CHUO MATH NO.123(2018)

Derivatives of flat functions

by
Hiroki KODAMA, Kazuo MASUDA, and Yoshihiko MITSUMATSU

DEPARTMENT OF MATHEMATICS
 - CHUO UNIVERSITY BUNKYOKU TOKYO JAPAN

Apr. 28, 2018

Derivatives of flat functions

Hiroki KODAMA, Kazuo MASUDA, and Yoshihiko MITSUMATSU

Abstract

We remark that there is no smooth function $f(x)$ on $[0,1]$ which is flat at 0 such that the derivative $f^{(n)}$ of any order $n \geq 0$ is positive on $(0,1]$. Moreover, the number of zeros of the n-th derivative $f^{(n)}$ grows to the infinity and the zeros accumulate to 0 when $n \rightarrow \infty$.

We consider smooth functions on the interval $[0,1]$ which are flat at the origin, namely of class C^{∞} and any derivative $f^{(n)}(x)$ converges to 0 when $x \rightarrow 0+0$. Eventually it is equivalent to say that f extends to the whole real line as a smooth function by defining $f(x)=0$ for $x<0$. In this short note we make a couple of remarks on the asymptotics of higher derivatives around the origin.

Among non-tirivial flat functions the most well-known might be the one which is defined as follows.

$$
f(0)=0 \text { and } f(x)=e^{-\frac{1}{x}} \text { for } x>0
$$

If we imagine its graph, of course it seems smooth enough, and it can be extended as constantly 0 on $(-\infty, 0]$ as a smooth function on the real line \mathbb{R}. Its first derivative is positive on $(0, \infty)$, but the second derivative vanishes at $x=\frac{1}{2}=x_{2}$ and the third vanishes at $x_{3}=\frac{1-1 / \sqrt{3}}{2}<x_{2}$, and so on. That is, setting $x_{n}=\min \left\{x ; f^{(n)}(x)=0, x>0\right\}$ for $n=2,3,4, \ldots$, it is clear that $\left\{x_{n}\right\}_{n}$ is strictly decreasing, and in fact $\lim _{n \rightarrow \infty} x_{n}=0$. More over, if we fix any interval $[0, \alpha)(\alpha>0), f^{(n)}(x)$ tends to behave more and more wildly when $n \rightarrow \infty$ on the interval.

Also, if we take $g_{0}(x)=f(x)\left(\sin \left(\frac{1}{x}\right)+1\right)$ and

$$
g_{n}(x)=\int_{0}^{x} \int_{0}^{t_{n-1}} \cdots \int_{0}^{t_{1}} g_{0}\left(t_{0}\right) d t_{0} \cdots d t_{n-2} d t_{n-1},
$$

then for $n=1,2,3, \cdots, g_{n}(x)$ is positive on $(0, \infty)$ and is flat at $x=0$, and apparently $g_{n}^{(k)}(x)>0$ when $x>0$ for $0 \leq k \leq n-1$ but there is no interval $(0, \alpha)$ on which $g_{n}^{(n)}(x)$ is positive.

They seem to exhibit not particular for these examples but rather common or inevitable phenomena of higher derivatives of flat functions.

Theorem 1 There exists no smooth function $f(x)$ on $[0,1]$ which is flat at $x=0$ and satisfies $f^{(n)}(x)>0$ on $(0,1]$ for any $n \geq 0$.

This fact is refined as follows.

Theorem 2 For a smooth function $f(x)$ on $[0,1]$ which is flat at $x=0$, put $Z(n)=\left\{x \in(0,1) \mid f^{(n)}(x)=0\right\}$ and $z(n)=\sharp Z(n)$ for $n \geq 0$. Then

$$
\lim _{n \rightarrow \infty} z(n)=\infty
$$

holds, where ∞ might be \aleph_{c}.
Corollary 3 1) In general, $\lim _{n \rightarrow \infty} \inf Z(n)=0$.
2) More strongly, for any $k>0$ there exist $N>0$ and $y^{(n)}(l) \in Z(n)$ for $n \geq N$ and $l=1, \ldots, k$ which are strictly increasing in l and strictly decreasing in n, namely, satisfying
for each fixed $n, y^{(n)}(l)<y^{(n)}(l+1)$ for $1 \leq l \leq k-1$,
for each fixed $l, y^{(n)}(l)>y^{(n+1)}(l)$.
Moreover it satisfies for any $l \lim _{n \rightarrow \infty} y^{(n)}(l)=0$.
The accumulation of $Z(n)$ to $0(n \rightarrow 0)$ must be formulated in many more stronger statements. The above corollary is one of them.
Proof of Corollary 3. There is a zero of $f^{(n+1)}$ between two zeros of $f^{(n)}$. This simple argument, which will be used repeatedly, tells that once $Z(n)$ accumulates to 0 for some n, so does $Z(k)$ for any $k \geq n$. Therefore in this case the proof is done. Otherwise, 0 is always isolated from $Z(n)$ and then we can pick up the least element $y^{(n)}(1) \in Z(n)$. Now it is clear that $y^{(n+1)}(1)<y^{(n)}(1)$ for any n. Then, if $\lim _{n \rightarrow \infty} y^{(n)}(1)=c>0,\left.f\right|_{[0, c]}$ contradicts to Theorem 1. This proves 1).

Now let us prove 2). Theorem 2 implies for any k there is $N^{\prime}, \sharp Z(n) \geq k$ for $n \geq N^{\prime}$. Like in 1), once 0 is accumulated by $Z(N)$, take any decreasing sequence $y^{(n)}(k) \in Z(n)$ for $n \geq N$, and then it is fairy easy to take $\left\{y^{(n)}(l)\right\}$ for other l 's so as to satisfy the conditions. Therefore we assume that 0 is isolated from $Z(n)$ for any $n \in \mathbb{N}$.

Next, take $A(n) \subset Z(n)$ to be the set of points which is accumulated from above by points in $Z(n)$. Clearly this set has $\eta(n)=\min A(n)$ whenever $A(n) \neq \varnothing$. If $A(n)=\varnothing$, put $\eta(n)=1$. If $\eta(n)<1, f^{(n)}$ is flat at $\eta(n)$ and $\eta(n) \in A\left(n^{\prime}\right)$ for $n^{\prime} \geq n$. Therefore the sequence $\{\eta(n)\}_{n}$ is weakly decreasing.

In the case where $c=\lim _{n \rightarrow \infty} \eta(n)>0$, applying Theorem 2 to $\left.f\right|_{[0, c]}$, we can find N such that $\sharp(Z(N) \cap(0, c)) \geq k$. Moreover, in this case, for any $n \geq N$ we can take the k least zeros $0<y^{(n)}(1)<y^{(n)}(2)<\cdots<y^{(n)}(k)$ because there is no accumulation from above. Automatically $\left\{y^{(n)}(l)\right\}_{n}$ is strictly decreasing for each l. If $\lim _{n \rightarrow \infty} y^{(n)}(k)=c^{\prime}>0$, then again $\left.f\right|_{\left[0, c^{\prime}\right]}$ contradicts to Theorem 2. Therefore this case is done.

In the case where $\lim _{n \rightarrow \infty} \eta(n)=0$, a similar argument in the case where 0 is accumulated by some $Z(n)$ enable us to arrange $\left\{y^{(n)}(l)\right\}$ so as to satisfy the conditions.

Proof of Theorem 1. The theorem is easily deduced from Lemma 4 by contradiction. Assume for some $\alpha>0$ that $f(x)$ is smooth on $[0, \alpha]$, is flat at $x=0$, and that its n-th derivative is positive on $(0, \alpha]$ for any $n \in \mathbb{N}$. We adjust the function f into $g(x)=f(\alpha)^{-1} f(\alpha x)$. Then $g(x)$ satisfies the condition of the lemma for any $n \in \mathbb{N}$. Therefore $g(x) \equiv 0$ on $[0,1)$, and we obtain a contradiction.

Lemma 4 Let n be an integer and $g(x)$ be a function on $[0,1]$ of class C^{n+1} with the following properties.

$$
\begin{align*}
& g^{(k)}(0)=0 \text { for } k=0, \ldots, n, \text { and } g(1)=1, \tag{1}\\
& g^{(n+1)}(x)>0 \text { for } x>0 .
\end{align*}
$$

Then $g(x)<x^{n}$ holds on $(0,1)$.
Proof of Lemma 4. It is enough to show that $g(x) / x^{n}$ is increasing on $[0,1]$. As $\frac{d}{d x}\left(\frac{g(x)}{x^{n}}\right)=\frac{x g^{\prime}(x)-n g(x)}{x^{n+1}}$, it is also sufficient to show that the numerator $x g^{\prime}(x)-n g(x)$ is positive on $(0,1)$.

Then because $\left(x g^{\prime}(x)-n g(x)\right)^{(n)}=x g^{(n+1)}(x)$ is positive on $(0,1]$ from our condition, we see successively that each k-th derivative $\left(x g^{\prime}(x)-\right.$ $n g(x))^{(k)}=x g^{(k+1)}-(n-k) g^{(k)}(x)$ vanishes at $x=0$ and therefore is positive on $(0,1]$ for $k=n-1, n-2, \ldots, 0$. This completes the proof.
A variant of this lemma is used to prove Theorem 2.
Proof of Theorem 2. The key idea is not to look at $z(n)$ bt at the number $s(n)$ of the quasi-positive and quasi-negative intervals of $f^{(n)}$. For a smooth (continuous) function g on $[0,1]$ a connected component of the closure of $g^{-1}(0, \infty)\left[r e s p . g^{-1}(-\infty, 0)\right]$ is called a quasi-positive [resp. quasinegative] interval. Such intervals are exactly maximal ones on which the primitive $\int g(x) d x$ of g is strictly monotone. Let us define $s(g) \in \mathbb{N} \cup\{\infty\}$ to be the number of all the quasi-positive and quai-negative intervals of g. Then we put $s(n)=s\left(f^{(n)}\right)$.

If we have $s(n)=\infty$ for some $n, s(k)=\infty$ for $k \geq n$ as follows. If $Z(n)$ has interior points for some n, so does $Z(k)$ for $k \geq n$, If for some n we have $z(n)=\infty$ and $\operatorname{int} Z(n)=\varnothing$, the complement $[0,1] \backslash Z(n)$ consists of infinitely many intervals and possibly of one half open interval. Each open interval contains an element in $Z(n+1)$.

Therefore, eliminating such cases, , we can assume $z(n)<\infty$ for any $n \in \mathbb{N}$. Consequently $s(n)<\infty(\forall n \in \mathbb{N})$ holds as well. We want to prove $\lim _{n \rightarrow \infty} s(n)=\infty$ under this assumption.

Let $x^{(n)}(l)(l=1,2, \ldots, s(n)-1, n=0,1,2, \ldots)$ denotes the bigger end point of the l-th of quasi-positive/negative intervals for $f^{(n)}$, namely $\left[0, x^{(n)}(1)\right],\left[x^{(n)}(1), x^{(n)}(2)\right], \ldots,\left[x^{(n)}(l-1), x^{(n)}(l)\right], \ldots,\left[x^{(n)}(s(n)-1), 1\right]$ are the maximal intervals. Except for the final one, any quasi-positive [resp. quasi-negative] interval contains a maximal [resp. minimal] point in its interior. From this observation it is easy to see the following, among which

1) is a conclusion of Theorem 1 , because it implies $z(n) \geq 1$ for some n and then we have $s(n+1) \geq 2$.

Assertion 5 1) $s(n) \geq 2$ for some n.
2) $\left\{x^{(k)}(1)\right\}_{k}$ is strictly decreasing $(k=n, n+1, n+2, \ldots)$ for n in 1$)$.
3) Also for any m and $0<l<s(m)$, the sequence $\left\{x^{(k)}(l)\right\}_{k}$ is strictly decreasing $(k=m, m+1, m+2, \ldots)$.
4) $\{s(n)\}_{n}$ is weakly increasing, namely, $s(n) \leq s(n+1)$ for any n.

Now let us procede by contradiction. We assume that $s(n)$ does not grow to ∞, i.e., for some $N, s(n) \equiv s(N)(=S)$ for any $n \geq N$. For fixed $l \in\{1, \cdots, S\}$, the quasi-positivity/negativity of the l-th interval is independent of $n \geq N$. Under the assumption we also see the following.

Assertion 6 For $n \geq N$,

1) $f^{(n)}$ is strictly monotone on the final interval $\left[x^{(n)}(S-1), 1\right]$.
2) In particular $f^{(n)}(1) \neq 0$. More precisely, if the final interval is quasipositive [resp. quasi-negative] we have $f^{(n)}(1)>0$ resp. $f^{(n)}(1)<0$].
3) The final intervals are increasing, namely, we have $x^{(N)}(S-1)>x^{(N+1)}(S-1)>\cdots x^{(n)}(S-1)>x^{(n+1)}(S-1)>\cdots$.

By multiplying a non-zero constant to f, we assume that for any $n \geq N$ $f^{(n)}$ is weakly increasing on the final interval and that $f^{(N)}(1)=1$.

Lemma 7 Under these assumptions, the following estimate holds.

$$
f^{(N)}(x) \leq x^{p} \quad \text { on }\left[x^{(N)}(S-1), 1\right] \quad \text { for any } p \in \mathbb{N} .
$$

This lemma apparently implies $\left.f^{(N)}\right|_{\left[x^{(N)}(S-1), 1\right]} \equiv 0$ and contradicts to our assumption. This completes the proof of Theorem 2.

Proof of Lemma 7. We adjust the proof of Lemma 4 in order to apply to $f^{(N)}$. Put $a_{n}=x^{(n)}(S-1)$ to simplify the notation.

It is enough to show that for any $p \geq 0, f^{(N)}(x) \cdot x^{-p}$ is strictly increasing on $\left[a_{N}, 1\right]$ because $\left.f^{(N)}(x) \cdot x^{-p}\right|_{x=1}=1$. So it suffices to show $\left(f^{(N)}(x) \cdot x^{-p}\right)^{\prime}>0$, namely, $x f^{(N+1)}(x)-p f^{(N)}(x)>0$ on $\left(a_{N}, 1\right)$.

For this purpose we prove inductively for $k=p, p-1, p-2, \cdots, 0$

$$
\left(x f^{(N+1)}(x)-p f^{(N)}(x)\right)^{(k)}>0 \quad \text { on } \quad\left(a_{N+k}, 1\right)
$$

For $k=p$, on $\left(a_{N+p+1}, 1\right)$ and in particular on $\left(a_{N+p}, 1\right)$, we have clearly

$$
\left(x f^{(N+1)}(x)-p f^{(N)}(x)\right)^{(p)}=x f^{(N+p+1)}(x)>0
$$

Then on each step, as $f^{(N+k+1)}\left(a_{N+k}\right)>0$ and $f^{(N+k)}\left(a_{N+k}\right)=0$,

$$
\left(x f^{(N+1)}(x)-p f^{(N)}(x)\right)^{(k)}=x f^{(N+1+k)}(x)-(p-k) f^{(N+k)}(x)
$$

is positive at $x=a_{N+k}$. Because the inductive hypothesis implies its derivative is positive on $\left(a_{N+k}, 1\right)$ (and even on $\left(a_{N+k+1}, 1\right)$), the induction is completed.

Problem 8 1) For some smooth functions on $[0,1]$ which are flat at 0 , $\cup_{n=1}^{\infty} Z(n)$ seems to be dense in $[0,1]$. However, we do not see which kind of further properties as flat functions are essential for this phenomena, because it discusses points away from 0 . Verify this phenomena for certain f^{\prime} s and explain the reason.
2) Does there exist a smooth function on $[0,1]$ which is flat at 0 such that $\lim _{n \rightarrow \infty} \max Z(n)=0$? Or how about flat at 0 such that the derived set of $\cup_{n=1}^{\infty} Z(n)$ coincides with $\{0\}$? It seems plausible that such functions do not exist, while we do not know how to prove it.

References

[N] Isaac Newton ; Philosophix Naturalis Principia Mathematica , (1687).

Hiroki KODAMA
Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8914, Japan and
Arithmer Inc.
kodma@ms.u-tokyo.ac.jp

Kazuo MASUDA
3-40-15 Wakamiya, Nakano-ku, Tokyo 165-0033, Japan
math21@maple.ocn.ne.jp

Yoshihiko MITSUMATSU
Department of Mathematics, Chuo University
1-13-27 Kasuga Bunkyo-ku, Tokyo, 112-8551, Japan
yoshi@math.chuo-u.ac.jp

