2(uj � uk) ! 0, kuj � ukL2 ! 0 as j, k !1,

and we prove that

u 2 Q(q2) and q2(uj � u) ! 0 as j !1. (A.4)

Since {
p

V+uj}1j=1 is a Cauchy sequence in L2(⌦), there exists v 2 L2(⌦) such thatp
V+uj ! v in L2(⌦).

Hence the sequence {
p

V+uj}1j=1 converges to v almost everywhere along a subse-
quence denoted by the same, namely,p

V+uj(x) ! v(x) for almost every x 2 ⌦ as j !1.

On the other hand, since any convergent sequence in L2(⌦) contains a subsequence
which converges almost everywhere in ⌦, it follows thatp

V+uj(x) !
p

V+u(x) for almost every x 2 ⌦ as j !1.

Summarizing three convergences obtained now, we get
p

V+u = v 2 L2(⌦). This
proves (A.4).

Finally we prove that q is semi-bounded. Let u 2 D(AV ). By the estimate (A.3),
for any " > 0 there exists �0 > 0 such thatZ

⌦

(AV u)u dx �
Z

⌦

|ru|2dx�
Z

⌦

V�|u|2 dx

� kruk2
L2 � "kruk2

L2 � �2
0kuk2

L2 .
(A.5)
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Taking " = 1, we obtain
Z

⌦

(AV u)u dx � ��2
0kuk2

L2(⌦), (A.6)

which implies that q is semi-bounded. This ends the proof of Lemma A.2. ⇤

As to the pointwise estimate on the kernel of e�tAV , we have the following.

Lemma A.4. The integral kernel e�tAV (x, y) of the semi-group {e�tAV }t�0 enjoys
the following estimates:

(i) Assume that V satisfies (1.1). Then there exist constants !, C > 0 such that

|e�tAV (x, y)|  Ce!tt�
n
2 exp

⇣
� |x� y|2

Ct

⌘

for any t > 0 and x, y 2 ⌦. In particular, we have

|e�tAV (x, y)|  Ct�
n
2 exp

⇣
� |x� y|2

Ct

⌘
if 0 < t  1. (A.7)

(ii) Assume that V satisfies (1.1) and (2.3). Then there exists C > 0 such that

|e�tAV (x, y)|  Ct�
n
2 exp

⇣
� |x� y|2

Ct

⌘
(A.8)

for any t > 0 and x, y 2 ⌦.

Proof. Since the assertions (i) with n � 1 and (ii) with n = 1, 2 were already proved
in [26], it is enough to show (ii) in the case when n � 3. We prove the lemma for
n � 3 in a formal way for the sake of simplicity. For more rigorous argument, see
[19,20].

Put

V⇤ := �V�.

It is proved in Proposition 3.1 from [19] that if V⇤ satisfies assumption (2.3), then

|e�tAV⇤ (x, y)|  Ct�
n
2 e�

|x�y|2
Ct for t > 0, x, y 2 ⌦.

Once the following inequality

|e�tAV (x, y)|  |e�tAV⇤ (x, y)| (A.9)

is proved, the proof of the lemma is complete. So, we prove (A.9). Let

u(1)(t) := e�tAV⇤f, u(2)(t) := e�tAV f,

u(t) := u(1)(t)� u(2)(t), u�(t) := �min{u(t), 0},
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where f 2 C1
0 (⌦) is non-negative. Note that u(1)(t) 2 D(AV⇤) and u(2)(t) 2 D(AV )

for any t > 0. An explicit calculation and non-negativity of AV⇤ imply that

1

2

d

dt

Z
⌦

�
u�
�2

dx = �
Z

⌦

(@tu)u� dx

=

Z
⌦

�
AV⇤u

�
u� dx�

Z
⌦

V+u(2)(t)u� dx

= �
Z

⌦

�
|ru�|2 � V�(u�)2

�
dx�

Z
⌦

V+u(2)(t)u� dx

 �
Z

⌦

V+u(2)(t)u� dx.

For the negative part of u(2), i.e.,

u(2)
� (t) := �min{u(2)(t), 0},

it follows from the analogous argument to the above that

1

2

d

dt

Z
⌦

�
u(2)
�
�2

dx =

Z
⌦

�
AV u(2)

�
u(2)
� dx

= �
Z

⌦

�
|ru(2)

� |2 � V�(u(2)
� )2

�
dx�

Z
⌦

V+

�
u(2)

2

�2
dx

 0.

The above two inequalities imply that ku�(t)k2
L2 and ku(2)

� (t)k2
L2 do not increase.

Hence we conclude that

u�(t) = u(2)
� (t) = 0 in L2(⌦)

for all t � 0, since u�(0) = 0, u(2)
� (0) = 0. Therefore, we get

0  e�tAV f  e�tAV⇤f.

For each point x0 2 ⌦, by taking f = fk (k = 1, 2, · · · ) which tend to the delta
function supported at x0, we see that the kernel of e�tAV is bounded by that of
e�tAV⇤ . Thus (A.9) is proved. This ends the proof of Lemma A.4. ⇤

Appendix B

In this appendix we prove that zero is not an eigenvalue of AV .

Lemma B.1. Assume that V satisfies (1.1) and8<
:

V� = 0 if n = 1, 2,

sup
x2⌦

Z
⌦

|V�(y)|
|x� y|n�2

dy <
4⇡

n
2

�(n/2� 1)
if n � 3,

(B.1)

where �(·) is the Gamma function. Then AV is non-negative on L2(⌦), and zero is
not an eigenvalue of AV .

For the di↵erence between assumptions (2.3) and (B.1), we refer to Proposition A.1
and Lemma A.4 (ii) (cf. Proposition 3.1 in [19] and Proposition 5.1 in [9]).

To prove Lemma B.1, we need the following lemma, which is proved in [19].



42 T. IWABUCHI, T. MATSUYAMA, K. TANIGUCHI

Lemma B.2. ([9, 19]) Assume that n � 3. Suppose that V� satisfies

kV�kKn(⌦) := sup
x2⌦

Z
⌦

|V�(y)|
|x� y|n�2

dy < 1.

Then Z
⌦

V�(x)|f(x)|2 dx  �(n/2� 1)kV�kKn(⌦)

4⇡n/2
krfk2

L2(⌦) (B.2)

for any f 2 H1
0 (⌦).

Proof. Since the proof is similar to Lemma A.3, we may omit the details. The proof
of Lemma B.2 is finished. ⇤

Proof of Lemma B.1. We prove that if f satisfies

f 2 D(AV ) and AV f = 0 in L2(⌦), (B.3)

then f = 0. By Lemma B.2 and assumption (B.1) on V� we haveZ
⌦

V�|f |2 dx  �nkrfk2
L2 ,

where �n is a constant such that 0 < �n < 1 if n � 3 and �n = 0 if n = 1, 2. Then we
find from assumption (B.3) that

0 =

Z
⌦

(AV f)f dx =

Z
⌦

�
|rf |2 � V�|f |2

�
dx +

Z
⌦

V+|f |2 dx

�(1� �n)krfk2
L2 ,

which implies that f = 0, since f 2 D(AV ) ⇢ H1
0 (⌦). Finally, the above inequality

also implies that AV is non-negative on L2(⌦). This ends the proof of Lemma B.1. ⇤
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Notas de Matemática [Mathematical Notes], 104.

[14] V. Georgiev and N. Visciglia, Decay estimates for the wave equation with potential, Comm.
Partial Di↵erential Equations 28 (2003), no. 7-8, 1325–1369.

[15] L. Grafakos, Classical Fourier analysis, 3rd ed., Graduate Texts in Mathematics, vol. 249,
Springer, New York, 2014.

[16] , Modern Fourier analysis, 3rd ed., Graduate Texts in Mathematics, vol. 249, Springer,
New York, 2014.

[17] N. Ioku, K. Ishige, and E. Yanagida, Sharp decay estimates of Lq-norms for nonnegative
Schrödinger heat semigroups, J. Funct. Anal. 264 (2013), no. 12, 2764–2783.

[18] , Sharp decay estimates in Lorentz spaces for nonnegative Schrödinger heat semigroups,
J. Math. Pures Appl. (9) 103 (2015), no. 4, 900–923 (English, with English and French sum-
maries).

[19] T. Iwabuchi, T. Matsuyama, and K. Taniguchi, Lp–mapping properties for the Schrödinger
operators in open sets of Rd, preprint.

[20] , Lp-boundedness of functions of Schrödinger operators on an open set of Rd, preprint.
[21] A. Jensen and S. Nakamura, Mapping properties of functions of Schrödinger operators between

Lp-spaces and Besov spaces, Spectral and scattering theory and applications, Adv. Stud. Pure
Math., vol. 23, Math. Soc. Japan, Tokyo.

[22] , Mapping properties of functions of Schrödinger operators between Lp-spaces and Besov
spaces, Spectral and scattering theory and applications, Adv. Stud. Pure Math., vol. 23, Math.
Soc. Japan, Tokyo, 1994, pp. 187–209.

[23] G. Kerkyacharian and P. Petrushev, Heat kernel based decomposition of spaces of distributions
in the framework of Dirichlet spaces, Trans. Amer. Math. Soc. 367 (2015), no. 1, 121–189.

[24] H. Kozono and M. Yamazaki, Semilinear heat equations and the Navier-Stokes equation with
distributions in new function spaces as initial data, Comm. Partial Di↵erential Equations 19
(1994), no. 5-6, 959–1014.

[25] T. Muramatsu, On Besov spaces and Sobolev spaces of generalized functions defined on a general
region, Publ. Res. Inst. Math. Sci. 9 (1973/74), 325–396. MR 0341063 (49 #5813)

[26] E. M. Ouhabaz, Sharp Gaussian bounds and Lp-growth of semigroups associated with elliptic
and Schrödinger operators, Proc. Amer. Math. Soc. 134 (2006), no. 12, 3567–3575 (electronic).

[27] J. Peetre, Sur les espaces de Besov, C. R. Acad. Sci. Paris Sér. A-B 264 (1967), A281–A283
(French).

[28] , On spaces of Triebel-Lizorkin type, Ark. Mat. 13 (1975), 123–130.
[29] , New thoughts on Besov spaces, Mathematics Department, Duke University, Durham,

N.C., 1976. Duke University Mathematics Series, No. 1.
[30] M. Reed and B. Simon, Methods of modern mathematical physics. I. Functional analysis, Aca-

demic Press, New York-London, 1972.
[31] M. Ruzhansky and N. Tokmagambetov, Nonharmonic analysis of boundary value problems, Int.

Math. Res. Notices, doi:10.1093/imrn/rnv243.
[32] V. S. Rychkov, Intrinsic characterizations of distribution spaces on domains, Studia Math. 127

(1998), no. 3, 277–298.
[33] V. S. Rychkov, On restrictions and extensions of the Besov and Triebel-Lizorkin spaces with

respect to Lipschitz domains, J. London Math. Soc. (2) 60 (1999), no. 1, 237–257.
[34] B. Simon, Schrödinger semigroups, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 3, 447–526.



44 T. IWABUCHI, T. MATSUYAMA, K. TANIGUCHI

[35] E. M. Stein, Singular integrals and di↵erentiability properties of functions, Princeton Mathe-
matical Series, No. 30, Princeton University Press, Princeton, N.J., 1970.

[36] H. Triebel, Interpolation theory, function spaces, di↵erential operators, VEB Deutscher Verlag
der Wissenschaften, Berlin, 1978.

[37] , Theory of function spaces, Monographs in Mathematics, vol. 78, Birkhäuser Verlag,
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