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Abstract. The present paper deals with the classification of a complete totally submanifold

of a complex projective space by applying Bochner formula.

1. Introduction

The study of submanifolds of a Riemannian space form (in particular complex space form) has

been an area of interest for many differential geometers for many years. In [2], Barros studied

the properties of compact minimal submanifolds of the Euclidean sphere Sn and obtained a

characterization of Sn. Moreover using Obata’s theorem [9], Okumura [10] proved that an

(n − 1)-dimensional complete simply connected totally umbilical submanifold with non-zero

constant mean curvature of an n-dimensional locally product Riemannian manifold is isometric

to a sphere. In [6], Rio, Kupeli and Unal characterized Euclidean sphere using a standard

differential equation which is the another version of Obata’s differential equation.

On the other hand, Djoric and Okumura [5] discussed n -dimensional CR-submanifolds with

(n− 1) as CR-dimension in a complex projective space and established an inequality between

Ricci tensor, the scalar curvature and the mean curvature. Later, Pak and Kim [12] studied

CR-submanifolds with (n− 1) as CR-dimension in a complex hyperbolic space.

Recently, we studied of the geometry of complete submanifolds of a Riemannian space form

and proved the follwoing [8]; Let Mn be a complete submanifold of a Riemannian space form

M̄n+p(c), (c ̸= 0) with the Ricci curvature bounded from below and without boundary. If M

admits a real valued non-constant function f such that ∆f + λf = 0 and λ ≤ nc, then Mn

is either isometric to a sphere Sn for λ > 0 or isometric to a warped product of the Euclidean

line and a complete Riemannian manifold whose warping function ψ satisfies the equation
d2ψ

dt2
+
λ

n
ψ = 0. And, let Mn be a complete n-dimensional CR-submanifold without boundary

and with the Ricci curvature bounded from below and CR-dimension(n − 1) in the complex

space form M̄
(n+p)

2 (4). If f :Mn −→ R is any smooth function on Mn satisfying the conditions

∆f + λf = 0 and λ ≤ n, then Mn is isometric to one of the following:

(a) connected component of the hyperbolic space,
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(b) warped product of the Euclidean line and a complete Riemannian manifold, where the

warping function ψ satisfies the equation
d2ψ

dt2
+
λ

n
ψ = 0,

(c) Euclidean sphere.

The purpose of the paper is devoted to study the geometry of a totally real submanifolds of

a complex projective space. The main result of the paper is the following:

Theorem Let Mn be a totally real submanifold of a complex projective space M̄n with the Ricci

curvature bounded from below and without boundary. If M admits a real valued non-constant

function f such that ∆f + λf = 0 and λ ≤ n, then Mn is isometric to one of the following:

(a) connected component of the hyperbolic space,

(b) warped product of the Euclidean line and a complete Riemannian manifold, where the

warping function ψ satisfies the equation
d2ψ

dt2
+
λ

n
ψ = 0,

(c) Euclidean sphere.

We remark in the future we want to apply these way of this paper to CR-submanifolds in

quaternionic space forms which was defined by M. Barros, B-Y Chen and F. Urbano [1].

2. Preliminaries

Let M̄n be the n-dimensional complex projective space with the Fubini-Study meric of

constant holomorphic sectional curvature 4 and let Mn be a complete submanifold of M̄ .

Let us consider an immersion ψ : Mn −→ M̄n and let {e1,e2, . . . , en, Je1, . . . , Jen} be an

adapted orthonormal frame of M̄n such that {e1, e2, . . . , en} is an orthonormal frame to Mn

and {Je1, . . . , Jen} is an orthonormal frame of the normal bundle TM⊥ of Mn, where J is the

complex sturucture of M̄n. We denote by ¯nabla and ∇ the Levi-Civita connection on M̄ (n)

and Mn, respectively. Then the Gauss and Weingarten formulas are given by

∇̄XY = ∇XY + h(X, Y ),(2.1)

∇̄XJei = −AiX +∇⊥
XJei, i = 1, 2, . . . ,(2.2)

for any vector X, Y tangent to Mn [4], where Ai is given by AJei . Here ∇⊥ denotes the normal

connection induced from ∇̄ in the normal bundle TM⊥ of Mn, and h and Aα are the second

fundamental form and the shape operator corresponding to Jei, respectively. Further, h and

Ai are related as

(2.3) h(X, Y ) =
n∑

i=1

g(AiX,Y )Jei.
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Then we have the following equation

g(h(ei, ej), Jek) = g(Aiej, ek).

. The mean curvature vector H is given by H =
1

n

n∑
i=1

(trAi)Jei. The equation of Gauss is

given by

R(X,Y, Z,W ) = g(Y, Z)g(X,W )− g(Y,W )g(X,Z) + g(JY, Z)g(JX,W )− g(JX,Z)g(JY,W )

+2g(X, JY )g(JZ,W ) + g(h(Y, Z), h(X,W ))− g(h(X,Z), h(Y,W )).

Then we have

(2.4) Ric(ei, ej) = (n − 1)g(ei, ej) +
n∑

k=1

(tr Ak)g(Akei, ej) −
n∑

k=1

g(h(ek, ei), h(ej, ek)).

The following generalized maximum principle due to Omori [11] and Yau [13] will be used in

order to prove our theorems.

Theorem 2.1. Let Mn be a complete Riemannian manifold whose Ricci curvature is bounded

from below and f ∈ C2(M) a function bounded from above on Mn. Then, for any ϵ > 0, there

exists a point p ∈Mn such that

f(p) ≥ supf − ϵ, ||gradf || < ϵ,∆f(p) < ϵ.

For a function f :Mn −→ R, Bochner formula is given by [2]

(2.5)
1

2
∆ ∥∇f∥2 = ∥Hess f∥2 +Ric(∇f,∇f) + g(∇f,∇(∆f))

where Hess, Ric and ∆ stand for the Hessian form, Ricci tensor and the Laplacian, respectively,

and the square of the norm of an operator A is given by ∥A∥2 = tr(AA∗).

3. Application of Bochner formula in space forms

The results of the paper will be proved by appying Bochner formula. To prove theorem, we

need the following lemma which we will state and prove first.

Lemma 3.1 Let Mn be a submanifold without boundary of a complex projective space M̄n, Let

f :Mn −→ R be any function on Mn and λ be the first eigenvalue of the Laplacian of Mn, i.e.

∆f + λf = 0. Then for any t ∈ R we have

∥Hess f∥2 = ∥Hess f − tfI∥2 − (2t+
nt

λ
)(∥∇f∥2 − 1

2
∆f 2),
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where Hess f and I denote the Hessian operator of f and the identity operator, respectively.

The norm of any operator A is Euclidean, i.e. ∥A∥ = tr(AA∗).

Proof. We have

∥Hess f − tfI∥2 = ∥Hess f∥2 + t2f 2 ∥I∥2 − 2tf IHessf.

for any t ∈ R. It is clear that ∥I∥2 = tr(II∗) = n and IHess f = trHess f. Now

∆f = gij∇j∇if = ∇i∇if = trHessf.

Therefore

∥Hess f − tfI∥2 = ∥Hess f∥2 + nt2f 2 + 2tλf 2,

which implies that

(3.1) ∥Hess f − tfI∥2 = ∥Hess f∥2 + (2t+
nt2

λ
)λf 2.

Also we know that

∆f 2 = 2f∆f + 2 ∥∇f∥2 .

This gives

(3.2) λf 2 = ∥∇f∥2 − 1

2
∆f 2.

From equations (3.1) and (3.2) we get

∥Hess f − tfI∥2 = ∥Hess f∥2 + (2t+
nt2

λ
)(∥∇f∥2 − 1

2
∆f 2),

which implies that

(3.3) ∥Hess f∥2 = ∥Hess f − tfI∥2 − (2t+
nt2

λ
)(∥∇f∥2 − 1

2
∆f 2).

Proof of Theorem:

Equation (2.4) yields∑
i,j

Ric(fiei, fjej) =
∑
i,j

(n− 1)fifjg(ei, ej) +
∑
i,j

fifjg(h(ei, ei), h(ej, ej))

−
∑
i,j,k

fifjg(h(ei, ek), h(ej, ek)),
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where ∇f =
∑
i

fiei. This gives us

∑
i,j

Ric(fiei, fjej) = (n− 1) ∥∇f∥2 +
∑
i,j

fifjg(h(ei, ei), h(ej, ej))

−
∑
i,j,k

fifjg(h(ei,ek), h(ej, ek))

= (n− 1) ∥∇f∥2 ++
∑
i,j

fifjg(h(ei, ei), h(ej, ej))−
∑
i

g(h(∇f, ei), h(∇f, ei))

(3.4) = (n− 1) ∥∇f∥2 +
∑
i,j

fifjg(h(ei, ei), h(ej, ej))−
∑
i

∥h(∇f, ei)∥2 .

It reminds Bochner formula (2.4)

1

2
∆ ∥∇f∥2 = ∥Hess f∥2 +Ric(∇f,∇f) + g(∇f,∇(∆f)).

Now plugging the values of ∥Hess f∥2 and Ric(∇f,∇f) from equations (3.3) and (3.4) into

equation (2.4), we get

1

2
∆ ∥∇f∥2 = ∥Hess f − tfI∥2 − (2t+

nt2

λ
)(∥∇f∥2 − 1

2
∆f 2) + (n− 1) ∥∇f∥2

+
∑
i,j

fifjg(h(ei, ei), h(ej, ej))−
∑
i

∥h(∇f, ei)∥2 − λ ∥∇f∥2 .

Also according to the definition of the first eigenvalue λ we must have
Ric(∇f,∇f)
(n− 1)||∇f ||2

≥ λ

n
[3],

[9] and the assumption of ∆f + λf = 0 and hence

1

2
∆ ∥∇f∥2 = ∥Hess f − tfI∥2 + 1

2
(2t+

nt2

λ
)∆f 2

+(n− 1) ∥∇f∥2 +
∑
i,j

fifjg(h(ei, ei), h(ej, ej))−
∑
i

∥h(∇f, ei)∥2 − (n− 1)
λ

n
∥∇f∥2

−(2t+
nt2

λ
+ λ− (n− 1)

λ

n
) ∥∇f∥2 .

If t = −λ
n

then the R.H.S. of the above equation reduces to

1

2
∆ ∥∇f∥2 + λ

2n
∆f 2 −

∥∥∥∥Hess f +
λ

n
fI

∥∥∥∥2

≥ 0.(3.5)

It is easy to see that

(3.6)

∥∥∥∥Hess f +
λ

n
fI

∥∥∥∥2

≥ 0.
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From the assumption of the Ricci curvature bounded from below and equations (3.5), (3.6) we

conclude that ∥∥∥∥Hessf +
λ

n
fI

∥∥∥∥2

= 0,

which implies that Hessf +
λ

n
fI = 0. The above result for λ ≤ 0 breaks up into two possible

isometries of Mn given by

(i) Mn is isometric to a connected component of the hyperbolic space if (∇f)p = 0 at some

p ∈Mn [6].

(ii) Mn is isometric to the warped product of the Euclidean line and a complete Riemannian

manifold if ∇f is non-vanishing, where warping function ψ on R satisfies the equation [6]

d2ψ

dt2
+ λψ = 0, ψ > 0.

Further if λ satisfies the inequality 0 < λ ≤ n, then from equation (3.5) we have

(3.7)
1

2
∆ ∥∇f∥2 + λ

2n
∆f 2 −

∥∥∥∥Hessf +
λ

n
fI

∥∥∥∥2

≥ 0.

But we clearly have

(3.8)

∥∥∥∥Hessf +
λ

n
fI

∥∥∥∥2

≥ 0.

Combining the assumption of the Ricci curvature bounded from below and the inequalities

(3.7), (3.8), we obtain ∥∥∥∥Hessf +
λ

n
fI

∥∥∥∥2

= 0,

which gives

Hessf +
λ

n
fI = 0 for 0 < λ ≤ n.

Hence Mn is isometric to a sphere [9]. This completes the proof of the theorem. □
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