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WELL-POSEDNESS FOR MUTATIONAL EQUATIONS UNDER A

GENERAL TYPE OF DISSIPATIVITY CONDITIONS

YOSHIKAZU KOBAYASHI AND NAOKI TANAKA

Abstract. This paper is concerned with mutational analysis found by Aubin
and developed by Lorenz. To extend their results so that they can be ap-

plied to quasi-linear evolution equations initiated by Kato, we focus on a
mutational framework where for each r > 0 there exists M ≥ 1 such that
d(ϑ(t, x), ϑ(t, y)) ≤ Md(x, y) for t ∈ [0, 1] and x, y ∈ Dr(ϕ), where ϑ is a tran-

sition and Dr(ϕ) is the revel set of a proper lower semicontinuous functional ϕ.
The setting that the constant M may be larger than 1 plays an important role
in applying to quasi-linear evolution equations. In that case, it is difficult to
estimate the distance between two approximate solutions to mutational equa-

tions. Our strategy is to construct a family of metrics depending on both time
and state, with respect to which transitions are contractive in some sense.

1. Introduction

This paper is concerned with mutational analysis initiated by Aubin [3, 2]. He
introduced a set of transitions and studied the so-called mutational equations in
a metric space. His result extends classical results such as the existence theorems
of Cauchy-Lipschitz and Nagumo concerning ordinary differential equations in the
Euclidean spaces and is applied to morphological equations.

Recently, Lorenz [11] has introduced a new functional and generalized Aubin’s
mutational framework in that Lipschitz conditions on transitions do not always have
globally bounded Lipschitz constants. His modified mutational analysis ([11, 4])
makes it possible to deal with nonlinear transport equations for finite real-valued
Radon measures on the Euclidean spaces. Their results are based on Euler method
combined with appropriate compactness assumptions.

We are interested in extending their results so that they can be applied to quasi-
linear evolution equations developed by Hughes et. al. [5]. Our mutational frame-
work is stated as follows: Let E be a complete metric space with metric d and let ϕ
be a proper lower semicontinuous functional from E into [0,∞] such that D(ϕ) is
dense in E, where D(ϕ) is the effective domain of ϕ. Let Dr(ϕ) = {x ∈ E;ϕ(x) ≤ r}
for r > 0. A continuous mapping ϑ : [0, 1]×D(ϕ) → D(ϕ) is called a transition on
(E, d, ϕ) if the following conditions are satisfied:

(t1) ϑ(0, x) = x for x ∈ D(ϕ).
(t2) ϑ(t+ h, x) = ϑ(h, ϑ(t, x)) for x ∈ D(ϕ) and t, h ∈ [0, 1] with t+ h ∈ [0, 1].
(t3) For each r > 0 there exists M ≥ 1 such that

d(ϑ(t, x), ϑ(t, y)) ≤Md(x, y) for t ∈ [0, 1] and x, y ∈ Dr(ϕ).
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(t4) For each r > 0 there exists β > 0 such that

lim sup
h↓0

h−1d(ϑ(h, x), x) ≤ β for x ∈ Dr(ϕ).

(t5) For each r > 0 there exists K > 0 such that

ϕ(ϑ(t, x)) ≤ K for t ∈ [0, 1] and x ∈ Dr(ϕ).

The setting that the constant M appearing condition (t3) is possibly larger than
1 plays an important role in applying to quasi-linear evolution equations. In other
words, it is hard to estimate the distance between two approximate solutions to
mutational equations. Our strategy is to construct a family of metrics on E de-
pending on both time and state, with respect to which transitions are contractive
in some sense (see Lemmas 2.5 and 2.6). This together with techniques developed
in [8] enables us to prove the well-posedness for mutational equations. We also em-
phasize that no compactness assumption is imposed but a dissipativity condition
with respect to a metric-like functional is used in our formulation.

2. Main theorem

Given a set Θ(E, d, ϕ) of transitions, the pair (E,Θ(E, d, ϕ)) is called a muta-
tional space. For r > 0 we define βr : Θ(E, d, ϕ) → [0,∞) by

βr(ϑ) = sup
x∈Dr(ϕ)

(
lim sup
h↓0

h−1d(ϑ(h, x), x)

)
for ϑ ∈ Θ(E, d, ϕ) and define Dr : Θ(E, d, ϕ)×Θ(E, d, ϕ) → [0,∞) by

Dr(ϑ, ϑ̂) = sup
x∈Dr(ϕ)

(
lim sup
h↓0

h−1d(ϑ(h, x), ϑ̂(h, x))

)
for ϑ, ϑ̂ ∈ Θ(E, d, ϕ). Each function Dr(·, ·) is symmetric and satisfies the triangle
inequality, although it is not always a metric on Θ(E, d, ϕ). Note that

|βr(ϑ)− βr(ϑ̂)| ≤ Dr(ϑ, ϑ̂) ≤ βr(ϑ) + βr(ϑ̂)(2.1)

for ϑ, ϑ̂ ∈ Θ(E, d, ϕ). To specify the stability of transitions we introduce the map-
ping Mr : Θ(E, d, ϕ) → [0,∞) defined by

Mr(ϑ) = sup{d(x, y)−1d(ϑ(t, x), ϑ(t, y));x, y ∈ Dr(ϕ), x ̸= y, t ∈ [0, 1]}
for r > 0. Note that Mr(ϑ) ≥ 1 for r > 0 and ϑ ∈ Θ(E, d, ϕ). Moreover, we
introduce the mapping Kr : Θ(E, d, ϕ) → [0,∞) defined by

Kr(ϑ) = sup{ϕ(ϑ(t, x)); t ∈ [0, 1], x ∈ Dr(ϕ)}
for r > 0.

Let (E,Θ(E, d, ϕ)) be a mutational space and let u be a function on [0, τ) such
that u(t) ∈ D(ϕ) for t ∈ [0, τ) where τ ∈ (0,∞]. For each t ∈ [0, τ) the set

◦
u (t) =

{
ϑ ∈ Θ(E, d, ϕ); lim

h↓0
h−1d(u(t+ h), ϑ(h, u(t))) = 0

}
is called the mutation of u at t. Let D be a subset of E and let f be a mapping
from D into Θ(E, d, ϕ). A function u ∈ C([0, τ);E) where τ ∈ (0,∞] is called a
solution to the mutational equation

◦
u (t) ∋ f(u(t)) for t ∈ [0, τ)
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if u(t) ∈ D ∩D(ϕ) for t ∈ [0, τ) and

lim
h↓0

h−1d(u(t+ h), f(u(t))(h, u(t))) = 0 for t ∈ [0, τ).

To develop the theory of mutational equations so that it can be applied to quasi-
linear evolution equations initiated by Kato [7], we consider a mapping f on D to
Θ(E, d, ϕ) such that there exists a proper lower semicontinuous functional ψ from
E into [0,∞] with D(ψ) = D satisfying the following conditions:

(S1) For each ν > 0 and r > 0, supw∈Dν(ψ)Mr(f(w)) <∞.

(S2) For each ν > 0 and r > 0, supw∈Dν(ψ)Kr(f(w)) <∞.

These are stability conditions of considerably general type and this setting is moti-
vated by the following example of a mutational space associated with the abstract
quasilinear evolution equation

(QE) u′(t) = A(u(t))u(t) for t ∈ [0, τ)

in a Banach space X, where Y is a reflexive Banach space such that Y is densely
and continuously embedded in X and {A(w);w ∈ Y } is a family of closed linear
operators in X. Let Yr = {y ∈ Y ; ∥y∥Y ≤ r} for r > 0, and assume that for each
r > 0 there exist λN (r) ≥ 1, µN (r) > 0, βA(r) ≥ 0, λA(r) > 0, µA(r) > 0 and
λB(r) > 0 such that the following conditions are satisfied:

(N) There exists a family {Nw;w ∈ Y } of norms in X such that

∥x∥X ≤ Nw(x) ≤ λN (r)∥x∥X for w ∈ Yr and x ∈ X,(2.2)

Nw(x) ≤ Nŵ(x)(1 + µN (r)∥w − ŵ∥X) for w, ŵ ∈ Yr and x ∈ X.(2.3)

(A1) For each w ∈ Y , the operator A(w) generates a semigroup {Tw(t); t ≥ 0}
on X of class (C0) such that Nw(Tw(t)x) ≤ eβA(r)tNw(x) for t ≥ 0, x ∈ X
and w ∈ Yr.

(A2) There exist an isomorphism S of Y onto X and a family {B(w);w ∈ Y } in
B(X) such that

SA(w)S−1 = A(w) +B(w) for w ∈ Y ,

∥B(w)∥X,X ≤ λB(r) for w ∈ Yr.

(A3) For each w ∈ Y , D(A(w)) ⊃ Y and A(w) ∈ B(Y,X), and

∥A(w)∥Y,X ≤ λA(r) for w ∈ Yr,

∥A(w)−A(ŵ)∥Y,X ≤ µA(r)∥w − ŵ∥X for w, ŵ ∈ Yr.

Without loss of generality, we may assume that ∥y∥X ≤ ∥y∥Y for y ∈ Y and
∥y∥Y = ∥Sy∥X for y ∈ Y and that λN , µN , βA, λA, µA and λB are defined on
[0,∞), and they are nondecreasing and continuous on [0,∞). This corresponds to
the case where X = Z = Z ′ in the setting considered by Hughes et. al. [5] and
localizes their conditions to handle the global well-posedness for (QE).

Let E = X and D = Y , and consider the metric d on E defined by d(x, y) =
∥x−y∥X for x, y ∈ E and the functional ϕ on E defined by ϕ(x) = ∥Sx∥X(= ∥x∥Y )
if x ∈ D, and ϕ(x) = ∞ otherwise. By the completeness of X and the reflexivity
of Y , the lower semicontinuity of ϕ is verified. From condition (A2) we see that for
each w ∈ Y , Tw(t)(Y ) ⊂ Y for t ≥ 0, and

(2.4) STw(t)y = Tw(t)Sy +

∫ t

0

Tw(t− s)B(w)STw(s)y ds
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for t ≥ 0 and y ∈ Y . For w ∈ D, define ϑw(t, x) = Tw(t)x for (t, x) ∈ [0, 1]×D(ϕ).
Then we observe that ϑw is a continuous mapping from [0, 1]×D(ϕ) into D(ϕ) and
have the following proposition:

Proposition 2.1. Define Θ(E, d, ϕ) = {ϑw;w ∈ D}. Then (E,Θ(E, d, ϕ)) is a
mutational space, and the mapping f from D into Θ(E, d, ϕ) defined by f(w) = ϑw
for w ∈ D satisfies the following two conditions:

(i) For each ν > 0 there exists M ≥ 1 such that

d(f(w)(t, x), f(w)(t, y)) ≤Md(x, y)

for t ∈ [0, 1], x, y ∈ D(ϕ) and w ∈ D with Nw(Sw) ≤ ν.
(ii) For r > 0 and ν > 0 there exists K > 0 such that

ϕ(f(w)(t, x)) ≤ K

for t ∈ [0, 1], x ∈ Dr(ϕ) and w ∈ D with Nw(Sw) ≤ ν.

Proof. Since A(w) is the infinitesimal generator of the semigroup {Tw(t); t ≥ 0}
on X, we infer from condition (A3) that condition (t4) is satisfied and βr(ϑw) =
∥A(w)∥Y,Xr for r > 0 and w ∈ D. To verify conditions (t3) and (t5), it suffices to
prove that the mapping f satisfies conditions (i) and (ii). By (2.2) and (A1) we
have

d(f(w)(t, x), f(w)(t, y)) ≤ Nw(Tw(t)(x− y)) ≤ eβA(r)tNw(x− y)

≤ λN (r)eβA(r)td(x, y)

for w ∈ Yr, x, y ∈ D(ϕ) and t ∈ [0, 1]. Since ∥w∥Y ≤ Nw(Sw) for w ∈ Y , condition
(i) is satisfied with M = λN (ν)eβA(ν) for each ν > 0. To verify condition (ii), let
x ∈ Y and w ∈ Y with Nw(Sw) ≤ ν. By (2.4) we have

Nw(STw(t)x) ≤ eβA(ν)tNw(Sx)

+

∫ t

0

eβA(ν)(t−s)λN (ν)λB(ν)Nw(STw(s)x) ds

for t ≥ 0. Application of Gronwall’s inequality yields Nw(STw(t)x) ≤ ea(ν)tNw(Sx)
for t ≥ 0, where a(ν) = βA(ν) + λN (ν)λB(ν). This implies that ϕ(f(w)(t, x)) ≤
λN (ν)ea(ν)tϕ(x) for t ∈ [0, 1]. �

Let (E,Θ(E, d, ϕ)) be a mutational space and consider the mutational equation

◦
u (t) ∋ f(u(t))

for a mapping f on D to Θ(E, d, ϕ) satisfying conditions (S1) and (S2). Instead of
the compactness assumption imposed in [11], we discuss the mutational equation
under a general type of dissipativity condition on f . To define a general type of
dissipativity condition on f , we make the hypothesis

(H) for each ν > 0 there exists r > 0 such that Dν(ψ) ⊂ Dr(ϕ),

and use a nonnegative functional Φ on D(ϕ)×D(ϕ) satisfying the following condi-
tions:

(Φ1) For each r > 0 there exists Lr > 0 such that

|Φ(x, y)− Φ(x̂, ŷ)| ≤ Lr(d(x, x̂) + d(y, ŷ))

for (x, y), (x̂, ŷ) ∈ Dr(ϕ)×Dr(ϕ).
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(Φ2) For each ν > 0 there exist Mν ≥ mν > 0 such that

mνd(x, y) ≤ Φ(x, y) ≤Mνd(x, y)

for (x, y) ∈ Dν(ψ)×Dν(ψ).

Assume that f satisfies the following three conditions:

(f1) For each ν > 0, r > 0, ϵ > 0, x ∈ Dν(ψ) there exists δ > 0 such that
y ∈ Dν(ψ) and d(y, x) < δ imply Dr(f(y), f(x)) < ϵ.

(f2) There exists g ∈ C([0,∞);R) with g(0) ≥ 0 such that to each ϵ > 0 and
x ∈ D there correspond h ∈ (0, ϵ] and xh ∈ D such that

d(f(x)(h, x), xh) ≤ ϵh and h−1(ψ(xh)− ψ(x)) ≤ g(ψ(x)) + ϵ.

(f3) There exists a nonnegative functional Φ on D(ϕ) × D(ϕ) satisfying con-
ditions (Φ1) and (Φ2) such that to each ν > 0 there corresponds ων ≥ 0
satisfying

lim inf
h↓0

h−1
(
Φ(f(x)(h, x), f(y)(h, y))− Φ(x, y)

)
≤ ωνΦ(x, y)

for any x, y ∈ Dν(ψ).

Remark 2.2. (i) Condition (f2) is regarded as the so-called subtangential condition
combined with a growth condition. A subtangential condition was used by Nagumo
[13] to study a viability theorem (see [1]). (ii) Condition (f3) is a general type
of dissipativity condition proposed in this paper. A dissipativity condition with
respect to a metric-like functional was considered by Okamura [14] to characterize
the uniqueness of solutions of ordinary differential equations (see also [15, 10]). The
functional ψ is a Liapunov functional and used to localize the dissipativity.

For each ν > 0 we denote by τ(ν) the maximal existence time of the noncon-
tinuable maximal solution m(t; ν) of the Cauchy problem

(2.5) p′(t) = g(p(t)) for t ≥ 0, and p(0) = ν.

We are now in a position to state the main theorem.

Theorem 2.3. Under assumptions (S1), (S2), (H) and (f1) through (f3), the fol-
lowing assertions hold:

(i) For any x ∈ D, there exists a unique solution u ∈ C([0, τ(ψ(x)));E) to
◦
u (t) ∋ f(u(t)) for t ≥ 0 and u(0) = x

such that ψ(u(t)) is locally bounded on [0, τ(ψ(x))). Moreover, the unique
solution u satisfies ψ(u(t)) ≤ m(t;ψ(x)) for t ∈ [0, τ(ψ(x))).

(ii) Assume that τ(ν) = ∞ for ν > 0. If {S(t); t ≥ 0} is defined by S(t)x = u(t)
for t ≥ 0 and x ∈ D, then {S(t); t ≥ 0} is a semigroup of Lipschitz operators
on D such that

ψ(S(t)x) ≤ m(t;ψ(x)) for t ≥ 0 and x ∈ D.

Remark 2.4. Theorem 2.3 generalizes the main results in [12] and [8].

The proof Theorem 2.3 will be given in Section 5. From the rest of this section
to Section 5 we make the assumptions of Theorem 2.3. The setting that M may be
larger than 1 in condition (t3) makes it difficult to estimate the distance between
two approximate solutions to mutational equations. To overcome such a difficulty,
we construct a family of metrics depending on both time and state, with respect
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to which transitions are contractive in some sense, and eliminate an additional
structural inequality imposed by Lorenz [11, Section 3.4] in order that contractivity
can become dispensable. We conclude this section with the following fundamental
estimates.

Lemma 2.5. There exists a family {d(t,w); (t, w) ∈ [0, 1] × D} of metrics on E
satisfying the following conditions:

(i) For x, y ∈ E and w ∈ D, the function t → d(t,w)(x, y) is continuous on
[0, 1].

(ii) For 0 ≤ s ≤ t ≤ 1, x, y ∈ D(ϕ) and w ∈ D,

(2.6) d(t,w)(f(w)(t− s, x), f(w)(t− s, y)) ≤ d(s,w)(x, y).

(iii) For (t, w) ∈ [0, 1]×D and x, y ∈ E,

(2.7) d(x, y) ≤ d(t,w)(x, y).

(iv) For (t, w) ∈ [0, 1]×D and x, y ∈ Dr(ϕ),

(2.8) d(t,w)(x, y) ≤Mr(f(w))d(x, y).

Proof. For (t, w) ∈ [0, 1] × D we define a metric ρ(t,w) on D(ϕ) by ρ(t,w)(x, y) =
sup{d(f(w)(σ − t, x), f(w)(σ − t, y)); t ≤ σ ≤ 1} for (x, y) ∈ D(ϕ) × D(ϕ). This
definition makes sense and the function t → ρ(t,w)(x, y) is continuous on [0, 1] for
x, y ∈ D(ϕ) and w ∈ D, since f(w)(t, x) is continuous in t ∈ [0, 1]. Since D(ϕ) is
dense in E and |ρ(t,w)(x, y)− ρ(t,w)(x̂, ŷ)| ≤ ρ(t,w)(x, x̂) + ρ(t,w)(y, ŷ) for x, x̂, y, ŷ ∈
D(ϕ) and (t, w) ∈ [0, 1] × D, the metric ρ(t,w) on D(ϕ) has the unique extension
d(t,w) on E for each (t, w) ∈ [0, 1]×D, and condition (i) is satisfied. The semigroup
property proves assertions (ii). Since d(x, y) ≤ ρ(t,w)(x, y) for (t, w) ∈ [0, 1]×D and
x, y ∈ D(ϕ), a density argument yields (2.7). Assertion (iv) is verified by condition
(S1). �

To compare the evolution of two arbitrary data along two different transitions,
we use the quantity

K(r, ν) = sup
w∈Dν(ψ)

Kr(f(w))

for r > 0 and ν > 0. By condition (S2) we have K(r, ν) < ∞ for each r > 0 and
ν > 0. For r > 0 and ν > 0, set

γr,ν = sup
w∈Dν(ψ)

MK(r,ν)(f(w)).

Then we note that γr,ν ≥ 1 for r > 0 and ν > 0.

Lemma 2.6. The following assertions hold:

(i) For 0 ≤ s ≤ t ≤ 1, w ∈ Dν(ψ) and x ∈ Dr(ϕ),

(2.9) d(f(w)(t, x), f(w)(s, x)) ≤ γr,νβr(f(w))(t− s).

(ii) For 0 ≤ s < 1, w, ŵ ∈ Dν(ψ) and x, y ∈ E such that

(2.10) sup
t∈[s,1]

ϕ(f(w)(t− s, x)) ≤ r and sup
t∈[s,1]

ϕ(f(ŵ)(t− s, y)) ≤ r,

d(t,w)(f(w)(t− s, x), f(ŵ)(t− s, y))(2.11)

≤ d(s,w)(x, y) + γr,ν(t− s)Dr(f(w), f(ŵ))

for t ∈ [s, 1].
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Proof. To prove (i), let 0 ≤ s < 1, w ∈ Dν(ψ) and x ∈ Dr(ϕ), and define g1(t) =
d(f(w)(t, x), f(w)(s, x)) for t ∈ [s, 1]. Since ϕ(f(w)(δ, x)) ≤ Kr(f(w)) ≤ K(r, ν)
for δ ∈ [0, 1], we have

δ−1(g1(t+ δ)− g1(t)) ≤ δ−1d(f(w)(t, f(w)(δ, x)), f(w)(t, x))

≤MK(r,ν)(f(w))δ
−1d(f(w)(δ, x), x)

for t ∈ [s, 1) and δ > 0 with t+ δ ≤ 1. It follows that

lim sup
δ↓0

δ−1(g1(t+ δ)− g1(t)) ≤ γr,νβr(f(w))

for t ∈ [s, 1). This implies (2.9). To prove (ii), let 0 ≤ s < 1, w, ŵ ∈ Dν(ψ)
and x, y ∈ E satisfy (2.10). Define g2(t) = d(t,w)(f(w)(t − s, x), f(ŵ)(t − s, y)) for
t ∈ [s, 1]. Then we observe from Lemma 2.5 (i) and (iv) that g2 is continuous on
[s, 1]. By (2.6) we have

δ−1(g2(t+ δ)− g2(t))

≤ δ−1d(t+δ,w)(f(w)(δ, f(ŵ)(t− s, y)), f(ŵ)(δ, f(ŵ)(t− s, y)))

≤ γr,νδ
−1d(f(w)(δ, f(ŵ)(t− s, y)), f(ŵ)(δ, f(ŵ)(t− s, y)))

for t ∈ [s, 1) and δ > 0 with t + δ ≤ 1, where we have used (2.8) and the fact
that ϕ(f(w)(δ, f(ŵ)(t − s, y))) ≤ Kr(f(w)) ≤ K(r, ν) for t ∈ [s, 1) and δ > 0 with
t+ δ ≤ 1. Hence

lim sup
δ↓0

(g2(t+ δ)− g2(t))/δ ≤ γr,νDr(f(w), f(ŵ))

for t ∈ [s, 1). The desired inequality (2.11) is obtained. �

3. Construction of approximate solutions

To construct approximate solutions we use the well-known fact ([9]) that for each
ϵ > 0 and ν > 0, there exists the noncontinuable maximal solution mϵ(t; ν) of the
Cauchy problem

p′(t) = g(p(t)) + ϵ for t ≥ 0, and p(0) = ν,

and τ ϵ(ν) → τ(ν) and mϵ(t; ν) converges to m(t; ν) uniformly on any compact
subinterval of [0, τ(ν)) as ϵ ↓ 0, where τ ϵ(ν) is the maximal existence time of
mϵ(t; ν). We denote by B[x, r] the closed ball in E of radius r > 0 and center
x ∈ E.

Lemma 3.1. Let x0 ∈ D. Then there exist ϵ0 > 0, ν > 0, r0 > 0, r > 0, ρ > 0,
M > 0 and σ ∈ (0, 1] such that Dν(ψ) ⊂ Dr0(ϕ), τ

ϵ(ψ(x0)) > σ, mϵ(t;ψ(x0)) ≤ ν
for t ∈ [0, σ] and ϵ ∈ (0, ϵ0], σ(1 + γr,νM) ≤ ρ, K(r0, ν) ≤ r and βr(f(x)) ≤M for
any x ∈ Dν(ψ) ∩B[x0, ρ].

Proof. Let x0 ∈ D. Take σ0 ∈ (0, τ(ψ(x0))) and set ν = sup{m(t;ψ(x0)); t ∈
[0, σ0]}+1. Then there exists ϵ0 > 0 such that τ ϵ(ψ(x0)) > σ0 andm

ϵ(t;ψ(x0)) ≤ ν
for t ∈ [0, σ0] and ϵ ∈ (0, ϵ0]. By condition (H) there exists r0 > 0 such that
Dν(ψ) ⊂ Dr0(ϕ). Set r = K(r0, ν). Since x0 ∈ Dν(ψ), we see from (f1) that
there exists ρ > 0 satisfying Dr(f(x), f(x0)) ≤ 1 for x ∈ Dν(ψ) ∩ B[x0, ρ]. Set
M = βr(f(x0)) + 1. Then we have

βr(f(x)) ≤ βr(f(x0)) +Dr(f(x), f(x0)) ≤ βr(f(x0)) + 1 =M
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for x ∈ Dν(ψ)∩B[x0, ρ]. If we choose σ ∈ (0, 1] so that σ ≤ σ0 and σ(1+γr,νM) ≤ ρ,
then the conclusion follows. �
Lemma 3.2. Let x0 ∈ D, and let ϵ > 0, ν > 0, r0 > 0, r > 0, ρ > 0, M > 0
and σ ∈ (0, 1] be such that Dν(ψ) ⊂ Dr0(ϕ), τ

ϵ(ψ(x0)) > σ, mϵ(t;ψ(x0)) ≤ ν
for t ∈ [0, σ], σ

(
1 + γr,νM

)
≤ ρ, K(r0, ν) ≤ r and βr(f(x)) ≤ M for any x ∈

Dν(ψ) ∩B[x0, ρ]. Let λ ∈ (0, 1]. Let {(sj , xj)}Nj=0 be a sequence in [0, σ]×D such
that

(i) 0 = s0 < s1 < · · · < sk < · · · < sN ≤ σ,
(ii) d(f(xj−1)(sj − sj−1, xj−1), xj) ≤ λ(sj − sj−1) for j = 1, 2, . . . , N ,
(iii) ψ(xj) ≤ mϵ(sj − sj−1;ψ(xj−1)) for j = 1, 2, . . . , N .

Then, for all j = 0, 1, . . . , N ,
(a) d(xl, xj) ≤ (sj − sl)

(
λ+ γr,νM

)
for l = 0, 1, . . . , j,

(b) ψ(xj) ≤ mϵ(sj − sl;ψ(xl)) for l = 0, 1, . . . , j,

(c) xj ∈ B[x0, ρ] ∩Dν(ψ) ∩Dr(ϕ),

(d) βr(f(xj)) ≤M.

(Pj)

Proof. Assertion (P0) clearly holds. Let j ≥ 1 and assume that (Pj−1) holds. Since
βr(f(xj−1)) ≤M , we apply (2.9) to find

d(xj−1, f(xj−1)(sj − sj−1, xj−1)) ≤ γr,νM(sj − sj−1).

It follows that

d(xl, xj) ≤ d(xl, xj−1) + d(xj−1, f(xj−1)(sj − sj−1, xj−1))

+ d(f(xj−1)(sj − sj−1, xj−1), xj)

≤ (sj − sl)(λ+ γr,νM)

for l = 0, 1, . . . , j − 1. In particular, we have xj ∈ B[x0, ρ]. Assertion (b) is shown
inductively from condition (iii), and so xj ∈ Dν(ψ) and βr(f(xj)) ≤ M . Since
Dν(ψ) ⊂ Dr0(ϕ), we have ϕ(xj) = ϕ(f(xj)(0, xj)) ≤ Kr0(f(xj)) ≤ K(r0, ν). This
proves that xj ∈ Dr(ϕ), since K(r0, ν) ≤ r. �
Proposition 3.3. Let x0 ∈ D. Let ϵ ∈ (0, 1], ν > 0, r0 > 0, r > 0, ρ > 0, M > 0
and τ ∈ (0, 1] be such that Dν(ψ) ⊂ Dr0(ϕ), τ

ϵ(ψ(x0)) > τ , mϵ(t;ψ(x0)) ≤ ν for
t ∈ [0, τ ], τ

(
1 + γr,νM

)
≤ ρ, K(r0, ν) ≤ r and βr(f(x)) ≤M for any x ∈ Dν(ψ) ∩

B[x0, ρ]. Then there exists a sequence {(tj , xj)}∞j=0 in [0, τ ]× (Dν(ψ)∩Dr(ϕ)) such
that

(i) 0 = t0 < t1 < · · · < tj < · · · < τ ,
(ii) tj − tj−1 ≤ ϵ for j = 1, 2, . . .,
(iii) d(f(xj−1)(tj − tj−1, xj−1), xj) ≤ ϵ(tj − tj−1) for j = 1, 2, . . .,
(iv) ψ(xj) ≤ mϵ(tj − tl;ψ(xl)) for l = 0, 1, . . . , j and j = 0, 1, . . .,
(v) if x ∈ Dν(ψ) ∩B[xj−1, (tj − tj−1)(1 + γr,νM)], then

Dr(f(x), f(xj−1)) ≤ ϵ for j = 1, 2, . . .,

(vi) limj→∞ tj = τ .

Proof. Let i ≥ 1 and assume that a sequence {(tj , xj)}i−1
j=0 in [0, τ ]×(Dν(ψ)∩Dr(ϕ))

is defined so that (i) through (v) hold for j = 0, 1, . . . , i − 1. Then we define h̄i
by the supremum of h ∈ (0, ϵ] such that ti−1 + h < τ , Dr(f(x), f(xi−1)) ≤ ϵ
for any x ∈ Dν(ψ) ∩ B[xi−1, h

(
1 + γr,νM

)
] and there exists uh ∈ D satisfying
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d(f(xi−1)(h, xi−1), uh) ≤ ϵh and ψ(uh) ≤ mϵ(h;ψ(xi−1)). By (f1) and (f2), we see
that h̄i > 0 and there exist hi ∈ (0, ϵ] and xi ∈ D such that ti−1+hi < τ , h̄i/2 < hi,
d(f(xi−1)(hi, xi−1), xi) ≤ ϵhi, ψ(xi) ≤ mϵ(hi;ψ(xi−1)) and Dr(f(x), f(xi−1)) ≤ ϵ
for any x ∈ Dν(ψ)∩B[xi−1, hi

(
1 + γr,νM

)
]. Set ti = ti−1 + hi−1. Then we deduce

from Lemma 3.2 that xi ∈ Dν(ψ) ∩ Dr(ϕ) and condition (iv) is satisfied. The
sequence {(tj , xj)}∞j=0 in [0, τ ]× (Dν(ψ) ∩Dr(ϕ)) obtained inductively satisfies (i)
through (v). To verify condition (vi), we assume that t̄ = limi→∞ ti < τ . By
Lemma 3.2 we have βr(f(xi)) ≤ M for i = 0, 1, . . . and d(xi, xl) ≤ (ti − tl)

(
ϵ +

γr,νM
)
for l = 0, 1, . . . , i and i = 0, 1, . . .. Hence {xi} is a Cauchy sequence in E,

and the limit x̄ = limi→∞ xi exists in E and is in Dν(ψ) ∩ Dr(ϕ). By the lower
semicontinuity of ψ, we infer from condition (iv) that ψ(x̄) ≤ mϵ(t̄ − tl;ψ(xl)) for
l = 0, 1, . . .. By (f1) and (f2) there exist h ∈ (0, ϵ] and zh ∈ D such that t̄+ h < τ ,
d(f(x̄)(h, x̄), zh) ≤ ϵh/2, ψ(zh) ≤ mϵ(h;ψ(x̄)) and Dr(f(x), f(x̄)) ≤ ϵ/2 for any
x ∈ Dν(ψ) ∩ B[x̄, 3h(1 + γr,νM)]. Set δi = t̄ + h − ti−1 for i ≥ 1. Then we have
ti−1 + δi < τ and ψ(zh) ≤ mϵ(δi;ψ(xi−1)) for i ≥ 1. By (2.9) we have

(3.1) d(f(xi−1)(δi, xi−1), f(xi−1)(h, xi−1)) ≤ γr,νM(t̄− ti−1)

for i ≥ 1. Since xi−1 ∈ Dν(ψ) ⊂ Dr0(ϕ) for i ≥ 1, we have

sup
t∈[0,1]

ϕ(f(xi−1)(t, xi−1)) ≤ Kr0(f(xi−1)) ≤ r

for i ≥ 1. Similarly, we have supt∈[0,1] ϕ(f(x̄)(t, x̄)) ≤ r. By (2.11) we have

d(h,x̄)(f(xi−1)(h, xi−1), f(x̄)(h, x̄))

≤ d(0,x̄)(xi−1, x̄) + γr,νhDr(f(xi−1), f(x̄))

for i ≥ 1. This combined with (3.1) implies that limi→∞ d(f(xi−1)(δi, xi−1), zh) =
d(f(x̄)(h, x̄), zh), since d(xi−1, x̄) → 0 andDr(f(xi−1), f(x̄)) → 0 as i→ ∞. There-
fore, there exists an integer i1 ≥ 1 such that

d(f(xi−1)(δi, xi−1), zh) ≤ ϵh

for i ≥ i1. Choose i2 ≥ i1 so that δi ≤ min{ϵ, 2h} and d(xi−1, x̄) ≤ h(1 + γr,νM)
for i ≥ i2. Let i ≥ i2 and x ∈ Dν(ψ) ∩B[xi−1, δi(1 + γr,νM)]. Then

d(x, x̄) ≤ d(x, xi−1) + d(xi−1, x̄)

≤ δi(1 + γr,νM) + h(1 + γr,νM) ≤ 3h(1 + γr,νM),

and hence Dr(f(x), f(x̄)) ≤ ϵ/2 for x ∈ Dν(ψ) ∩B[xi−1, δi(1 + γr,νM)] and i ≥ i2.
This implies

Dr(f(x), f(xi−1)) ≤ Dr(f(x), f(x̄)) +Dr(f(x̄), f(xi−1)) ≤ ϵ/2 + ϵ/2 = ϵ

for x ∈ Dν(ψ)∩B[xi−1, δi(1+ γr,νM)] and i ≥ i2. Thus we have h̄i ≥ δi for i ≥ i2,
which contradicts the fact that δi → h and h̄i → 0 as i→ ∞. �

Lemma 3.4. Let x0 ∈ D. Then, there exists ϵ0 > 0 satisfying the following
condition: For any ϵ ∈ (0, ϵ0] there exists hϵ > 0 such that to each h ∈ (0, hϵ] there
corresponds xh ∈ D satisfying

d(f(x0)(h, x0), xh) ≤ hϵ and ψ(xh) ≤ mϵ(h;ψ(x0)).
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Proof. Let x0 ∈ D. By Lemma 3.1, there exist ϵ0 ∈ (0, 1], ν > 0, r0 > 0, r >
0, ρ > 0, M > 0 and τ0 ∈ (0, 1] such that Dν(ψ) ⊂ Dr0(ϕ), τ

ϵ(ψ(x0)) > τ0,
mϵ(t;ψ(x0)) ≤ ν for t ∈ [0, τ0] and ϵ ∈ (0, ϵ0], τ0(1 + γr,νM) ≤ ρ, K(r0, ν) ≤ r
and βr(f(x)) ≤ M for any x ∈ Dν(ψ) ∩ B[x0, ρ]. Let ϵ ∈ (0, ϵ0], and then set
η = ϵ/(2γr,ν). By (f1) there exists hϵ ∈ (0, τ0] such that

Dr(f(x), f(x0)) ≤ η(3.2)

for any x ∈ Dν(ψ)∩B[x0, hϵ(1+γr,νM)]. Let h ∈ (0, hϵ]. Note that h < τ ϵ(ψ(x0)).
From Proposition 3.3 with ρ = h(1+γr,νM) and τ = h we deduce that there exists
a sequence {(tj , xj)}∞j=0 in [0, h]× (Dν(ψ) ∩Dr(ϕ)) such that

(i) 0 = t0 < t1 < · · · < tj < · · · < h,
(ii) tj − tj−1 ≤ η for j = 1, 2, . . .,
(iii) d(f(xj−1)(tj − tj−1, xj−1), xj) ≤ η(tj − tj−1) for j = 1, 2, . . .,
(iv) ψ(xj) ≤ mη(tj ;ψ(x0)) for j = 0, 1, . . .,
(v) if x ∈ Dν(ψ) ∩B[xj−1, (tj − tj−1)(1 + γr,νM)], then

Dr(f(x), f(xj−1)) ≤ η for j = 1, 2, . . .,

(vi) limj→∞ tj = h.

By Lemma 3.2 (c), we have xj ∈ Dν(ψ) ∩B[x0, h
(
1 + γr,νM

)
] for j ≥ 0. It follows

from (3.2) that Dr(f(xj), f(x0)) ≤ η for j ≥ 0. We need to prove that

d(tj ,x0)(f(x0)(tj , x0), xj) ≤ ϵtj(3.3)

for j ≥ 0. The inequality (3.3) holds for j = 0. Let i ≥ 1 and assume (3.3) holds
for j = i− 1. Since xj ∈ Dν(ψ) ⊂ Dr0(ϕ) for j ≥ 0, we have

ϕ(f(x0)(t− ti−1, f(x0)(ti−1, x0))) = ϕ(f(x0)(t, x0)) ≤ Kr0(f(x0)) ≤ r

for t ∈ [ti−1, 1]. Moreover, we have ϕ(f(xi−1)(t − ti−1, xi−1)) ≤ Kr0(f(xi−1)) ≤ r
for t ∈ [ti−1, 1]. Since f(x0)(ti, x0) = f(x0)(ti − ti−1, f(x0)(ti−1, x0)), we see from
(2.11) with t = ti, w = x0, s = ti−1, x = f(x0)(ti−1, x0) and y = ŵ = xi−1 that

d(ti,x0)(f(x0)(ti, x0), f(xi−1)(ti − ti−1, xi−1))(3.4)

≤ d(ti−1,x0)(f(x0)(ti−1, x0), xi−1) + γr,ν(ti − ti−1)Dr(f(x0), f(xi−1))

≤ ϵti−1 + ϵ(ti − ti−1)/2.

Since xi = f(xi)(0, xi) we have ϕ(xi) ≤ Kr(f(xi)) ≤ K(r, ν). Similarly, we have
ϕ(f(xi−1)(ti − ti−1, xi−1)) ≤ K(r, ν). By (2.8) and condition (iii) we have

d(ti,x0)(f(xi−1)(ti − ti−1, xi−1), xi) ≤MK(r,ν)(f(x0))η(ti − ti−1)(3.5)

≤ ϵ(ti − ti−1)/2.

It follows that d(ti,x0)(f(x0)(ti, x0), xi) ≤ ϵti. The inequality (3.3) is proved induc-
tively. By Lemma 3.2 we have

d(xl, xi) ≤ (ti − tl)
(
η + γr,νM

)
for l = 0, 1, . . . , i and i = 0, 1, 2, . . ..

The completeness of E assures the existence of x ∈ Dν(ψ) ∩ Dr(ϕ) such that
xj → x in E as j → ∞. Since η < ϵ, we have τη(ψ(x0)) ≥ τ ϵ(ψ(x0)) and
mη(t;ψ(x0)) ≤ mϵ(t;ψ(x0)) for t ∈ [0, τ ϵ(ψ(x0))). Since tj ≤ h < τ ϵ(ψ(x0)) for
j = 0, 1, . . ., we have ψ(xj) ≤ mϵ(tj ;ψ(x0)) for j = 0, 1, . . .. Taking the limits
in (3.3) and the above inequality as j → ∞, we get d(f(x0)(h, x0), x) ≤ ϵh and
ψ(x) ≤ mϵ(h;ψ(x0)). �
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4. Distance between approximate solutions

Proposition 4.1. Let x0, x̂0 ∈ D. Let ϵ, ϵ̂ > 0, ν > 0, r0 > 0, r > 0, ρ, ρ̂ > 0,
M, M̂ > 0 and τ ∈ (0, 1] satisfy the following conditions:

Dν(ψ) ⊂ Dr0(ϕ).

3γr,νϵ ≤ 1 and 3γr,ν ϵ̂ ≤ 1.

τ ϵ(ψ(x0)) > τ and mϵ(t;ψ(x0)) ≤ ν for t ∈ [0, τ ].

τ ϵ̂(ψ(x̂0)) > τ and mϵ̂(t;ψ(x̂0)) ≤ ν for t ∈ [0, τ ].

τ
(
1 + γr,νM

)
≤ ρ and τ

(
1 + γr,νM̂

)
≤ ρ̂.

K(r0, ν) ≤ r.

βr(f(x)) ≤M for x ∈ Dν(ψ) ∩B[x0, ρ].

βr(f(x)) ≤ M̂ for x ∈ Dν(ψ) ∩B[x̂0, ρ̂].

Let {(tj , xj)}∞j=0 be a sequence in [0, τ ]× (Dν(ψ) ∩Dr(ϕ)) satisfying the following
conditions:

(i) 0 = t0 < t1 < · · · < tj < · · · < τ .
(ii) tj − tj−1 ≤ ϵ/γr,ν for j = 1, 2, . . ..
(iii) d(f(xj−1)(tj − tj−1, xj−1), xj) ≤ ϵ(tj − tj−1)/γr,ν for j = 1, 2, . . ..
(iv) ψ(xj) ≤ mϵ(tj − tl;ψ(xl)) for l = 0, 1, . . . , j and j = 0, 1, . . ..
(v) If x ∈ Dν(ψ) ∩B[xj−1, (tj − tj−1)(1 + γr,νM)], then

Dr(f(x), f(xj−1)) ≤ ϵ/γr,ν for j = 1, 2, . . ..

(vi) limj→∞ tj = τ .

Let {(t̂j , x̂j)}∞j=0 be a sequence in [0, τ ]×(Dν(ψ)∩Dr(ϕ)) satisfying the counterparts
to the conditions described above. Let {sj}∞j=0 be the sequence such that 0 = s0 <
s1 < s2 < · · · and

{sj ; j = 0, 1, . . .} = {tj ; j = 0, 1, . . .} ∪ {t̂j ; j = 0, 1, . . .}.
Then there exists a sequence {(zj , ẑj)}∞j=0 in (Dν(ψ) ∩Dr(ϕ)) × (Dν(ψ) ∩Dr(ϕ))
satisfying the following conditions for each j = 0, 1, 2, . . .:

(a-1) If sj = tp for some nonnegative integer p, then zj = xp; otherwise

d(f(zj−1)(sj − sj−1, zj−1), zj) ≤ 3ϵ(sj − sj−1),

ψ(zj) ≤ mϵ(sj − sj−1;ψ(zj−1)).

(a-2) If sj = t̂p̂ for some nonnegative integer p̂, then ẑj = x̂p̂; otherwise

d(f(ẑj−1)(sj − sj−1, ẑj−1), ẑj) ≤ 3ϵ̂(sj − sj−1),

ψ(ẑj) ≤ mϵ̂(sj − sj−1;ψ(ẑj−1)).

(b-1) For k = 0, 1, · · · , j,

d(zk, zj) ≤ (1 + γr,νM)(sj − sk) + 5γr,νϵ
∑

tl∈{sk+1,...,sj}

(tl − tl−1).

(b-2) For k = 0, 1, · · · , j,

d(ẑk, ẑj) ≤ (1 + γr,νM̂)(sj − sk) + 5γr,ν ϵ̂
∑

t̂l∈{sk+1,...,sj}

(t̂l − t̂l−1).
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(c) Φ(zj , ẑj) ≤ esjων (Φ(x0, x̂0) + Lr(ϵ+ ϵ̂)sj + Γj(ϵ, ϵ̂)), where

Γj(ϵ, ϵ̂) = 5Lrγr,ν

(
ϵ

∑
tl∈{s1,...,sj}

(tl − tl−1) + ϵ̂
∑

t̂l∈{s1,...,sj}

(t̂l − t̂l−1)

)
.

Proof. Set (z0, ẑ0) = (x0, x̂0). Let i ≥ 1 and assume that a sequence {(zj , ẑj)}i−1
j=0 in

(Dν(ψ)∩Dr(ϕ))×(Dν(ψ)∩Dr(ϕ)) is chosen so that conditions (a) through (c) hold
for j = 0, 1, . . . , i−1. We want to construct an element (zi, ẑi) ∈ (Dν(ψ)∩Dr(ϕ))×
(Dν(ψ) ∩ Dr(ϕ)) satisfying conditions (a) through (c). Since si−1 ∈ [0, τ), there
exist two integers p ≥ 1 and p̂ ≥ 1 such that tp−1 ≤ si−1 < tp and t̂p̂−1 ≤ si−1 < t̂p̂.

By the definition of {sj} we have tp−1 ≤ si−1 < si ≤ tp, t̂p̂−1 ≤ si−1 < si ≤ t̂p̂,

tp−1 = sq and t̂p̂−1 = sq̂ for some q ≤ i − 1 and q̂ ≤ i − 1. By (a), we have
zq = xp−1 and ẑq̂ = x̂p̂−1. The construction of the desired element (zi, ẑi) in
(Dν(ψ) ∩Dr(ϕ))× (Dν(ψ) ∩Dr(ϕ)) will be divided into three steps.

Step 1: We construct a sequence {(σj , uj , ûj)}∞j=0 in [si−1, si]×(Dν(ψ)∩Dr(ϕ))×
(Dν(ψ) ∩Dr(ϕ)) satisfying the following conditions:

(I) si−1 = σ0 < σ1 < · · · < σj < · · · < si.
(II-1) d(f(uj−1)(σj − σj−1, uj−1), uj) ≤ ϵ(σj − σj−1)/γr,ν for j = 1, 2, . . ., where

u0 = zi−1.
(II-2) d(f(ûj−1)(σj − σj−1, ûj−1), ûj) ≤ ϵ̂(σj − σj−1)/γr,ν for j = 1, 2, . . ., where

û0 = ẑi−1.
(III-1) ψ(uj) ≤ mϵ(σj − σj−1;ψ(uj−1)) for j = 1, 2, . . ..
(III-2) ψ(ûj) ≤ mϵ̂(σj − σj−1;ψ(ûj−1)) for j = 1, 2, . . ..
(IV) (σj−σj−1)

−1
(
Φ(uj , ûj)−Φ(uj−1, ûj−1)

)
≤ ωνΦ(uj−1, ûj−1)+Lr(ϵ+ ϵ̂) for

j = 1, 2, . . ..
(V) limj→∞ σj = si.

For this purpose, let k ≥ 1 and assume that a sequence {(σj , uj , ûj)}k−1
j=0 in [si−1, si]×

(Dν(ψ)∩Dr(ϕ))× (Dν(ψ)∩Dr(ϕ)) is chosen so that (I) through (IV) hold for j =
1, 2, . . . , k−1. Let h̄k be the supremum of h ∈ (0, 1] such that σk−1+h < si and there
exist u, û ∈ D satisfying d(f(uk−1)(h, uk−1), u) ≤ ϵh/γr,ν , d(f(ûk−1)(h, ûk−1), û) ≤
ϵ̂h/γr,ν , ψ(u) ≤ mϵ(h;ψ(uk−1)), ψ(û) ≤ mϵ̂(h;ψ(ûk−1)) and

h−1
(
Φ(f(uk−1)(h, uk−1), f(ûk−1)(h, ûk−1))− Φ(uk−1, ûk−1)

)
≤ ωνΦ(uk−1, ûk−1) + Lr(ϵ+ ϵ̂)/2.

By Lemma 3.4 and (f3), we have h̄k > 0. This enables us to choose hk ∈ (0, 1], uk ∈
D and ûk ∈ D such that h̄k/2 < hk, σk−1 + hk < si, d(f(uk−1)(hk, uk−1), uk) ≤
ϵhk/γr,ν , d(f(ûk−1)(hk, ûk−1), ûk) ≤ ϵ̂hk/γr,ν , ψ(uk) ≤ mϵ(hk;ψ(uk−1)), ψ(ûk) ≤
mϵ̂(hk;ψ(ûk−1)) and

h−1
k

(
Φ(f(uk−1)(hk, uk−1), f(ûk−1)(hk, ûk−1))− Φ(uk−1, ûk−1)

)
≤ ωνΦ(uk−1, ûk−1) + Lr(ϵ+ ϵ̂)/2.

Set σk = σk−1 + hk. Then we apply Lemma 3.2 to the sequence {x0, . . . , xp−1 =
zq, zq+1, . . . , zi−1 = u0, . . . , uk}, so that uk ∈ Dν(ψ) ∩ Dr(ϕ) and ûk ∈ Dν(ψ) ∩
Dr(ϕ). The sequence {(σj , uj , ûj)}∞j=0 in [si−1, si] × (Dν(ψ) ∩Dr(ϕ)) × (Dν(ψ) ∩
Dr(ϕ)) is thus constructed so that it satisfies conditions (I) through (IV) for j =
1, 2, . . .. Applying Lemma 3.2 to the sequence {x0, . . . , xp−1 = zq, zq+1, . . . , zi−1 =
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u0, . . . , uj}, we have

d(uj , ul) ≤ (σj − σl)(3ϵ+ γr,νM),(4.1)

ψ(uj) ≤ mϵ(σj − σl;ψ(ul))(4.2)

for l = 0, 1, . . . , j and j = 0, 1, . . ., where we have used condition (a) with j =
q+1, . . . , i−1. To show that (V) is satisfied, we assume limj→∞ σj = σ̄ < si. Since
sq = tp−1 ≤ si−1 < si ≤ tp, we have {sq+1, . . . , si−1}∩{tj ; j = 0, 1, . . .} = ∅. By the
completeness of E we see from (4.1) that there exists u∞ ∈ Dν(ψ)∩Dr(ϕ) such that
d(uj , u∞) → 0 as j → ∞. The lower semi-continuity of ψ implies that ψ(u∞) ≤
mϵ(σ̄ − σk−1;ψ(uk−1)) for k ≥ 1. Similarly, there exists û∞ ∈ Dν(ψ) ∩Dr(ϕ) such
that d(ûj , û∞) → 0 as j → ∞ and such that ψ(û∞) ≤ mϵ̂(σ̄ − σk−1;ψ(ûk−1))
for k ≥ 1. Since (u∞, û∞) ∈ Dν(ψ) × Dν(ψ), we deduce from Lemma 3.4 and
condition (f3) that there exist h ∈ (0, 1/2], vh ∈ D and v̂h ∈ D satisfying σ̄ + h <
si, d(f(u∞)(h, u∞), vh) ≤ ϵh/(2γr,ν), d(f(û∞)(h, û∞), v̂h) ≤ ϵ̂h/(2γr,ν), ψ(vh) ≤
mϵ(h;ψ(u∞)), ψ(v̂h) ≤ mϵ̂(h;ψ(û∞)) and

h−1
(
Φ(f(u∞)(h, u∞), f(û∞)(h, û∞))− Φ(u∞, û∞)

)
(4.3)

≤ ωνΦ(u∞, û∞) + Lr(ϵ+ ϵ̂)/3.

Set δk = σ̄ + h − σk−1 for k ≥ 1. Then we have σk−1 + δk < si and ψ(vh) ≤
mϵ(δk;ψ(uk−1)) for k ≥ 1. We apply Lemma 3.2 to get βr(f(uk−1)) ≤ M for
k ≥ 1. By (2.9) with w = uk−1, t = δk, s = h and x = uk−1, we have

(4.4) d(f(uk−1)(δk, uk−1), f(uk−1)(h, uk−1)) ≤ γr,νM(σ̄ − σk−1)

for k ≥ 1, where we have used the fact that δk−h = σ̄−σk−1. Since u∞ ∈ Dν(ψ) ⊂
Dr0(ϕ), we have ϕ(f(u∞)(t, u∞)) ≤ Kr0(f(u∞)) ≤ r for t ∈ [0, 1]. Similarly, we
have ϕ(f(uk−1)(t, uk−1)) ≤ r for t ∈ [0, 1]. By (2.11) we have

d(h,u∞)(f(uk−1)(h, uk−1), f(u∞)(h, u∞))

≤ d(0,u∞)(uk−1, u∞) + γr,νhDr(f(uk−1), f(u∞)).

This combined with (4.4) yields

(4.5) lim
k→∞

d(f(uk−1)(δk, uk−1), f(u∞)(h, u∞)) = 0,

and so there exists an integer k1 ≥ 1 such that d(f(uk−1)(δk, uk−1), vh) ≤ ϵh/γr,ν
for k ≥ k1. Similarly, we find an integer k2 ≥ 1 such that d(f(ûk−1)(δk, ûk−1), v̂h) ≤
ϵ̂h/γr,ν for k ≥ k2. By (4.5) we apply condition (Φ1) to prove

lim
k→∞

Φ(f(uk−1)(δk, uk−1), f(ûk−1)(δk, ûk−1)) = Φ(f(u∞)(h, u∞), f(û∞)(h, û∞)).

Since δk → h as k → ∞, we see from (4.3) that there exists an integer k3 ≥ 1
satisfying δk ∈ (0, 1] and

δ−1
k

(
Φ(f(uk−1)(δk, uk−1), f(ûk−1)(δk, ûk−1))− Φ(uk−1, ûk−1)

)
≤ ωνΦ(uk−1, ûk−1) + Lr(ϵ+ ϵ̂)/2

for k ≥ k3. By the definition of h̄k we have h̄k ≥ δk for k ≥ max{k1, k2, k3}. This
contradicts the fact that h̄k → 0 and δk → h as k → ∞. The verification of (V) is
thus completed.
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Step 2: We prove that there exists (wi, ŵi) ∈ (Dν(ψ)∩Dr(ϕ))×(Dν(ψ)∩Dr(ϕ))
satisfying the following five conditions:

ψ(wi) ≤ mϵ(si − si−1;ψ(zi−1)).(4.6)

ψ(ŵi) ≤ mϵ̂(si − si−1;ψ(ẑi−1)).(4.7)

d(si,zi−1)(f(zi−1)(si − si−1, zi−1), wi) ≤ 3ϵ(si − si−1).(4.8)

d(si,ẑi−1)(f(ẑi−1)(si − si−1, ẑi−1), ŵi) ≤ 3ϵ̂(si − si−1).(4.9)

Φ(wi, ŵi) ≤ e(si−si−1)ων
(
Φ(zi−1, ẑi−1) + Lr(ϵ+ ϵ̂)(si − si−1)

)
.(4.10)

Let {(σj , uj , ûj)}∞j=0 be the sequence in [si−1, si]×(Dν(ψ)∩Dr(ϕ))×(Dν(ψ)∩Dr(ϕ))
constructed in Step 1. Since {uj} is a Cauchy sequence in E (see (4.1)), there
exists wi ∈ Dν(ψ) ∩Dr(ϕ) such that limj→∞ d(uj , wi) = 0. Similarly, there exists
ŵi ∈ Dν(ψ) ∩Dr(ϕ) such that limj→∞ d(ûj , ŵi) = 0. The inequality (4.6) follows
from (4.2). Similarly, the inequality (4.7) is obtained. The inequality (4.10) follows
by a passage to the limit in the inequality

Φ(uj , ûj) ≤ e(σj−σ0)ων
(
Φ(u0, û0) + Lr(ϵ+ ϵ̂)(σj − σ0)

)
for j = 0, 1, . . ., which is obtained inductively by (IV). To prove (4.8) it suffices to
demonstrate that

d(σj ,zi−1)(f(zi−1)(σj − si−1, zi−1), uj) ≤ 3ϵ(σj − si−1)(4.11)

for j = 0, 1, . . .. The case where j = 0 is trivial, since σ0 = si−1 and u0 = zi−1. Let
k ≥ 1 and assume that (4.11) with j = k − 1 holds. Applying Lemma 3.2 to the
sequence {x0, . . . , xp−1 = zq, zq+1, . . . , zi−1 = u0, . . . , ul}, we find that

d(ul, xp−1) ≤ (σl − tp−1)(3ϵ+ γr,νM) ≤ (tp − tp−1)(1 + γr,νM)

for l = 0, 1, . . . ., where we have used conditions (iii) and (iv) with j = 1, . . . , p− 1,
condition (a-1) with j = q + 1, . . . , i − 1 and conditions (II-1) and (III-1) with
j = 1, . . . , l. This implies ul ∈ B[xp−1, (tp − tp−1)(1 + γr,νM)] and we see from
condition (v) that Dr(f(ul), f(xp−1)) ≤ ϵ/γr,ν for l ≥ 0. Since zi−1 = u0, it follows
that

Dr(f(ul), f(zi−1)) ≤ Dr(f(ul), f(xp−1)) +Dr(f(xp−1), f(zi−1)) ≤ 2ϵ/γr,ν(4.12)

for l ≥ 0. Similarly to the derivation of (3.4), we apply Lemma 2.6 (ii) to obtain

d(σk,zi−1)(f(zi−1)(σk − si−1, zi−1), f(uk−1)(σk − σk−1, uk−1))

≤ d(σk−1,zi−1)(f(zi−1)(σk−1 − si−1, zi−1), uk−1)

+ γr,ν(σk − σk−1)Dr(f(zi−1), f(uk−1)).

Just as in the proof of (3.5), we have d(σk,zi−1)(f(uk−1)(σk − σk−1, uk−1), uk) ≤
ϵ(σk − σk−1) by condition (II-1) with j = k. It follows from (4.12) with l = k − 1
and (4.11) with j = k − 1 that

d(σk,zi−1)(f(zi−1)(σk − si−1, zi−1), uk)

≤ 3ϵ(σk−1 − si−1) + 2ϵ(σk − σk−1) + ϵ(σk − σk−1) ≤ 3ϵ(σk − si−1).

The verification of (4.11) is thus completed. Similarly, the desired inequality (4.9)
is obtained.
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Step 3: We define (zi, ẑi) ∈ (Dν(ψ) ∩Dr(ϕ))× (Dν(ψ) ∩Dr(ϕ)) by

zi =

{
xp if si = tp,

wi otherwise,
ẑi =

{
x̂p̂ if si = t̂p̂,

ŵi otherwise.

We want to show that the element (zi, ẑi) satisfies conditions (a) through (c) with
j = i. From (4.6) through (4.9) we see that (a) is satisfied for j = i. To show that
(b) is satisfied for j = i, consider the case where si = tp, and then sq = tp−1 ≤
si−1 < si = tp. Note that zq = xp−1 and sj ̸= tk for q + 1 ≤ j ≤ i − 1 and
k = 0, 1, . . .. Then we see from condition (a) that

d(f(zj−1)(sj − sj−1, zj−1), zj) ≤ 3ϵ(sj − sj−1),(4.13)

ψ(zj) ≤ mϵ(sj − sj−1;ψ(zj−1))

for q + 1 ≤ j ≤ i− 1 To attain our objective, we first prove that

d(si,zq)(f(zq)(si − sq, zq), wi) ≤ 4γr,νϵ(si − sq).(4.14)

Obviously, (4.8) implies (4.14) with q = i− 1. Let q < i− 1. Applying Lemma 3.2
to the sequence {x0, x1, . . . , xp−1 = zq, zq+1, . . . , zi−1}, we see that βr(f(zj)) ≤ M
and that d(zj , xp−1) ≤ (sj − tp−1)

(
3ϵ + γr,νM

)
≤ (tp − tp−1)

(
1 + γr,νM

)
for j =

q, q + 1, . . . , i− 1. By (v), we have

Dr(f(zj), f(zq)) = Dr(f(zj), f(xp−1)) ≤ ϵ/γr,ν(4.15)

for j = q, q + 1, . . . , i− 1. By Lemma 2.6 (ii) we find that

(4.16) d(si,zq)(f(zq)(si − si−1, zi−1), f(zi−1)(si − si−1, zi−1)) ≤ ϵ(si − si−1).

Since wi = f(wi)(0, wi), we have ϕ(wi) ≤ Kr(f(wi)) ≤ K(r, ν). Similarly, we
have ϕ(f(zi−1)(si − si−1, zi−1)) ≤ K(r, ν). Applying (2.7) and (2.8), we infer from
(4.8) that d(si,zq)(f(zi−1)(si − si−1, zi−1), wi) ≤ 3γr,νϵ(si − si−1). Addition of this
inequality and (4.16) gives

d(si,zq)(f(zq)(si − si−1, zi−1), wi) ≤ 4γr,νϵ(si − si−1).(4.17)

To prove (4.14) we need to show that

d(sj ,zq)(f(zq)(sj − sq, zq), zj) ≤ 4γr,νϵ(sj − sq)(4.18)

for j = q, q + 1, . . . , i − 1. The inequality (4.18) holds trivially for j = q. Let
q + 1 ≤ k ≤ i − 1 and assume that (4.18) with j = k − 1 holds. Similarly to the
derivation of (3.4), we deduce from Lemma 2.6 (ii) that

d(sk,zq)(f(zq)(sk − sq, zq), f(zk−1)(sk − sk−1, zk−1))

≤ d(sk−1,zq)(f(zq)(sk−1 − sq, zq), zk−1)) + γr,ν(sk − sk−1)Dr(f(zq), f(zk−1)).

It follows from (4.18) and (4.15) with j = k − 1 and (4.13) with j = k that

d(sk,zq)(f(zq)(sk − sq, zq), zk) ≤ 4γr,νϵ(sk − sq).

The inequality (4.18) is inductively proved for j = q, q + 1, . . . , i− 1. By (2.6) and
(4.18) with j = i− 1, we have

d(si,zq)(f(zq)(si − sq, zq), f(zq)(si − si−1, zi−1))

= d(si,zq)(f(zq)(si − si−1, f(zq)(si−1 − sq, zq)), f(zq)(si − si−1, zi−1))

≤ d(si−1,zq)(f(zq)(si−1 − sq, zq), zi−1) ≤ 4γr,νϵ(si−1 − sq).
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Combining this inequality and (4.17), we get the desired inequality (4.14). Since
tp−1 = sq, tp = si and zq = xp−1, it follows from condition (iii) with j = p and
(4.14) combined with (2.7) that

d(xp, wi) ≤ d(xp, f(xp−1)(tp − tp−1, xp−1)) + d(f(zq)(si − sq, zq), wi)

≤ ϵ(tp − tp−1)/γr,ν + 4γr,νϵ(si − sq)

≤ 5γr,νϵ(tp − tp−1),

hence

d(zi, wi) ≤ 5γr,νϵ
∑
tl=si

(tl − tl−1).(4.19)

By (2.7), (2.9) and (4.8) we have

d(zi−1, wi) ≤ d(zi−1, f(zi−1)(si − si−1, zi−1)) + d(f(zi−1)(si − si−1, zi−1), wi)

≤ γr,νβr(f(zi−1))(si − si−1) + 3ϵ(si − si−1)

≤
(
γr,νM + 3ϵ

)
(si − si−1) ≤ (1 + γr,νM)(si − si−1),

and hence

d(zi, zi−1) ≤ 5γr,νϵ
∑
tj=si

(tj − tj−1) + (1 + γr,νM)(si − si−1).

From this and (b-1) with j = i− 1 we see that (b-1) is satisfied for j = i. Similarly,
(b-2) is proved to be satisfied for j = i, and

d(ẑi, ŵi) ≤ 5γr,ν ϵ̂
∑
t̂l=si

(t̂l − t̂l−1).(4.20)

By (4.10), (4.19) and (4.20), we have

Φ(zi, ẑi) ≤ e(si−si−1)ων

{(
Φ(zi−1, ẑi−1) + Lr(ϵ+ ϵ̂)(si − si−1)

)
+ 5Lrγr,ν

(
ϵ
∑
tl=si

(tl − tl−1) + ϵ̂
∑
t̂l=si

(t̂l − t̂l−1)

)}
,

where we have used condition (Φ1). From this and (c) with j = i − 1 we see that
(c) is satisfied for j = i. �

5. Proof of the main theorem

Proposition 5.1. For any x0 ∈ D, there exist τ > 0 and a solution u ∈ C([0, τ);X)
to the mutational equation

◦
u (t) ∋ f(u(t)) for t ∈ [0, τ) and u(0) = x0(ME)

satisfying ψ(u(t)) ≤ m(t;ψ(x0)) for t ∈ [0, τ).

Proof. Let x0 ∈ D. Then, by Lemma 3.1 there exist ϵ0 > 0, ν > 0, r0 > 0,
r > 0, ρ > 0, M > 0 and τ ∈ (0, 1] such that Dν(ψ) ⊂ Dr0(ϕ), τ

ϵ(ψ(x0)) > τ ,
mϵ(t;ψ(x0)) ≤ ν for t ∈ [0, τ ] and ϵ ∈ (0, ϵ0], τ(1 + γr,νM) ≤ ρ, K(r0, ν) ≤ r
and βr(f(x)) ≤ M for any x ∈ Dν(ψ) ∩ B[x0, ρ]. Take a smaller ϵ0 > 0 so that
3γr,νϵ0 ≤ 1. Proposition 3.3 asserts that for any ϵ ∈ (0, ϵ0] there exists a sequence
{(tϵj , xϵj)}∞j=0 in [0, τ ]× (Dν(ψ) ∩Dr(ϕ)) satisfying the following conditions:

(i) 0 = tϵ0 < tϵ1 < · · · < tϵj < · · · < τ .
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(ii) tϵj − tϵj−1 ≤ ϵ/γr,ν for j = 1, 2, . . ..
(iii) d(f(xϵj−1)(t

ϵ
j − tϵj−1, x

ϵ
j−1), x

ϵ
j) ≤ ϵ(tϵj − tϵj−1)/γr,ν for j = 1, 2, . . ., where

xϵ0 = x0.
(iv) ψ(xϵj) ≤ mϵ(tϵj − tϵl ;ψ(x

ϵ
l )) for l = 0, 1, . . . , j and j = 1, 2, . . ..

(v) If x ∈ Dν(ψ) ∩B[xϵj−1, (t
ϵ
j − tϵj−1)(1 + γr,νM)], then

Dr(f(x), f(x
ϵ
j−1)) ≤ ϵ/γr,ν for j = 1, 2, . . ..

(vi) limj→∞ tϵj = τ .

For each ϵ ∈ (0, ϵ0], we define uϵ : [0, τ) → (Dν(ψ) ∩Dr(ϕ)) by

uϵ(t) = xϵj−1 for t ∈ [tϵj−1, t
ϵ
j) and j = 1, 2, . . ..

By Lemma 3.2 (a) we have

d(uϵ(t), uϵ(s)) ≤ (ϵ+ γr,νM)(|t− s|+ 2ϵ) for t, s ∈ [0, τ).(5.1)

Let λ, µ ∈ (0, ϵ0] and let {sj}∞j=0 be the sequence such that {sj ; j = 0, 1, . . .} =

{tλj ; j = 0, 1, . . .} ∪ {tµj ; j = 0, 1, . . .} and 0 = s0 < s1 < s2 < . . .. Then Proposition

4.1 asserts that there exists a sequence {(zλj , z
µ
j )}∞j=0 in (Dν(ψ)∩Dr(ϕ))×(Dν(ψ)∩

Dr(ϕ)) satisfying the following conditions for each j = 0, 1, 2, . . .:

(a-1) If sj = tλp for some nonnegative integer p, then zλj = xλp ; otherwise

d(f(zλj−1)(sj − sj−1, z
λ
j−1), z

λ
j ) ≤ 3λ(sj − sj−1),

ψ(zλj ) ≤ mλ(sj − sj−1;ψ(z
λ
j−1)).

(a-2) If sj = tµq for some nonnegative integer q, then zµj = xµq ; otherwise

d(f(zµj−1)(sj − sj−1, z
µ
j−1), z

µ
j ) ≤ 3µ(sj − sj−1),

ψ(zµj ) ≤ mµ(sj − sj−1;ψ(z
µ
j−1)).

(b-1) For i = 0, 1, · · · , j,

d(zλi , z
λ
j ) ≤ (1 + γr,νM)(sj − si) + 5γr,νλ

∑
tλp∈{si+1,...,sj}

(tλp − tλp−1).

(b-2) For i = 0, 1, · · · , j,

d(zµi , z
µ
j ) ≤ (1 + γr,νM)(sj − si) + 5γr,νµ

∑
tµp∈{si+1,...,sj}

(tµp − tµp−1).

(c) Φ(zλj , z
µ
j ) ≤ esjων (Lr(λ+ µ)sj + δj(λ, µ)), where

δj(λ, µ) = 5Lrγr,ν

(
λ

∑
tλp∈{s1,...,sj}

(tλp − tλp−1) + µ
∑

tµp∈{s1,...,sj}

(tµp − tµp−1)

)
.

Let t ∈ [0, τ). Then there exist positive integers i, p, q, l(≤ i − 1) and k(≤ i − 1)
such that tλp−1 ≤ si−1 ≤ t < si ≤ tλp , t

µ
q−1 ≤ si−1 ≤ t < si ≤ tµq , t

λ
p−1 = sl and

tµq−1 = sk. Since {tλj ; j = 0, 1, . . .} ∩ {sl+1, . . . , si−1} = ∅, we see from (b-1) that

d(zλi−1, z
λ
l ) ≤ (1 + γr,νM)(sλi−1 − sλl ) ≤ λ(1 + γr,νM).

Similarly, we have d(zµi−1, z
µ
k ) ≤ µ(1 + γr,νM). By condition (Φ1) we have

|Φ(zλl , z
µ
k )− Φ(zλi−1, z

µ
i−1)| ≤ Lr(d(z

λ
i−1, z

λ
l ) + d(zµi−1, z

µ
k )).
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Since uλ(t) = xλp−1 = zλl and uµ(t) = xµq−1 = zµk , it follows from (c) that

Φ(uλ(t), uµ(t)) ≤ Lr(λ+ µ)(1 + γr,νM)

+ eτων
(
Lr(λ+ µ)τ + 5Lrγr,ν(λ+ µ)τ

)
.

By condition (Φ2) we have limλ,µ↓0 sup{d(uλ(t), uµ(t)); t ∈ [0, τ)} = 0. By the
completeness of E, there exists a measurable function u on [0, τ) to E such that
u(t) ∈ Dν(ψ) ∩ Dr(ϕ) for t ∈ [0, τ) and the family {uϵ} converges to u uniformly
on [0, τ) as ϵ ↓ 0. Moreover, we have ψ(u(t)) ≤ m(t;ψ(x0)) for t ∈ [0, τ). By (5.1)
we have d(u(t), u(s)) ≤ γr,νM |t− s| for t, s ∈ [0, τ), and hence u ∈ C([0, τ);E).

To show that u is a solution to (ME), let t ∈ [0, τ) be fixed. Choose h0 ∈ (0, τ−t)
and let h ∈ (0, h0]. Take ϵ ∈ (0, ϵ0] so that t + h + ϵ < τ , and assume that
tϵl ≤ t < tϵl+1 and tϵk ≤ t + h < tϵk+1. Obviously, we have l ≤ k and 0 ≤ tϵk − tϵl ≤
(t+ h)− (t− ϵ) = h+ ϵ. By Lemma 3.2 (a) we have

d(u(t), xϵj) ≤ d(u(t), uϵ(t)) + (1 + γr,νM)(tϵj − tϵl ) ≤ δ(ϵ) + h(1 + γr,νM)

for j = l, . . . , k, where

δ(ϵ) = d(u(t), uϵ(t)) + ϵ(1 + γr,νM).

It follows that

Dr(f(x
ϵ
l ), f(x

ϵ
j)) ≤ 2Λ

(
δ(ϵ) + h(1 + γr,νM)

)
(5.2)

for j = l, . . . , k, where

Λ(δ) = sup{Dr(f(u(t)), f(w)); w ∈ Dν(ψ), d(u(t), w) ≤ δ}
for δ > 0. Note that limδ↓0 Λ(δ) = 0. We shall prove that

d(tϵj ,xϵ
l )
(f(xϵl )(t

ϵ
j − tϵl , x

ϵ
l ), x

ϵ
j)(5.3)

≤ γr,ν(t
ϵ
j − tϵl )

{
ϵ+ 2Λ

(
δ(ϵ) + h(1 + γr,νM)

)}
for j = l, l + 1, . . . , k. The inequality (5.3) with j = l holds obviously. Let l + 1 ≤
j ≤ k and assume that (5.3) with j replaced by j − 1 holds. Similarly to the
derivation of (3.4), we apply (2.11) to get

d(tϵj ,xϵ
l )
(f(xϵl )(t

ϵ
j − tϵl , x

ϵ
l ), f(x

ϵ
j−1)(t

ϵ
j − tϵj−1, x

ϵ
j−1))

≤ d(tϵj−1,x
ϵ
l )
(f(xϵl )(t

ϵ
j−1 − tϵl , x

ϵ
l ), x

ϵ
j−1) + γr,ν(t

ϵ
j − tϵj−1)Dr(f(x

ϵ
l ), f(x

ϵ
j−1))

≤ γr,ν(t
ϵ
j−1 − tϵl )

(
ϵ+ 2Λ

(
δ(ϵ) + h(1 + γr,νM)

))
+ 2γr,ν(t

ϵ
j − tϵj−1)Λ

(
δ(ϵ) + h(1 + γr,νM)

)
,

where we have used (5.2) and (5.3) with j replaced by j − 1. Combining this
inequality and the inequality that d(tϵj ,xϵ

l )
(f(xϵj−1)(t

ϵ
j−tϵj−1, x

ϵ
j−1), x

ϵ
j) ≤ ϵ(tϵj−tϵj−1),

we obtain (5.3), and so the desired inequality (5.3) is inductively proved. By (2.7)
and (5.3) with j = k, we have

d(f(uϵ(t))(tϵk − tϵl , u
ϵ(t)), uϵ(t+ h))(5.4)

≤ γr,ν(t
ϵ
k − tϵl )

{
ϵ+ 2Λ

(
δ(ϵ) + h(1 + γr,νM)

)}
.

Since ϕ(f(u(t))(tϵk − tϵl , u(t))) ≤ Kr0(f(u(t))) ≤ r, we apply (2.11) to obtain

d(f(u(t))(tϵk − tϵl , u(t)), f(u
ϵ(t))(tϵk − tϵl , u

ϵ(t)))

≤ γr,ν
(
d(uϵ(t), u(t)) + (tϵk − tϵl )Dr(f(u

ϵ(t)), f(u(t)))
)
.



MUTATIONAL EQUATIONS 19

A passage to the limit in this inequality combined with (5.4) as ϵ ↓ 0 yields

d(f(u(t))(h, u(t)), u(t+ h)) ≤ 2γr,νhΛ
(
h(1 + γr,νM)

)
.

This proves lim suph↓0 h
−1d(f(u(t))(h, u(t)), u(t+ h)) = 0. �

Proposition 5.2. For i = 1, 2, let ui ∈ C([0, τ);X) be a solution to the mutational

equation
◦
ui (t) ∋ f(ui(t)) for t ∈ [0, τ) such that ui(t) ∈ Dν(ψ) for t ∈ [0, τ). Then,

Φ(u1(t), u2(t)) ≤ eωνtΦ(u1(0), u2(0)) for t ∈ [0, τ).

Proof. Let t ∈ [0, τ) and choose h0 ∈ (0, τ−t). Take r0 > 0 so that Dν(ψ) ⊂ Dr0(ϕ)
by condition (H), and set r = K(r0, ν). Since ui(s) ∈ Dν(ψ) ⊂ Dr0(ϕ) for s ∈ [0, τ),
we observe that ϕ(f(ui(s))(h, ui(s))) ≤ r for s ∈ [0, τ), h ∈ [0, h0] and i = 1, 2. By
condition (Φ1) we have

h−1(Φ(u1(t+ h), u2(t+ h))− Φ(u1(t), u2(t)))

≤ Lr
{
h−1d(u1(t+ h), f(u1(t))(h, u1(t))) + h−1d(u2(t+ h), f(u2(t))(h, u2(t)))

}
+ h−1(Φ(f(u1(t))(h, u1(t)), f(u2(t))(h, u2(t)))− Φ(u1(t), u2(t)))

for h ∈ (0, h0]. It follows from condition (f3) that

lim inf
h↓0

h−1(Φ(u1(t+ h), u2(t+ h))− Φ(u1(t), u2(t))) ≤ ωνΦ(u1(t), u2(t)).

The desired inequality is obtained. �

Proof of Theorem 2.3. Assertion (ii) follows from assertion (i) and Proposition
5.2. To verify assertion (i), let x ∈ D and set τ∞ = τ(ψ(x)). By τ̄ we denote
the supremum of τ ∈ (0, τ∞] such that there exists a solution u ∈ C([0, τ);E)

to the mutational equation
◦
u (t) ∋ f(u(t)) for t ∈ [0, τ) and u(0) = x satisfying

ψ(u(t)) ≤ m(t;ψ(x)) for t ∈ [0, τ). The existence of such a solution is ensured by
Proposition 5.1, and so the definition of τ̄ makes sense and τ̄ ∈ (0, τ∞]. Assume
to the contrary that τ̄ < τ∞. Then there exists a unique solution u on [0, τ̄) to

the mutational equation
◦
u (t) ∋ f(u(t)) for t ∈ [0, τ̄) and u(0) = x satisfying

ψ(u(t)) ≤ m(t;ψ(x)) for t ∈ [0, τ̄). Set ν = sup{m(t;ψ(x)); t ∈ [0, τ̄ ]}. Then we
have ν < ∞ and u(t) ∈ Dν(ψ) for t ∈ [0, τ̄). By condition (H) there exists r > 0
such that Dν(ψ) ⊂ Dr(ϕ). Let h ∈ (0, τ̄) and v(t) = u(t + h) for t ∈ [0, τ̄ − h).

Since v is a solution to
◦
v (t) ∋ f(v(t)) on t ∈ [0, τ̄ − h) and v(0) = u(h), we apply

Proposition 5.2 with u1 = v and u2 = u to get Φ(u(t+h), u(t)) ≤ eωνtΦ(u(h), u(0))
for t ∈ [0, τ̄ − h). Since Φ(u(h), u(0)) → 0 as h ↓ 0, we observe from condition (Φ2)
that the limit x̄ = limt↑τ̄ u(t) exists in E and is in Dν(ψ) ∩Dr(ϕ). By Proposition

5.1 there exist σ > 0 and a solution w to
◦
w (t) ∋ f(w(t)) for t ∈ [0, σ) and w(0) = x̄

satisfying ψ(w(t)) ≤ m(t;ψ(x̄)) for t ∈ [0, σ). This means that u can be extended
beyond τ̄ , which contradicts the definition of τ̄ . �

6. Relation with Kato’s quasilinear theory

This section is devoted to the study of the abstract quasilinear evolution equation
described in Section 2. We use the same notations as in Section 2. The purpose is
to derive the following theorem from the main theorem (Theorem 2.3).
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Theorem 6.1. Let u0 ∈ Y and set τ0 = τ(Nu0(Su0)). Then there exists a unique
solution u ∈ C([0, τ0);X) to (QE;u0) in the sense that u(0) = u0, u(t) ∈ Y for
t ∈ [0, τ0), ∥u(t)∥Y is locally bounded on [0, τ0) and (d/dt)+u(t) = A(u(t))u(t) for
t ∈ [0, τ0). Moreover, the unique solution u satisfies

Nu(t)(Su(t)) ≤ m(t;Nu0(Su0)) for t ∈ [0, τ0),

where m is the maximal solution to the initial value problem (2.5) with

(6.1) g(p) = (βA(p) + λN (p)λB(p) + µN (p)λA(p)p)p for p ≥ 0.

Proof. Let E = X and D = Y , and consider the functional ψ from E into [0,∞]
defined by ψ(x) = Nx(Sx) if x ∈ D, and ψ(x) = ∞ otherwise. Then ψ is lower
semicontinuous on E. Since ϕ(x) = ∥Sx∥X ≤ Nx(Sx) = ψ(x) for x ∈ D, we
have Dν(ψ) ⊂ Dν(ϕ) = Yν , which implies that condition (H) is satisfied. From
Proposition 2.1 we observe that conditions (S1) and (S2) are satisfied. Define
Φ(x, y) = Nx(x− y) for (x, y) ∈ E×E. To verify condition (Φ1), let (x, y), (x̂, ŷ) ∈
Dr(ϕ)×Dr(ϕ). By condition (N) we have

Nx(x− y) ≤ Nx̂(x− y)(1 + µN (r)∥x− x̂∥X) ≤ Nx̂(x− y) + 2µN (r)λN (r)rd(x, x̂),

where we have used the fact that Nx̂(x) ≤ λN (r)∥x∥X ≤ λN (r)∥x∥Y . Since
Nx(x− y)−Nx̂(x̂− ŷ) ≤ Nx̂(x− x̂− (y − ŷ)) + 2µN (r)λN (r)rd(x, x̂),

we have Φ(x, y) − Φ(x̂, ŷ) ≤ λN (r)(1 + 2µN (r)r)(d(x, x̂) + d(y, ŷ)). This means
that condition (Φ1) with Lr = λN (r)(1 + 2µN (r)r) is satisfied. Since Dν(ψ) ⊂ Yν ,
condition (Φ2) with mν = 1 and Mν = λN (ν) follows from condition (N).

We shall prove that the mapping f on D to Θ(X) defined by f(w) = ϑw for w ∈
D satisfies conditions (f1) through (f3). To prove condition (f1), let w0, w ∈ Dν(ψ).
Since Dν(ψ) ⊂ Dν(ϕ) = Yν , we see from condition (A3) that limh↓0 h

−1∥Tw(h)x−
Tw0(h)x∥X = ∥A(w)x − A(w0)x∥X ≤ µA(ν)∥w − w0∥X∥x∥Y for x ∈ D; hence
Dr(f(w), f(w0)) ≤ µA(ν)r∥w − w0∥X . Condition (f1) is thus satisfied. To verify
(f3), let x, y ∈ Dν(ψ). Then we have x, y ∈ Yν . Take r > ν arbitrarily. Since
limh↓0 Tx(h)x = x in Y , there exists h0 ∈ (0, 1] such that ∥f(x)(h, x)−x∥Y ≤ r− ν
for h ∈ (0, h0]. Note that f(x)(h, x) ∈ Dr(ϕ) for h ∈ (0, h0]. By condition (N) we
have

Φ(f(x)(h, x), f(y)(h, y)) ≤ Nx(Tx(h)x− Ty(h)y)(1 + µN (r)∥Tx(h)x− x∥X)

≤ Nx(Tx(h)(x− y)) + λN (ν)∥Tx(h)y − Ty(h)y∥X
+ µN (r)Nx(Tx(h)x− Ty(h)y)∥Tx(h)x− x∥X

for h ∈ (0, h0]. By condition (A1) we have Nx(Tx(h)(x − y)) ≤ eβA(ν)hNx(x − y).
It follows that

lim sup
h↓0

h−1(Φ(f(x)(h, x), f(y)(h, y))− Φ(x, y))

≤ βA(ν)Φ(x, y) + λN (ν)∥A(x)y −A(y)y∥X + µN (r)Φ(x, y)∥A(x)x∥X .

From condition (A3) we see that condition (f3) with ων = βA(ν) + λN (ν)µA(ν)ν +
µN (ν)λA(ν)ν is satisfied. Finally, to verify condition (f2), let x ∈ D. Take r >
0 arbitrarily such that ∥x∥Y < r, and then there exists h0 ∈ (0, 1] such that
f(x)(h, x) ∈ Dr(ϕ) for h ∈ (0, h0]. Let h ∈ (0, h0]. By (2.4) we have

Nx(STx(h)x) ≤ eβA(r)hNx(Sx) +

∫ h

0

eβA(r)(h−s)Nx(B(x)STx(s)x) ds.
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By condition (N) we have

Nf(x)(h,x)(Sf(x)(h, x)) ≤ Nx(Sf(x)(h, x))(1 + µN (r)∥f(x)(h, x)− x∥X).

These inequalities together imply that

lim sup
h↓0

h−1(ψ(f(x)(h, x))− ψ(x))

≤ βA(r)ψ(x) +Nx(B(x)Sx) + ψ(x)µN (r)∥A(x)x∥X ,

and the right-hand side is bounded by (βA(r) + λN (r)λB(r) + µN (r)λA(r)r)ψ(x).
Since r is arbitrarily given so that r > ∥x∥Y , the continuous function g defined
by (6.1) satisfies condition (f2) with xh = f(x)(h, x), where we have used the
fact that ∥x∥Y ≤ ψ(x) and functions βA, λN , λB , µN and λA are nondecreasing.
Theorem 2.3 asserts that there exist τ > 0 and a unique u ∈ C([0, τ);E) such
that u(t) ∈ D for t ∈ [0, τ), the function t → ψ(u(t)) is locally bounded on [0, τ)
and limh↓0 h

−1d(f(u(t))(h, u(t)), u(t + h)) = 0 for t ∈ [0, τ). Since D = Y , we
have u(t) ∈ Y ⊂ D(A(u(t))) for t ∈ [0, τ) and the function t → ∥u(t)∥Y is locally
bounded on [0, τ). By condition (A1) we have limh↓0 h

−1(Tu(t)(h)u(t) − u(t)) =
A(u(t))u(t) for t ∈ [0, τ). It follows that that u is right-differentiable on [0, τ) and
(d/dt)+u(t) = A(u(t))u(t) for t ∈ [0, τ). �

Remark 6.2. The main result in [5] has an advantage in that the regularity of
solutions obtained is better than ours. Applying Theorem 6.1 and the linear theory
developed by Kato [6], we can prove that for each u0 ∈ Y there exist τ > 0
and a unique solution u ∈ C([0, τ);Y ) ∩ C1([0, τ);X) to (QE;u0), which is due
to Hughes et. al. [5]. Indeed, let u be a solution to (QE) on [0, τ) in the sense
of Theorem 6.1 and let σ ∈ (0, τ) be arbitrary. Since u is Lipschitz continuous
in X and bounded in Y on [0, σ], we deduce from [5, Lemmas 2.1, 2.2 and 2.5]
that the family {A(u(t)); t ∈ [0, σ]} of linear operators in X generates an evolution
operator {Uu(t, s); 0 ≤ s ≤ t ≤ σ} on X in the sense of [6, Theorem 1]. Since
(d/ds)+Uu(t, s)u(s) = Uu(t, s)((d/ds)+u(s) − A(u(s))u(s)) = 0 for 0 ≤ s ≤ t and
t ∈ [0, σ], we have u(t) = Uu(t, 0)u0 for t ∈ [0, σ], and the right-hand side is
continuous in Y on [0, σ], since u0 ∈ Y . This proves that u ∈ C([0, τ);Y ). Since
(d/dt)+u(t) = A(u(t))u(t) for t ∈ [0, τ) and the right-hand side is continuous in
X on [0, τ), we conclude that u ∈ C1([0, τ);X) and (d/dt)u(t) = A(u(t))u(t) for
t ∈ [0, τ).

Finally, we give a sufficient condition for the global solvability in terms of βA
and λB . If the function βA is taken as a negative constant and limp↓0 λB(p) = 0,
then the maximal solution for the function g defined by (6.1) exists globally in time
for sufficiently small p > 0, so that (QE) with small data is globally well-posed in
time. For example, consider an equation of the form

u′′(t) + σ(|A1/2u(t)|2)Au(t) + γu′(t) = 0 for t ≥ 0

in a Hilbert space H, where A is a selfadjoint operator in H such that there exists
cA > 0 satisfying ⟨Au, u⟩ ≥ cA|u|2 for u ∈ D(A), σ is a positive function on [0,∞)
of class C1, and γ > 0. The well-known global well-posedness for this equation
with small data is deduced from Theorem 6.1. Without loss of generality, we may
assume that 0 < mσ ≤ σ(r) ≤ Mσ for r ≥ 0. Let X = D(A1/2) × H and
Y = D(A)×D(A1/2). We define a family {N(w,z); (w, z) ∈ Y } of norms in X by

N(w,z)(u, v) = {σ(|A1/2w|2)−1(|v|2 + |γu+ v|2) + 2|A1/2u|2}1/2 for (u, v) ∈ X.
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This is important, and then the family {A(w, z); (w, z) ∈ Y } of operators in X
defined by (A(w, z))(u, v) = (v, −σ(|A1/2w|2)Au − γv) for (u, v) ∈ Y satisfies
condition (A1) with βA(p) = −β0 for p ≥ 0, where β0 is a positive constant.
Condition (A2) is satisfied with S(u, v) = (A1/2u,A1/2v) for (u, v) ∈ Y and B = 0.
All the other conditions are verified without difficulty.
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