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BILINEAR ESTIMATES IN BESOV SPACES GENERATED BY
THE DIRICHLET LAPLACIAN

TSUKASA IWABUCHI, TOKIO MATSUYAMA AND KOICHI TANIGUCHI

Abstract. The purpose of this paper is to establish bilinear estimates in Besov
spaces generated by the Dirichlet Laplacian on a domain of Euclidian spaces. These
estimates are proved by using the gradient estimates for heat semigroup together
with the Bony paraproduct formula and the boundedness of spectral multipliers.

1. Introduction

The bilinear estimates in Sobolev spaces or Besov spaces are of great importance
to study the well-posedness for the Cauchy problem to nonlinear partial differential
equations. In this paper we study the bilinear estimates of standard type in Besov
spaces:

∥fg∥Ḃs
p,q

≤ C
(
∥f∥Ḃs

p1,q
∥g∥Lp2 + ∥f∥Lp3∥g∥Ḃs

p4,q

)
, (1.1)

where s > 0 and p, p1, p2, p3, p4 and q satisfy

1 ≤ p, p1, p2, p3, p4, q ≤ ∞ and
1

p
=

1

p1
+

1

p2
=

1

p3
+

1

p4
.

We study also the inhomogeneous version of (1.1).

The basis of proving the bilinear estimates in Sobolev spaces W k,p (k = 1, 2, . . .) is
to use the Leibniz rule and the Hölder inequality. However, when one considers the
fractional order regularity, some idea would be needed. If the domain is the whole
space Rn, the Fourier transformation is one of the most powerful tools, and allows
one to introduce the derivative of fractional order. It enables us to prove the bilinear
estimates by using frequency decomposition called the Bony paraproduct formula
(see Bony [1]) and the boundedness of Fourier multipliers. On the other hand, when
the domain is different from Rn, one cannot rely on such a kind of method. It
will be revealed that the bilinear estimates hold for small regularity number in the
Besov spaces generated by the Dirichlet Laplacian, of which we established several
properties on open sets in Rn (see [7]), and that there arises a problem for large
regularity essentially. The purpose of this paper is to establish the bilinear estimates
in those Besov spaces.
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In the rest of this section we give a definition of Besov spaces generated by the
Dirichlet Laplacian on an open set along [7]. Let Ω be an open set of Rn, where
n ≥ 1. The Dirichlet Laplacian H is defined on L2(Ω) by letting{

D(H) =
{
f ∈ H1

0 (Ω)
∣∣∆f ∈ L2(Ω)

}
,

Hf = −∆f, f ∈ D(H),

where H1
0 (Ω) is the completion of C∞

0 (Ω) with respect to H1(Ω)-norm. The operator
H is a non-negative self-adjoint operator on L2(Ω). For a Borel measurable function
ϕ on R, an operator ϕ(H) is defined by letting

ϕ(H) =

∫ ∞

−∞
ϕ(λ) dEH(λ)

with the domain

D(ϕ(H)) =

{
f ∈ L2(Ω)

∣∣∣∣ ∫ ∞

−∞
|ϕ(λ)|2d∥EH(λ)f∥2L2(Ω) <∞

}
,

where {EH(λ)}λ∈R is the spectral resolution of the identity for H.

We begin by introducing the spaces of test functions on Ω and their duals. For
the purpose, let us introduce the Littlewood-Paley partition of unity. Let ϕ0 be a
non-negative and smooth function on R such that

suppϕ0 ⊂ {λ ∈ R
∣∣ 2−1 ≤ λ ≤ 2 } and

∞∑
j=−∞

ϕ0(2
−jλ) = 1 for λ > 0, (1.2)

and {ϕj}∞j=−∞ is defined by letting

ϕj(λ) := ϕ0(2
−jλ) for λ ∈ R. (1.3)

Definition (Spaces of test functions and distributions on Ω).

(i) (Linear topological spaces X (Ω) and X ′(Ω)). A linear topological space X (Ω)
is defined by letting

X (Ω) :=
{
f ∈ L1(Ω) ∩ D(H)

∣∣∣HMf ∈ L1(Ω) ∩ D(H) for any M ∈ N
}

equipped with the family of semi-norms {pM(·)}∞M=1 given by

pM(f) := ∥f∥L1(Ω) + sup
j∈N

2Mj∥ϕj(
√
H)f∥L1(Ω). (1.4)

X ′(Ω) denotes the topological dual of X (Ω).
(ii) (Linear topological spaces Z(Ω) and Z ′(Ω)). A linear topological space Z(Ω)

is defined by letting

Z(Ω) :=
{
f ∈ X (Ω)

∣∣∣ sup
j≤0

2M |j|∥∥ϕj

(√
H
)
f
∥∥
L1(Ω)

<∞ for any M ∈ N
}

equipped with the family of semi-norms {qM(·)}∞M=1 given by

qM(f) := ∥f∥L1(Ω) + sup
j∈Z

2M |j|∥ϕj(
√
H)f∥L1(Ω).

Z ′(Ω) denotes the topological dual of Z(Ω).
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In this paper we often use the notation X′⟨·, ·⟩X of duality pair of a linear topological
space X and its dual X ′.

We proved in Lemma 4.6 from [7] that

X (Ω) ↪→ Lp(Ω) ↪→ X ′(Ω), (1.5)

Z(Ω) ↪→ Lp(Ω) ↪→ Z ′(Ω) (1.6)

for any 1 ≤ p ≤ ∞. The inclusion relation (1.5) ((1.6) resp.) assures that∫
Ω

∣∣f(x)g(x)∣∣ dx <∞

for any f ∈ Lp(Ω), 1 ≤ p ≤ ∞, and g ∈ X (Ω) (g ∈ Z(Ω) resp.). Hence we can regard
functions in the Lebesgue spaces as elements in X ′(Ω) and Z ′(Ω) as follows:

Definition. For f ∈ L1(Ω) + L∞(Ω), we identify f as an element in X ′(Ω) (Z ′(Ω)
resp.) by letting

X ′(Ω)⟨f, g⟩X (Ω) =

∫
Ω

f(x)g(x) dx

(
Z′(Ω)⟨f, g⟩Z(Ω) =

∫
Ω

f(x)g(x) dx resp.

)
for any g ∈ X (Ω) (g ∈ Z(Ω) resp.).

Next, we introduce the notion of dual operators on X ′(Ω) and Z ′(Ω).

Definition (Dual operators). Let ϕ be a real-valued Borel measurable function
on R.

(i) For a mapping ϕ(H) : X (Ω) → X (Ω), we define ϕ(H) : X ′(Ω) → X ′(Ω) by
letting

X ′(Ω)

⟨
ϕ(H)f, g

⟩
X (Ω)

:= X ′(Ω)

⟨
f, ϕ(H)g

⟩
X (Ω)

(1.7)

for any f ∈ X ′(Ω) and g ∈ X (Ω).
(ii) For a mapping ϕ(H) : Z(Ω) → Z(Ω), we define ϕ(H) : Z ′(Ω) → Z ′(Ω) by

letting

Z′(Ω)

⟨
ϕ(H)f, g

⟩
Z(Ω)

:= Z′(Ω)

⟨
f, ϕ(H)g

⟩
Z(Ω)

for any f ∈ Z ′(Ω) and g ∈ Z(Ω).

When we consider the inhomogeneous Besov spaces, a function ψ, whose support is
restricted in the neighborhood of the origin, is needed. More precisely, let ψ ∈ C∞

0 (R)
be a function satisfying

ψ(λ2) +
∞∑
j=1

ϕj(λ) = 1 for λ ≥ 0. (1.8)

We are now in a position to give the definition of Besov spaces generated by H.

Definition (Besov spaces). Let s ∈ R and 1 ≤ p, q ≤ ∞. Then the Besov spaces
are defined as follows:
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(i) The inhomogeneous Besov spaces Bs
p,q(H) are defined by letting

Bs
p,q(H) :=

{
f ∈ X ′(Ω)

∣∣∣ ∥f∥Bs
p,q(H) <∞

}
,

where

∥f∥Bs
p,q(H) := ∥ψ(H)f∥Lp(Ω) +

∥∥∥{2sj∥ϕj(
√
H)f∥Lp(Ω)

}
j∈N

∥∥∥
ℓq(N)

.

(ii) The homogeneous Besov spaces Ḃs
p,q(H) are defined by letting

Ḃs
p,q(H) :=

{
f ∈ Z ′(Ω)

∣∣∣ ∥f∥Ḃs
p,q(H) <∞

}
,

where

∥f∥Ḃs
p,q(H) :=

∥∥∥{2sj∥ϕj(
√
H)f∥Lp(Ω)

}
j∈Z

∥∥∥
ℓq(Z)

.

It is proved in Theorem 2.5 from [7] that Bs
p,q(H) and Ḃs

p,q(H) are Banach spaces,
and

X (Ω) ↪→ Bs
p,q(H) ↪→ X ′(Ω),

Z(Ω) ↪→ Ḃs
p,q(H) ↪→ Z ′(Ω).

for any s ∈ R and 1 ≤ p, q ≤ ∞.

We conclude this section by giving a remark on the regularity numbers such that
the bilinear estimates hold. As is well known, when Ω is the whole space Rn, one does
not need to impose any restriction on the regularity number s > 0 of Besov spaces.
On the other hand, when we consider these estimates for functions whose regularity
is measured by the Dirichlet Laplacian on domains, a restriction is required on the
regularity. In fact, it is possible to construct a counter-example for high regularity
(see appendix A). This is because a product of functions operated by the Laplacian
may not belong to the domain of the Dirichlet Laplacian generally. Hence, in general,
it is impossible to get the estimates in high regularity. This can be seen from the
following observation: Let Ω be a domain with smooth boundary, and let f and g
be in the domain of the Dirichlet Laplacian H. Applying the Leibniz rule to the
product fg, we are confronted with the term ∇f · ∇g which is possible to be in the
complement of the domain ofH, since it does not in general vanishes on the boundary.
Observing the proof of Theorem 2.1 in §2, we see that the derivatives of functions
must be handled even if s is not large, and the argument of estimates for derivatives
requires the gradient estimates for heat semigroup in Lp. However, the range of p
depends on the domain. To avoid this complexity, we assume the gradient estimate
in L∞, while that in Lp with p ∈ [1, 2] is true without any assumption.

This paper is organized as follows. In §2 we state the main result. In §3 we prepare
some useful lemmas to prove the main theorem. In §4 we prove the main theorem.
In §5 we discuss the bilinear estimates in the spaces generated by the Schrödinger
operators.
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2. Statement of result

Let us consider a domain Ω such that the following gradient estimate

∥∇e−tH∥L∞(Ω)→L∞(Ω) ≤ Ct−
1
2 (2.1)

holds either for any t ∈ (0, 1] or for any t > 0, where {e−tH}t>0 is the semigroup
generated by H.

We shall prove here the following:

Theorem 2.1. Let 0 < s < 2 and p, p1, p2, p3, p4 and q be such that

1 ≤ p, p1, p2, p3, p4, q ≤ ∞ and
1

p
=

1

p1
+

1

p2
=

1

p3
+

1

p4
.

Then the following assertions hold:

(i) Let Ω be a domain of Rn such that the gradient estimate (2.1) holds for any
t ∈ (0, 1]. Then there exists a constant C > 0 such that

∥fg∥Bs
p,q(H) ≤ C

(
∥f∥Bs

p1,q
(H)∥g∥Lp2 (Ω) + ∥f∥Lp3 (Ω)∥g∥Bs

p4,q
(H)

)
(2.2)

for any f ∈ Bs
p1,q

(H) ∩ Lp3(Ω) and g ∈ Bs
p4,q

(H) ∩ Lp2(Ω).
(ii) Let Ω be a domain of Rn such that the gradient estimate (2.1) holds for any

t > 0. Then there exists a constant C > 0 such that

∥fg∥Ḃs
p,q(H) ≤ C

(
∥f∥Ḃs

p1,q
(H)∥g∥Lp2 (Ω) + ∥f∥Lp3 (Ω)∥g∥Ḃs

p4,q
(H)

)
(2.3)

for any f ∈ Ḃs
p1,q

(H) ∩ Lp3(Ω) and g ∈ Ḃs
p4,q

(H) ∩ Lp2(Ω).

As to the range of the regularity number s in Theorem 2.1, it is not clear whether
or not it is sharp. However we can find an s ≥ 2 such that Theorem 2.1 does not
hold. For more details, see appendix A.

In the rest of this section we shall give some examples of domains such that estimate
(2.1) holds. We consider three cases as follows:

I. Inhomogeneous case;
II. Homogeneous case;
III. Lp-gradient estimate.

I. Inhomogeneous case. The estimate (2.1) holds for any t ∈ (0, 1] in the case
when the domain Ω fulfills the following properties:

(a) Ω is a domain with uniform C2,α-boundary for some α ∈ (0, 1);
(b) Ω is a bounded domain with C1,1-boundary.

Hence the bilinear estimate (2.2) in Theorem 2.1 holds for domains of type (a) and
(b). As to the case when Ω is a domain in (a), Fornaro, Metafune and Priola proved
the estimate (2.1) for any t ∈ (0, 1] (see [4]). A typical example of such domains is
the half space Rn

+. When Ω is a domain in (b), the problem is reduced to the case of
the half space (see, e.g., Wloka [16]), and hence, we have the estimate (2.1) for any
t ∈ (0, 1].
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II. Homogeneous case. The estimate (2.1) holds for any t > 0 in the case when Ω
fulfills the following:

(a) Ω is the half space Rn
+;

(b) Ω is a bounded domain with C1,1-boundary.

Hence the bilinear estimate (2.3) in Theorem 2.1 holds for domains of type (a) and
(b). As to (a), the estimate (2.1) for any t > 0 is an immediate consequence of (I-a)
and the representation formula of heat kernel on Rn

+. As to (b), we can obtain the
estimate (2.1) for any t > 0 by combining (I-b) and the following estimate: If Ω is a
bounded Lipschitz domain, then there exists a constant C > 1 such that

∥∇e−tH∥L∞(Ω)→L∞(Ω) ≤ Ce−λ1t (2.4)

for any t > 1, where λ1 > 0 is the first eigenvalue of H. Here, the estimate (2.4) is
proved by combining the identity

∥∇e−tH∥L∞(Ω)→L∞(Ω) = ∥∇e−tH(·, ·)∥L∞(Ω;L1(Ω))

(see Lemma B.1 in appendix B) and the pointwise estimate for the kernel e−tH(x, y)
of the operator e−tH:

C−1ϕλ1(x)ϕλ1(y)e
−λ1t ≤ e−tH(x, y) ≤ Cϕλ1(x)ϕλ1(y)e

−λ1t

for almost everywhere x, y ∈ Ω and any t > 1, where ϕλ1 ≥ 0 is the eigenfunction
corresponding to λ1 (see Davies [3]).

III. Lp-gradient estimate. There is a counter-example of domains in which the
estimate (2.1) for any t > 0 does not hold. More precisely, when Ω is an exterior
domain outside a compact C1,1-obstacle, (2.1) does not hold (see (A.2) in appendix
A). However, there exists a p0 ∈ [2,∞] depending on Ω such that

∥∇e−tH∥Lp(Ω)→Lp(Ω) ≤ Ct−
1
2 , t > 0 (2.5)

for any p ∈ [1, p0] (see (a)–(c) below). If we take p, pj (j = 1, 2, 3, 4) as

1 ≤ p, p1, p2, p3, p4 ≤ p0,

then we can prove estimates (2.2) and (2.3) by a trivial modification of proof of
Theorem 2.1. The following are examples of domains and the possible range of p.

(a) Let Ω be an open set. Then the estimate (2.5) holds for any p ∈ [1, 2];
(b) if Ω is a bounded C1-domain, then the estimate (2.5) holds for any p ∈ [1,∞);
(c) if Ω is a bounded Lipschitz domain, then the estimate (2.5) holds provided

that either 1 ≤ p ≤ 3 if n ≥ 3, or 1 ≤ p ≤ 4 if n = 2.

As to (a), see Theorem 1.2 from [8], which is stated in Proposition 3.4 in §3. The
assertions (b) and (c) are immediate consequences of (a) and Lp-boundedness of the

Riesz transform ∇H− 1
2 (see [2, 9, 12, 13,17]).

3. Preliminaries

In this section we introduce some useful lemmas to prove Theorem 2.1. Throughout
this section, we assume that Ω is an open set of Rn. Here and below, we denote by
S (R) the space of all rapidly decreasing functions on R.
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3.1. Approximations of the identity. The following results can be found in our
previous paper [7]. The first one is the following.

Lemma 3.1 (Lemma 4.5 from [7]). (i) For any f ∈ X (Ω), we have

f = ψ(H)f +
∞∑
j=1

ϕj(
√
H)f in X (Ω). (3.1)

Furthermore, for any f ∈ X ′(Ω), we have also the identity (3.1) in X ′(Ω),

and ψ(H)f and ϕj(
√
H)f are regarded as elements in L∞(Ω).

(ii) For any f ∈ Z(Ω), we have

f =
∞∑

j=−∞

ϕj(
√
H)f in Z(Ω). (3.2)

Furthermore, for f ∈ Z ′(Ω), we have also the identity (3.2) in Z ′(Ω), and

ϕj(
√
H)f are regarded as elements in L∞(Ω).

The second one is the following.

Lemma 3.2. (i) For any f ∈ L2(Ω) and j ∈ Z, we have

f = ψ(2−2jH)f +
∞∑

k=j+1

ϕk(
√
H)f in L2(Ω) (3.3)

and

f =

j∑
k=−∞

ϕk(
√
H)f +

∞∑
k=j+1

ϕk(
√
H)f in L2(Ω) (3.4)

(ii) Let 1 ≤ p <∞. Then for any f ∈ Lp(Ω), we have

f =
∞∑

j=−∞

ϕj(
√
H)f in X ′(Ω). (3.5)

Proof. The assertion (i) is proved in the course of proof of Lemma 4.5 from [7]. Hence
we prove the assertion (ii). Since L2(Ω) ↪→ X ′(Ω), the identity (3.5) holds for any
f ∈ Lp(Ω) ∩ L2(Ω). Then the identity (3.5) holds for any f ∈ Lp(Ω) by the density
argument, since 1 ≤ p <∞. The proof of Lemma 3.2 is finished. □

3.2. Functional calculus for spectral multipliers. This subsection is devoted to
proving Lp-estimates for the operators ψ(H) and ϕj(

√
H).

We recall the following two results.

Proposition 3.3 (Theorem 1.1 from [8]). For any ϕ ∈ S (R) and 1 ≤ p ≤ q ≤ ∞
there exists a constant C > 0 such that

∥ϕ(θH)∥Lp(Ω)→Lq(Ω) ≤ Cθ−
n
2 (

1
p
− 1

q ) (3.6)

for any θ > 0.
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Proposition 3.4 (Theorem 1.2 from [8]). For any ϕ ∈ S (R) and 1 ≤ p ≤ 2 there
exists a constant C > 0 such that

∥∇ϕ(θH)∥Lp(Ω)→Lp(Ω) ≤ Cθ−
1
2

for any θ > 0.

Based on Proposition 3.3, we have the following.

Lemma 3.5. Let 1 ≤ p ≤ ∞. Then the following assertions hold:

(i) For any m ∈ N ∪ {0} there exists a constant C > 0 such that∥∥Hmψ(2−2jH)
∥∥
Lp(Ω)→Lp(Ω)

≤ C22mj (3.7)

for any j ∈ Z.
(ii) For any α ∈ R there exists a constant C > 0 such that∥∥Hαϕj(

√
H)

∥∥
Lp(Ω)→Lp(Ω)

≤ C22αj (3.8)

for any j ∈ Z. Furthermore, for any α ≥ 0, we have∥∥∥Hα

j∑
k=−∞

ϕk(
√
H)

∥∥∥
Lp(Ω)→Lp(Ω)

≤ C22αj (3.9)

for any j ∈ Z.

Proof. The estimate (3.7) is an immediate consequence of Proposition 3.3. In fact,
noting that

λmψ(λ) ∈ C∞
0 (R),

we conclude from (3.6) for θ = 2−2j that∥∥Hmψ(2−2jH)
∥∥
Lp(Ω)→Lp(Ω)

= 22mj
∥∥(2−2jH)mψ(2−2jH)

∥∥
Lp(Ω)→Lp(Ω)

≤ C22mj

for any j ∈ Z. In a similar way, we get (3.8), since

λαϕ0(
√
λ) ∈ C∞

0 ((0,∞)).

It remains to prove the estimate (3.9). When α > 0, the estimate (3.9) follows from
the estimate (3.8). In fact, we estimate∥∥∥Hα

j∑
k=−∞

ϕk(
√
H)

∥∥∥
Lp(Ω)→Lp(Ω)

≤
j∑

k=−∞

∥Hαϕk(
√
H)∥Lp(Ω)→Lp(Ω)

≤ C

j∑
k=−∞

22αk

≤ C22αj.

We now concentrate on the case when α = 0. We know from Lemma 3.2 that

f = ψ(2−2jH)f +
∞∑

k=j+1

ϕk(
√
H)f in L2(Ω)
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and

f =

j∑
k=−∞

ϕk(
√
H)f +

∞∑
k=j+1

ϕk(
√
H)f in L2(Ω)

for any j ∈ Z and f ∈ L2(Ω). Combining the above identities, we readily see that

j∑
k=−∞

ϕk(
√
H)f = ψ(2−2jH)f in L2(Ω)

for any j ∈ Z, which implies that∥∥∥ j∑
k=−∞

ϕk(
√
H)g

∥∥∥
Lp(Ω)

=
∥∥ψ(2−2jH)g

∥∥
Lp(Ω)

≤ C∥g∥Lp(Ω)

for any j ∈ Z and g ∈ Lp(Ω) ∩ L2(Ω). Thus, when 1 ≤ p < ∞, the estimate (3.9)
for α = 0 is proved by the density argument, and the case p = ∞ is obtained from
L1-estimate by the duality argument. Thus the estimate (3.9) for α = 0 is proved.
The proof of Lemma 3.5 is finished. □

Based on the gradient estimate (2.1) and Proposition 3.4, we have the following
estimates which play a crucial role in the proof of Theorem 2.1.

Lemma 3.6. Let 1 ≤ p ≤ ∞. Then the following assertions hold:

(i) Let Ω be an open set of Rn such that the estimate (2.1) holds for any t ∈ (0, 1].
Then for any m ∈ N∪{0} and α ∈ R there exists a constant C > 0 such that

∥∇Hmψ(2−2jH)∥Lp(Ω)→Lp(Ω) ≤ C2(2m+1)j, (3.10)

∥∇Hαϕj(
√
H)∥Lp(Ω)→Lp(Ω) ≤ C2(2α+1)j (3.11)

for any j ∈ N.
(ii) Let Ω be an open set of Rn such that the estimate (2.1) holds for any t > 0.

Then the estimates (3.10) and (3.11) hold for any j ∈ Z. Furthermore, for
any α ≥ 0 there exists a constant C > 0 such that∥∥∥∇Hα

j∑
k=−∞

ϕk(
√
H)

∥∥∥
Lp(Ω)→Lp(Ω)

≤ C2(2α+1)j (3.12)

for any j ∈ Z.

Proof. We prove the assertion (i). The case p = 1 is an immediate consequence of
Proposition 3.4 for θ = 2−2j, since

λmψ ∈ C∞
0 (R), λαϕ0(

√
λ) ∈ C∞

0 ((0,∞)).

Hence it suffices to show the case p = ∞. In fact, once the case p = ∞ is proved,
Riesz-Thorin interpolation theorem allows us to conclude the estimates (3.10) and
(3.11) for any 1 ≤ p ≤ ∞.
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Let f ∈ L∞(Ω). Then it follows from the estimate (2.1) for 0 < t ≤ 1 that∥∥∇Hmψ(2−2jH)f
∥∥
L∞(Ω)

=
∥∥∇e−2−2jHe2

−2jHHmψ(2−2jH)f
∥∥
L∞(Ω)

≤ C2j
∥∥e2−2jHHmψ(2−2jH)f

∥∥
L∞(Ω)

= C2(2m+1)j
∥∥e2−2jH(2−2jH)mψ(2−2jH)f

∥∥
L∞(Ω)

(3.13)

for any j ∈ N. Since
eλλmψ(λ) ∈ C∞

0 (R),
it follows from the estimate (3.6) for p = ∞ in Proposition 3.3 that∥∥e2−2jH(2−2jH)mψ(2−2jH)f

∥∥
L∞(Ω)

≤ C∥f∥L∞(Ω). (3.14)

Thus the required estimate (3.10) for p = ∞ is an immediate consequence of (3.13)
and (3.14). In a similar way, we get (3.11). Thus the assertion (i) is proved.

Next we prove the assertion (ii). We can prove the estimates (3.10) and (3.11) for
any j ∈ Z in the same way as (i). Furthermore, the estimate (3.12) is proved by
using (3.11) in the same way as the proof of (3.8) for α > 0. Hence we may omit the
details. The proof of Lemma 3.6 is finished. □

3.3. The Leibniz rule for the Dirichlet Laplacian. In this subsection we prove
the following lemma.

Lemma 3.7. Assume that Ω is an open set of Rn such that the estimate (2.1) holds
for any t ∈ (0, 1]. Let Φ,Ψ ∈ S (R). Then for any f, g ∈ X ′(Ω), we have

H
(
Φ(H)f ·Ψ(H)g

)
=HΦ(H)f ·Ψ(H)g − 2∇Φ(H)f · ∇Ψ(H)g + Φ(H)f · HΨ(H)g in X ′(Ω).

(3.15)

Proof. To begin with, we note from Lemma 3.1 that Φ(H)f and Ψ(H)g are regarded
as elements in L∞(Ω):

Φ(H)f, Ψ(H)g ∈ L∞(Ω). (3.16)

Hence, Lemmas 3.5 and 3.6 for p = ∞ assure that all the right members of (3.15)
belong to L∞(Ω). It suffices to show that (3.15) holds in D ′(Ω), where D ′(Ω) is the
dual space of the topological space D(Ω) = C∞

0 (Ω). In fact, if (3.15) holds in D ′(Ω),
then (3.15) holds for almost everywhere on Ω. Hence we conclude that (3.15) holds
in X ′(Ω).

Since

Hh = −∆h for h ∈ C∞
0 (Ω),

we write, by using (3.16),

D ′(Ω)⟨H (Φ(H)f ·Ψ(H)g) , h⟩D(Ω) =L∞(Ω)⟨Ψ(H)g,Φ(H)f(−∆h)⟩L1(Ω) (3.17)

for any h ∈ D(Ω). Here, noting from the definition (1.7) of H that

−∆Φ(H)f = HΦ(H)f,

we observe from the Leibniz rule that

Φ(H)f(−∆h) = −∆(Φ(H)f · h)− (HΦ(H)f)h+ 2∇Φ(H)f · ∇h in D ′(Ω). (3.18)
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Since all terms in (3.18) belong to L1(Ω) by (3.16), Lemmas 3.5 and 3.6 for p = ∞,
multiplying (3.18) by Ψ(H)g, and using (3.17), we write

D ′(Ω)⟨H (Φ(H)f ·Ψ(H)g) , h⟩D(Ω)

= L∞(Ω)⟨Ψ(H)g,−∆(Φ(H)f · h)⟩L1(Ω)

− L∞(Ω)⟨(HΦ(H)f)Ψ(H)g, h⟩L1(Ω) + 2L∞(Ω)⟨Ψ(H)g,∇Φ(H)f · ∇h⟩L1(Ω).

(3.19)

As to the first term in the right member of (3.19), integrating by parts, we get

L∞(Ω)⟨Ψ(H)g,−∆(Φ(H)f · h)⟩L1(Ω) = L∞(Ω)⟨−∆Ψ(H)g,Φ(H)f · h⟩L1(Ω).

Here, we note that
−∆Ψ(H)g = HΨ(H)g in D ′(Ω). (3.20)

Since HΨ(H)g belongs to L∞(Ω) by (3.16) and Lemma 3.5 for p = ∞, the identity
(3.20) holds for almost everywhere on Ω. Hence we have

L∞(Ω)⟨−∆Ψ(H)g,Φ(H)f · h⟩L1(Ω) = L∞(Ω)⟨Φ(H)f · HΨ(H)g, h⟩L1(Ω),

since Φ(H)f · h ∈ L1(Ω). Therefore, the first term is written as

L∞(Ω)⟨Ψ(H)g,−∆(Φ(H)f · h)⟩L1(Ω) = L∞(Ω)⟨Φ(H)f · HΨ(H)g, h⟩L1(Ω).

In a similar way, the third term in the right member of (3.19) is written as

L∞(Ω)⟨Ψ(H)g,∇Φ(H)f · ∇h⟩L1(Ω)

=− D ′(Ω)⟨∆Φ(H)f ·Ψ(H)g, h⟩D(Ω) − D ′(Ω)⟨∇Φ(H)f · ∇Ψ(H)g, h⟩D(Ω)

=D ′(Ω)⟨Hϕ(H)f ·Ψ(H)g, h⟩D(Ω) − D ′(Ω)⟨∇Φ(H)f · ∇Ψ(H)g, h⟩D(Ω).

(3.21)

Therefore, summarizing (3.19) and (3.21), we conclude that (3.15) holds in D ′(Ω).
The proof of Lemma 3.7 is finished. □
3.4. Properties of the space P(Ω). In this subsection we shall study several prop-
erties of a space P(Ω) which is defined by

P(Ω) :=
{
f ∈ X ′(Ω)

∣∣∣ Z′(Ω)⟨f, g⟩Z(Ω) = 0 for any g ∈ Z(Ω)
}
. (3.22)

We recall that X ′(Ω) and Z ′(Ω) correspond to S ′(Rn) and S ′
0(Rn) in the classical

case, respectively. Here S ′
0(Rn) is the dual space of S0(Rn) defined by

S0(Rn) :=
{
f ∈ S (Rn)

∣∣∣ ∫
Rn

xαf(x) dx = 0 for any α ∈ (N ∪ {0})n
}

endowed with the induced topology of S (Rn). It is known that S ′
0(Rn) is charac-

terized by the quotient space of S ′(Rn) modulo polynomials, i.e.,

S ′
0(Rn) ∼= S ′(Rn)/P, (3.23)

where P is the set of all polynomials of n real variables (see, e.g., Proposition 1.1.3
from Grafakos [5]). As to the space P(Ω), it is readily checked that P(Ω) is a closed
subspace of X ′(Ω), and hence, we can apply Theorem in p.127 from Schaefer [11] and
Propositions 35.5 and 35.6 from Trèves [15] to obtain the isomorphism:

Z ′(Ω) ∼= X ′(Ω)/P(Ω)

(cf. Theorem 1.1 from Sawano [10]).
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We shall prove the following:

Lemma 3.8. The space P(Ω) enjoys the following:

(i) Let f ∈ X ′(Ω). Then the following assertions are equivalent:
(a) f ∈ P(Ω);

(b) ϕj(
√
H)f = 0 in X ′(Ω) for any j ∈ Z;

(c) ∥f∥Ḃs
p,q(H) = 0 for any s ∈ R and 1 ≤ p, q ≤ ∞.

(ii) P(Ω) is a subspace of L∞(Ω).
(iii) In particular, if Ω is a domain such that the gradient estimate (2.1) holds for

any t > 0, then

P(Ω) = either {0} or {f = c on Ω | c ∈ C}.

Proof. We prove the assertion (i). We readily see from the definition of Ḃs
p,q(H) that

(c) implies (b). Conversely, we suppose that (b) holds. Since f ∈ X ′(Ω), it follows
from the assertion (i) in Lemma 3.1 that

ϕj(
√
H)f ∈ L∞(Ω)

for any j ∈ Z. Hence we deduce that

ϕj(
√
H)f = 0 a.e. x ∈ Ω

for any j ∈ Z, which implies that (c) holds true.
We have to prove that (a) and (b) are equivalent. Suppose that (a) holds, i.e.,

f ∈ P(Ω). We note that if g ∈ X (Ω), then

ϕj(
√
H)g ∈ Z(Ω) for any j ∈ Z. (3.24)

In fact, fixing j ∈ N, we note that

ϕk(
√
H)ϕj(

√
H)f ̸= 0

only if k = j − 1, j, j + 1. Then, by using Proposition 3.3, we deduce that for any
M ∈ N,

sup
k≤0

2−Mk∥ϕk(
√
H)ϕj(

√
H)g∥L1(Ω)

≤ 2−M(j−1)∥ϕj−1(
√
H)ϕj(

√
H)g∥L1(Ω) + 2−Mj∥ϕj(

√
H)ϕj(

√
H)g∥L1(Ω)

+ 2−M(j+1)∥ϕj+1(
√
H)ϕj(

√
H)g∥L1(Ω)

≤C2−Mj∥ϕj(
√
H)g∥L1(Ω)

≤C2−Mj∥g∥L1(Ω),

which implies (3.24). Since f ∈ P(Ω), it follows that

X ′(Ω)⟨ϕj(
√
H)f, g⟩X (Ω) = Z′(Ω)⟨f, ϕj(

√
H)g⟩Z(Ω) = 0

for any j ∈ Z and g ∈ X (Ω), which implies (b). Conversely, let us suppose that f
satisfies (b). Since Z(Ω) ⊂ X (Ω), it follows that

Z′(Ω)⟨ϕj(
√
H)f, g⟩Z(Ω) = X ′(Ω)⟨ϕj(

√
H)f, g⟩X (Ω) = 0 (3.25)
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for any j ∈ Z and g ∈ Z(Ω). Here we recall the assertion (ii) in Lemma 3.1 that

f =
∞∑

j=−∞

ϕj(
√
H)f in Z ′(Ω).

Then, by using this identity and (3.25), we have

Z′(Ω)⟨f, g⟩Z(Ω) =
∞∑

j=−∞
Z′(Ω)⟨ϕj(

√
H)f, g⟩Z(Ω) = 0

for any g ∈ Z(Ω), which implies (a). Thus we conclude the assertion (i).
Next we prove the assertion (ii). Let f ∈ P(Ω). It follows from (3.1) in Lemma

3.1 that

f = ψ(H)f +
∞∑
j=1

ϕj(
√
H)f in X ′(Ω).

Applying (b) in the assertion (i) to the second term in the right member, we get

f = ψ(H)f in X ′(Ω). (3.26)

Since ψ(H)f ∈ L∞(Ω) by the assertion (i) in Lemma 3.1, we conclude that f ∈
L∞(Ω). Therefore, the assertion (ii) is proved.

Finally we show the assertion (iii). Let f ∈ P(Ω). Then, again by using the
argument in (3.26), we see that

f = ψ(2−2kH)f +
∞∑
j=k

ϕj(
√
H)f = ψ(2−2kH)f in X ′(Ω) (3.27)

for any k ∈ Z. Since the gradient estimate (2.1) holds for any t > 0, applying (3.10)
from Lemma 3.6 to the last member in (3.27), we get

∥∇f∥L∞(Ω) =∥∇ψ(2−2kH)f∥L∞(Ω)

≤C2k∥f∥L∞(Ω)

for any k ∈ Z, which implies that ∇f = 0 in Ω. Since Ω is connected, f is a constant
in Ω. Summarizing the above argument, we deduce that

{0} ⊂ P(Ω) ⊂ {f = c on Ω | c ∈ C}.

Finally, we prove that if P(Ω) ̸= {0}, then

P(Ω) = {f = c on Ω | c ∈ C}. (3.28)

In fact, we suppose that there exists a constant c ̸= 0 such that c ∈ P(Ω). Then
αc ∈ P(Ω) for any α ̸= 0, since P(Ω) is a linear space. Hence we must have (3.28).
This proves (iii). The proof of Lemma 3.8 is finished. □
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3.5. A lemma on convergence in Besov spaces. In this subsection we shall prove
a lemma in Besov spaces, which is useful in the proof of the theorem.

Lemma 3.9. Let s ∈ R and 1 ≤ p, q ≤ ∞. Assume that {fN}N∈N is a bounded
sequence in Ḃs

p,q(H), and that there exists an f ∈ X ′(Ω) such that

fN → f in X ′(Ω) as N → ∞. (3.29)

Then f ∈ Ḃs
p,q(H) and

∥f∥Ḃs
p,q(H) ≤ lim inf

N→∞
∥fN∥Ḃs

p,q(H). (3.30)

Before going to the proof, let us give a remark on the idea of proof of the lemma.
When 1 < p, q <∞, Ḃs

p,q(H) are the reflexive Banach spaces for any s ∈ R. This fact
and the limiting properties of the weak convergence imply the inequality (3.30). Oth-

erwise, we need the pointwise convergence of ϕj(
√
H)fN , which is obtained directly

with a property of the kernel ϕ(H)(x, y) of the operator ϕ(H). Let us investigate the
property of the kernel.

Lemma 3.10. Let ϕ ∈ S (R). Then
ϕ(H)(x, ·) ∈ X (Ω) for each x ∈ Ω. (3.31)

Proof. Since
∥ϕ(H)∥Lp(Ω)→L∞(Ω) <∞

for any 1 ≤ p ≤ ∞ by Proposition 3.3, it follows from Lemma B.1 in appendix B
that

∥ϕ(H)(·, ·)∥L∞(Ω;Lp′ (Ω)) = ∥ϕ(H)∥Lp(Ω)→L∞(Ω)

for any 1 ≤ p ≤ ∞, where p′ is the conjugate exponent of p, and we put

∥ϕ(H)(·, ·)∥L∞(Ω;Lp′ (Ω)) := sup
x∈Ω

∥ϕ(H)(x, ·)∥Lp′ (Ω).

Hence we have
ϕ(H)(x, ·) ∈ Lp′(Ω) for each x ∈ Ω, (3.32)

where 1 ≤ p′ ≤ 2. Let M ∈ N. We denote by KHMϕ(H)(x, y) the kernel of HMϕ(H).
Then, for any f ∈ X (Ω), we have

X ′(Ω)⟨HM(ϕ(H)(x, ·)), f⟩X (Ω) = X ′(Ω)⟨ϕ(H)(x, ·),HMf⟩X (Ω)

= ϕ(H)HMf(x)

= HMϕ(H)f(x)

= X ′(Ω)⟨KHMϕ(H)(x, ·), f⟩X (Ω)

for any x ∈ Ω, which implies that

HM(ϕ(H)(x, ·))(y) = KHMϕ(H)(x, y) a.e. y ∈ Ω

for any x ∈ Ω. Since
λMϕ(λ) ∈ S (R)

for any M ∈ N, it follows from (3.32) that

KHMϕ(H)(x, ·) ∈ L1(Ω) ∩ L2(Ω)
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for any M ∈ N and x ∈ Ω. Hence we obtain

HM(ϕ(H)(x, ·)) ∈ L1(Ω) ∩ L2(Ω)

for any M ∈ N and x ∈ Ω. Thus we conclude (3.31). The proof of Lemma 3.10 is
finished. □

We are in a position to prove Lemma 3.9.

Proof of Lemma 3.9. First we show that

ϕj(
√
H)fN(x) → ϕj(

√
H)f(x) a.e.x ∈ Ω as N → ∞ (3.33)

for each j ∈ Z. Put
Φj = ϕj−1 + ϕj + ϕj+1

for j ∈ Z. Then, noting from the assertion (i) in Lemma 3.1 that

Φj(
√
H)fN ∈ L∞(Ω),

and from Lemma 3.10 that

ϕj(
√
H)(x, ·) ∈ X (Ω) for each x ∈ Ω,

we write

ϕj(
√
H)fN(x) = ϕj(

√
H)Φj(

√
H)fN(x)

= X ′(Ω)⟨Φj(
√
H)fN , ϕj(

√
H)(x, ·)⟩X (Ω)

(3.34)

for each j ∈ Z and x ∈ Ω. In a similar way, we have

ϕj(
√
H)f(x) = X ′(Ω)⟨Φj(

√
H)f, ϕj(

√
H)(x, ·)⟩X (Ω) (3.35)

for each j ∈ Z and x ∈ Ω. Since

Φj(
√
H)fN → Φj(

√
H)f in X ′(Ω) as N → ∞

for each j ∈ Z by assumption (3.29) and the continuity of Φj(
√
H) from X ′(Ω) into

itself, we deduce that

X ′(Ω)⟨Φj(
√
H)fN , ϕj(

√
H)(x, ·)⟩X (Ω) → X ′(Ω)⟨Φj(

√
H)f, ϕj(

√
H)(x, ·)⟩X (Ω) (3.36)

for each j ∈ Z and x ∈ Ω as N → ∞. Hence, combining (3.34)–(3.36), we get the
pointwise convergence (3.33).

Let us turn to the proof of the estimate (3.30). To begin with, given 1 ≤ p ≤ ∞,
we claim that

∥ϕj(
√
H)f∥Lp(Ω) ≤ lim inf

N→∞
∥ϕj(

√
H)fN∥Lp(Ω) (3.37)

for each j ∈ Z. When 1 ≤ p <∞, the inequality (3.37) is a consequence of (3.33) and
Fatou’s lemma. We have to prove the case when p = ∞. In this case, thanks to (3.33),

the inequality (3.37) is true for p = ∞, since {ϕj(
√
H)fN}N∈N is a bounded sequence

in L∞(Ω). Finally, multiplying by 2sj to the both sides of (3.37), we conclude the
required inequality (3.30). The proof of Lemma 3.9 is finished. □
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4. Proof of Theorem 2.1

In this section we prove Theorem 2.1. In the inhomogeneous case we write

f = ψ(H)f +
∞∑
k=1

ϕk(
√
H)f in X ′(Ω),

and in the homogeneous case we write

f =
∞∑

k=−∞

ϕk(
√
H)f in Z ′(Ω).

Hence it is sufficient to prove the homogeneous case (ii), since one can reduce the
argument of the proof of (i) to that of (ii). Therefore, we shall concentrate on proving
(ii).

Hereafter, for the sake of simplicity, we use the following notations:

fj := ϕj(
√
H)f, Sj(f) :=

j∑
k=−∞

ϕk(
√
H)f, j ∈ Z.

We divide the proof into two cases:

1 ≤ p2, p3 <∞, and p2 = ∞ or p3 = ∞,

since the approximation by the Littlewood Paley partition of unity is available only
for p2, p3 <∞ (see (3.2)) and a constant function in P(Ω) defined by (3.22) appears
in the case when p2 = ∞ or p3 = ∞.

The case: 1 ≤ p2, p3 <∞. Let f ∈ Ḃs
p1,q

(H)∩Lp3(Ω) and g ∈ Ḃs
p4,q

(H)∩Lp2(Ω).
Then we write

fg =
∑
k∈Z

fkSk−3(g) +
∑
l∈Z

Sl−3(f)gl +
∑

|k−l|≤2

fkgl in X ′(Ω), (4.1)

which is assured by the assertion (ii) in Lemma 3.2, since p2, p3 < ∞. By using
Minkowski’s inequality, we write

∥fg∥Ḃs
p,q(H) ≤ I + II + III + IV + V + VI,

where we put

I :=

{∑
j∈Z

(
2sj

∑
|k−j|≤2

∥∥∥ϕj(
√
H)

(
fkSk−3(g)

)∥∥∥
Lp(Ω)

)q
} 1

q

,

II :=

{∑
j∈Z

(
2sj

∑
|k−j|>2

∥∥∥ϕj(
√
H)

(
fkSk−3(g)

)∥∥∥
Lp(Ω)

)q
} 1

q

,

III :=

{∑
j∈Z

(
2sj

∑
|l−j|≤2

∥∥∥ϕj(
√
H)

(
Sl−3(f)gl

)∥∥∥
Lp(Ω)

)q
} 1

q

,
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IV :=

{∑
j∈Z

(
2sj

∑
|l−j|>2

∥∥∥ϕj(
√
H)

(
Sl−3(f)gl

)∥∥∥
Lp(Ω)

)q
} 1

q

,

V :=

{∑
j∈Z

(
2sj

∑
j−2≤k

or
j−2≤l

∥∥∥ϕj(
√
H)

( ∑
|k−l|≤2

fkgl

)∥∥∥
Lp(Ω)

)q
} 1

q

,

VI :=

{∑
j∈Z

(
2sj

∑
j−2>k
and

j−2>l

∥∥∥ϕj(
√
H)

( ∑
|k−l|≤2

fkgl

)∥∥∥
Lp(Ω)

)q
} 1

q

.

We note that when Ω = Rn, the terms II, IV and VI vanishes. For example, the
integrands in II satisfy

ϕj(
√
H)

(
fkSk−3(

√
H)g

)
= F−1

[
ϕj(|ξ|)

{(
ϕk(|ξ|)Ff

)
∗
(
Sk−3(|ξ|)Fg

)}]
= 0

for |j − k| > 2, where F is the Fourier transform on Rn and

Sk−3(
√
H) =

k−3∑
l=−∞

ϕl(
√
H).

However, when Ω ̸= Rn, the integrands do not vanish in general. On the other hand,
the gradient estimates in Lemma 3.6 work well for getting the required estimates for
the terms II, IV, VI.

Thus we estimate separately as follows:

Case A: Estimates for I, III and V and Case B: Estimates for II, IV and VI.

Case A: Estimates for I, III and V. These terms can be estimated in the same
way as in the case when Ω = Rn. Since similar arguments also appear for II, IV and
VI, we give the proof in a self-contained way. First we estimate the term I. Noting
from the assertion (ii) in Lemma 3.5 that fk ∈ Lp1(Ω) and Sk−3(g) ∈ Lp2(Ω) for each
k ∈ Z, we deduce from the estimate (3.8) in Lemma 3.5, Hölder’s inequality and the
estimate (3.9) for α = 0 in Lemma 3.5 that∥∥∥ϕj(

√
H)

(
fkSk−3(g)

)∥∥∥
Lp(Ω)

≤ C
∥∥fkSk−3(g)

∥∥
Lp(Ω)

≤ C∥fk∥Lp1 (Ω)∥Sk−3(g)∥Lp2 (Ω)

≤ C∥fk∥Lp1 (Ω)∥g∥Lp2 (Ω),
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since 1/p = 1/p1+1/p2. Thus we conclude from the above estimate and Minkowski’s
inequality that

I ≤ C

{∑
j∈Z

(
2sj

∑
|k−j|≤2

∥fk∥Lp1 (Ω)

)q
} 1

q

∥g∥Lp2 (Ω)

= C

{∑
j∈Z

( ∑
|k′|≤2

2−sk′ · 2s(j+k′)∥fj+k′∥Lp1 (Ω)

)q
} 1

q

∥g∥Lp2 (Ω)

≤ C
∑
|k′|≤2

2−sk′
{∑

j∈Z

(
2s(j+k′)∥fj+k′∥Lp1 (Ω)

)q
} 1

q

∥g∥Lp2 (Ω)

≤ C∥f∥Ḃs
p1,q

(H)∥g∥Lp2 (Ω).

As to the term III, interchanging the role of f and g in the above argument, we
get

III ≤ C∥f∥Lp3 (Ω)∥g∥Ḃs
p4,q

(H),

where 1/p = 1/p3 + 1/p4.

As to the term V, we estimate the case when j − 2 ≤ k. Applying the estimate
(3.8), and using Hölder’s inequality, we estimate{∑

j∈Z

(
2sj

∑
j−2≤k

∥∥∥ϕj(
√
H)

( k+2∑
l=k−2

fkgl

)∥∥∥
Lp(Ω)

)q
} 1

q

≤C

{∑
j∈Z

(
2sj

∑
j−2≤k

∥fk∥Lp1(Ω)

( k+2∑
l=k−2

∥gl∥Lp2 (Ω)

))q
} 1

q

≤C

{∑
j∈Z

(
2sj

∑
j−2≤k

∥fk∥Lp1(Ω)

)q
} 1

q

∥g∥Lp2 (Ω).

Here, by applying Minkowski’s inequality to the right member in the above inequality,
we find that{∑

j∈Z

(
2sj

∑
j−2≤k

∥fk∥Lp1 (Ω)

)q
} 1

q

=

{∑
j∈Z

( ∑
k′≥−2

2−sk′ · 2s(j+k′)∥fj+k′∥Lp1 (Ω)

)q
} 1

q

≤ C

∞∑
k′=−2

2−sk′
{∑

j∈Z

(
2s(j+k′)∥fj+k′∥Lp1 (Ω)

)q
} 1

q

≤ C∥f∥Ḃs
p1,q

(H),

since s > 0. Hence, combining the above two estimates, we deduce that{∑
j∈Z

(
2sj

∑
j−2≤k

∥∥∥ϕj(
√
H)

( ∑
|k−l|≤2

fkgl

)∥∥∥
Lp(Ω)

)q
} 1

q

≤ C∥f∥Ḃs
p1,q

(H)∥g∥Lp2 (Ω).
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In a similar way, we can proceed the above argument in the case when j−2 ≤ l; thus
we conclude that

V ≤ C
(
∥f∥Ḃs

p1,q
(H)∥g∥Lp2 (Ω) + ∥f∥Lp3 (Ω)∥g∥Ḃs

p4,q
(H)

)
.

Case B: Estimates for II, IV and VI. First let us estimate the term II. When
k − j > 2, we deduce from the same argument as in I that{∑

j∈Z

(
2sj

∑
k−j>2

∥∥∥ϕj(
√
H)

(
fkSk−3(g)

)∥∥∥
Lp(Ω)

)q
} 1

q

≤ C∥f∥Ḃs
p1,q

(H)∥g∥Lp2 (Ω).

Hence all we have to do is to prove the case when k − j < −2, i.e.,{∑
j∈Z

(
2sj

∑
k−j<−2

∥∥∥ϕj(
√
H)

(
fkSk−3(g)

)∥∥∥
Lp(Ω)

)q
} 1

q

≤ C∥f∥Ḃs
p1,q

(H)∥g∥Lp2 (Ω). (4.2)

In fact, noting from Lemma 3.1 that

fk, Sk−3(g) ∈ L∞(Ω),

and from (1.6) that

L∞(Ω) ↪→ X ′(Ω),

we have

fkSk−3(g) ∈ X ′(Ω).

Then we write

ϕj(
√
H)

(
fkSk−3(g)

)
= H−1ϕj(

√
H)H

(
fkSk−3(g)

)
in X ′(Ω). (4.3)

Here it should be noted that the operator H−1 in (4.3) is well-defined, since

H−1ϕj(
√
H)h ∈ X ′(Ω)

for any h ∈ X ′(Ω). Hence, applying the Leibniz rule in Lemma 3.7 to the identities
(4.3), we have:

ϕj(
√
H)

(
fkSk−3(g)

)
(4.4)

=H−1ϕj(
√
H)

{
(Hfk)Sk−3(g)− 2∇fk · ∇Sk−3(g) + fk

(
HSk−3(g)

)}
in X ′(Ω).

Thanks to estimates (3.8) and (3.9) from Lemma 3.5, the first term in the right
member in (4.4) is estimated as∥∥∥H−1ϕj(

√
H)

{
(Hfk)Sk−3(g)

}∥∥∥
Lp(Ω)

≤ C2−2j
∥∥(Hfk)Sk−3(g)

∥∥
Lp(Ω)

≤ C2−2j∥Hfk∥Lp1 (Ω)∥Sk−3(g)∥Lp2 (Ω)

≤ C2−2(j−k)∥fk∥Lp1 (Ω)∥g∥Lp2 (Ω).

In a similar way, we estimate the third term as∥∥∥H−1ϕj(
√
H)

{
fkHSk−3(g)

}∥∥∥
Lp(Ω)

≤ C2−2(j−k)∥fk∥Lp1 (Ω)∥g∥Lp2 (Ω).
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As to the second, thanks to (3.11) and (3.12) from Lemma 3.6, we estimate∥∥∥H−1ϕj(
√
H)

{
∇fk · ∇Sk−3(g)

}∥∥∥
Lp(Ω)

≤ C2−2j
∥∥∇fk · ∇Sk−3(g)

∥∥
Lp(Ω)

≤ C2−2j∥∇fk∥Lp1 (Ω)∥∇Sk−3(g)∥Lp2 (Ω)

≤ C2−2(j−k)∥fk∥Lp1 (Ω)∥g∥Lp2 (Ω).

Hence, combining the identity (4.4) with the above three estimates, we get∥∥∥ϕj(
√
H)

(
fkSk−3(g)

)∥∥∥
Lp(Ω)

≤ C2−2(j−k)∥fk∥Lp1 (Ω)∥g∥Lp2(Ω)

for any j, k ∈ Z. Therefore, we conclude from this estimate that{∑
j∈Z

(
2sj

∑
k−j<−2

∥∥∥ϕj(
√
H)

(
fkSk−3(g)

)∥∥∥
Lp(Ω)

)q
} 1

q

≤C

{∑
j∈Z

(
2sj

∑
k−j<−2

2−2(j−k)∥fk∥Lp1 (Ω)

)q
} 1

q

∥g∥Lp2 (Ω)

=C

{∑
j∈Z

( ∑
k′<−2

2(2−s)k′ · 2s(j+k′)∥fj+k′∥Lp1 (Ω)

)q
} 1

q

∥g∥Lp2 (Ω)

≤C∥f∥Ḃs
p1,q

(H)∥g∥Lp2 (Ω),

since s < 2, which proves (4.2). Thus we conclude that

II ≤ C∥f∥Ḃs
p1,q

(H)∥g∥Lp2 (Ω).

As to the term IV, interchanging the role of f and g in the above argument, we
get

IV ≤ C∥f∥Lp3 (Ω)∥g∥Ḃs
p4,q

(H).

As to the term VI, we estimate in a similar way to II;

VI ≤

{∑
j∈Z

(
2sj

∑
j−2>k

∥∥∥ϕj(
√
H)

( ∑
|k−l|≤2

fkgl

)∥∥∥
Lp(Ω)

)q
} 1

q

≤ C

{∑
j∈Z

(
2sj

∑
j−2>k

2−2(j−k)∥fk∥Lp1(Ω)

)q
} 1

q

∥g∥Lp2 (Ω)

= C

{∑
j∈Z

( ∑
k′<−2

2(2−s)k′ · 2s(j+k′)∥fj+k′∥Lp1 (Ω)

)q
} 1

q

∥g∥Lp2 (Ω)

≤ C∥f∥Ḃs
p1,q

(H)∥g∥Lp2 (Ω),

since s < 2.

Summarizing cases A and B, we arrive at the required estimate (2.3). The proof
of the case when 1 ≤ p2, p3 <∞ is finished.
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It remains to prove the case when p2 = ∞ or p3 = ∞.

The case: p2 = ∞ or p3 = ∞. We may prove only the case when p2 = p3 = ∞,
since the other cases are proved in a similar way. In this case, we note that

p1 = p4 = p.

Let f, g ∈ Ḃs
p,q(H) ∩ L∞(Ω). Then it follows from Lemma 3.5 that∥∥∥ ∞∑

j=k

fj

∥∥∥
L∞(Ω)

≤ C∥f∥L∞(Ω) (4.5)

for any k ∈ Z. Hence there exist a subsequence{ ∞∑
j=kl

fj

}
l∈N

and a function F ∈ L∞(Ω) such that
∞∑

j=kl

fj ⇀ F weakly* in L∞(Ω) (4.6)

as l → ∞, which also yields the convergence in X ′(Ω) and Z ′(Ω) by the embedding

L∞(Ω) ↪→ X ′(Ω) ↪→ Z ′(Ω).

On the other hand, it follows from Lemma 3.1 that
∞∑

j=kl

fj → f in Z ′(Ω)

as l → ∞. Hence we see that F = f in Z ′(Ω), which implies that

Pf := f − F ∈ P(Ω),

since f ∈ L∞(Ω). Therefore we conclude from (4.6) that
∞∑

j=kl

fj ⇀ f − Pf weakly* in L∞(Ω) (4.7)

as l → ∞. In a similar way, there exist a subsequence{ ∞∑
j=kl′

gj

}
l′∈N

and Pg ∈ P(Ω) such that
∞∑

j=kl′

gj ⇀ g − Pg weakly* in L∞(Ω) (4.8)

as l′ → ∞. Hence, by (4.7) and (4.8), there exists a subsequence {l′(l)}∞l=1 of {l′}∞l′=1

such that ( ∞∑
j=kl

fj

)( ∞∑
j=kl′(l)

gj

)
⇀ (f − Pf )(g − Pg) weakly* in L∞(Ω)
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as l → ∞. Hence we have( ∞∑
j=kl

fj

)( ∞∑
j=kl′(l)

gj

)
→ (f − Pf )(g − Pg) in X ′(Ω) (4.9)

as l → ∞, since L∞(Ω) ↪→ X ′(Ω). Now, the estimate of Ḃs
p,q-norm of the left member

in (4.9) is obtained by the argument as in the previous case 1 ≤ p2, p3 < ∞. Hence,
there exists a constant C > 0 such that∥∥∥∥( ∞∑

j=kl

fj

)( ∞∑
j=kl′(l)

gj

)∥∥∥∥
Ḃs

p,q(H)

≤ C
(
∥f∥Ḃs

p,q(H)∥g∥L∞(Ω) + ∥f∥L∞(Ω)∥g∥Ḃs
p,q(H)

)
(4.10)

for any l ∈ N. Here, we note that Pf and Pg are constants by the assertion (iii) from
Lemma 3.8. As a consequence of (4.9) and (4.10), we conclude from Lemma 3.9 that

∥fg∥Ḃs
p,q(H) ≤ lim inf

l→∞

∥∥∥∥( ∞∑
j=kl

fj

)( ∞∑
j=kl′(l)

gj

)∥∥∥∥
Ḃs

p,q(H)

+ ∥fPg∥Ḃs
p,q(H) + ∥Pfg∥Ḃs

p,q(H) + ∥PfPg∥Ḃs
p,q(H)

≤C
(
∥f∥Ḃs

p,q(H)∥g∥L∞(Ω) + ∥f∥L∞(Ω)∥g∥Ḃs
p,q(H)

)
+ ∥f∥Ḃs

p,q(H)|Pg|+ |Pf |∥g∥Ḃs
p,q(H) + ∥PfPg∥Ḃs

p,q(H).

Here, combining part (c) in (i) and the assertion (iii) from Lemma 3.8, we deduce
that

∥PfPg∥Ḃs
p,q(H) = 0.

Hence, all we have to do is to prove that

|Pf | ≤ C∥f∥L∞(Ω), (4.11)

|Pg| ≤ C∥g∥L∞(Ω). (4.12)

Noting (4.7), we estimate, by using (4.5),

|Pf | ≤ ∥f∥L∞(Ω) + lim inf
l→∞

∥∥∥ ∞∑
j=kl

fj

∥∥∥
L∞(Ω)

≤ C∥f∥L∞(Ω).

This proves (4.11). In a similar way, we get (4.12). The proof of Theorem 2.1 is
finished.

5. The case of Schrödinger operators

In this section we shall derive the bilinear estimates in Besov spaces generated by
the Schrödinger operator H + V , which is obtained as a corollary of Theorem 2.1
and the isomorphism of Besov spaces generated by the Dirichlet Laplacian and
Schrödinger operators (see Proposition 5.1 below).

To begin with, let us give definitions of the Schrödinger operator and function
spaces generated by the Schrödinger operator along [7]. Let Ω be an open set in
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Rn, where n ≥ 1. We denote by HV the self-adjoint realization of −∆+ V with the
domain

D(HV ) =
{
f ∈ H1

0 (Ω)
∣∣√V+f, HV f ∈ L2(Ω)

}
,

where V = V (x) is a real-valued measurable function on Ω such that

V = V+ − V−, V± ≥ 0, V+ ∈ L1
loc(Ω) and V− ∈ Kn(Ω). (5.1)

Here, V− ∈ Kn(Ω) if and only if

lim
r→0

sup
x∈Ω

∫
Ω∩{|x−y|<r}

|V−(y)|
|x− y|n−2

dy = 0 for n ≥ 3,

lim
r→0

sup
x∈Ω

∫
Ω∩{|x−y|<r}

log(|x− y|−1)|V−(y)| dy = 0 for n = 2,

sup
x∈Ω

∫
Ω∩{|x−y|<1}

|V−(y)| dy <∞ for n = 1.

Then we define a linear topological space XV (Ω), its dual space X ′
V (Ω) and inhomo-

geneous Besov spaces Bs
p,q(HV ) in a similar way to definitions in §2. Furthermore, if

we assume the additional condition thatsup
x∈Ω

∫
Ω

V−(y)

|x− y|n−2
dy <

π
n
2

Γ
(
n
2
− 1

) if n ≥ 3,

V− = 0 if n = 1, 2,

(5.2)

then we also define a linear topological space ZV (Ω), its dual space Z ′
V (Ω) and ho-

mogeneous Besov spaces Ḃs
p,q(HV ) in a similar way to definitions in §2.

By refining how to handle the low spectrum part in the proof of Proposition 3.5 in
[7], we can consider potentials in a wider class for the inhomogeneous Besov spaces.
We have the following.

Proposition 5.1. Let Ω be an open set of Rn, and let 1 ≤ p, q ≤ ∞ and s be such
that 

−min

{
2, n

(
1− 1

p

)}
< s < min

{
n

p
, 2

}
if n ≥ 3,

−2 +
2

p
< s <

2

p
if n = 1, 2.

(5.3)

Then the following assertions hold:

(i) Suppose that the potential V satisfies the assumption (5.1) and{
V ∈ L

n
2
,∞(Ω) + L∞(Ω) if n ≥ 3,

V ∈ Kn(Ω) if n = 1, 2,

where L
n
2
,∞(Ω) is the Lorentz space. Then

Bs
p,q(HV ) ∼= Bs

p,q(H). (5.4)
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(ii) Let n ≥ 2. Suppose that the potential V satisfies the assumption (5.2) and{
V ∈ L

n
2
,∞(Ω) if n ≥ 3,

V ∈ L1(Ω) if n = 2.

Then
Ḃs

p,q(HV ) ∼= Ḃs
p,q(H). (5.5)

Proof. The assertion (ii) is proved in Proposition 3.5 from [7]. We prove the assertion
(i). For this purpose, we prove that for p = 1 if n = 1, 2 and for 1 ≤ p < n/2 if n ≥ 3,
there exists a constant C > 0 such that

∥ϕj(
√

HV )Φk(
√
H)f∥Lp(Ω) ≤ C2−2(j−k)∥f∥Lp(Ω), (5.6)

∥ϕk(
√
H)Φj(

√
HV )f∥Lp(Ω) ≤ C2−2(k−j)∥f∥Lp(Ω) (5.7)

for any j, k ∈ N and f ∈ Lp(Ω), where we put

Φj = ϕj−1 + ϕj + ϕj+1.

Once (5.6) and (5.7) are established, the required isomorphism (5.4) is proved in the
completely same way as in the proof of Proposition 3.5 from [7].

We divide the proof into two cases: n ≥ 3 and n = 1, 2.

The case n ≥ 3. We write

V = V1 + V2, V1 ∈ L
n
2
,∞(Ω), V2 ∈ L∞(Ω).

Let 1 ≤ p < n/2 and f ∈ Lp(Ω) ∩ L2(Ω). By the estimate (3.8) in Lemma 3.5, we
have

∥ϕj(
√
HV )Φk(

√
H)f∥Lp(Ω)

= ∥ϕj(
√
HV )H−1

V HVΦk(
√
H)f∥Lp(Ω)

≤C2−2j
{
∥HΦk(

√
H)f∥Lp(Ω) + ∥V1Φk(

√
H)f∥Lp(Ω) + ∥V2Φk(

√
H)f∥Lp(Ω)

}
for any j, k ∈ N. As to the first term, we estimate, by using (3.8) from Lemma 3.5,

∥HΦk(
√
H)f∥Lp(Ω) ≤ C22k∥f∥Lp(Ω)

for any k ∈ N. As to the third term, we see from Proposition 3.3 that

∥V2Φk(
√
H)f∥Lp(Ω) ≤ 22k∥V2∥L∞(Ω)∥Φk(

√
H)f∥Lp(Ω)

≤ C22k∥V2∥L∞(Ω)∥f∥Lp(Ω)

for any k ∈ N. As to the second term, we use the following estimate: For any
1 ≤ p < p0 <∞ and 1 ≤ q ≤ ∞, there exists a constant C > 0 such that

∥ϕk(
√
HV )f∥Lp0,q(Ω) ≤ C2

n( 1
p
− 1

p0
)k∥f∥Lp(Ω) (5.8)

for any k ∈ Z and f ∈ Lp0(Ω) (see Lemma 9.1 in [7]). Thanks to (5.8), we estimate

∥V1Φk(
√
H)f∥Lp(Ω) ≤∥V1∥Ln

2 ,∞(Ω)
∥Φk(

√
H)f∥Lp0,p(Ω)

≤C22k∥V1∥Ln
2 ,∞(Ω)

∥f∥Lp(Ω)
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for any k ∈ N, where p0 is a real number with 1/p = 2/n + 1/p0. Hence, combining
the estimates obtained now, we get

∥ϕj(
√

HV )Φk(
√
H)f∥Lp(Ω) ≤ C2−2j22k∥f∥Lp(Ω)

for any j, k ∈ N. Therefore (5.6) is obtained by the density argument. In a similar
way, we get (5.7).

The case n = 1, 2. Since V ∈ Kn(Ω), the infimum of the spectrum σ(HV ) of HV

is finite. First let us check that for sufficiently large M > − inf σ(HV ) there exists a
constant C > 0 such that

∥V (HV +M)−1∥L1(Ω)→L1(Ω) ≤ C. (5.9)

To prove (5.9), we need the following pointwise estimate for the kernel e−tHV (x, y) of
the operator e−tHV , which is established in Proposition 3.1 from [8]:

There exist two constants C > 0 and ω ≥ − inf σ(HV ) such that

0 ≤ e−tHV (x, y) ≤ Ceωte2t∆(x, y) a.e.x, y ∈ Ω (5.10)

for any t > 0, where et∆(x, y) is the kernel of free heat semigroup et∆

on L2(Rn). More precisely, we have

et∆(x, y) = (4πt)−
n
2 e−

|x−y|2
4t .

Now, let f ∈ L1(Ω) ∩ L2(Ω). Taking M so that M > ω, and using the following
formula:

(HV +M)−1 =

∫ ∞

0

e−Mte−tHV dt,

we see from (5.10) that∣∣ [(HV +M)−1f
]
(x)

∣∣ ≤ ∫ ∞

0

e−Mt
∣∣(e−tHV f)(x)

∣∣ dt
≤ C

∫ ∞

0

e−(M−ω)t(e2t∆|f̃ |)(x) dt

= C
[
(−2∆ +M − ω)−1|f̃ |

]
(x)

(5.11)

for almost everywhere x ∈ Ω, where f̃ is the zero extension of f to Rn. Let Ṽ be the
zero extension of V to Rn. Since Ṽ ∈ Kn(Rn), we deduce from Proposition A.2.3 in
Simon [14] that∥∥∥Ṽ (−2∆ +M − ω)−1|f̃ |

∥∥∥
L1(Rn)

≤ C∥f̃∥L1(Rn) = C∥f∥L1(Ω) (5.12)

Therefore, combining (5.11) and (5.12), we obtain

∥V (HV +M)−1f∥L1(Ω) ≤ C∥f∥L1(Ω).

Hence, (5.9) is proved by the density argument.
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Let us turn to the proof of (5.6). We estimate, by using Proposition 3.3,

∥ϕj(
√

HV )Φk(
√
H)f∥L1(Ω)

= ∥ϕj(
√

HV )H−1
V HVΦk(

√
H)f∥L1(Ω)

≤C2−2j
{
∥HΦk(

√
H)f∥L1(Ω) + ∥V Φk(

√
H)f∥L1(Ω)

} (5.13)

for any j ∈ N. Here, thanks to (3.8) from Lemma 3.5, the first term in the right
member of (5.13) is dominated by 22k∥f∥L1(Ω). As to the second, we estimate, by
using (5.9),

∥V Φk(
√
H)f∥L1(Ω) ≤ C∥V (H +M)−1(H +M)Φk(

√
H)f∥L1(Ω)

≤ C∥(H +M)Φk(
√
H)f∥L1(Ω)

≤ C22k∥f∥L1(Ω)

for any k ∈ N. Combining these estimates obtained now, we get (5.6). In a similar
way, we get (5.7). The proof of Proposition 5.1 is finished. □

Combining Theorem 2.1 with Proposition 5.1, we have the following:

Corollary 5.2. Let p, p1, p2, p3, p4 and q be such that

1 ≤ p, p1, p2, p3, p4, q ≤ ∞ and
1

p
=

1

p1
+

1

p2
=

1

p3
+

1

p4
,

and let s be such that

0 < s < min

{
n

p1
,
n

p4
, 2

}
if n ≥ 3; 0 < s < min

{
2

p1
,
2

p4

}
if n = 1, 2.

Then, under the same assumption on V in Proposition 5.1, the assertions (i) and (ii)
in Theorem 2.1 hold for Bs

p,q(HV ) and Ḃ
s
p,q(HV ), respectively.

Appendix A. (High regularity case)

In this appendix we check that the bilinear estimates do not necessarily hold for
some s ≥ 2. Let us consider the bilinear estimate (2.3) in the case when

p = 1, p1 = p2 = p3 = p4 = q = 2 and f = g,

namely,
∥f 2∥Ḃs

1,2(H) ≤ C∥f∥Ḃs
2,2(H)∥f∥L2(Ω) (A.1)

for any f ∈ Ḃs
2,2(H) ∩ L2(Ω). We note that the estimate (A.1) is already proved

for any s < 2 on an arbitrary open set (see (III-a) in §2). We shall show that the
estimate (A.1) does not hold for some s ≥ 2.

Let n ≥ 3 and Ω be an exterior domain in Rn such that Rn \Ω is compact and its
boundary is of C1,1. Then it is known that

∥∇e−tH∥L1(Ω)→L∞(Ω) ≳ t−
n
2 (A.2)

for sufficiently large t > 0 (see Ishige and Kabeya [6], and also Zhang [18]). However
we can claim the following:
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Claim A.1. Let ε > 0. If the estimate (A.1) holds for any s ∈ [2, n + 2 + ε], then
there exists a constant C > 0 such that

∥∇e−tH∥L1(Ω)→L∞(Ω) ≤ Ct−
n
2
− 1

2
+ ε

4 (A.3)

for sufficiently large t > 0.

The estimate (A.3) contradicts (A.2) if we choose ε sufficiently small. Thus, if
Claim A.1 is proved, then we conclude that when Ω is the exterior domain whose
boundary is compact and of C1,1, the bilinear estimate (2.3) does not hold for some
s ≥ 2. In the rest of this section, we prove Claim A.1.

Let f ∈ L1(Ω). By the Leibniz rule, we have

H(e−tHf)2 = 2(He−tHf)(e−tHf)− 2|∇e−tHf |2 in D ′(Ω),

and

∥∇e−tHf∥2L∞(Ω) ≤ ∥H(e−tHf)2∥L∞(Ω) + ∥(He−tHf)(e−tHf)∥L∞(Ω)

=: I + II.
(A.4)

We readily see from Proposition 3.3 that

II ≤ ∥He−tHf∥L∞(Ω)∥e−tHf∥L∞(Ω)

≤ Ct−
n
2
−1∥f∥L1(Ω) · t−

n
2 ∥f∥L1(Ω)

= Ct−n−1∥f∥2L1(Ω).

(A.5)

To estimate for I, we recall that

ϕj = Φjϕj, (A.6)

where

Φj = ϕj−1 + ϕj + ϕj+1.

Then, by using identities (A.6) and Lemma 3.5, we find that

I ≤
∑
j∈Z

∥ϕj(
√
H)H(e−tHf)2∥L∞(Ω)

=
∑
j∈Z

∥HΦj(
√
H)ϕj(

√
H)(e−tHf)2∥L∞(Ω)

≤ C
∑
j∈Z

22j∥ϕj(
√
H)(e−tHf)2∥L∞(Ω).

Here, by using (A.6) and Proposition 3.3, we estimate

∥ϕj(
√
H)(e−tHf)2∥L∞(Ω) = ∥Φj(

√
H)ϕj(

√
H)(e−tHf)2∥L∞(Ω)

≤ C2nj∥ϕj(
√
H)(e−tHf)2∥L1(Ω).

Hence, combining these estimates obtained now, we get

I ≤ C
∑
j∈Z

2(n+2)j∥ϕj(
√
H)(e−tHf)2∥L1(Ω)

=: C(I1 + I2),
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where

I1 =
∑
j≤0

2(n+2)j∥ϕj(
√
H)(e−tHf)2∥L1(Ω),

I2 =
∑
j≥1

2(n+2)j∥ϕj(
√
H)(e−tHf)2∥L1(Ω).

Here, writing

I1 =
∑
j≤0

2εj · 2−εj · 2(n+2)j∥ϕj(
√
H)(e−tHf)2∥L1(Ω),

I2 =
∑
j≥1

2−εj · 2εj · 2(n+2)j∥ϕj(
√
H)(e−tHf)2∥L1(Ω)

for any ε > 0, we estimate

I1 ≤
{∑

j≤0

22εj
} 1

2
{∑

j≤0

(
2(n+2−ε)j∥ϕj(

√
H)(e−tHf)2∥L1(Ω)

)2} 1
2

≤ C∥(e−tHf)2∥Ḃn+2−ε
1,2 (H),

I2 ≤
{∑

j≥1

2−2εj
} 1

2
{∑

j≥1

(
2(n+2+ε)j∥ϕj(

√
H)(e−tHf)2∥L1(Ω)

)2} 1
2

≤ C∥(e−tHf)2∥Ḃn+2+ε
1,2 (H),

respectively, which imply that

I ≤ C
{
∥(e−tHf)2∥Ḃn+2−ε

1,2 (H) + ∥(e−tHf)2∥Ḃn+2+ε
1,2 (H)

}
(A.7)

for any ε > 0. Now, since f ∈ L1(Ω), it follows from L1-L2-estimate for heat semi-
group e−tH that

e−tHf ∈ Ḃs
2,2(H) ∩ L2(Ω) for any s ∈ [0, n+ 2 + ε] and t > 0.

Hence, applying the assumption that (A.1) holds for any s ∈ [2, n+2+ ε], we deduce
that

∥(e−tHf)2∥Ḃn+2−ε
1,2 (H) ≤ C∥e−tHf∥Ḃn+2−ε

2,2 (H)∥e
−tHf∥L2(Ω). (A.8)

Since

∥g∥Ḃs
2,2(H) ≃ ∥H

s
2 g∥L2(Ω), g ∈ Ḃs

2,2(H)

for any s ∈ R, the first factor in the right member of (A.8) is estimated as

∥e−tHf∥Ḃn+2−ε
2,2 (H) ≤ C∥H

n
2
+1− ε

2 e−tHf∥L2(Ω)

≤ Ct−
n
2
−1+ ε

2∥e−
t
2
Hf∥L2(Ω)

≤ Ct−
3n
4
−1+ ε

2∥f∥L1(Ω),

where we used Proposition 3.3 in the second step, and L1-L2-estimate for heat semi-
group e−

t
2
H in the last step. Again, by L1-L2-estimate for heat semigroup e−

t
2
H, we

have

∥e−tHf∥L2(Ω) ≤ Ct−
n
4 ∥f∥L1(Ω).
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Hence, combining all the estimates obtained now, we get

∥(e−tHf)2∥Ḃn+2−ε
1,2 (H) ≤ Ct−n−1+ ε

2∥f∥2L1(Ω). (A.9)

In a similar way, we have

∥(e−tHf)2∥Ḃn+2+ε
1,2 (H) ≤ Ct−n−1− ε

2∥f∥2L1(Ω). (A.10)

Therefore, combining the estimates (A.7), (A.9) and (A.10), we conclude that

I ≤ C
(
t−n−1+ ε

2 + t−n−1− ε
2

)
∥f∥2L1(Ω). (A.11)

Thus, combining (A.4), (A.5) and (A.11), we arrive at (A.3). Claim A.1 is proved.

Appendix B

In this appendix we prove the following.

Lemma B.1. Let 1 ≤ p ≤ ∞ and T be a bounded linear operator from Lp(Ω) to
L∞(Ω), and T (x, y) the kernel of T . Then

∥T∥Lp(Ω)→L∞(Ω) = ∥T (·, ·)∥L∞(Ω;Lp′ (Ω)), (B.1)

where p′ is the conjugate exponent of p.

Proof. It follows from Hölder’s inequality that

∥T∥Lp(Ω)→L∞(Ω) ≤ ∥T (·, ·)∥L∞(Ω;Lp′ (Ω)) (B.2)

for any 1 ≤ p ≤ ∞. In fact, letting f ∈ Lp(Ω), we have

|Tf(x)| =
∣∣∣ ∫

Ω

T (x, y)f(y) dy
∣∣∣

≤ ∥T (x, ·)∥Lp′ (Ω)∥f∥Lp(Ω)

for any x ∈ Ω. Hence we obtain

∥Tf∥L∞(Ω) ≤ ∥T (·, ·)∥L∞(Ω;Lp′ (Ω))∥f∥Lp(Ω),

which implies (B.2). Therefore it suffices to prove the converse:

∥T (·, ·)∥L∞(Ω;Lp′ (Ω)) ≤ ∥T∥Lp(Ω)→L∞(Ω) (B.3)

for any 1 ≤ p ≤ ∞. When 1 ≤ p <∞, we estimate

∥T (x, ·)∥Lp′ (Ω) = sup
f∈Lp(Ω), ∥f∥Lp(Ω)=1

∣∣∣ ∫
Ω

T (x, y)f(y) dy
∣∣∣

= sup
f∈Lp(Ω), ∥f∥Lp(Ω)=1

∣∣Tf(x)∣∣
≤ sup

f∈Lp(Ω), ∥f∥Lp(Ω)=1

∥T∥Lp(Ω)→L∞(Ω)∥f∥Lp(Ω)

≤ ∥T∥Lp(Ω)→L∞(Ω)
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for any x ∈ Ω. This proves (B.3) for 1 ≤ p < ∞. When p = ∞, fixing x0 ∈ Ω, we
estimate

∥T (x0, ·)∥L1(Ω) =

∫
Ω

|T (x0, y)| dy

=

∫
Ω

T (x0, y)e
−i arg {T (x0,y)} dy

≤ sup
x∈Ω

∣∣∣ ∫
Ω

T (x, y)e−i arg {T (x0,y)} dy
∣∣∣

= sup
x∈Ω

∣∣Te−i arg {T (x0,·)}(x)
∣∣

≤ ∥T∥L∞(Ω)→L∞(Ω)

∥∥e−i arg {T (x0,·)}
∥∥
L∞(Ω)

= ∥T∥L∞(Ω)→L∞(Ω).

Thus (B.1) is proved for p = ∞. □
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