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DECAY ESTIMATES FOR WAVE EQUATION WITH A
POTENTIAL ON EXTERIOR DOMAINS

VLADIMIR GEORGIEV AND TOKIO MATSUYAMA

Abstract. The purpose of the present paper is to establish the local energy decay
estimates and dispersive estimates for 3-dimensional wave equation with a poten-
tial to the initial-boundary value problem on exterior domains. The geometrical
assumptions on domains are rather general, for example non-trapping condition is
not imposed in the local energy decay result. As a by-product, Strichartz estimate
is obtained too.

1. Introduction and statement of results

Let Ω be an exterior domain in R3 such that the obstacle

O := R3 \ Ω

is compact and its boundary ∂Ω is of C2,1. For the sake of simplicity, we assume that
the origin does not belong to Ω.

In this work we consider the initial-boundary value problem for the wave equations
with a potential in the exterior domain Ω and our main goals are to study the local
energy decay estimates and dispersive estimates for the corresponding evolution flow.

The study of Strichartz estimates for the Cauchy problem to wave equation has
its origin in the paper of Strichartz (see [41]). After him, many authors generalized
them (see [17, 20, 21, 25] etc) as well as dispersive estimates (see [6, 7, 26, 34]). These
estimates for wave equation with potentials V (x) are also of great interest, and are
expressed by

(1.1)
∥∥∥eit√−∆+V f

∥∥∥
L∞(Rn)

≤ C|t|−
n−1
2 ∥f∥

Ḃ
n+1
2

1,2 (Rn)
, (dispersive estimates),

where Ḃ
n+1
2

1,2 (Rn) is the homogeneous Besov space, and

(1.2)
∥∥∥eit√−∆+V f

∥∥∥
Lq(R;Ḣ

1
p− 1

q− 1
2 ,p

(Rn))
≤ C∥f∥L2(Rn), (Strichartz estimates),
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where Ḣ
1
p
− 1

q
− 1

2
,p(Rn) are the homogeneous Sobolev spaces and p, q satisfy the admis-

sible condition:

2

q
+
n− 1

p
=
n− 1

2
, 2 ≤ q ≤ ∞, 2 ≤ p ≤ 2(n− 1)

n− 3
, p ̸= ∞.

There are many results on the dispersive estimates (1.1) or Strichartz estimates (1.2)
for the short-range type potentials. Let us overview the known results on the esti-
mates (1.1) and (1.2). When n = 3, Cuccagna considered the potential V (x) like

(1.3) |V (x)| ≤ C

(1 + |x|2)δ/2
for some δ > 3,

and proved the estimates (1.2) together with (1.1) (see [11]). We also find the previous
known results on more restrictive assumptions on potentials (see, e.g., Beals [3], Beals
and Strauss [4], and also Georgiev, Heiming and Kubo [15]). When n ≥ 4 and V (x)
satisfies (1.3) for some δ > (n+1)/2, Vodev proved Lp-Lp

′
-estimates in high frequency

(see [42], and also Cardoso and Vodev [10]). Moulin compensated the estimates in
low frequency for the potentials of Kato class (see [33]). However, it is assumed in
all of the above results that

(1.4) zero is neither an eigenvalue nor a resonance for the operator −∆+ V (x).

After these results, the estimates without appealing to the assumption (1.4) on oper-
ator −∆+V (x) were revealed by some authors. Yajima clarified the spectrum for the
Schrödinger operators (see [45]), and obtained Lp-Lp

′
-estimates for the Schrödinger

equations. When n = 3 and V (x) behaves like

0 ≤ V (x) ≤ C

|x|2(|x|ε + |x|−ε)
for ε > 0,

Georgiev and Visciglia established the estimates (1.1) and (1.2) (see [16]). D’Ancona
and Pierfelice also established the dispersive estimate (1.1) in the case when n = 3
and V (x) is a potential of Kato class (see [14]), and D’Ancona and Fannelli proved
Strichartz estimates (1.2) for wave equation with the magnetic potentials (see [12]).

Contrary to the Cauchy problem in Rn, there are no results on the optimal dis-
persive estimates for wave equation with potentials on exterior domains. As to wave
equation (without potentials) in non-trapping exterior domains, Shibata and Tsut-
sumi proved Lp-Lp

′
-estimates with some derivative loss of data, and applied them

to get global small amplitude solutions to nonlinear wave equations (see [39]). Be-
sides, there are only a few results on Strichartz estimates in exterior problems. For
wave equation with perturbed Laplacian in non-trapping exterior domains, Smith
and Sogge studied the corresponding Strichartz estimates in 3-dimensional space (see
[40]), and Burq and Metcalfe extended to higher spatial dimensions greater than or
equal to 4 independently (see [8, 27]). After them, some authors have investigated
Strichartz estimates for wave equation with a potential in an exterior domain outside
a star-shaped obstacle; Metcalfe and Tataru proved these estimates for hyperbolic
equations with variable coefficients under a certain long-range type of potentials (see
[28]).
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The present paper is devoted to the investigation of local energy decay estimates
and dispersive estimates, or even Lp-Lp

′
-estimates for wave equation with a poten-

tial in exterior domains without appealing to the non-trapping condition on Ω (see
Theorem 1.1 and Theorem 1.3 below). The strategy of proof is based on spectral
analysis. Also, it is not assumed that zero is neither an eigenvalue nor a resonance
for the operator −∆ + V (x) on the exterior domain. As a by-product of these esti-
mates, Strichartz estimates will be obtained in Theorem 1.4 by using TT ∗ argument
of Ginibre and Velo (see [17], and also Yajima [46]).

We now formulate the problem more precisely. In this paper we are concerned with
the following initial-boundary value problem, for a function u = u(t, x):

(1.5) ∂2t u−∆u+ V (x)u = 0, t ̸= 0, x ∈ Ω,

with the initial condition

(1.6) u(0, x) = f(x), ∂tu(0, x) = g(x),

and the boundary condition

(1.7) u(t, x) = 0, t ∈ R, x ∈ ∂Ω,

where V is a real-valued measurable function on Ω satisfying

(1.8) − c0|x|−δ0 ≤ V (x) ≤ c1|x|−δ0 for some 0 < c0 <
1

4
, c1 > 0 and δ0 > 2.

Let us introduce some operators and function spaces. We denote by

G0 = −∆ the free Hamiltonian in R3,

and by

GV a self-adjoint realization on L2(Ω) of the operator −∆|D + V ,

where

G := −∆|D is the Dirichlet Laplacian

with domain

D(G) = D(GV ) = H2(Ω) ∩H1
0 (Ω).

Then GV is non-negative on L2(Ω) on account of (1.8). It will be shown in Proposition
A.1 that zero is neither an eigenvalue nor a resonance of GV (see appendix A). Also,
it is known that no eigenvalues are present on (0,∞) (see Mochizuki [29], and also
(1.19) below). Hence the continuous spectrum of GV coincides with the interval
[0,∞). The main theorem involves the perturbed Besov spaces Ḃs

p,q(GV ) generated
by GV . Following Iwabuchi, Matsuyama and Taniguchi [19], we define these spaces
in the following way. Let {φj(λ)}∞j=−∞ be the Littlewood-Paley partition of unity:

φ(λ) is a non-negative function having its compact support in {λ : 1/2 ≤ λ ≤ 2}
such that

(1.9)
+∞∑
j=−∞

φ(2−jλ) = 1 (λ ̸= 0), φj(λ) = φ(2−jλ), (j ∈ Z).
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For any s ∈ R and 1 ≤ p, q ≤ ∞ we define the homogeneous Besov spaces Ḃs
p,q(GV )

by letting

(1.10) Ḃs
p,q(GV ) := {f ∈ Z ′

V (Ω) : ∥f∥Ḃs
p,q(GV ) <∞},

where
∥f∥Ḃs

p,q(GV ) :=
∥∥{2sj∥φj(√GV )f∥Lp(Ω)

}
j∈Z

∥∥
ℓq(Z).

Here Z ′
V (Ω) is the dual space of a linear topological space ZV (Ω) which is defined by

letting

ZV (Ω) :=
{
f ∈ L1(Ω) ∩D(GV ) : GM

V f ∈ L1(Ω) ∩D(GV ) and

sup
j≤0

2M |j|∥φj(
√
GV )f∥L1(Ω) <∞ for all M ∈ N

}
equipped with the family of semi-norms {qV,M(·)}∞M=1 given by

qV,M(f) := ∥f∥L1(Ω) + sup
j∈Z

2M |j|∥φj(
√
GV )f∥L1(Ω).

It is proved in Theorem 2.5 from [19] that the norms ∥f∥Ḃs
p,q(GV ) are independent of

the choice of φj. We shall also use the perturbed Sobolev spaces over Ω:

Ḣs
V (Ω) := Ḃs

2,2(GV ).

In particular case V = 0, replacing φj(
√
GV ) by φj(

√
G) in the definition, we define

Ḃs
p,q(G) and Ḣs(Ω) = Ḃs

2,2(G),

where we recall
G = −∆|D

with domain
D(G) = H2(Ω) ∩H1

0 (Ω).

We shall use the inhomogeneous Sobolev spaces Hs
V (Ω) for s > 0. We say that

f ∈ Hs
V (Ω) (f ∈ Hs(Ω) resp.) for s > 0 if∥∥(I +GV )

s/2f
∥∥
L2(Ω)

<∞ (
∥∥(I +G)s/2f

∥∥
L2(Ω)

<∞ resp.)

Before stating the results, we introduce a class of potentials of generic type in
L2

−s(Ω). Here L
2
−s(Ω) is the weighted L2-spaces whose definitions are as follows: For

a non-negative integer m and real number κ, we define the weighted Sobolev spaces
Hm
κ (Ω) by letting

Hm
κ (Ω) = {f : ⟨x⟩κ∂αx f ∈ L2(Ω), |α| ≤ m}, ⟨x⟩ =

√
1 + |x|2,

and in particular, we put
L2
κ(Ω) = H0

κ(Ω).

Let R(λ2 ± i0) be the resolvent operators of G:

(1.11) R(λ2 ± i0) = s− lim
ε↘0

(G− (λ2 ± iε)I)−1 in B(L2
s(Ω), H

2
−s(Ω))

for some s > 1/2 and for any λ > 0. The space B(L2
s(Ω), H

2
−s(Ω)) consists of

all bounded linear operators from L2
s(Ω) to H

2
−s(Ω). The existence of these limits is

called the limiting absorption principle, and the limits (1.11) certainly exist (see, e.g.,
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Mochizuki [31] and Wilcox [43]). It should be noted that (1.11) will be established
in Lemma 2.6 below without appealing to [31] and [43]. Referring to Yajima [45], we
define the null space of I +R(0)V by letting

M =
{
u ∈ L2

−s(Ω) : u+R(0)V u = 0 in Ω
}

for some 1 < s ≤ δ0/2. Now, any u ∈ M satisfies the boundary value problem for
the stationary Schrödinger equation:

(1.12)

{−∆u+ V (x)u(x) = 0 in Ω,

u(x) = 0 on ∂Ω.

Conversely, any function u ∈ L2
−s(Ω) for some 1 < s ≤ δ0/2 satisfying (1.12) belongs

to M, since V u belongs to L2
s(Ω) for such an s. Hence the eigenspace, denoted by E ,

of GV with eigenvalue 0 is a subspace of M. Elements in M\E are called resonances
of GV . Then we define a class of potentials as follows:

Definition. V is said to be of generic type if M = {0}.
In appendix A we prove that the potential V satisfying assumption (1.8) is of

generic type. Thus, it is understood that zero is neither an eigenvalue nor a resonance
of operator GV for such a potential V .

Local energy for wave equations is defined by letting

ER(u)(t) =

∫
Ω∩{|x|≤R}

{
|∇u(t, x)|2 + |∂tu(t, x)|2

}
dx,

where, here and below, R > 0 is chosen such that

O = R3 \ Ω ⊆ {|x| ≤ R}.
The result due to Ralston [36] concerns the case that

O is a compact and trapping obstacle,

and his result asserts that, given any µ ∈ (0, 1) and any T > 0, there exist f, g ∈
C∞

0 (Ω) with ∫
Ω

{
|∇f(x)|2 + |g(x)|2

}
dx = 1

such that the solution to the initial-boundary value problem
∂2t u−∆u = 0, t ̸= 0, x ∈ Ω,

u(t, x) = 0, t ∈ R, x ∈ ∂Ω,

u(0, x) = f(x), ∂tu(0, x) = g(x), x ∈ Ω

satisfies the inequality

ER(u)(T ) ≥ 1− µ.

On the other hand, the scattering theory developed by Lax and Phillips (see [24],
and also Petkov [35]) gives a construction of the scattering operator by using weaker
form of local energy decay

(1.13) lim inf
t→∞

ER(u)(t) = 0.
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Note that (1.13) follows directly from the RAGE (or simply ergodic type) theorem

(1.14) lim
T→∞

1

T

∫ T

0

ER(u)(t)dt = 0

and the property that zero is not eigenvalue of G, i.e.,

u ∈ D(G), Gu = 0 =⇒ u = 0.

An important consequence of weak energy decay (1.14) is the existence of the wave
operators

W∓ := s− lim
t→±∞

eit
√
GJ0e

−it
√
G0 ,

where J0 is the orthogonal projection

J0 : L
2(R3) → L2(Ω).

This observation implies that scattering theory and existence of wave operators are
established without appealing to additional geometric assumption of type

(1.15) O = R3 \ Ω is non-trapping obstacle.

The condition (1.15) is crucial for the strong local energy decay in view of the results
of Morawetz, Ralston and Strauss [32] and Ralston [36].

Our main decay estimates (1.16)–(1.18) below are obtained also without appealing
to assumption (1.15) and these are probably the main novelty in our work.

We shall prove the following:

Theorem 1.1. Assume that the measurable potential V satisfies (1.8). Let σ ≥ 2. If
f, g ∈ C∞

0 (Ω) and R > 0 is such that

O ⊆ {|x| ≤ R},
then the solution u to the initial-boundary value problem (1.5)–(1.7)satisfies the esti-
mate

(1.16) ER(u)(t) ≤
C

t2

(
∥f∥2

H2σ+1
V (Ω)

+ ∥g∥2H2σ
V (Ω)

)
for any t ̸= 0.

Interpolation between (1.16) and standard energy estimate

ER(u)(t) ≤ C
(
∥f∥2H1(Ω) + ∥g∥2L2(Ω)

)
gives the following:

Corollary 1.2. Assume that the measurable potential V satisfies (1.8). If f, g ∈
C∞

0 (Ω) and R > 0 is such that

O ⊆ {|x| ≤ R},
then for any k ∈ (0, 1], the solution u to the initial-boundary value problem (1.5)–(1.7)
satisfies the estimate

(1.17) ER(u)(t) ≤
C

|t|k/2
(
∥f∥2Hk+1(Ω) + ∥g∥2Hk(Ω)

)
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for any t ̸= 0.

Remark 1.1. If V = 0, then we are able to prove (1.17) for any k > 0. In the case
of presence of potential satisfying (1.8), we use the fact that

D(Gs/2
V ) = D(Gs/2), ∥f∥Hs

V (Ω) ∼ ∥f∥Hs(Ω), f ∈ D(Gs/2)

for any s ∈ [0, 2]. Therefore we need the restriction 0 < k ≤ 1 in Corollary 1.2, when
there is a potential.

Remark 1.2. It should be mentioned that the estimate (1.17) is slightly better local
energy decay estimate compared with the estimate

ER(u)(t) ≤
C

log(2 + t)2k

(
∥f∥2Hk+1(Ω) + ∥g∥2Hk(Ω)

)
,

which is obtained by Burq (see [9]).

The second result is concerned with Lp-Lp
′
-estimates:

Theorem 1.3. Let 1 ≤ p′ ≤ 2 ≤ p ≤ ∞ and 1/p + 1/p′ = 1. Suppose that the
measurable potential V satisfies (1.8). Then there exists a constant C > 0 such that

(1.18)

∥∥∥∥(√GV

)−1

eit
√
GV g

∥∥∥∥
Ḃ

−(1/2)+(2/p)
p,2 (GV )

≤ C|t|−1+(2/p)∥g∥
Ḃ

(1/2)−(2/p)

p′,2 (GV )

for any g ∈ Ḃ
(1/2)−(2/p)
p′,2 (GV ) and any t ̸= 0.

The strategy of proof of Theorems 1.1 and 1.3 is based on the spectral representa-
tion of an operator φ(

√
GV ). More precisely, given any function φ ∈ C∞

0 (0,∞), we
shall use the identity (see [18, Hörmander, vol. II, Distorted Fourier transform)]:

φ(
√
GV ) =

1

πi

∫ ∞

0

φ(λ)
[
RV (λ

2 + i0)−RV (λ
2 − i0)

]
λ dλ,

where1 RV (λ
2 ± i0) are the operators induced by the resolvent operator

RV (z) = (GV − z)−1 for z ∈ C,

whose existence is assured by the limiting absorption principle in Lemma 2.8 (see
also Mochizuki [29, 30, 31]): Let δ0 > 1. Then there exist the limits

(1.19) s− lim
ε↘0

RV (λ
2 ± iε) = RV (λ

2 ± i0) in B(L2
s(Ω), H

2
−s(Ω))

for some s > 1/2 and for any λ > 0. It should be mentioned that the limiting
absorption principle (1.19) is true for an arbitrary exterior domain with a compact
boundary. If one considers the uniform resolvent estimates obtained in [22, 29, 30, 31],
the geometrical condition (1.15) on Ω is imposed. However, the argument in this
paper does not require any geometrical condition.

1typically we shall choose φ(λ) = φj(λ)λ
−1eiλt, where φj are functions from Paley - Littlewood

partition of unity, introduced in (1.9)
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Once the dispersive estimates are established, Strichartz estimates are obtained by
TT ∗ argument of [17] (see also Yajima [46]). Our final result reads as follows. We
consider

(1.20)


∂2t u−∆u+ V (x)u = F (t, x), t ̸= 0, x ∈ Ω,

u(t, x) = 0, t ∈ R, x ∈ ∂Ω,

u(0, x) = f(x), ∂tu(0, x) = g(x), x ∈ Ω.

Then we have:

Theorem 1.4. Suppose that the measurable potential V satisfies (1.8). Then for any
p, q, r, s, γ that satisfy

2

q
+

2

p
≤ 1,

2

r
+

2

s
≤ 1, 2 < q, r ≤ ∞, 2 ≤ p, s <∞,

3

(
1

2
− 1

p

)
− 1

q
= γ = 1− 3

(
1

2
− 1

s

)
+

1

r
,

there exists a constant C > 0 such that the solution u to the initial-boundary value
problem (1.20) satisfies the following estimate:

(1.21) ∥u∥Lq(R;Lp(Ω)) ≤ C
(
∥f∥Ḣγ(Ω) + ∥g∥Ḣγ−1(Ω) + ∥F∥Lr′ (R;Ls′ (Ω))

)
,

where r′, s′ are the conjugate exponents to r, s, respectively.

In this paper we denote by B(X, Y ) the space of all bounded linear operators from
a Banach space X to another one Y . When X = Y , we denote B(X) = B(X,X).
We will use the notation R(T ) for the range of an operator T .

The plan of the work is the following. The crucial point is the proof of appropriate
L2 and Lp-estimates for perturbed resolvent of GV together with making a represen-
tation formula for the perturbed resolvent via the free one, which will be proved in
section 2. In section 3 L1-L∞-resolvent estimates will be proved. Section 4 will be
devoted to the proof of Theorems 1.1 and 1.3. In section 4 the proof of Theorem 1.4
will be given.

2. L2 and Lp-estimates for perturbed resolvent

In this section we shall derive L2 and Lp-estimates for perturbed resolvent

RV (z) = (GV − zI)−1,

and make a representation formula via the free one. These estimates will play an
important role in proving the local energy decay estimates in Theorem 1.1 and dis-
persive estimates in Theorem 1.3.

To begin with, let us overview the known resolvent estimates. The limiting ab-
sorption principle for the free resolvent

R0(z) = (G0 − z)−1
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is known as

(2.1) s− lim
ε↘0

R0(λ
2 ± iε) = R0(λ

2 ± i0) in B(L2
s(R3), H2

−s(R3))

for any λ > 0 and s > 1/2 (see, e.g., Agmon [2]), and we have the uniform resolvent
estimates

(2.2)
∥∥R0(λ

2 ± iε)f
∥∥
L2
−s(R3)

≤ C

λ
∥f∥L2

s(R3)

for any λ, ε > 0 and s > 1/2 (see Mochizuki [31], and also Ben-Artzi and Klainerman
[5]). We also refer to the result of the limiting absorption principle in the critical case
s = 1/2, where Ruzhansky and Sugimoto proved (see [38]).

Recall the representation of the free resolvent (see Example 1, Ch.IX.7 in Reed and
Simon [37]):

Lemma 2.1. If λ > 0, then we have

R0(λ
2 ± iε)(x, y) =

e−
√
−λ2∓iε|x−y|

4π|x− y|
,

where, here and below, we put
√
z = e(Log (z))/2

and Log (z) is the principle branch of the logarithm.

We often use the well known formula:

(2.3)
[
R0(λ

2 ± i0)f
]
(x) =

1

4π

∫
R3

e±iλ|x−y|

|x− y|
f(y) dy.

2.1. Key resolvent identity. The next step is to represent the perturbed resolvent

R(z) = (G− zI)−1,

where
G = −∆|D

is the Dirichlet Laplacian. We need identify the Hilbert space L2(R3) that G0 acts
on, with L2(Ω) that G acts on. To begin with, we define identification operators

J ∈ B(L2(R3), L2(Ω)), J∗ ∈ B(L2(Ω), L2(R3))

as follows (see also Kuroda [23] and Mochizuki [31]). In a very small neighborhood
U of the obstacle O we introduce local coordinates in the following way: Since ∂Ω is
of C2,1, there exist a constant 0 < r0 ≪ 1 and a C2,1-diffeomorphism

Ω ∩ U ∋ x 7−→ (y, r) ∈ ∂Ω× (0, r0)

such that

(2.4) x = y + rν(y),

where ν(y) is the unit normal at y ∈ ∂Ω that is inward-pointing unit vector (unit
vector pointing towards the interior of the domain Ω). Therefore, we have

r = dist(x, ∂Ω),
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where dist(x, ∂Ω) is the distance between the point x ∈ Ω ∩ U and the boundary.
Then let us choose a function j(x) ∈ C2(Ω) ∩W 2,∞(R3) such that

(2.5) j(x)


= 0 for x ∈ O,

= r2 for x ∈ Ω ∩ U and r ≤ r0
2
,

≥ r20
4

for x ∈ Ω ∩ U and
r0
2

≤ r ≤ r0,

= 1 for x ∈ U c and r ≥ r0.

In this way we define the operator J by letting

(Jf)(x) = j(x)f(x), x ∈ Ω,

for f ∈ L2
loc(R3), and define the adjoint operator J∗ by letting

(J∗g)(x) =

{
j(x)g(x), x ∈ Ω,
0, x ∈ R3 \ Ω,

for g ∈ L2
loc(Ω). In particular, we have:

J ∈ B(L2
s(R3), L2

s(Ω)), J∗ ∈ B(L2
s(Ω), L

2
s(R3))

for any s ∈ R.
Next, let us consider the zero extension operator ι from L2(Ω) to L2(R3) by letting

ι(f)(x) =

{
f(x), if x ∈ Ω;
0, otherwise

for any f ∈ L2(Ω).We shall introduce a splitting relation involving the operators ι, G0

and G (see also Lemma 3.27 in p.71 of Adams and Fournier [1]). Here and below, we
use the Sobolev space H2

0 (Ω) which is defined as the completion of C∞
0 (Ω) in H2(Ω)-

norm. Since our boundary is assumed to be compact and of C2,1, it is clear that the
restriction of C∞

0 (R3) to Ω defines a space that is dense in H2(Ω). Indeed, the density
property is guaranteed by classical results under essentially weaker assumptions on
the boundary, namely the density is fulfilled for domains having segment property
(see Section 3 in [1]). The segment property in turns is obviously true for exterior
domains with C2,1-compact boundaries. We also note that u ∈ H2

0 (Ω) if and only if
u ∈ H2(Ω) and

(2.6) u = 0 and
∂u

∂ν
= 0 on ∂Ω,

provided that ∂Ω is of C2,1, where ν is the inward-pointing normal vector on ∂Ω (see
Theorem 8.9 in p.131 of Wloka [44]). Moreover, u belongs to D(G) if and only if

u ∈ H2(Ω) and u(x) = 0 for x ∈ ∂Ω.

Then we have:

Lemma 2.2. We have the following assertions:

(i) Let Ω be an exterior domain whose boundary ∂Ω is of C1,1. If ϕ ∈ H1
0 (Ω),

then ι(ϕ) ∈ H1(R3) and we have the identities

(ι ◦ ∂xj)(ϕ) = (∂xj ◦ ι)(ϕ), j = 1, 2, 3,

where ∂xj = ∂/∂xj.
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(ii) Let Ω be an exterior domain whose boundary ∂Ω is of C2,1. If ϕ ∈ H2
0 (Ω),

then ι(ϕ) ∈ D(G0) and we have the identity

(2.7) (ι ◦G)(ϕ) = (G0 ◦ ι)(ϕ).
(iii) Let Ω be as in (ii). Then

(2.8) J∗D(G) ⊂ D(G0).

Proof. We have only to prove the assertions (ii) and (iii), since the proof of (i) is
similar to that of (ii). If ψ ∈ C∞

0 (Ω), then ι(ψ) ∈ C∞
0 (R3), and we have

(2.9) (ι ◦G)(ψ) = (G0 ◦ ι)(ψ).
If

ϕ ∈ H2
0 (Ω) ⊂ D(G),

then there exists a sequence {ϕk} in C∞
0 (Ω) such that

ϕk −→︸︷︷︸
L2(Ω)

ϕ, G(ϕk) −→︸︷︷︸
L2(Ω)

G(ϕ);

whence we write

(2.10) ι(ϕk) −→︸︷︷︸
L2(R3)

ι(ϕ), (ι ◦G)(ϕk) −→︸︷︷︸
L2(R3)

(ι ◦G)(ϕ).

Since

(2.11) (ι ◦G)(ϕk) = (G0 ◦ ι)(ϕk)
by (2.9), it follows from (2.10) that {(G0 ◦ ι)(ϕk)} is a convergent sequence in L2(R3).
Hence, by the standard argument, we deduce that

ι(ϕ) ∈ D(G0)

and

(2.12) (G0 ◦ ι)(ϕk) −→︸︷︷︸
L2(R3)

(G0 ◦ ι)(ϕ).

Therefore we conclude from (2.10)–(2.12) that

(ι ◦G)(ϕ) = (G0 ◦ ι)(ϕ),
which proves the identity (2.7).

We turn to prove (iii). Let h ∈ D(G). First, we show that

(2.13) (J∗h)|Ω ∈ H2
0 (Ω),

where F (·)|Ω is denoted by the restriction of a function F (x) on R3 to Ω. In fact,
since j(x) = 0 and h(x) = 0 on ∂Ω, it follows that

J∗h = 0 on ∂Ω,

∂

∂ν
J∗h =

∂j

∂ν
h+ j

∂h

∂ν
= 0 on ∂Ω,

where the existence of
∂h

∂ν
is assured by the trace theorem. Hence, thanks to (2.6),

we conclude (2.13). Consequently, it follows from the assertion (ii) that

J∗h = ι ((J∗h)|Ω) ∈ D(G0),
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which proves (2.8). The proof of Lemma 2.2 is complete. □
Thanks to part (iii) of Lemma 2.2, we are able to define an operator

W∗ = J∗G−G0J∗,

provided that ∂Ω is of C2,1. Given any g ∈ H1
0 (Ω), we see from part (i) of Lemma

2.2 that
∇j · ∇ι(g) ∈ L2(R3),

and hence,

(2.14) W∗g = (∆j)ι(g) + 2∇j · ∇ι(g) ∈ L2(R3),

so that the support of W∗g is compact in Ω. Therefore we have

W∗ ∈ B(D(G), L2
s(R3))

for any s ∈ R.
Our goal is to represent the resolvent R(z)h in terms of the free one R0(z)(J∗h)

for z = λ2 ± iε, where h ∈ L2(Ω).

Lemma 2.3. Let Ω be an exterior domain whose boundary ∂Ω is of C2,1. Then we
have the resolvent equation

(2.15) (J∗ +R0(z)W∗)R(z)h = R0(z)J∗h

for any h ∈ L2(Ω) and z = λ2 ± iε with λ, ε > 0. Furthermore, together with

(2.16) R(R0(z)J∗) = R0(z)J∗(D(G)), R(J∗ +R0(z)W∗) = (J∗ +R0(z)W∗)(D(G))

we have

(2.17) R(R0(z)J∗) ⊂ R(J∗ +R0(z)W∗)

for any z = λ2 ± iε.

Proof. We put
P (z) = J∗R(z)−R0(z)J∗.

Since R(z)h ∈ D(G) for any h ∈ L2(Ω), it follows from part (iii) of Lemma 2.2 that
G0 ◦J∗R(z)h is well-defined as an element of L2(R3). Now, by an explicit calculation,
we see that

(G0 − zI)P (z)h =(G0 − zI)J∗R(z)h− J∗h

= {(G0 − zI)J∗ − J∗(G− zI)}R(z)h
=−W∗R(z)h.

Thus we get
P (z)h = −R0(z)W∗R(z)h.

This proves (2.15). As a consequence of (2.15), we get the inclusion (2.17). The proof
of Lemma 2.3 is complete. □

In the sequel we always assume that Ω is the exterior domain whose boundary ∂Ω
is of C2,1.

We shall prove here the following:
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Proposition 2.4. Let

(R0(λ2 ± iε)J∗)(L2(Ω))

be the closure with respect to H2(R3)-norm of the image (R0(λ
2 ± iε)J∗)(L

2(Ω)). If
D(G) is equipped with induced topology of H2(Ω), then there exist bounded operators

S(λ2 ± iε) : (R0(λ2 ± iε)J∗)(L2(Ω)) → D(G)

such that

(2.18) R(λ2 ± iε)f = S(λ2 ± iε)R0(λ
2 ± iε)J∗f

for any λ, ε > 0 and f ∈ L2(Ω).

Proof. If

(R0(λ2 ± iε)J∗)(D(G))

is the closure with respect to H3(R3)-norm of the image (R0(λ
2± iε)J∗)(D(G)), then

we have only to prove that there exist bounded operators

S(λ2 ± iε) : (R0(λ2 ± iε)J∗)(D(G)) → D(G)

such that (2.18) hold. Indeed, the conclusion in the proposition follows from the fact
that

(R0(λ2 ± iε)J∗)(D(G)) is dense in (R0(λ2 ± iε)J∗)(L2(Ω)).

Hereafter, we put z = λ2 ± iε for λ, ε > 0. We divide the proof into three steps.

First step. We claim that the operator J∗ + R0(z)W∗ is injective from D(G) into
R(J∗ +R0(z)W∗).

Let f ∈ D(G) be a solution to the following integral equation:

(2.19) (J∗ +R0(z)W∗) f = 0 in H2(R3).

Then we deduce from the resolvent equation (2.15) and (2.19) that

R0(z)J∗ (G− zI) f =(J∗ +R0(z)W∗)R(z) (G− zI) f

=(J∗ +R0(z)W∗) f

=0,

which implies that

J∗ (G− zI) f = 0 in L2(R3);

now by the definition (2.5) of J∗, we see that j(x) > 0 on Ω implies that f satisfies

(G− zI) f = 0 in L2(Ω).

Thus we conclude that f = 0 in D(G). This proves the assertion.

Second step. We show the formula (2.18).

As a consequence of the first step, if R(J∗ + R0(z)W∗) is the image defined in
(2.16), then the (left) inverse S(z) of J∗ + R0(z)W∗ exists and it is a map from
R(J∗ +R0(z)W∗) into D(G). Namely, we have

S(z) ◦ (J∗ +R0(z)W∗) = I on B(D(G)).
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Hence, combining the above identity and the resolvent equations (2.15), we get the
formula (2.18).

End of the proof. We have to prove that

(2.20) S(z) is continuous from (R0(z)J∗)(D(G)) into D(G)

for each z = λ2 ± iε. Moreover, S(z) is extended as a bounded operator on

(R0(z)J∗)(D(G)),

the closure of the image (R0(z)J∗)(D(G)) with respect to H3(R3)-norm.

For the proof of (2.20), it is sufficient to prove that

(2.21) S(z) is continuous from (R0(z)J∗)(D(G)κ) into D(G) for some κ > 0,

since ∪
κ>0

D(G)κ is dense in D(G) with respect to H1(Ω)-norm,

where, here and below, D(G)κ is the space which consists of all f ∈ H2(Ω) such that

(2.22) dist (O, supp f) ≥ κ,

and
∪
κ>0D(G)κ is endowed with inductive limit topology. Since S(z) is the linear

operator, we have only to verify that it is continuous at the origin. Indeed, let {fn}
be a sequence in D(G)κ for some κ > 0 such that

(2.23) R0(z)J∗fn → 0 in H3(R3) as n→ ∞.

Our goal is to show that

(2.24) R(z)fn → 0 in H2(Ω) as n→ ∞,

for, thanks to the identity (2.18), we conclude from (2.24) that

S(z)R0(z)J∗fn → 0 in H2(Ω).

This proves the assertion (2.21).
To check (2.24) we use (2.23) to deduce that

J∗fn → 0 in H1(R3) as n→ ∞,

which implies that

fn → 0 in L2(Ω) as n→ ∞,

since {fn} satisfies (2.22). Thus we conclude (2.24). The proof of Proposition 2.4 is
complete. □

We have the uniform estimates for R(λ2 ± iε).

Proposition 2.5. Given s > 1/2, there exists a constant C > 0 such that

(2.25)
∥∥R(λ2 ± iε)f

∥∥
L2
−s(Ω)

≤ C
∥∥R0(λ

2 ± iε)J∗f
∥∥
L2
−s(R3)

for any λ, ε > 0 and f ∈ L2
s(Ω).
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Proof. Keeping in mind with Proposition 2.4, let us prove the uniform estimates
(2.25). Estimates (2.25) are equivalent to the following: There exists a constant
C > 0 such that

(2.26) ∥S(z)uz∥L2
−s(Ω) ≤ C∥uz∥L2

−s(R3)

for any s > 1/2 and uz ∈ (R0(z)J∗)(L
2
s(Ω)), where we put z = λ2 ± iε for λ, ε > 0.

Observing the resolvent equation (2.15), we find a function

vz ∈ R(R(z)) = (R(z))(L2
s(Ω))

as
uz = (J∗ +R0(z)W∗) vz.

Then (2.26) is equivalent to the following:

∥vz∥L2
−s(Ω) ≤ C ∥(J∗ +R0(z)W∗) vz∥L2

−s(R3) .

We note that the space (R(z))(L2
s(Ω)) is invariant with respect to z = λ2 ± iε, since

(R(z))(L2
s(Ω)) = H2

−s(Ω) ∩H1
0 (Ω)

for any z = λ2 ± iε. Hence it is sufficient to show that

∥v∥H1(Ω) ≤ C ∥(J∗ +R0(z)W∗) v∥L2
−s(R3)

for any v ∈ H2
−s(Ω)∩H1

0 (Ω). Therefore, all we have to do is to show that there exists
a constant C > 0 such that

(2.27)
∥∥J∗ +R0(λ

2 ± iε)W∗
∥∥

B(H1(Ω),L2
−s(R3))

≥ C

for any λ, ε > 0 and s > 1/2.
By the definition (2.14) of W∗, and by the resolvent estimates (2.2), we have∥∥R0(λ

2 ± iε)W∗f
∥∥
L2
−s(R3)

≤C
λ

{
∥(∆j)f∥L2(Ω) + ∥∇j · ∇f∥L2(Ω)

}
(2.28)

≤C
λ
∥f∥H1(Ω)

for any λ, ε > 0 and f ∈ H1
0 (Ω). By using (2.28), there exists λ0 > 1 such that∥∥R0(λ

2 ± iε)W∗
∥∥

B(H1(Ω),L2
−s(R3))

≤ 1

2
∥J∗∥B(H1(Ω),L2

−s(R3))

for any λ > λ0, and hence, we get∥∥J∗ +R0(λ
2 ± iε)W∗

∥∥
B(H1(Ω),L2

−s(R3))
≥ 1

2
∥J∗∥B(H1(Ω),L2

−s(R3))

for any λ > λ0. This proves (2.27) for λ > λ0. For λ ∈ [a, λ0] with a sufficiently small
a > 0, we suppose that

(2.29) inf
λ∈[a,λ0]

∥∥J∗ +R0(λ
2 ± iε)W∗

∥∥
B(H1(Ω),L2

−s(R3))
= 0.

Since ∥J∗ +R0(λ
2 ± iε)W∗∥B(H1(Ω),L2

−s(R3)) are continuous on [a, λ0], the compactness

of [a, λ0] and assumption (2.29) imply that there exists λ∗ ∈ [a, λ0] such that∥∥J∗ +R0(λ
2
∗ ± iε)W∗

∥∥
B(H1(Ω),L2

−s(R3))
= 0.
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This contradicts the injective property of J∗ + R0(λ
2
∗ ± iε)W∗. Thus we must have

(2.27) for λ ∈ [a, λ0]. Since a is arbitrarily small, we complete the proof of Proposition
2.5. □

The uniform resolvent estimate (2.2) for R0(z) and the inequality (2.25) imply now
the following:

Lemma 2.6. We have the following properties of the operators

R(λ2 ± iε) = S(λ2 ± iε)R0(λ
2 ± iε)J∗

defined on L2(Ω):

(i) given any s > 1/2, there exists a constant C > 0 such that

(2.30)
∥∥R(λ2 ± iε)f

∥∥
L2
−s(Ω)

≤ C

λ
∥f∥L2

s(Ω)

for any λ, ε > 0 and any f ∈ L2
s(Ω);

(ii) given any s > 1, there exists a constant C > 0 such that∥∥R(λ2 ± iε)f
∥∥
L2
−s(Ω)

≤ C∥f∥L2
s(Ω)

for any λ, ε > 0 and any f ∈ L2
s(Ω);

(iii) given any s > 1/2, λ > 0 and any f ∈ L2
s(Ω) the following limits

(2.31) s− lim
ε↘0

R(λ2 ± iε)f = g ∈ L2
−s(Ω)

exist in L2
−s(Ω).

We have also Lp-estimates for R(λ2 ± iε).

Lemma 2.7. We have the following properties of the operators

R(λ2 ± iε) = S(λ2 ± iε)R0(λ
2 ± iε)J∗

defined on L2(Ω): Given s > 1/2, there exists a real p0 > 5 such that if p satisfies
p0 < p ≤ ∞, then

(i) there exists a constant C > 0 such that

(2.32)
∥∥R(λ2 ± iε)f

∥∥
Lp(Ω)

≤ C
∥∥R0(λ

2 ± iε)(J∗f)
∥∥
Lp(R3)

for any λ, ε > 0 and any f ∈ L2
s(Ω);

(ii) there exists a constant C > 0 such that

(2.33)
∥∥R(λ2 ± iε)f

∥∥
Lp(Ω)

≤ C

λ2/p
∥f∥L2

s(Ω)

for any λ, ε > 0 and any f ∈ L2
s(Ω);

(iii) the following limits

(2.34) s− lim
ε↘0

R(λ2 ± iε)f = g ∈ Lp(Ω)

exist in Lp(Ω) for any λ > 0 and any f ∈ L2
s(Ω).
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Proof. It will be proved in the course of the proof of Lemma B.1 that for given s > 1/2
there exists a real p0 > 5 such that if p satisfies p0 < p ≤ ∞, then

(2.35)
∥∥R0(λ

2 ± iε)g
∥∥
Lp(R3)

≤ C

λ2/p
∥g∥L2

s(R3)

for any λ, ε > 0 and for g ∈ L2
s(R3) (see (B.8)). Hence we are able to endow the

space

(R0(λ
2 ± iε)J∗)(L

2
s(Ω))

with the induced topology of Lp(R3). Then, by using the Sobolev embedding theorem

(2.36) H2(Ω) ⊂ Lp(Ω) for any p ∈ [2,∞],

we deduce from Proposition 2.4 that S(λ2 ± iε) are bounded from

(R0(λ
2 ± iε)J∗)(L

2
s(Ω))

into Lp(Ω). We have to find the uniform Lp-estimates for S(λ2 ± iε). Thanks to
(2.35), along the argument in the proof of Proposition 2.5, there exists a constant
C > 0 such that ∥∥J∗ +R0(λ

2 ± iε)W∗
∥∥

B(H2(Ω),Lp(R3))
≥ C

for any λ, ε > 0 and p ∈ (p0,∞]. Hence, noting the embedding (2.36), we see that
the operators S(λ2 ± iε) are bounded from Lp(R3) into Lp(Ω), and further, we have

sup
λ>0

∥∥S(λ2 ± iε)
∥∥

B(Lp(R3),Lp(Ω))
≤ C.

Therefore, by using the key identity (2.18), we get the estimates (2.32). Thus, esti-
mates (2.33) follow from (2.35) and (2.32). The limits (2.34) are a consequence of
(B.2) in Lemma B.1. This ends the proof of Lemma 2.7. □

2.2. Potential perturbation resolvent identity. If we consider the perturbed
resolvent

RV (z) = (GV − zI)−1,

then the standard resolvent identity

RV (z)−R(z) = −R(z)V RV (z)

implies that

(2.37) (I +R(z)V )RV (z) = R(z).

If V satisfies assumption (1.8), then, given s ∈ (1/2, δ0/2], we readily see that

V f ∈ L2
s(Ω)

for any f ∈ L2
−s(Ω), and there exists a constant C > 0 such that

∥V f∥L2
s(Ω) ≤ C∥f∥L2

−s(Ω).

Furthermore, given s ∈ (1/2, δ0 − 3/2] and p ∈ (2,∞], there exists a constant C > 0
such that

∥V g∥L2
s(Ω) ≤ C∥g∥Lp(Ω).

Then the resolvent estimates for R(z) in Lemmas 2.6 and 2.7 imply now the following:
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Lemma 2.8. Assume that the measurable potential V satisfies (1.8). Then the oper-
ators

R(λ2 ± iε)V

satisfy the following properties:

(i) for any s ∈ (1/2, δ0/2] there exists a constant C > 0 such that

(2.38)
∥∥R(λ2 ± iε)V f

∥∥
L2
−s(Ω)

≤ C

λ
∥f∥L2

−s(Ω)

for any λ, ε > 0 and any f ∈ L2
−s(Ω);

(ii) for any s ∈ (1, δ0/2] there exists a constant C > 0 such that∥∥R(λ2 ± iε)V f
∥∥
L2
−s(Ω)

≤ C∥f∥L2
−s(Ω)

for any λ, ε > 0 and any f ∈ L2
−s(Ω);

(iii) for any s ∈ (1/2, δ0/2] and λ > 0 the following limits

s− lim
ε↘0

R(λ2 ± iε)V f = g ∈ L2
−s(Ω)

exist in L2
−s(Ω);

(iv) there exist a real p0 > 5 and a constant C > 0 such that for given any
p ∈ (p0,∞], we have∥∥R(λ2 ± iε)V f

∥∥
Lp(Ω)

≤ C

λ2/p
∥f∥Lp(Ω)

for any λ, ε > 0 and any f ∈ Lp(Ω).

As a consequence of Lemma 2.8, we have the following:

Theorem 2.9. Assume that the measurable potential V satisfies (1.8). Then the
operators

I +R(λ2 ± i0)V

are well-defined and they satisfy the following properties:

(i) they are invertible ones in L2
−s(Ω) for some s ∈ (1/2, δ0/2], and there exists

a constant C > 0 such that

(2.39)
∥∥(I +R(λ2 ± i0)V )−1

∥∥
B(L2

−s(Ω))
≤ C

for any λ > 0. In particular, if 1 < s ≤ δ0/2, then the estimates (2.39) is
valid for λ = 0;

(ii) there exists a real p0 > 5 such that if p satisfies p ∈ (p0,∞], then they are
invertible ones in Lp(Ω), and there exists a constant C > 0 satisfying∥∥(I +R(λ2 ± i0)V )−1

∥∥
B(Lp(Ω))

≤ C

for any λ > 0.

The proof of Theorem 2.9 is rather long and will be postponed in appendix C.

Define the operators by letting

(2.40) S±(λ) = (I +R(λ2 ± i0)V )−1.
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Then the identity (2.37) is rewritten now as

(2.41) RV (λ
2 ± i0) = S±(λ)R(λ2 ± i0).

The resolvent estimates for RV (z) follow directly now:

Corollary 2.10. Assume that the measurable potential V satisfies (1.8). Then the
operators

RV (λ
2 ± iε) = (GV − (λ2 ± iε)I)−1 = (G+ V − (λ2 ± iε)I)−1

satisfy the following properties:

(i) given any s ∈ (1/2, δ0/2], there exists a constant C > 0 such that

(2.42)
∥∥RV (λ

2 ± iε)f
∥∥
L2
−s(Ω)

≤ C

λ
∥f∥L2

s(Ω)

for any λ, ε > 0 and any f ∈ L2
s(Ω);

(ii) given any s ∈ (1, δ0/2], there exists a constant C > 0 such that

(2.43)
∥∥RV (λ

2 ± iε)f
∥∥
L2
−s(Ω)

≤ C∥f∥L2
s(Ω)

for any λ, ε > 0 and any f ∈ L2
s(Ω);

(iii) there exists a real p0 > 5 such that if p satisfies p ∈ (p0,∞], then there exists
a constant C > 0 such that∥∥RV (λ

2 ± iε)f
∥∥
Lp(Ω)

≤ C

λ2/p
∥f∥L2

s(Ω)

for any λ, ε > 0 and any f ∈ L2
s(Ω);

(iv) given any s ∈ (1/2, δ0/2], λ > 0 and any f ∈ L2
s(Ω), the following limits

s− lim
ε↘0

RV (λ
2 ± iε)f = g ∈ L2

−s(R3)

exist in L2
−s(Ω);

(v) there exists a real p0 > 5 such that if p satisfies p0 < p ≤ ∞, then for any
λ > 0 and any f ∈ L2

s(Ω), the following limits

s− lim
ε↘0

RV (λ
2 ± iε)f = g ∈ Lp(R3)

exist in Lp(Ω).

Let us mention a few remarks on Corollary 2.10. When the obstacle O is star-
shaped with respect to the origin, the uniform resolvent estimates (2.42) is proved
by Mochizuki (see [31]). Therefore, the estimates (2.42) cover [31].

3. L1-L∞-resolvent estimates

In this section we shall derive L1-L∞-estimates for perturbed resolvent RV (λ
2± i0),

which are useful to prove the theorems. We start with proving the following:

Lemma 3.1. Assume that the measurable potential V satisfies (1.8). Then there
exists a constant C > 0 such that

(3.1)
∥∥W∗R(λ

2 ± i0)f
∥∥
L1(R3)

≤ C∥f∥L1(Ω),

(3.2)
∥∥RV (λ

2 ± i0)2f
∥∥
L∞(Ω)

≤ C

λ
∥f∥L1(Ω)
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for any λ > 0 and f ∈ L1(Ω).

Proof. First, we prove (3.1). By a density argument, it is sufficient to take f ∈
L1(Ω) ∩ L2

s(Ω) for s > 1/2. We denote by X∗⟨g, h⟩X the duality pair of g ∈ X∗ and
h ∈ X for a Banach space X and its dual space X∗. If we write (W∗)

∗ as the adjoint
operator of W∗, then given q ∈ [1,∞], we have

(W∗)
∗ψ = (∆j)ψ − 2 div(ψ(∇j)) ∈ Lq(Ω),

provided that ψ ∈ W 1,q(Ω). It is proved in Lemma B.1 of appendix B that given
s > 1/2, there exists a constant C > 0 and a real p0 > 5 such that if p ∈ (p0,∞],
then

(3.3)
∥∥R0(λ

2 ± i0)(J∗f)
∥∥
Lp(R3)

≤ C∥f∥L1(Ω)∩L2
s(Ω)

for any λ > 0 (see (B.2)). Now, thanks to the inequality (2.32) in Lemma 2.7 and
(3.3), there exists a constant C0 > 0 such that∣∣∣Lp(R3)

⟨
W∗R(λ

2 ± i0)f, φ
⟩
Lp′ (R3)

∣∣∣ = ∣∣∣Lp(Ω)

⟨
R(λ2 ± i0)f, (W∗)

∗φ
⟩
Lp′ (Ω)

∣∣∣
≤
∥∥R(λ2 ± i0)f

∥∥
Lp(Ω)

∥(W∗)
∗φ∥Lp′ (Ω)

≤C
∥∥R0(λ

2 ± i0)(J∗f)
∥∥
Lp(R3)

∥φ∥W 1,p′ (R3)

≤C0∥f∥L1(Ω)∩L2
s(Ω)∥φ∥W 1,p′ (R3)

for any λ > 0, s > 1/2 and φ ∈ W 1,p′(R3). Since W 1,p′(R3) is dense in Lp
′
(R3), we

get

(3.4)
∥∥W∗R(λ

2 ± i0)f
∥∥
Lp(R3)

≤ C0∥f∥L1(Ω)∩L2
s(Ω)

for any λ > 0 and f ∈ L1(Ω) ∩ L2
s(Ω). Furthermore, since L1(Ω) ∩ L2

s(Ω) is dense in
L1(Ω), we conclude from (3.4) that∥∥W∗R(λ

2 ± i0)f
∥∥
Lp(R3)

≤ C0∥f∥L1(Ω)

for any λ > 0 and f ∈ L1(Ω). Thus, combining the above estimates with the following
inequality: ∥∥W∗R(λ

2 ± i0)f
∥∥
L1(R3)

≤ C
∥∥W∗R(λ

2 ± i0)f
∥∥
Lp(R3)

,

we arrive at the required estimate (3.1).

As a preliminary of proof of (3.2), we prove two estimates. In a similar way to the
above argument, it is sufficient to take f ∈ L1(Ω) ∩ L2

s(Ω) for s > 1/2.

Step 1. The first one we have to prove is that

(3.5)
∥∥V RV (λ

2 ± i0)f
∥∥
L1(Ω)

≤ C∥f∥L1(Ω)

for any λ > 0. By using the decay assumption (1.8) on V , we are able to take s such
that

1

2
< s < δ0 −

3

2
,
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and apply this inequality to deduce that∥∥V RV (λ
2 ± i0)f

∥∥
L1(Ω)

≤c1
∥∥∥|·|−δ0 RV (λ

2 ± i0)f
∥∥∥
L1(Ω)

(3.6)

≤c1∥ |·|s−δ0 ∥L2(Ω)

∥∥RV (λ
2 ± i0)f

∥∥
L2
−s(Ω)

≤C
∥∥RV (λ

2 ± i0)f
∥∥
L2
−s(Ω)

,

where we used the uniform bound;∥∥ |·|s−δ0 ∥∥
L2(Ω)

<∞.

Recalling the identities (2.41):

RV (λ
2 ± i0) = S±(λ)R(λ2 ± i0)

and the fact from Theorem 2.9 that S±(λ) are bounded on L2
−s(Ω), we are able to

write (3.6) as ∥∥V RV (λ
2 ± i0)f

∥∥
L1(Ω)

≤C
∥∥R(λ2 ± i0)f

∥∥
L2
−s(Ω)

(3.7)

≤C
∥∥R0(λ

2 ± i0)(J∗f)
∥∥
L2
−s(R3)

,

due to the property

R(λ2 ± iε)f = S(λ2 ± iε)R0(λ
2 ± iε)(J∗f),

Proposition 2.5 and the limiting absorption principle. To estimate the right member
of (3.7), we use (2.3) to conclude that∥∥R0(λ

2 ± i0)(J∗f)
∥∥
L2
−s(R3)

≤
∫
Ω

(∫
R3

dx

|x− y|2⟨x⟩2s

)1/2

j(y)|f(y)| dy.

Since 2 + 2s > 3, the integral in the right member is finite; thus we find that

(3.8)
∥∥R0(λ

2 ± i0)(J∗f)
∥∥
L2
−s(R3)

≤ C∥f∥L1(Ω).

Therefore, combining (3.7) and the above estimate we get the required estimate (3.5).

Step 2. We prove the second type estimate:

(3.9)
∥∥R(λ2 ± i0)2V RV (λ

2 ± i0)f
∥∥
L∞(Ω)

≤ C

λ
∥f∥L1(Ω)

for any λ > 0. Indeed, we note the identities:

(3.10)
[
R0(λ

2 ± i0)2g
]
(x) =

±i

8πλ

∫
R3

e±iλ|x−y|g(y) dy.

Then operators R0(λ
2 ± i0)2 map L1(R3) to L∞(R3) and we have the following esti-

mates:

(3.11)
∥∥R0(λ

2 ± i0)2g
∥∥
L∞(R3)

≤ 1

8πλ
∥g∥L1(R3)

for any g ∈ L1(R3) and λ > 0, which implies that∥∥R0(λ
2 ± i0)2W∗R(λ

2 ± i0)f
∥∥
L∞(R3)

≤ 1

8πλ
∥W∗R(λ

2 ± i0)f∥L1(Ω)
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for any λ > 0. Hence, we deduce from (3.1) and the above estimates that

(3.12)
∥∥R0(λ

2 ± i0)2W∗R(λ
2 ± i0)f

∥∥
L∞(R3)

≤ C

λ
∥f∥L1(Ω)

for any λ > 0. Here, differentiating the resolvent equations (2.15), we have

(J∗ +R0(λ
2 ± i0)W∗)R(λ

2 ± i0)2 = R0(λ
2 ± i0)2J∗ −R0(λ

2 ± i0)2W∗R(λ
2 ± i0).

Since operators

J∗ +R0(λ
2 ± i0)W∗

have the bounded inverses on L∞(Ω) due to Lemma 2.7, it follows from (3.11) and
(3.12) that

(3.13)
∥∥R(λ2 ± i0)2f

∥∥
L∞(Ω)

≤ C

λ
∥f∥L1(Ω)

for any λ > 0. Hence, (3.9) are immediate consequences of the above estimates and
(3.5).

We are now in a position to prove (3.2). Differentiating (2.37), we are able to write

(I +R(λ2 ± iε)V )RV (λ
2 ± iε)2 = R(λ2 ± iε)2 −R(λ2 ± iε)2 V RV (λ

2 ± iε).

Applying the estimates (3.9) and (3.13), and taking into account the fact that the
operators

I +R(λ2 ± i0)V

have the bounded inverses in L∞(Ω) due to Theorem 2.9, we complete the proof of
(3.2). The proof of Lemma 3.1 is complete. □

Based on Lemma 3.1, we prove the following estimates, which are crucial to derive
the dispersive estimates.

Lemma 3.2. Assume that the measurable potential V satisfies (1.8). Then there
exists a constant C > 0 such that

(3.14)
∥∥∂λRV (λ

2 ± i0)f
∥∥
L∞(Ω)

≤ C ∥f∥L1(Ω) ,

(3.15)
∥∥[RV (λ

2 + i0)−RV (λ
2 − i0)

]
f
∥∥
L∞(Ω)

≤ Cλ ∥f∥L1(Ω)

for any λ > 0.

Proof. Thanks to the identities

∂λRV (λ
2 ± i0) = 2λRV (λ

2 ± i0)2,

and resolvent estimates (3.2) from Lemma 3.1, we get (3.14).
As to (3.15), we use the following identities:

(3.16)
[
R0(λ

2 + i0)g −R0(λ
2 − i0)g

]
(x) =

i

2π

∫
R3

sin(λ|x− y|)
|x− y|

g(y) dy;

R(λ2 + i0)−R(λ2 − i0)(3.17)

=S(λ2 − i0)
[
R0(λ

2 + i0)−R0(λ
2 − i0)

] [
J∗ −W∗R(λ

2 + i0)
]
.
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The identity (3.16) is obvious from (2.3). The identity (3.17) is proved as follows:
By using resolvent equations (2.15) we easily show that[

J∗ +R0(λ
2 − i0)W∗

] [
R(λ2 + i0)−R(λ2 − i0)

]
=
[
R0(λ

2 + i0)−R0(λ
2 − i0)

] [
J∗ −W∗R(λ

2 + i0)
]
.

Operating S(λ2 − i0) to the both sides, we have (3.17). It follows from (2.32) in
the course of proof of Lemma 2.7 that S(λ2 − i0) is the bounded operator from
R(R(λ2 ± i0)J∗) into L

∞(Ω). Hence, combining (3.16) and (3.17) with the estimates
(3.1) from Lemma 3.1, we deduce that∥∥[R(λ2 + i0)−R(λ2 − i0)

]
f
∥∥
L∞(Ω)

(3.18)

≤C
∥∥[R0(λ

2 + i0)−R0(λ
2 − i0)

] [
J∗ −W∗R(λ

2 + i0)
]
f
∥∥
L∞(Ω)

≤Cλ
∥∥[J∗ −W∗R(λ

2 + i0)
]
f
∥∥
L1(Ω)

≤Cλ ∥f∥L1(Ω)

for any λ > 0. Using further the relation

[I +R(λ2 + i0)V ][RV (λ
2 + i0)−RV (λ

2 − i0)]

=[R(λ2 + i0)−R(λ2 − i0)][I − V RV (λ
2 − i0)],

and (2.40), we find that

(3.19) RV (λ
2+i0)−RV (λ

2− i0) = S+(λ)[R(λ2+i0)−R(λ2− i0)][I−V RV (λ
2− i0)].

The operators S+(λ) and I − V RV (λ
2 − i0) are bounded operators on L∞(Ω) and

L1(Ω), respectively, and hence, (3.18) and (3.19) imply (3.15). The proof of Lemma
3.2 is complete. □

4. Proofs of Theorems 1.1 and 1.3

Applying estimates obtained in section 3 through integration by parts, we prove
Theorems 1.1 and 1.3. Let us start with the following:

Theorem 4.1. Assume that the measurable potential V satisfies (1.8). For any
ψ ∈ C∞

0 (0,∞) there exists a constant C > 0 such that

(4.1)

∥∥∥∥(√GV

)−1

eit
√
GV ψj(

√
GV )f

∥∥∥∥
L∞(Ω)

≤ C2j

t
∥f∥L1(Ω)

for all j ∈ Z and any t > 0, where ψj(λ) = ψ(2−jλ).

Proof. Consider the integrals of the form:(√
GV

)−1

eit
√
GV ψj(

√
GV )f =

1

πi

∫ ∞

0

eiλtψj(λ)
[
RV (λ

2 + i0)−RV (λ
2 − i0)

]
f dλ,

and after integrating by parts, we get

(4.2) πi
(√

GV

)−1

eit
√
GV ψj(

√
GV )f = − 1

it
(I1 + I2),

where

I1 =

∫ ∞

0

eiλtψj(λ)
[
∂λRV (λ

2 + i0)− ∂λRV (λ
2 − i0)

]
f dλ,
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I2 =

∫ ∞

0

eiλt∂λψj(λ)
[
RV (λ

2 + i0)−RV (λ
2 − i0)

]
f dλ.

By using (3.14) from Lemma 3.2 we estimate the integral I1:

|I1| ≤C
∫
suppψj

∥∥[∂λRV (λ
2 + i0)− ∂λRV (λ

2 − i0)
]
f
∥∥
L∞(Ω)

dλ(4.3)

≤C

(∫
suppψj

dλ

)
∥f∥L1(Ω)

≤C2j∥f∥L1(Ω).

As to the integral I2, we use (3.15) from Lemma 3.2 to deduce that

|I2| ≤C2−j
∫
suppψj

∥∥[RV (λ
2 + i0)−RV (λ

2 − i0)
]
f
∥∥
L∞(Ω)

dλ(4.4)

≤C2−j
(∫

suppψj

λdλ

)
∥f∥L1(Ω)

≤C2j∥f∥L1(Ω).

Summarizing (4.2)–(4.4), we arrive at the required estimate (4.1). The proof of
Theorem 4.1 is complete. □

We are now in a position to prove Theorem 1.3.

Proof of Theorem 1.3. Let {φj(λ)} be the Littlewood-Paley partition of unity. We
put

ψj(λ) = φj−1(λ) + φj(λ) + φj+1(λ)

in Theorem 4.1. As is well known, φj(λ) are written as

φj(λ) = φj(λ) {φj−1(λ) + φj(λ) + φj+1(λ)} .
Replacing f by φj(λ)f , we then conclude from Theorem 4.1 that

2−j
∥∥∥∥φj(√GV )

(√
GV

)−1

eit
√
GV f

∥∥∥∥2
L∞(Ω)

≤ C

t2
2j∥φj(

√
GV )f∥2L1(Ω).

Taking the sum over j ∈ Z, we obtain

(4.5)

∥∥∥∥(√GV

)−1

eit
√
GV f

∥∥∥∥
Ḃ

−1/2
∞,2 (GV )

≤ C

t
∥f∥

Ḃ
1/2
1,2 (GV )

.

As to L2-estimate, the functional calculus implies that

(4.6)

∥∥∥∥(√GV

)−1

eit
√
GV f

∥∥∥∥
Ḃ

1/2
2,2,V (Ω)

≤ C∥f∥
Ḃ

−1/2
2,2 (GV )

(see Lemma 4.1 from [19]). Interpolating between (4.5) and (4.6), we get∥∥∥∥(√GV

)−1

eit
√
GV f

∥∥∥∥
Ḃ

−(1/2)+(2/p)
p,2 (GV )

≤ Ct−1+(2/p)∥f∥
Ḃ

(1/2)−(2/p)

p′,2 (GV )

for 2 ≤ p ≤ ∞, where (1/p) + (1/p′) = 1. This proves the the required estimate
(1.18). The proof of Theorem 1.3 is now complete. □
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By the same spirit of the proof of Theorem 1.3, we prove Theorem 1.1.

Proof of Theorem 1.1. It is sufficient to prove the theorem when σ is an integer with
σ ≥ 2. The non-integer case is proved by the complex interpolation argument. For
simplicity, we consider solution u(t) to the initial-boundary value problem (1.5)–(1.7)
with f = 0 and g ∈ C∞

0 (Ω). Then

u(t) =
(√

GV

)−1

sin(t
√

GV ) g.

This implies

u(t) ∈ D(GV ), χu(t) ∈ D(GV ) (t ≥ 0)

for any smooth compactly supported function χ(x) such that χ(x) = 1 for x in small
neighborhood of the obstacle O.

Again consider the integrals of the form:

χeit
√
GV g =χ(1 +GV )

σ(1 +GV )
−σeit

√
GV g

=
1

πi

∫ ∞

0

eiλtχ
[
RV (λ

2 + i0)−RV (λ
2 − i0)

]
(I +GV )

σg︸ ︷︷ ︸
h

λdλ

(1 + λ2)σ
.

We note from Corollary 2.10 and the compactness of the support of χ that

eiλtχ
[
RV (λ

2 + i0)−RV (λ
2 − i0)

]
h

λ

(1 + λ2)σ
→ 0 in L2(Ω)

both as λ→ 0 and as λ→ ∞. Then, after integrating by parts, we get

(4.7) πiχeit
√
GV g = − 1

it
(I1 + I2) in L2(Ω),

where

I1 =

∫ ∞

0

eiλtχ
[
∂λRV (λ

2 + i0)− ∂λRV (λ
2 − i0)

]
h

λdλ

(1 + λ2)σ
,

I2 =

∫ ∞

0

eiλt∂λ

{
λ

(1 + λ2)σ

}
χ
[
RV (λ

2 + i0)−RV (λ
2 − i0)

]
h dλ.

By using (3.14) from Lemma 3.2 we estimate the integral I1 as

∥I1∥L2(Ω) ≤C
∫ ∞

0

∥∥[∂λRV (λ
2 + i0)− ∂λRV (λ

2 − i0)
]
h
∥∥
L∞(Ω)

λdλ

(1 + λ2)σ
(4.8)

≤C
{∫ ∞

0

λdλ

(1 + λ2)σ

}
∥h∥L1(Ω)

≤C∥h∥L2(Ω)

due to the fact that

I1(x) and h(x) = (I +GV )
σg(x) are compactly supported,
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since σ is the integer with σ ≥ 2. As to the integral I2, we use the uniform resolvent
estimates (2.42) and (2.43) from Corollary 2.10 to deduce that for s > 1,

∥I2∥L2(Ω) ≤C∥I2∥L2
−s(Ω)(4.9)

≤C
∫ ∞

0

∥∥[RV (λ
2 + i0)−RV (λ

2 − i0)
]
h
∥∥
L2
−s(Ω)

dλ

(1 + λ2)σ

≤C
{∫ ∞

0

dλ

(1 + λ2)σ

}
∥h∥L2

s(Ω)

≤C∥h∥L2(Ω),

since

I2(x) and h(x) = (I +GV )
σg(x) are compactly supported.

Summarizing (4.7)–(4.9), we arrive at the estimates∥∥∥χ√GV u(t)
∥∥∥
L2(Ω)

≤ C

t
∥h∥L2(Ω)

for any t > 0. Thus we conclude that

ER(u)(t) ≤
∥∥∥χ√GV u(t)

∥∥∥2
L2(Ω)

≤C
t2

(
∥g∥2L2(Ω) + ∥Gσ

V g∥2L2(Ω)

)
∼C
t2
∥g∥2H2σ

V (Ω)

for any t > 0. This completes the proof of Theorem 1.1. □

5. Strichartz estimates; Proof of Theorem 1.4

Some perturbed Besov spaces Ḃs
p,q(GV ) have been introduced in (1.10). In this

section we consider two generators. The self-adjoint generators

G = −∆|D and GV = G+ V

with respective domains

D(G) = D(GV ) = H2(Ω) ∩H1
0 (Ω)

have been introduced in the previous sections. Then Theorem 2.4 in [19] ensures to
define the homogeneous Besov spaces

Ḃs
p,q(G) and Ḃs

p,q(GV ).

For the proof of Theorem 1.4, we need a result showing the equivalence between the
perturbed and the unperturbed Besov spaces. The following theorem is proved in
[19].

Theorem 5.1 (Proposition 3.5 from [19]). Assume that the measurable potential V
satisfies (1.8). Let s, p and q be such that

−min
{
2, 3
(
1− 1

p

)}
< s < min

{3
p
, 2
}
, 1 ≤ p, q ≤ ∞.
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Then

(5.1) Ḃs
p,q(GV ) ∼= Ḃs

p,q(G).

In particular, for any s satisfying |s| < 3/2, we have

(5.2) Ḣs
V (Ω)

∼= Ḣs(Ω).

When Ω = R3 and p = 1, D’Ancona and Pierfelice investigated the isomorphism
among the (inhomogeneous) perturbed Besov spaces Bs

1,q,V (R3) and classical ones

Bs
1,q(R3) for all q ∈ [1,∞] and 0 < s < 2 (see [14]). Georgiev and Visciglia obtained

the equivalence relation for a very small s if V is non-negative on R3 and belongs to
the class C0,α

loc (R3) (0 < α < 1) (see [16]). Thus, (5.1) and (5.2) cover the results of
[14] and [16].

We are now in a position to prove Theorem 1.4.

Proof of Theorem 1.4. We established the following embedding relations between the
Besov and Lebesgue spaces on open sets in Proposition 3.3 from [19]:

(5.3)

{
Ḃ0
p,2(G) ⊂ Lp(Ω), if p ≥ 2,

Lq(Ω) ⊂ Ḃ0
q,2(G), if q ≤ 2.

The Strichartz estimates (1.21) is proved by using the argument of [17] and the
embeddings (5.3). It is sufficient to show only the case that f = 0 and F = 0.
Combining Lp-Lp

′
-estimates (1.18) with TT ∗ argument of [17, 21] we have:

(5.4) ∥u∥
L

2p
p−2
t Ḃ

−1/2+2/p+s
p,2 (GV )

≤ C∥g∥
Ḣ

−1/2+s
V (Ω)

, s ∈ R.

Since we have established the equivalence relation between the perturbed Besov
spaces and the free ones in Theorem 5.1, the required Strichartz estimates are proved
by the routine work of [17]. For example, if (1/q, 1/p) = (0, 1/2) and s = −1/2 in
(5.4), we have

∥u∥L∞
t Ḃ0

2,2(GV ) ≤ C∥g∥Ḣ−1
V (Ω).

Hence, by using (5.1) in Theorem 5.1 and the continuous embedding (5.3), we have:

Ḃ0
p,2(GV ) ∼= Ḃ0

p,2(G) ⊂ Lp(Ω) for p ≥ 2,

and hence, we conclude from (5.2) that

∥u∥L∞
t L2(Ω) ≤ C∥g∥Ḣ−1(Ω).

As to the other estimates, one consults with the argument of [16] and we get the
required estimates by interpolation. The proof of Theorem 1.4 is finished. □

Appendix A. (Zero is not a resonance point)

In this appendix we prove that the assumption (1.8) on V assures that zero is
neither an eigenvalue nor a resonance of GV , i.e., M = {0}.

Our concern in this appendix is the following:
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Proposition A.1. Assume that the measurable potential V satisfies (1.8). If u ∈
L2

−s(Ω) for some s ∈ (1, δ0/2] is a solution to the equation

(A.1) (I +R(0)V )u = 0,

then u = 0.

To prove Proposition A.1, we prepare the following:

Lemma A.2. If f ∈ L2
δ(R3) for some δ > 1/2 and ũ ∈ L2

−s(R3) for some s > 1 is a
solution to the equation ∆ũ = f, then there exists a constant C > 0 such that

(A.2) |ũ(x)| ≤



C

⟨x⟩δ− 1
2

∥f∥L2
δ(R3) if

1

2
< δ <

3

2
,

C log1/2(2 + |x|)
⟨x⟩

∥f∥L2
δ(R3) if δ =

3

2
,

C

⟨x⟩
∥f∥L2

δ(R3) if δ >
3

2
.

Proof. The estimate (A.2) follows from the representation

ũ(x) = − 1

4π

∫
R3

f(y)

|x− y|
dy

and a simple estimate

(∫
R3

dy

|x− y|2⟨y⟩2δ

)1/2

≤



C

⟨x⟩δ− 1
2

if
1

2
< δ <

3

2
,

C log1/2(2 + |x|)
⟨x⟩

if δ =
3

2
,

C

⟨x⟩
if δ >

3

2
.

The proof of Lemma A.2 is complete. □

We are now in a position to prove Proposition A.1.

Proof of Proposition A.1. Let u ∈ L2
−s(Ω) for some s ∈ (1, δ0/2] be a solution to the

integral equation (A.1). We have to prove that

u(x) = 0 in Ω.

The solution u to (A.1) satisfies the boundary value problem for the stationary
Schrödinger equation:

(A.3) −∆u+ V (x)u = 0 in Ω

with homogeneous Dirichlet boundary condition. This equation implies

(A.4) u ∈ L2
−s(Ω) ∩H2

loc(Ω).



DECAY ESTIMATES 29

We claim that given any δ0 ∈ (2, 3) we have

(A.5) |∇u(x)| ≤



C

⟨x⟩2δ0−s− 3
2

∥u∥H1
−s(Ω), if 2δ0 − s− 1

2
< 3,

C log1/2(2 + |x|)
⟨x⟩2

∥u∥H1
−s(Ω), if 2δ0 − s− 1

2
= 3,

C

⟨x⟩2
∥u∥H1

−s(Ω), if 2δ0 − s− 1

2
> 3.

When δ0 ≥ 3, ∇u decays faster than the case 2 < δ0 < 3, and the proof of the
proposition is easier. So we may omit the proof in this case. We note from the
assumption (1 <) s ≤ δ0/2 that

(A.6) 2δ0 − s− 3

2
≥ 3(δ0 − 1)

2
.

To show the asymptotic behaviour (A.5), let us consider an extension ũ of u to R3.

More precisely, let Õ be a bounded domain containing O (= R3 \ Ω), and we define
ũ by letting

ũ(x) = ψ(x)u(x),

where ψ(x) ∈ C∞(R3) equals 0 in O and 1 in Ω \ Õ. This ũ ∈ L2
−s(R3) satisfies the

Poisson equation

−∆ũ = f in R3,

where

(A.7) f = −ψV u− 2∇ψ · ∇u− (∆ψ)u.

It is well known that Poisson equation has a unique solution in L2
−s(R3) for s > 1/2

and ũ is represented as

ũ(x) =
1

4π

∫
R3

f(y)

|x− y|
dy.

Thanks to (A.7) and 1 < s ≤ δ0/2, it is readily checked that f ∈ L2
δ(R3) provided

(A.8) δ = −s+ δ0 ≥
δ0
2
.

In fact, by using the decay assumption (1.8) on V , we have

∥f∥L2
δ(R3) ≤C

∥∥⟨·⟩δ−δ0u∥∥
L2(Ω)

+ ∥2∇ψ · ∇u− (∆ψ)u∥L2
δ(R3)

≤C∥u∥H1
−s(Ω) <∞.

Hence we see from (A.7) that

|∇ũ(x)| ≤ 1

4π

∫
R3

|f(y)|
|x− y|2

dy

≤ 1

4π

(∫
R3

|ψ(y)V (y)u(y)|
|x− y|2

dy +

∫
R3

2|∇ψ(y)||∇u(y)|
|x− y|2

dy +

∫
R3

|∆ψ(y)||u(y)|
|x− y|2

dy

)
.

We shall estimate each term in the right side of the above estimates. The second and
third terms bounded by C⟨x⟩−2, since ∇ψ and ∆ψ are compactly supported. The
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first term is handled by using (A.2) in Lemma A.2 and the decay assumption (1.8)
on V and (A.8), where δ0/2 ≤ δ < 3/2. Then, noting (A.8), we have

δ0 + δ − 1

2
= 2δ0 − s− 1

2
,

and hence, we estimate∫
R3

|ψ(y)V (y)u(y)|
|x− y|2

dy

≤
∫
R3

C∥f∥L2
δ(R3)

|x− y|2⟨y⟩2δ0−s− 1
2

dy

≤



C

⟨x⟩2δ0−s− 3
2

∥u∥H1
−s(Ω), if 2δ0 − s− 1

2
< 3,

C log1/2(2 + |x|)
⟨x⟩2

∥u∥H1
−s(Ω), if 2δ0 − s− 1

2
= 3,

C

⟨x⟩2
∥u∥H1

−s(Ω), if 2δ0 − s− 1

2
> 3.

This proves (A.5).
Once (A.5) is checked, we use (A.4) and integrate by parts in (A.3), so we have∫

Ω∩{|x|<R}

{
|∇u(x)|2 + V (x)|u(x)|2

}
dx =

∫
|x|=R

ur(x)u(x) dSR,

where ur = ∂u/∂r (r = |x|) and dSR is the 2-dimensional surface element. The
pointwise estimates (A.2) and (A.5) guarantee that taking the limit R → ∞, and
noting from (A.6) and (A.8) that(

2δ0 − s− 3

2

)
+

(
δ − 1

2

)
≥ 3(δ0 − 1)

2
+
δ0 − 1

2
= 2(δ0 − 1) > 2,

we find that ∫
Ω

{
|∇u(x)|2 + V (x)|u(x)|2

}
dx = 0.

Here, by using the assumption (1.8) on V : V (x) ≥ −c0|x|−2, where 0 < c0 < 1/4, we
estimate ∫

Ω

V (x)|u(x)|2 dx ≥ −
∫
Ω

c0
|u(x)|2

|x|2
dx,

and hence, resorting to the Hardy inequality, we get∫
Ω

{
|∇u(x)|2 + V (x)|u(x)|2

}
dx ≥

∫
Ω

{
|∇u(x)|2 − c0

|u(x)|2

|x|2

}
dx

≥(1− 4c0)

∫
Ω

|∇u(x)|2 dx.

Therefore we arrive at ∫
Ω

|∇u(x)|2 dx = 0,

which implies that u is constant in Ω. Thus we conclude that u = 0 in Ω. The proof
of Proposition A.1 is complete. □
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Appendix B. (Compactness argument)

In this appendix we discuss the compactness of the operators R(λ2 ± i0)V . We
start with the following observation:

Lemma B.1. Assume that the measurable potential V satisfies (1.8). Then, given
s > 1/2, there exists a real p0 > 5 satisfying the following properties; for any p ∈
(p0,∞], there exist constants C > 0, c > 0 and a continuous function µp(x) = µp(|x|)
on R3 such that

inf
x∈R3

µp(x) ≥ c,

µp(x) → ∞ as |x| → ∞,

(B.1)
∥∥µp(·)R0(λ

2 ± i0)J∗(V f)
∥∥
Lp(R3)

≤ C

λ2/p
∥f∥Lp(Ω),

(B.2)
∥∥µp(·)R0(λ

2 ± i0)(J∗f)
∥∥
Lp(R3)

≤ C∥f∥L1(Ω)∩L2
s(Ω)

for any λ > 0. Furthermore, we have

(B.3) lim
λ→∞

∣∣[R0(λ
2 ± i0)J∗(V f)

]
(x)
∣∣ = 0 for each x ∈ R3 and f ∈ L∞(Ω).

Proof. First, we prove that

(B.4)
∥∥µ(·)R0(λ

2 ± i0)g
∥∥
L∞(R3)

≤ C∥g∥L2
s(R3)

for any g ∈ L2
s(R3) and λ > 0, where we put

µ(x) =


⟨x⟩s−

1
2 , if

1

2
< s <

3

2
,

⟨x⟩ log−
1
2 (2 + |x|), if s =

3

2
,

⟨x⟩, if s >
3

2
.

Thanks to the formula (2.3), we write

(B.5)
[
R0(λ

2 ± i0)g
]
(x) =

1

4π

∫
R3

e±iλ|x−y|

|x− y|
g(y) dy.

Then we estimate the right member as∣∣∣∣∫
R3

e±iλ|x−y|

|x− y|
g(y) dy

∣∣∣∣ ≤∫
R3

1

|x− y|⟨y⟩s
⟨y⟩s|g(y)| dy

≤
(∫

R3

dy

|x− y|2⟨y⟩2s

)1/2

∥g∥L2
s(R3).

Hence, combining the above estimates and the following inequality

∫
R3

dy

|x− y|2⟨y⟩2s
≤ C


⟨x⟩−(2s−1), if

1

2
< s <

3

2
,

⟨x⟩−2 log(2 + |x|), if s =
3

2
,

⟨x⟩−2, if s >
3

2
,
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we get the required estimates (B.4). Furthermore, we observe from the above argu-

ment that the function g(y)
|x−y| is integrable on R3

y. Hence, applying Riemann-Lebesgue’s

lemma to the formula (B.5), we conclude that

(B.6) lim
λ→∞

∣∣[R0(λ
2 ± i0)g

]
(x)
∣∣ = 0

for each x ∈ R3 and g ∈ L2
s(R3) for s > 1/2.

Next, by using the uniform resolvent estimates (2.2), we have

(B.7) ∥R0(λ
2 ± i0)g∥L2

−s(R3) ≤
C

λ
∥g∥L2

s(R3)

for any s > 1/2 and λ > 0, and hence, the interpolation between (B.4) and (B.7)
implies that

(B.8)
∥∥µp(·)R0(λ

2 ± i0)g
∥∥
Lp(R3)

≤ C

λ2/p
∥g∥L2

s(R3)

for any λ > 0, where we put

(B.9) µp(x) =


⟨x⟩(s−

1
2)(1−

2
p)−

2s
p , if

1

2
< s <

3

2
,

⟨x⟩(1−
2
p)−

2s
p log−

1
2(1−

2
p)(2 + |x|), if s =

3

2
,

⟨x⟩(1−
2
p)−

2s
p , if s >

3

2
.

Let p0 be the root of the following equations:(
s− 1

2

)(
1− 2

p

)
− 2s

p
= 0 with

1

2
< s <

3

2
,(

1− 2

p

)
− 2s

p
= 0 with s ≥ 3

2
.

Then the explicit calculation implies that

µp(x) → ∞ as |x| → ∞,

provided p ∈ (p0,∞]. We see from the decay assumption (1.8) on V that

J∗ ◦ V : Lp(Ω) → L2
s(R3)

is a bounded operator for

(B.10) s < δ0 −
3

2
+

3

p
,

and we have

(B.11) ∥J∗(V f)∥L2
s(R3) ≤ C∥f∥Lp(Ω).

Here, if

s < δ0 −
3

2
,

then (B.10) is valid for any p ∈ (p0,∞]. Thus, under the following restriction:

(B.12)
1

2
< s < δ0 −

3

2
,



DECAY ESTIMATES 33

letting g = J∗(V f) with f ∈ Lp(Ω), we conclude from (B.8) and (B.11) that the
estimates (B.1) hold.

Estimates (B.2) are an immediate consequence of the interpolation between (B.4)
and (3.8) in the course of proof of Lemma 3.1:∥∥R0(λ

2 ± i0)(J∗f)
∥∥
L2
−s(R3)

≤ C∥f∥L1(Ω).

Finally, the limits (B.3) are the consequence of (B.6), since g = J∗(V f) ∈ L2
s(Ω)

provided that f ∈ L∞(Ω) and s satisfies (B.12). The proof of Lemma B.1 is now
complete. □

We are now in a position to prove the compactness of operators R(λ2 ± i0)V .

Lemma B.2. Assume that the measurable potential V satisfies assumption (1.8). Let
1/2 < s ≤ δ0/2. Then the operators

R(λ2 ± i0)V = S(λ2 ± i0) ◦R0(λ
2 ± i0) ◦ J∗ ◦ V

are well-defined and compact on L2
−s(Ω) for any λ > 0. In particular, if 1 < s ≤ δ0/2,

then the operator R(0)V is compact on L2
−s(Ω).

Proof. First, we consider the case λ = 0 and 1 < s ≤ δ0/2. In this case, the argument
of Proposition 2.4 works well, and hence, S(0) is continuous from R(R0(0)J∗) into
L2

−s(Ω) for any s ∈ (1, δ0/2]. Next, we see that R0(0) is the compact operator from
L2
s(R3) into L2

−s(R3) for any s > 1, since the kernel of R0(0) is Hilbert-Schmidt type:∫
R3

∫
R3

⟨x⟩−2s 1

|x− y|2
⟨y⟩−2s dxdy ≤ C.

Finally, the decay assumption (1.8) on V implies that

J∗ ◦ V : L2
−s(Ω) → L2

s(R3)

is a bounded operator for

1

2
< s ≤ δ0

2
.

Therefore, the operator S(0) ◦ R0(0) ◦ J∗ ◦ V is compact from L2
−s(Ω) into itself for

any s ∈ (1, δ0/2]. This proves the compactness in the case λ = 0.
We now turn to the case λ > 0. Let {fn} be a sequence such that

sup
n∈N

∥fn∥L2
−s(Ω) ≤M

for any s ∈ (1/2, δ0/2], where M is a positive constant. We prove the compactness of
the following sequence of functions

gn = R(λ2 ± i0)V fn.

We may assume that the obstacle O is contained in the unit ball {x ∈ R3 : |x| < 1}
without loss of generality. We divide the proof into three steps.

First step. Compactness on the sets Ar := {x ∈ Ω : |x| ≤ r} (r > 1).
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By using the uniform resolvent estimates (2.30) and the limiting absorption prin-
ciple (2.31) from Lemma 2.6, the decay assumption (1.8) on V and the assumption
s ∈ (1/2, δ0/2], we obtain

∥gn∥L2
−s(Ω) ≤

C

λ
∥V fn∥L2

s(Ω)(B.13)

≤C
λ
∥fn∥L2

−s(Ω)

≤CM
λ

for any λ > 0, while the definition of operators R(λ2 ± i0) implies that the sequence
{gn} satisfies the elliptic equation

−∆gn = hn := λ2gn + V fn.

Since V ∈ L∞(Ω), it follows that

∥V fn∥L2(Ar) ≤ CM

for any r > 1. Hence combining (B.13) and the previous estimate, we get

∥hn∥L2(Ar) ≤ C(λ)M.

Then, resorting to the ellipticity of the operator −∆, we find from the previous
estimate that

∥gn∥H2(Ar) ≤ C(λ)M

for any r > 1. Since H2(Ar) is compact in L2(Ar), there exists a subsequence {gn′}
which converges to some g1,r ∈ L2(Ar) strongly in L2(Ar) for any r > 1.

Second step. Weak compactness on the sets Ω \ Ar.
Let r > 1 be fixed. The estimate (B.13) implies that {gn′} is uniformly bounded

in L2
−s(Ω \ Ar). As a consequence, there exists a subsequence {gn′′} of {gn′} which

converges to some g2,r ∈ L2
−s(Ω \ Ar) weakly in L2

−s(Ω \ Ar). Furthermore, for any
ε > 0 there exists r(ε) > 1 such that

(B.14)

∫
Ω\Ar(ε)

⟨x⟩−2s|gn′′ |2 dx < ε and

∫
Ω\Ar(ε)

⟨x⟩−2s|g2,r(ε)|2 dx < ε

for all n′′.

End of the proof. Put

g = χAr(ε)
g1,r(ε) + {1− χAr(ε)}g2,r(ε),

where χAr(ε)
is the characteristic function on Ar(ε). By using (B.14), we have∫
Ω

⟨x⟩−2s|gn′′ − g|2 dx

=

∫
Ar(ε)

⟨x⟩−2s|gn′′ − g1,r(ε)|2 dx+
∫
Ω\Ar(ε)

⟨x⟩−2s|gn′′ − g2,r(ε)|2 dx

≤
∫
Ar(ε)

⟨x⟩−2s|gn′′ − g1,r(ε)|2 dx+ 2ε.
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Finally, letting n′′ → ∞, we conclude from the first step that

lim
n′′→∞

∫
Ω

⟨x⟩−2s|gn′′ − g|2 dx ≤ 2ε.

Thus {gn} is compact, since ε > 0 is arbitrary. Hence R(λ2 ± i0)V are compact
operators from L2

−s(Ω) into itself. The proof of Lemma B.2 is complete. □

We have also the compactness of the resolvent operators on Lp(Ω).

Lemma B.3. Assume that the measurable potential V satisfies assumption (1.8). Let
p0 be a real as in Lemma B.1. Then the operators

R(λ2 ± i0)V = S(λ2 ± i0)R0(λ
2 ± i0) ◦ J∗ ◦ V

are compact on Lp(Ω) for any p ∈ (p0,∞] and any λ > 0.

Proof. It is sufficient to prove the compactness of operators

R0(λ
2 ± i0) ◦ J∗ ◦ V

from Lp(Ω) into Lp(R3) for any p ∈ (p0,∞], since S(λ2±i0) are the bounded operators
from R(R0(λ

2 ± i0)J∗) into L
p(Ω) by Lemma 2.7 or Proposition 2.4. Let {fn} be a

sequence such that

sup
n∈N

∥fn∥Lp(Ω) ≤M,

where M is a positive constant. We shall prove the compactness of the following
sequence of functions

gn = R0(λ
2 ± i0)J∗(V fn).

We may assume that the obstacle O is contained in {x ∈ R3 : |x| < 1} without loss
of generality. We divide the proof into three steps.

First step. Compactness on the sets Br := {x ∈ R3 : |x| ≤ r} (r > 1).

By using the estimates (B.1), we have∥∥µp(·)R0(λ
2 ± i0)J∗(V fn)

∥∥
Lp(R3)

≤ C

λ2/p
∥fn∥Lp(Ω)(B.15)

≤CM
λ2/p

for any λ > 0, and hence, we get

(B.16) ∥gn∥Lp(Br) ≤ C(λ)M,

while the definition of operators R0(λ
2 ± i0) implies that the sequence {gn} satisfies

the elliptic equation

−∆gn = hn := λ2gn + J∗(V fn).

Since V ∈ L∞(Ω), it follows that

∥J∗(V fn)∥Lp(Br) ≤ CM

for any r > 1. Hence combining (B.16) and the previous estimate, we get

∥hn∥Lp(Br) ≤ C(λ)M.
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Then, resorting to the ellipticity of the operator −∆ and the previous estimate, we
find that

∥gn∥W 2,p(Br) ≤ C(λ)

for any r > 1. Since W 2,p(Br) is compact in Lp(Br) for p ∈ (3,∞], there exists a
subsequence {gn′} which converges to some g1,r ∈ Lp(Br) strongly in Lp(Br) for any
r > 1.

Second step. Weak compactness on the sets R3 \Br.

Let r > 1 be a fixed real number. The estimate (B.15) implies that

∥gn′∥Lp(R3\Br) ≤µp(r)−1∥µp(·)gn′∥Lp(R3\Br)

≤CMµp(r)
−1.

As a consequence of this estimate, there exists a subsequence {gn′′} of {gn′} which
converges to some g2,r ∈ Lp(R3 \ Br) weakly in Lp(R3 \ Br). When p = ∞, the
convergence is weakly∗. Furthermore, for any ε > 0 there exists r(ε) > 1 such that

(B.17) ∥gn′′∥Lp(R3\Br(ε)) < ε and ∥g2,r(ε)∥Lp(R3\Br(ε)) < ε

for all n′′.

End of the proof. Putting

g = χBr(ε)
g1,r(ε) + {1− χBr(ε)}g2,r(ε),

where χBr(ε)
is the characteristic function on Br(ε), by using (B.17), we have

∥gn′′ − g∥Lp(R3) =∥gn′′ − g1,r(ε)∥Lp(Br(ε)) + ∥gn′′ − g2,r(ε)∥Lp(R3\Br(ε))

≤∥gn′′ − g1,r(ε)∥Lp(Br(ε)) + 2ε.

Finally, letting n′′ → ∞, we conclude from the first step that

lim
n′′→∞

∥gn′′ − g∥Lp(R3) ≤ 2ε.

Thus {gn} is compact, since ε > 0 is arbitrary. This proves that R0(λ
2±i0)◦J∗◦V are

compact operators from Lp(Ω) to Lp(R3). The proof of Lemma B.3 is complete. □

Appendix C. (Proof of Theorem 2.9)

This appendix is devoted to the proof of Theorem 2.9. We start with the invert-
ibility of the operators I +R(λ2 ± i0)V for λ > 0.

Lemma C.1. Assume that the measurable potential V satisfies (1.8). Then we have
the following:

(i) Let 1/2 < s ≤ δ0/2. If the function u ∈ L2
−s(Ω) is a solution of the integral

equation

(C.1) u+R(λ2 ± i0)V u = 0 in Ω

for λ > 0, then u = 0 in Ω.
(ii) Let p0 > 5 be as in Lemma B.1. If the function u ∈ Lp(Ω) for some p ∈ (p0,∞]

is a solution of the integral equation (C.1) for λ > 0, then u = 0 in Ω.
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Proof. The solution u ∈ L2
−s(Ω) to (C.1) solves the following boundary value problem:

(C.2)

{{
−∆+ V (x)− λ2

}
u = 0 in Ω,

u = 0 on ∂Ω.

It is known that operator −∆+ V (x) has no positive eigenvalues (see, e.g., Theorem
2.2 in [31, Mochizuki], and also Theorem 10.2 from [30, Mochizuki]). Namely, the
boundary value problem (C.2) admits only a trivial solution. Hence we conclude that
u = 0 in Ω, which proves the assertion (i).

As to (ii), applying Proposition 2.5 for any s > 1/2 and Hölder’s inequality, we
write∥∥R(λ2 ± i0)(V u)

∥∥
L2
−s(Ω)

≤C
∥∥R0(λ

2 ± i0)J∗(V u)
∥∥
L2
−s(R3)

≤C
∥∥µp(·)R0(λ

2 ± i0)J∗(V u)
∥∥
Lp(R3)

∥∥⟨·⟩−2sµp(·)−2
∥∥1/2
L

p
p−2 (R3)

(C.3)

for any λ > 0 and p ∈ (p0,∞], where µp(x) is the function appearing in (B.1) (see
also (B.9)). When p = ∞, we used the convention p

p−2
= 1. Since

−2s− 2

(
s− 1

2

)(
1− 2

p

)
+

4s

p
= −(4s− 1)(p− 2)

p
,

it follows that ∥∥⟨·⟩−2sµp(·)−2
∥∥
L

p
p−2 (R3)

=

{∫
R3

⟨x⟩−(4s−1) dx

} p−2
p

<∞,

provided that

1 < s <
3

2
.

Hence, combining (C.3) and estimate (B.1) from Lemma B.1, we deduce that∥∥R(λ2 ± i0)(V u)
∥∥
L2
−s(Ω)

≤ C

λ2/p
∥u∥Lp(Ω)

for any λ > 0 and 1 < s < min{3/2, δ0/2}. Thus these estimates together with
equation (C.1) imply that

u ∈ Lp(Ω) for p ∈ (p0,∞] =⇒ u ∈ L2
−s(Ω) for 1 < s < min

{
3

2
,
δ0
2

}
.

Hence we apply the previous result (i) to conclude that u = 0 in Ω. The proof of
Lemma C.1 is complete. □

We are now in a position to prove Theorem 2.9.

Proof of Theorem 2.9. It is sufficient to prove the assertion (i) for λ > 0, since the
case λ = 0 is proved by using Proposition A.1, the compactness on L2

−s(Ω) of R(0)V
and the Fredholm alternative theorem that we just develop below.

Lemma C.1 implies that the operators

I +R(λ2 ± i0)V

are injective both in B(L2
−s(Ω)) for any s ∈ (1/2, δ0/2], and in B(Lp(Ω)) for any

p ∈ (p0,∞]. Thanks to Lemmas B.2 and B.3, the operators R(λ2± i0)V are compact
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perturbations of the identity operator I, thus we now apply the Fredholm alternative
theorem to deduce the existence of the operators

S±(λ) = (I +R(λ2 ± i0)V )−1 both in B(L2
−s(Ω)) and in B(Lp(Ω)).

It remains to prove the uniform estimates (2.39) for the operators S±(λ) with
respect to λ > 0. It is sufficient to prove that there exists a constant C > 0 such that

(C.4)
∥∥I +R(λ2 ± i0)V

∥∥
B(L2

−s(Ω))
≥ C

for any λ > 0. By using the uniform resolvent estimates (2.38) from Lemma 2.8, there
exists λ0 > 1 such that ∥∥R(λ2 ± i0)V

∥∥
B(L2

−s(Ω))
≤ 1

2
for any λ > λ0, and hence, we get∥∥I +R(λ2 ± i0)V

∥∥
B(L2

−s(Ω))
≥ 1

2

for any λ > λ0. This proves (C.4) for λ > λ0. Next, we prove (C.4) on any subinterval
[ε, λ0] of (0, λ1]. We suppose that

(C.5) inf
λ∈[ε,λ0]

∥∥I +R(λ2 ± i0)V
∥∥

B(L2
−s(Ω))

= 0,

and lead to a contradiction. Since ∥I +R(λ2 ± i0)V ∥B(L2
−s(Ω)) are continuous on

[ε, λ0], the compactness of [ε, λ0] and assumption (C.5) imply that there exists a real
λ∗ ∈ [ε, λ0] such that ∥∥I +R(λ2∗ ± i0)V

∥∥
B(L2

−s(Ω))
= 0.

This contradicts the injective property of I +R(λ2∗ ± i0)V . Thus we must have (C.4)
for any λ ∈ [ε, λ0]. This proves the assertion (i) in Theorem 2.9.

In a similar way, we prove that∥∥I +R(λ2 ± i0)V
∥∥

B(Lp(Ω))
≥ C

for any p ∈ (p0,∞] and λ > 0. In fact, since we obtained the decay estimates (B.1)
with respect to λ > 0 in Lemma B.1, the above argument enables us to conclude that
there exist constants C > 0 and λ2 > 1 such that

(C.6)
∥∥I +R(λ2 ± i0)V f

∥∥
B(Lp(Ω))

≥ C

for any λ > λ2 and p ∈ (p0,∞). When p = ∞, we suppose that (C.6) is not true for
large λ > 0, and lead to a contradiction. Then we have

lim
λ→∞

∥∥I +R(λ2 ± i0)V
∥∥

B(L∞(Ω))
= 0,

which implies that

(C.7) lim
λ→∞

∣∣[{I +R(λ2 ± i0)V }f
]
(x)
∣∣ = 0

for any x ∈ Ω and for any f ∈ L∞(Ω). On the other hand, we find from (B.3) in
Lemma B.1 that for each x ∈ Ω and f ∈ L∞(Ω),

lim
λ→∞

∣∣[{I +R(λ2 ± i0)V }f
]
(x)
∣∣ = |f(x)| ̸= 0,
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unless f(x) = 0 on Ω. This contradicts (C.7). Thus, when p = ∞, we obtain the
estimate (C.6) for large λ. Finally, as to the lower bound (C.6) for any compact
subinterval [ε, λ2] of (0, λ2], the proof is identical to that in L2

−s(Ω)-case. So we may
omit the detail, and we conclude the proof of the assertion (ii) in Theorem 2.9. The
proof of Theorem 2.9 is finished. □
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