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GEOMETRIC ASPECTS OF LUCAS SEQUENCES, II

NORIYUKI SUWA∗)

Abstract. This article is a sequel of ⟨Geometric aspects of Lucas sequences, I⟩, which presents

a way of viewing Lucas sequences in the framework of group scheme theory. This enables us

to treat the Lucas sequences from a geometric and functorial viewpoint, which was suggested

by Laxton ⟨On groups of linear recurrences, I⟩ and by Aoki-Sakai ⟨Mod p equivalence classes of

linear recurrence sequences of degree 2⟩.

Introduction

This article is a sequel of [14], which treats of the divisibility problem for Lucas sequences

from a geometirc viewpoint, more precisely, in framework of the group scheme theory.

First we explain the divisibility problem for Lucas sequences. Let P and Q be non-zero

integers, and let (wk)k≥0 be the sequence defined by the linear recurrence relation wk+2 =

Pwk+1 −Qwk with the intial terms w0, w1 ∈ Z. If w0 = 0 and w1 = 1, then (wk)k≥0 is nothing

but the Lucas sequence (Lk)k≥0 associated to (P,Q). The divisibility problem asks to describe

the set {k ∈ N ; wk ≡ 0 mod m} for a positive integer m. Edouard Lucas [7] formulated results

on the divisibility problem as the laws of apparition and repetition in the case where m is a

prime number and (wk)k≥0 is the Lucas sequence (Lk)k≥0. There have been piled up various

kinds of results since then.

In this article we study the divisibility problem in the case where m is a power of 2, while in

[14] we deal with the case where m is an odd prime power. The following fact is a key to our

study:

Key Proposition(=Proposition 3.5) Let m be an integer with m ≥ 2 and (m,Q) = 1. Then:

(1) the period of the Lucas sequence (Lk)k≥0 mod m is equal to the order of θ in GP,Q(Z/mZ);

(2) the rank of the Lucas sequence (Lk)k≥0 mod m is equal to the order of β(θ) in G(P,Q)(Z/mZ).

Recall that the rank (resp. the period) of the Lucas sequence (Lk)k≥0 mod m is defined as

the least positive integer k such that Lk ≡ 0 mod m (resp. Lk ≡ 0 mod m and Lk+1 ≡ 1

mod m), if exists. Moreover, GP,Q =
∏

A/ZGm,A and G(P,Q) = (
∏

A/ZGm,A)/Gm,Z, where

A = Z[t]/(t2−Pt+Q) and θ stands for the image of t in A. (
∏

A/Z denotes the Weil restriction

functor associated to the ring extension A/Z. A detailed accout is given concerning GP,Q, G(P,Q)

and the homomorphism β : GP,Q → G(P,Q) in Section 1.)
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2 N. SUWA

The assertion above mentioned is an analogue of the Fermat-Euler theorem, which is nowa-

days understood as a consequece of Lagrange’s theorem applied to the multiplicative group

Gm(Z/mZ) = (Z/mZ)×. The assertion (1) is first verified in [13, Lemma 2.7] and the assertion

(2) is added in [14, Corollary 3.13], both under the assumption (m, 2) = 1.

Here is an example of reformulation in our context of the laws of apparition and repetition:

Theorem(=Proposition 3.26+Theorem 3.27) Let P and Q be non-zero integers, and let w0, w1 ∈
Z with (w0, w1) = 1. Define the sequence (wk)k≥0 by the recurrence relation wk+2 = Pwk+1 −
Qwk with initial terms w0 and w1, and put µ = ordp(w

2
1 − Pw0w1 + Qw2

0). Let p be a prime

with (p,Q) = 1 and n a positive integer. Then we have

the length of the orbit (w0 : w1)Θ in P1(Z/pnZ) =

1 (n ≤ µ)

r(pn−µ) (n > µ)
.

Furthermore, there exists k ≥ 0 such that wk ≡ 0 mod pn if and only if (w0 : w1) ∈ (0 : 1).Θ in

P1(Z/pnZ). Here Θ denotes the subgroup of G(P,Q)(Z(p)) generated by β(θ), and r(pν) denotes

the rank mod pν of the Lucas sequence associated to (P,Q).

The assertions above are verified by Aoki-Sakai [1, Theorem 1] under the assumption p > 2,

n = 1 and Q = ±1, and in [14, Proposition 3.23 and Theorem 3.25] under the assumption

p > 2. It should be mentioned that we have to employ the group schemes GP,Q and G(P,Q) in

this article instead of GD and G(D) employed in [14]. It is the reason that we need deal with the

residue ring Z[t]/(t2 − Pt + Q), not Z[t]/(t2 −D). We may recall that Z[D] does not coincide

with the ring of integers in the quadratic extension Q(
√
D) when D ≡ 1 mod 4.

Now we explain the organization of the article. There are some descriptions overlapping [14],

which we repeat with a slight modification for the reader’s convenience. The Sections 1 and 2

are devoted to the construction of infrastructure. In the Section 1, we introduce the affine group

schemes denoted by GP,Q, UP,Q and G(P,Q) as examples of the affine group schemes

GR̃/R =
∏
R̃/R

Gm,R̃,

UR̃/R = Ker[Nr :
∏
R̃/R

Gm,R̃ → Gm,R],

G(R̃/R) =
(∏
R̃/R

Gm,R̃

)
/Gm,R,

where R̃/R is a quadratic extension of rings. We conclude the section by recalling the action by

the group scheme G(R̃/R) on the projective line P1
R.

It should be mentioned that Lemmermeyer [11] sketches out a plan to study the group scheme

UD, called the Pell conics there. It would be intereseting to relate his study with ours.
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In the Section 2, we give precise description on GP,Q(Z/2nZ) and G(P,Q)(Z/2nZ) for n ≥ 1,

which requires much more efforts than describing GP,Q(Z/pnZ) and G(P,Q)(Z/pnZ) for a prime

> 2. In fact, we have to examine GD(Z/2nZ) and G(D)(Z/2nZ) in case by case as follows:

　

Proposition 2.9: GD(Z/2nZ) when D ≡ 0 mod 2

Proposition 2.10: GD(Z/2nZ) when D ≡ 1 mod 8

Proposition 2.11: GD(Z/2nZ) when D ≡ −1 mod 8

Proposition 2.12: GD(Z/2nZ) when D ≡ 5 mod 8

Proposition 2.13: GD(Z/2nZ) when D ≡ −5 mod 8

Proposition 2.15: G(D)(Z/2nZ) when D ≡ 0 mod 2

Proposition 2.16: G(D)(Z/2nZ) when D ≡ 1 mod 2

Proposition 2.21: GP,Q(Z/2nZ) when P ≡ 1 mod 2 and Q ≡ 1 mod 2

Corollary 2.22: G(P,Q)(Z/2nZ) when P ≡ 1 mod 2 and Q ≡ 1 mod 2

In the first half of Section 3, after relating Lucas sequences with the group schems GP,Q and

G(P,Q), we present an interpretation on the notion of rank and period for Lucas sequences in

our context. Moreover, we give new proofs for more or less known facts, some of which go back

to Lucas [7], Carmichael [2] and Lehmer [10], for example. Here we have to describe r(2n) and

k(2n) in case by case as follows:

　

Theorem 3.7: r(2n) when P ≡ 0 mod 2 and Q ≡ 1 mod 2

Theorem 3.8: k(2n) when P ≡ 0 mod 2 and Q ≡ 1 mod 2

Theorem 3.12: r(2n) when P ≡ 1 mod 2 and Q ≡ 1 mod 4

Theorem 3.13: r(2n) when P ≡ 1 mod 2 and Q ≡ −1 mod 4

Theorem 3.14: k(2n) when P ≡ 1 mod 2 and Q ≡ −1 mod 4

Theorem 3.15: k(2n) when P ≡ 5 mod 8 and Q ≡ 1 mod 4

Theorem 3.16: k(2n) when P ≡ −5 mod 8 and Q ≡ 1 mod 4

Theorem 3.17: k(2n) when P ≡ 1 mod 8 and Q ≡ 1 mod 4

Theorem 3.18: k(2n) when P ≡ −1 mod 8 and Q ≡ 1 mod 4

In the latter half of Section 3, we add the case of p = 2 to the main results in [14] concerning

the action by Θ ⊂ G(P,Q)(Z/pnZ) on P1(Z/pnZ). Here Θ denotes the subgroup of G(P,Q)(Z/pnZ)
generated by β(θ).This is a reformulation and generalization of remarkable notices of Aoki-Sakai

[1] from a geometric viewpoint, as is mentioned before.

In the Section 4, we reconstruct the theory developed in [8] and [9] by Laxton, eliminating

the assumptions on P and Q imposed in [8], except Q ̸= 0, but respecting Laxton’s original

idea. The main result on explicit description of the group G(f) is stated as follows:

Theorem(=Theorem 4.2) Let P and Q be integers with Q ̸= 0, and put f(t) = t2 − Pt + Q.

Let p be a prime, and let Θ denote the subgroup of G(P,Q)(Q) generated by β(θ). Then the

isomorphism ω : G(P,Q)(Q)
∼→ L(f,Q)×/Q× induces an isomorphism ω : G(P,Q)(Q)/Θ

∼→ G(f).
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The assertions mentiond above are verified in [14, Theorem 4.2] under the assumption p > 2.

(The map ω : G(P,Q)(Q)→ L(f,Q)×/Q× is defined in 4.1.)

Here we have to describe the descending chain of subgroups of G(f)

G(f) ⊃ H(f, 2) ⊃ K(f, 2) ⊃ G(f, 2) ⊃ · · · ⊃ G(f, 2n) ⊃ · · ·

in case by case as follows:

　

Corollary 4.3: Q ≡ 1 mod 2, D ̸= 0

Corollary 4.3.1: P ≡ 1 mod 2, Q ≡ 1 mod 2, D ̸= 0

Corollary 4.3.2: P ≡ 0 mod 2, Q ≡ 1 mod 2, or P ≡ 2 mod 4, Q ≡ −1 mod 4

Corollary 4.3.4: P ≡ 2 mod 4, Q ≡ 1 mod 4

Corollary 4.5: P ≡ 1 mod 2, Q ≡ 0 mod 2

Corollary 4.6: P ≡ 2 mod 4, Q ≡ 2 mod 4, D ̸= 0

Corollary 4.7: P ≡ 0 mod 4, Q ≡ 2 mod 4, P ̸= 0

The section 5 is a complement to the previous article [14], where we assume after Laxton [8]

that P and Q are relatively prime and D = P 2 − 4Q ̸= 0. From 5.1 to 5.3, we discuss the case

where both P and Q are divisible by a prime p. In 5.4, we deal with case where D = P 2−4Q = 0.

We conclude the article by giving an interpretation of a result due to Ward [14] and Hall [5] in

our context. We would look for an essence behind their skillful calculation.

The author would like to express his hearty thanks to Masato Kurihara for his advise and

encouragement. He is very grateful to Akira Masuoka, who reveal his interest from a point view

of Hopf algebra thoery.

Notation

For a ring R, R× denotes the multiplicative group of invertible elements of R.

For a schemeX and a commutative group schemeG overX,H∗(X,G) denotes the cohomology

group with respect to the fppf-topology. It is known that, if G is smooth over X, the fppf-

cohomology group coincides with the étale cohomology group (Grothendieck [4, III.11.7]).

List of sets and rings

L(f,R): defined in 3.1

R(f,Z): defined in 3.25

List of groups and group schemes

Ga,R: the additive group scheme over R

Gm,R: the multiplicative group scheme over R

µn,R: Ker[n : Gm,R → Gm,R]

GR̃/R =
∏

R̃/R Gm,R̃: the Weil restriction of Gm with respect to R̃/R, recalled in 1.1

UR̃/R = Ker[Nr :
∏

R̃/R Gm,R̃ → Gm,R]: recalled in 1.2

G(R̃/R) =
∏

R̃/R Gm,R̃/Gm,R: recalled in 1.3
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GP,Q: defined in 1.5

UP,Q: defined in 1.5

G(P,Q): defined in 1.5

GD: recalled in 1.5

UD: recalled in 1.5

G(D): recalled in 1.5

Θ ⊂ GP,Q(Z[1/Q]): defined in 3.21

Θ ⊂ G(P,Q)(Z[1/Q]): defined in 3.21

Θ ⊂ PGL(2,Z[1/Q]): defined in 3.22

List of maps and morphisms

Nr : GR̃/R → Gm,R: recalled in 1.1

i : Gm,R → GR̃/R: recalled in 1.1

ξ : GR̃/R ⊗ R̃→ G2
m,R̃

: defined in 1.1

ξ : UR̃/R ⊗ R̃→ Gm,R̃: defined in 1.2

β : GR̃/R → G(R̃/R): recalled in 1.3

α : G(R̃/R) → UR̃/R: recalled in 1.3

γ = α ◦ β : GR̃/R → UR̃/R: recalled in 1.3

ξ : G(R̃/R) ⊗ R̃→ Gm,R̃: defined in 1.3.1

η : G(R̃/R) → Ga,R: defined in 1.4.1

ω : R̃→ L(f,R): defined in 3.7

ωR : GD(R)→ L(f,R): defined in 3.7

ωR : G(D)(R)→ P1(R): defined in 3.26

List of sequences and invariants

L = (Lk)k≥0: the Lucas sequence assocaited to (P,Q), recalled in 3.1

r(m): the rank mod m of the Lucas sequence (Lk)k≥0, recalled in 3.4

k(m): the period mod m of the Lucas sequence (Lk)k≥0, recalled in 3.4

∆(w) = w2
1 − Pw0w1 +Qw2

0: the invariant of w = (wk)k≥0 ∈ L(f,R), recalled in 3.1

1. Group schemes GP,Q, UP,Q and G(P,Q)

In this section, we fix a ring R and P,Q ∈ R, putting R̃ = R[t]/(t2 − Pt + Q). We refer

to [3] or [17] on formalisms of affine group schemes, Hopf algebras and the cohomology with

coefficients in group schemes.

Definition 1.1. Let R be a ring and P,Q ∈ A. Put D = P 2 − 4Q and R̃ = R[t]/(t2 −Pt+Q).

Let θ denote the image of t in R̃. Then {1, θ} is an R-basis of R̃, and the multiplication of R̃ is

given by

(a+ bθ)(a′ + b′θ) = (aa′ −Qbb′) + (ab′ + a′b+ Pbb′) (a, b, a′, b′ ∈ R).
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Then we can describe explicitly the Weil restriction
∏

R̃/R Gm,R̃ of the multiplicative group

scheme Gm,R̃ with respect to the ring extension R̃/R in terms of Hopf algebras as follows:∏
R̃/R

Gm,R̃ = SpecR
[
U, V,

1

U2 + PUV +QV 2

]
with

(a) the multiplication

U 7→ U ⊗ U −QV ⊗ V, V 7→ U ⊗ V + V ⊗ U + PV ⊗ V ;

(b) the unit

U 7→ 1, V 7→ 0;

(c) the inverse

U 7→ U + PV

U2 + PUV +QV 2
, V 7→ − V

U2 + PUV +QV 2
.

Moreover, the canonical injection R× → R̃× is represented by the homomorphism of group

schemes

i : Gm,R = SpecR
[
T,

1

T

]
→
∏
R̃/R

Gm,R̃ = SpecR
[
U, V,

1

U2 + rUV + sV 2

]
,

defined by

U 7→ T, V 7→ 0.

On the other hand, the norm map Nr : R̃× → R× is represented by the homomorphism of group

schemes

Nr :
∏
R̃/R

Gm,R̃ = SpecR
[
U, V,

1

U2 + PUV +QV 2

]
→ Gm,R = SpecR

[
T,

1

T

]
,

defined by

T 7→ U2 + PUV +QV 2.

It is readily seen that

(1) i : Gm,R →
∏
R̃/R

Gm,R̃ is a closed immersion;

(2) Nr :
∏
R̃/R

Gm,R̃ → Gm,R is faithfully flat;

(3) Nr ◦ i : Gm,R → Gm,R is the square map.

If D is not nilpotent in R, then
(∏

R̃/R Gm,R̃

)
⊗R R[1/D] is a torus over R[1/D], splitting

over R̃[1/D]. Indeed,

T1 7→ U + θV, T2 7→ U + (P − θ)V

defines a homomorphism

ξ :
(∏
R̃/R

Gm,R̃

)
⊗R R̃ = Spec R̃

[
U, V,

1

U2 + PUV +QV 2

]
→ G2

m,R̃
= Spec R̃

[
T1, T2,

1

T1
,
1

T2

]
,
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inducing an isomorphism over R̃[1/D]. The inverse of ξ ⊗R R̃[1/D] is given by

U 7→ 1

P − 2θ

{
(P − θ)T1 − θT2

}
, V 7→ 1

P − 2θ
(−T1 + T2).

Definition 1.2. Put

UR̃/R = Ker[Nr :
∏
R̃/R

Gm,R̃ → Gm,R].

Then

UR̃/R = SpecR[U, V ]/(U2 + PUV +QV 2 − 1)

with

(a) the multiplication

U 7→ U ⊗ U −QV ⊗ V, V 7→ U ⊗ V + V ⊗ U + PV ⊗ V ;

(b) the unit

U 7→ 1, V 7→ 0;

(c) the inverse

U 7→ U + PV, V 7→ −V.

If D is not nilpotent in R, then UR̃/R⊗RR[1/D] is a torus over R[1/D], splitting over R̃[1/D].

Indeed, T 7→ U + θV defines a homomorphism

ξ : UR̃/R ⊗R R̃ = Spec R̃[U, V ]/(U2 + PUV +QV 2 − 1)→ Gm,R̃ = Spec R̃
[
T,

1

T

]
,

inducing an isomorphism over R̃[1/D]. Moreover, we obtain a commutative diagram with exact

rows

0 −−−→ UR̃/R ⊗R R̃ −−−→
(∏

R̃/R Gm,R̃

)
⊗R R̃

Nr−−−→ Gm,R̃ −−−→ 0yξ

yξ

∥∥∥
0 −−−→ Gm,R̃ −−−→

ι
G2

m,R̃
−−−→

µ
Gm,R̃ −−−→ 0

.

Here

ι : Gm,R̃ = Spec R̃
[
T,

1

T

]
→ G2

m,R̃
= Spec R̃

[
T1, T2,

1

T1
,
1

T2

]
is defined by (T1, T2) 7→ (T, T−1), and µ : G2

m,R̃
→ Gm,R̃ denotes the multiplication.

Definition 1.3. We put

G(R̃/R) =
∏
R̃/R

Gm,R̃/Gm,R.

More explicitly,

G(R̃/R) = SpecR[X,Y ]/(X2 + PXY +QY 2 − Y )

with
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(a) the multiplication

X 7→ X ⊗ 1 + 1⊗X − PX ⊗X − 2QX ⊗ Y − 2QY ⊗X − PQY ⊗ Y,

Y 7→ Y ⊗ 1 + 1⊗ Y + (P 2 − 2Q)Y ⊗ Y + PX ⊗ Y + PY ⊗X + 2X ⊗X;

(b) the unit

X 7→ 0, Y 7→ 0;

as is described by Waterhouse-Weisfeiler [18]. It should be mentioned that GR̃/R is smooth over

R.

Furthermore, a homomorphism of group schemes

β :
∏
R̃/R

Gm,R̃ = SpecR
[
U, V,

1

U2 + PUV +QV 2

]
→ GR̃/R = SpecR[X,Y ]/(X2 + PXY +QY 2 − Y )

is defined by

X 7→ UV

U2 + PUV +QV 2
, Y 7→ V 2

U2 + PUV +QV 2
.

It is readily seen that the sequence

0 −→ Gm,R
i−→
∏
R̃/R

Gm,R̃

β−→ G(R̃/R) → 0

is exact.

The two group schemes UR̃/R and GR̃/R are related by a homomorphism

α : GR̃/R = SpecR[X,Y ]/(X2+PXY+QY 2−Y )→ UR̃/R = SpecR[U, V ]/(U2+PUV+QV 2−1)

defined by

U 7→ 1− PX − 2QY, V 7→ 2X + PY.

If D is not nilpotent in R, then α is isomorphic over R[1/D]. Indeed, the inverse of α⊗RR[1/D]

is given by

X 7→ P − PU − 2QV

D
, Y 7→ −2 + 2U + PV

D
.

We define also a homomorphism

γ :
∏
R̃/R

Gm,R̃ = SpecR
[
U, V,

1

U2 + PUV +QV 2

]
→ UR̃/R = SpecR[U, V ]/(U2+PUV +QV 2−1)

as the composite ∏
R̃/R

Gm,R̃

β−→ GR̃/R
α−→ UR̃/R.

Then γ is given by

U 7→ U2 −QV 2

U2 + PUV +QV 2
, V 7→ 2UV + PV 2

U2 + PUV +QV 2
.
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Remark 1.3.1. Assume that D is not nilpotent in R. A homomorphism of group schemes over

R̃

ξ : G(R̃/R) ⊗R R̃ = Spec R̃[X,Y ]/(X2 + PXY +QY 2 − Y )→ Gm,R̃ = Spec R̃
[
T,

1

T

]
is defined by

T 7→ 1− (P − 2θ)(X + θY ) : R̃
[
T,

1

T

]
→ R̃[X,Y ]/(X2 + PXY +QY 2 − Y ),

and we obtain a commutative diagram with exact rows

0 −−−→ Gm,R̃
i−−−→

(∏
R̃/R Gm,R̃

)
⊗R R̃

β−−−→ G(R̃/R) ⊗R R̃ −−−→ 0∥∥∥ yξ

yξ

0 −−−→ Gm,R̃ −−−→∆ G2
m,R̃

−−−→
δ

Gm,R̃ −−−→ 0

.

Here

∆ : Gm,R̃ = Spec R̃
[
T,

1

T

]
→ G2

m,R̃
= Spec R̃

[
T1, T2,

1

T1
,
1

T2

]
is defined by (T1, T2) 7→ (T, T ), and

δ : G2
m,R̃

= R̃
[
T1, T2,

1

T1
,
1

T2

]
→ Gm,R̃ = R̃

[
T,

1

T

]
is defined by T 7→ T1T

−1
2 .

Moreover, the diagram of group schemes over R̃

G(R̃/R) ⊗R R̃
α−−−→ UR̃/R ⊗R R̃yξ

yξ

Gm,R̃ Gm,R̃

is commutative.

Remark 1.4.1. Let a ∈ R, and put P = 2a and Q = a2. Then we have D = 0 and

U2 + PUV + QV 2 = (U + aV )2. Moreover, GR̃/R = SpecR[U, V, 1/(U2 + PUV + QY 2) is

isomorphic to Gm,R ×Ga,R = SpecR[U, 1/U, T ]. Indeed,

(U, T ) 7→
(
U + aV,

V

U + aV

)
: R
[
U,

1

U
, T
]
→ R

[
U, V,

1

U2 + PUV +QV 2

]
gives an isomorphism η : GR̃/R

∼→ Gm,R ×Ga,R. The inverse of η is given by

(U, V ) 7→ (U(1− aT ), UT ) : R
[
U, V,

1

U2 + PUV +QV 2

]
→ R

[
U,

1

U
, T
]
.

Therefore, we obtain commutative diagram with exact rows

0 −−−→ Gm,R −−−→ GR̃/R

β−−−→ G(R̃/R) −−−→ 0∥∥∥ y≀ η

y≀ η

0 −−−→ Gm,R −−−→ Gm,R ×Ga,R −−−→ Ga,R −−−→ 0

.

More precisely, the isomorphism

ξ : G(R̃/R) = SpecR[X,Y ]/(X2 + PXY +QY 2 − Y )
∼→ Ga,R = SpecR[T ]



10 N. SUWA

is given by

T 7→ X + aY : R[T ]→ R[X,Y ]/(X2 + PXY +QY 2 − Y ),

and the inverse of η is given by

(X,Y ) 7→ (T − aT 2, T 2) : R[X,Y ]/(X2 + PXY +QY 2 − Y )→ R[T ].

On the other hand, Gm,R → Gm,R ×Ga,R denotes the canonical injection, and Gm,R ×Ga,R →
Ga,R denotes the canonical projection.

Furthermore, we have a commutative diagram with exact rows and columns

0 0y y
0 −−−→ µ2,R −−−→ UR̃/R −−−→ Ga,R −−−→ 0y y ∥∥∥
0 −−−→ Gm,R −−−→ GR̃/R

η◦β−−−→ Ga,R −−−→ 0ysquare

yNr

Gm,R Gm,Ry y
0 0

.

More precisely, the homomorphism

UR̃/R = SpecR[U, V ]/(U2 + PUV +QY 2 − 1)→ Ga,R = SpecR[T ]

is given by

T 7→ V

U + aV
: R[T ]→ R[U, V ]/(U2 + PUV +QV 2 − 1).

We have also a commutative diagram with exact rows

G(R̃/R)
∼−−−→
ξ

Ga,Ryα

y2

0 −−−→ µ2,R −−−→ UR̃/R −−−→ Ga,R −−−→ 0

.

Recall that the homomorphism

α : G(R̃/R) = SpecR[X,Y ]/(X2 + PXY +QY 2 − Y )

→ UR̃/R = SpecR[U, V ]/(U2 + PUV +QY 2 − 1)

is given by

U 7→ 1− PX − 2QY = 1− 2a(X + aY ), V 7→ 2X + PY = 2(X + aY ).

Remark 1.4.2. Assume that D is not invertible in R, and put R0 = R/(D). If D is a non-

zero divisor of R, then α : GR̃/R(R) → UR̃/R(R) is injective and Im[GR̃/R(R) → UR̃/R(R)] ⊂
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Ker[UR̃/R(R)→ UR̃/R(R0)], as is shown in [12]. Here UR̃/R(R)→ UR̃/R(R0) denotes the reduc-

tion map.

Notation 1.5. We shall often denote GP,Q =
∏

R̃/R Gm,R̃, UP,Q = UR̃/R and G(P,Q) = GR̃/R,

specifying the elements P,Q ∈ R. When P = 0 and Q = D, we shall denote also GD = GP,Q,

UD = UP,Q and G(D) = G(P,Q) as in [14].

Remark 1.6.1. Let P,Q ∈ Z, and put D = P 2 − 4Q. First assume P ≡ 0 mod 2. Then we

have D ≡ 0 mod 4. Let θ and δ denote the image of t in the residue rings Z[t]/(T 2 − Pt+Q)

and Z[t]/(t2 − D/4), respectively. Then θ 7→ P/2 + δ gives rise to an isomorphism of rings

Z[t]/(T 2 − Pt + Q)
∼→ Z[t]/(t2 − D/4), and therefore isomorphisms of group schemes GP,Q

∼→
GD/4, UP,Q

∼→ UD/4 and G(P,Q)
∼→ G(D/4).

Now assume P ≡ 1 mod 2, and let θ and δ denote the image of t in the residue rings

Z[t]/(T 2−2Pt+4Q) and Z[t]/(t2−D), respectively. Then θ 7→ P +δ gives rise to isomorphisms

of group schemes G2P,4Q
∼→ GD, U2P,4Q

∼→ UD and G(2P,4Q)
∼→ G(D).

Remark 1.6.2. Let P,Q ∈ Z. If D ̸= 0 and D is a square in Z, then we obtain a commutative

diagram with exact rows

0 −−−→ UP,Q(Z(p)) −−−→ UP,Q(Q) −−−→ Z −−−→ 0y≀ ξ

y≀ ξ ∥

0 −−−→ Z×
(p) −−−→ Q× −−−→

ordp
Z −−−→ 0

for each prime p with (p,D) = 1. Here the map ξ : UP,Q(Q)→ Q× is given by (u, v) 7→ u+ vα

(α ∈ Z is a root of the quadratic equation t2 − Pt+Q = 0), as is remarked in 1.2.

Remark 1.6.3. Let P,Q ∈ Z. If D = 0, then we obtain a commutative diagram with exact

rows
0 −−−→ G(P,Q)(Z(p)) −−−→ G(P,Q)(Q) −−−→ Qp/Zp −−−→ 0y≀ η

y≀ η ∥

0 −−−→ Z(p) −−−→ Q −−−→ Qp/Zp −−−→ 0

for each prime p. Here the map η : G(P,Q)(Q) → Q× is given by (a, b) 7→ a + bα (α ∈ Z is the

root of the quadratic equation t2 − Pt+Q = 0), as is remarked in 1.4.1.

Definition 1.7. Let c ∈ R. We define homomorphisms of group schemes

c : GcP,c2Q = SpecR
[
U, V,

1

U2 + cPUV + c2QV 2

]
→ GP,Q = SpecR

[
U, V,

1

U2 + PUV +QV 2

]
and

c : UcP,c2Q = SpecR[U, V ]/(U2 + cPUV + c2QV 2 − 1)

→ UP,Q = SpecR[U, V ]/(U2 + PUV +QV 2 − 1)
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by

(U, V ) 7→ (U, cV ).

Moreover, we define a homomorphism of group schemes

c : G(cP,c2Q) = SpecR[X,Y ]/(X2 + cPXY + c2QY 2 − Y )

→ G(P,Q) = SpecR[X,Y ]/(X2 + PXY +QY 2 − Y )

by

(X,Y ) 7→ (cX, c2Y ).

If c is not a zero-divisor of R, the map c : GcP,c2Q(R) → GP,Q(R) is nothing but the inclusion

map R[cθ]× → R̃× = R[θ]×.

We have commutative diagrams with exact rows

0 −−−→ UcP,c2Q −−−→ GcP,c2Q
Nr−−−→ Gm,R −−−→ 0yc

yc ∥

0 −−−→ UP,Q −−−→ GP,Q −−−→
Nr

Gm,R −−−→ 0

and

0 −−−→ Gm,R −−−→ GcP,c2Q
β−−−→ G(cP,c2Q) −−−→ 0

∥
yc

yc

0 −−−→ Gm,R −−−→ GP,Q −−−→
β

G(P,Q) −−−→ 0

.

The diagram

G(cP,c2Q)
α−−−→ UcP,c2Qyc

yc

G(P,Q) −−−→
α

UP,Q

is also commutative.

Lemma 1.8. Let c ∈ R, and put R0 = R/cR. Assume that c is neither a unit nor a zero divisor

of R. Then the sequence

0 −→ G(cP,c2Q)(R)
c−→ G(P,Q)(R) −→ G(P,Q)(R0)

is exact. Here G(P,Q)(R)→ G(P,Q)(R0) denotes the reduction map.

Proof. The map c : (u, v) 7→ (cu, c2v) is injective since c is a non-zero divisor of R.

Now let (u, v) ∈ G(P,Q)(R), and assume that u ≡ 0 mod c and v ≡ 0 mod c. Then we

obtain v ≡ 0 mod c2 by the equality v = u2 + Puv + Qv2. Hence there exist u′, v′ ∈ R

such that u = cu′ and v = c2v′. These imply c2v′2 = c2(u′2 + cPu′v′ + c2Qv′2) and therefore

v′2 = u′2 + cPu′v′ + c2Qv′2 since c is a non-zero divisor of R. Therefore we obtain (u′, v′) ∈
G(cP,c2Q)(R).

Remark 1.9. Let R be a ring and P,Q, c ∈ R. Then the following conditions are equivalent.
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(a) c is invertible;

(b) c : GcP,c2Q → GP,Q is isomorphic;

(c) c : UcP,c2Q → UP,Q is isomorphic;

(d) c : G(cP,c2Q) → G(P,Q) is isomorphic.

The implications (a)⇒(b),(c),(d) are trivial. We obtain the implications (b)⇔(c) and (b)⇔(d),

applying the snake lemma to the commutative diagrams with exact rows

0 −−−→ UcP,c2Q −−−→ GcP,c2Q
Nr−−−→ Gm,R −−−→ 0yc

yc ∥

0 −−−→ UP,Q −−−→ GP,Q −−−→
Nr

Gm,R −−−→ 0

and

0 −−−→ Gm,R −−−→ GcP,c2Q
β−−−→ G(cP,c2Q) −−−→ 0

∥
yc

yc

0 −−−→ Gm,R −−−→ GP,Q −−−→
β

G(P,Q) −−−→ 0

.

Finally we verify the implications (d)⇒(a). Assume that c is not invertible, and put R0 =

R/cR. Then the homomorphism α : G(cP,c2Q)(R0)→ G(P,Q)(R0) is trivial, and G(cP,c2Q)(R0) is

isomorphic to the addtive group R0, as is remarked in 1.4.1. It follows that c : G(cP,c2Q) → G(P,Q)

is not isomorphic.

We conclude the section, by recalling the action of G(P,Q) on P1
R. We refer to [12, Section 2]

concerning detailed accounts.

1.10. Let R be a ring. Then the group GP,Q(R) = R̃× acts R-linearly on the R-algebra R̃ by

the multiplication. Hence the regular represention ρR : GP,Q(R) → GL(2, R) with respect to

the R-basis {1, θ} is given by

ρR : η = (u, v) 7→

(
u −Qv
v u+ Pv

)
.

The homomorphism ρR : GP,Q(R) → GL(2, R) is represented by a homomorphism of group

schemes ρ : GP,Q → GL2,R. It is readily seen that ρ : GP,Q → GL2,R is a closed immersion.

By the definition, we have a commutative diagram with exact rows

0 −−−→ Gm −−−→ GP,Q
β−−−→ G(P,Q) −−−→ 0∥∥∥ yρ

yρ

1 −−−→ Gm −−−→ GL2,R −−−→ PGL2,R −−−→ 1

.

The induced homomorphism ρ : G(P,Q) → PGL2,R is a closed immersion, and G(P,Q) acts on P1
R

through ρ : G(P,Q) → PGL2,R.
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2. GP,Q(Z/2nZ), UP,Q(Z/2nZ) and G(P,Q)(Z/2nZ)

2.1. Let P,Q ∈ Z, and let p be a prime and n a positive integer. Then we can verify (1) and

(2), tracing the proofs of [14, Lemma 1.10 and Corollary 1.11].

(1) The exact sequence of group schemes

0 −→ Gm,Z
i−→ GP,Q

β−→ G(P,Q) −→ 0

yields a commutative diagram with exact rows

0 −−−→ Q× i−−−→ GP,Q(Q)
β−−−→ G(P,Q)(Q) −−−→ 0x x x

0 −−−→ Z×
(p)

i−−−→ GP,Q(Z(p))
β−−−→ G(P,Q)(Z(p)) −−−→ 0y y y

0 −−−→ (Z/pnZ)× i−−−→ GP,Q(Z/pnZ)
β−−−→ G(P,Q)(Z/pnZ) −−−→ 0

.

(2) The reduction maps GP,Q(Z(p)) → GP,Q(Z/pnZ) and G(P,Q)(Z(p)) → G(P,Q)(Z/pnZ) are

surjective.

Furthermore, Coker[pn : GpnP,p2nQ(Z(p)) → GP,Q(Z(p))] is isomorphic to G(P,Q)(Z/pnZ).
Therefore, we obtain an isomorphism

Coker[pn : GpnP,p2nQ(Z(p))→ GP,Q(Z(p))]
∼−→ G(P,Q)(Z/pnZ),

applying the snake lemma to the commutative diagram with exact rows

0 −−−→ Z×
(p) −−−→ GpnP,p2nQ(Z(p))

β−−−→ G(pnP,p2nQ)(Z(p)) −−−→ 0

∥
yc

yc

0 −−−→ Z×
(p) −−−→ GP,Q(Z(p)) −−−→

β
G(P,Q)(Z(p)) −−−→ 0

.

Proposition 2.2. Let P,Q ∈ Z, and put D = P 2 − 4Q. Then:

(1) If D ≡ 1 mod 8, then UP,Q(Q)/UP,Q(Z(2)) is isomorphic to Z.

(2) If D ≡ 5 mod 8, then the canonical homomorphism UP,Q(Z(2))→ UP,Q(Q) is bijective.

(3) If D/4 ≡ 2, 3 mod 4, then the canonical homomorphism UP,Q(Z(2))→ UP,Q(Q) is bijective.

Proof. We can verify the assertions, tracing the proof of [14, Proposition 1.5]. For the reader’s

convenience, we repeat the argument in the case where D is not a square. Let OD denote the

ring of integers in Q(
√
D). By definition, we have

UP,Q(Q) = {α ∈ Q(
√
D) ; Nrα = 1},

and, under the assumption D ≡ 1 mod 4 or D/4 ≡ 2, 3 mod 4,

UP,Q(Z(2)) = {α ∈ OD ⊗ Z(2) ; Nrα = 1}.
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(1) Let p be a prime ideal of Q(
√
D) over 2. Then α 7→ ordpα defines a homomorphism

UP,Q(Q)→ Z. Furthermore, the sequence

0 −→ UD(Z(2)) −→ UD(Q)
ordp−→ Z −→ 0

is exact.

Indeed, let α ∈ Q(
√
D) with Nrα = 1 and ordpα = 0. Then we obtain ordpᾱ = 0, and

therefore, ordp̄α = 0. Here ᾱ denotes the conjugate of α, and p̄ denotes the conjugate of p. This

implies α ∈ OD ⊗ Z(2). Hence we obtain

UD(Z(2)) = Ker[ordp : UD(Q)→ Z].

Now take π ∈ Q(
√
D) such that ordpπ = 1 and ordp̄π = 0, and put α = π/π̄. Then we obtain

Nrα = 1 and ordpα = 1. It follows that ordp : UD(Q)→ Z is surjective.

(2)(3) Note first that 2 remains prime in Q(
√
D)/Q if D ≡ 5 mod 8 and that 2 inerts in

Q(
√
D)/Q if D/4 ≡ 2, 3 mod 4. Let p be the prime ideal of Q(

√
D) over 2. Then, for any

α ∈ Q(
√
D) with Nrα = 1, we have ordpα = 0. This implies α ∈ OD ⊗Z Z(2). Hence we obtain

UP,Q(Z(2)) = UP,Q(Q).

We fix D ∈ Z. We denote by δ the image of t in the residue ring Z[t]/(t2 −D).

Proposition 2.3. If D ≡ 2, 3 mod 4, then Coker[α : G(D)(Z(2))→ UD(Z(2))] is isomorphic to

Z/2Z.

Proof. By definition, we have

UD(Z(2)) = {α ∈ Z(2)[
√
D] ; Nrα = 1} = {(u, v) ∈ Z2

(2) ; u
2 −Dv2 = 1}

and

Im[α : G(D)(Z(2))→ UD(Z(2))] = {(1 + 2Db, 2a) ; (a, b) ∈ Z2
(2), a

2 −Db2 − b = 0}.

Assume first D ≡ 2 mod 4. Then the condition u2 − Dv2 = 1 implies u ≡ 1 mod 2 since

D ≡ 0 mod 2. On the other hand, we have

Im[α : G(D)(Z(2))→ UD(Z(2))] = {(u, v) ∈ Z2
(2) ; u

2 −Dv2 = 1, u ≡ 1 mod 4}.

Indeed, it is readily seen that 1+2Db ≡ 1 mod 4 since D ≡ 0 mod 2. Conversely, let u, v ∈ Z(2)

with u2 −Dv2 = 1 and u ≡ 1 mod 4, and put a = v/2 and b = (u − 1)/2D. Then we obtain

a, b ∈ Z(2) and u
2 −Dv2 = 1 since ord2(u− 1) ≥ 2, ord2D = 1 and ord2v ≥ 1.

Furthermore, we obtain a splitting exact sequence

0 −→ G(D)(Z(2))
α−→ UD(Z(2)) −→ {±1} −→ 0,

noting (−1, 0) ∈ UD(Z(2)).



16 N. SUWA

Assume now D ≡ 3 mod 4. Then the condition u2 −Dv2 = 1 implies u ≡ 1 mod 2, v ≡ 0

mod 2, or u ≡ 0 mod 2, v ≡ 1 mod 2, since D ≡ 1 mod 2. On the other hand, we have

Im[α : G(D)(Z(2))→ UD(Z(2))] = {(u, v) ∈ Z2
(2) ; u

2 −Dv2 = 1, u ≡ 1 mod 2}.

Indeed, it is readily seen that 1+2Db ≡ 1 mod 2. Conversely, let u, v ∈ Z(2) with u
2−Dv2 = 1

and u ≡ 1 mod 2, and put a = v/2 and b = (u − 1)/2D. Then we obtain a, b ∈ Z(2) and

u2 −Dv2 = 1 since ord2(u− 1) ≥ 1, ord2D = 0 and ord2v ≥ 1.

Furthermore, ((1 +D)/(1 −D), 2/(1 −D)) ∈ UD(Z(2)) and ((1 +D)/(1 −D), 2/(1 −D)) ̸∈
Im[α : G(D)(Z(2)) → UD(Z(2))] since ord2(1 − D) = 1 and ord2(1 + D) ≥ 2. These imply

#Coker[α : G(D)(Z(2))→ UD(Z(2))] = 2.

2.4. Hereafter we invetigate the group structure of GD(Z/2nZ) and G(D)(Z/2nZ). By def-

inition, we have GD(Z/2nZ) = {(u, v) ∈ (Z/2nZ)2 ; u2 − Dv2 ≡ 1 mod 2} and therefore

#GD(Z/2nZ) = 22n−1. In particular, GD(Z/2Z) is isomorphic to Z/2Z.

Lemma 2.5. Let a ∈ Z. If D ≡ 0 mod 2 and a ≡ 1 mod 2, then the order of a + δ mod 2n

is equal to 2n for n ≥ 1.

Proof. Since a ≡ 1 mod 2 and D ≡ 0 mod 2, we have

a+ δ ≡ 1 + δ mod 2

and therefore

(a+ δ)2 ≡ (1 + δ)2 = ±1 + 2δ mod 4.

Hence, for n ≥ 3, we obtain inductively

(a+ δ)2
n−1 ≡ 1 + 2n−1δ mod 2n, (a+ δ)2

n ≡ 1 mod 2n.

Hence the result.

Corollary 2.6. Let a ∈ Z. If D ≡ 0 mod 2 and a ≡ 1 mod 2, then the order of β(a + δ) =( a

a2 −D
,

1

a2 −D

)
in G(D)(Z/2nZ) is equal to 2n for n ≥ 1.

Proof. The homomorphism β : GD(Z/2nZ) → G(D)(Z/2nZ) sends (a + δ)2
n−1

= 1 + 2n−1δ to

(2n−1, 0) ̸= 0. Hence the result.

Lemma 2.7. Let a ∈ Z. If a ≡ 1 mod 2, then the order of a + 2δ mod 2n) is equal to 2n−1

for n ≥ 1.

Proof. Since a ≡ 1 mod 2, we have

a+ 2δ ≡ ±1 + 2δ mod 4.

Hence, for n ≥ 3, we obtain inductively

(a+ 2δ)2
n−2 ≡ 1 + 2n−1δ or 1 + 2n−1(1 + δ) mod 2n, (a+ 2δ)2

n−1 ≡ 1 mod 2n,

Hence the result.
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Corollary 2.8. Let a ∈ Z. If D ≡ 1 mod 2 and a ≡ 1 mod 2, then the order of β(a + 2δ) =( 2a

a2 − 4D
,

4

a2 − 4D

)
in G(D)(Z/2nZ) is equal to 2n−1 for n ≥ 2.

Proof. If n ≥ 3, then the homomorphism β : GD(Z/2nZ)→ G(D)(Z/2nZ) sends (a+ 2δ)2
n−2

=

1 + 2n−1(1 + δ) to (2n−1, 0) ̸= 0. On the other hand, β : GD(Z/4Z) → G(D)(Z/4Z) sends

a+ 2δ = ±1 + 2δ to (2, 0) ̸= 0. Hence the result.

Proposition 2.9. Assume that D ≡ 0 mod 2. Then:

(1) GD(Z/4Z) is isomorphic to Z/2Z× Z/4Z.
(2) GD(Z/2nZ) is isomorphic to Z/2Z× Z/2n−2Z× Z/2nZ for n ≥ 3.

Proof. First note that GD(Z/2Z) = {1, 1 + δ} and

GD(Z/4Z) =

{±1} × {1, 1 + δ, 1 + 2δ, 1 + 3δ} if D ≡ 0 mod 4

{±1} × {1, 1 + δ,−1 + 2δ,−1 + δ} if D ≡ 2 mod 4.

Assume now n ≥ 3. Then:

(a) the order of 5 in (Z/2nZ)× ⊂ GD(Z/2nZ) = 2n−2;

(b) the order of 1 + δ in GD(Z/2nZ) = 2n by Lemma 2.1.

Moreover, we have (1 + δ)2
n−1

= 1 + 2n−1δ ̸= 52
n−3

in GD(Z/2nZ). Hence we obtain a

decomposition

GD(Z/2nZ) = {±1} × (the subgroup generated by 5)× (the subgroup generated by 1 + δ).

Proposition 2.10. Assume that D ≡ 1 mod 8. Then:

(1) GD(Z/4Z) is isomorphic to Z/2Z× Z/2Z× Z/2Z.
(2) GD(Z/2nZ) is isomorphic to Z/2Z× Z/2Z× Z/2n−2Z× Z/2n−1Z for n ≥ 3.

Proof. First note that GD(Z/2Z) = {1, δ} and GD(Z/4Z) = {±1} × {1, δ} × {1, 1 + 2δ}.
Assume now n ≥ 3. There exists r ∈ Z2 such that r2 = D since D ≡ 1 mod 8. Then:

(a) δ/r is of the order 2 in GD(Z/2nZ);
(b) 5 is of the order 2n−2 in (Z/2nZ)× ⊂ GD(Z/2nZ);
(c) 1 + 2δ is of the order 2n−1 in GD(Z/2nZ) by Lemma 2.4.

Moreover, we have (1 + 2δ)2
n−2

= 1+ 2n−1(1 + δ) ̸= 52
n−3

in GD(Z/2nZ). Hence we obtain a

decomposition

GD(Z/2nZ) =

{±1} × {1, δ/r} × (the subgroup generated by 5)× (the subgroup generated by 1 + 2δ).

Proposition 2.11. Assume that D ≡ −1 mod 8. Then:

(1) GD(Z/4Z) is isomorphic to Z/4Z× Z/2Z.
(2) GD(Z/2nZ) is isomorphic to Z/4Z× Z/2n−2Z× Z/2n−1Z for n ≥ 3.

Proof. First note that GD(Z/2Z) = {1, δ} and GD(Z/4Z) = {±1,±δ} × {1, 1 + 2δ}.
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Assume now n ≥ 3. There exits r ∈ Z2 such that r2 = −D since −D ≡ 1 mod 8. Then:

(a) δ/r is of the order 4 in GD(Z/2nZ) = 4;

(b) 5 is of the order 2n−2 in (Z/2nZ)× ⊂ GD(Z/2nZ);
(c) 1 + 2δ is of the order 2n−1 in GD(Z/2nZ) by Lemma 2.4.

Moreover, we have = 1 + 2n−1 and (1 + 2δ)2
n−2

= 1 + 2n−1(1 + δ) ̸= 52
n−3

in GD(Z/2nZ).
Hence we obtain a decomposition

GD(Z/2nZ) =

{±1,±δ/r} × (the subgroup generated by 5)× (the subgroup generated by 1 + 2δ).

Proposition 2.12. Assume that D ≡ 5 mod 8. Then GD(Z/2nZ) is isomorphic to Z/2Z ×
Z/2n−1Z× Z/2n−1Z for n ≥ 2.

Proof. First note that GD(Z/2Z) = {1, δ} and GD(Z/4Z) = {±1} × {1, δ} × {1, 1 + 2δ}.
Assume now n ≥ 3. Then:

(a) δ is of the order 2n−1 in GD(Z/2nZ) since δ2 ≡ 5 mod 8;

(b) 1 + 2δ is of the order 2n−1 in GD(Z/2nZ) = 2n−1 by Lemma 2.4.

Moreover, we have = 1 + 2n−1 and (1 + 2δ)2
n−2

= 1 + 2n−1(1 + δ) ̸= 52
n−3

= δ2
n−2

in

GD(Z/2nZ). Hence we obtain a decomposition

GD(Z/2nZ) = {±1} × (the subgroup generated by δ)× (the subgroup generated by 1 + 2δ).

Proposition 2.13. Assume that D ≡ −5 mod 8. Then:

(1) GD(Z/4Z) is isomorphic to Z/4Z× Z/2Z.
(2) GD(Z/2nZ) is isomorphic to Z/2Z× Z/2n−1Z× Z/2n−1Z for n ≥ 3.

Proof. First note that GD(Z/2Z) = {1, δ} and GD(Z/4Z) = {±1,±δ} × {1, 1 + 2δ}.
Assume now n ≥ 3. Then:

(a) δ is of the order 2n−1 in GD(Z/2nZ) = 2n−1 since δ2 ≡ −5 mod 8;

(b) 1 + 2δ is of the order 2n−1 in GD(Z/2nZ) = 2n−1 by Lemma 2.4.

Moreover, we have (1 + 2δ)2
n−2

= 1 + 2n−1(1 + δ) ̸= (−5)2n−3
= δ2

n−2
in GD(Z/2nZ). Hence

we obtain a decomposition

GD(Z/2nZ) = {±1} × (the subgroup generated by δ)× (the subgroup generated by 1 + 2δ).

Remark 2.14. Contrary to the differences among Propositions 2.9∼2.13, we obtain a common

result as follows, examining each case.

Let D ∈ Z, and let n be an integer≥ 3. Then Ker[GD(Z/2nZ) → GD(Z/4Z)] is isomorphic

to Z/2n−2Z× Z/2n−2Z. More precisely, we have a decomposition

Ker[GD(Z/2nZ)→ GD(Z/4Z)] =

(the subgroup generated by 5)× (the subgroup generated by 1 + 4δ).
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Proposition 2.15. Assume that D ≡ 0 mod 2. Then G(D)(Z/2nZ) is isomorphic to Z/2nZ
for n ≥ 1.

Proof. Noting that β(1 + δ) is of the order 2n in G(D)(Z/2nZ) and #G(D)(Z/2nZ) = 2n, we

obtain the conclusion immediately.

Proposition 2.16. Assume that D ≡ 1 mod 2. Then:

(1) G(D)(Z/2Z) is isomorphic to Z/2Z.
(2) G(D)(Z/2nZ) is isomorphic to Z/2Z× Z/2n−1Z for n ≥ 2.

Proof. Assume that n ≥ 2. Then:

(a) the order of β(δ) = (0,−1/D) in G(D)(Z/2nZ) = 2;

(b) the order of β(1 + 2δ) in G(D)(Z/2nZ) = 2n−1 by Corollary 2.5.

Moreover, we have β(1+ 2δ)2
n−2

= β(1+ 2n−1(1+ δ)) = (2n−1, 0) in G(D)(Z/2nZ). Hence we

obtain a decomposition

G(D)(Z/2nZ) =

(the subgroup generated by β(δ) = (0,−1/D))× (the subgroup generated by β(1 + 2δ)).

Remark 2.17. We obtain the following assertion similarly as Remark 2.14, basing the argument

on Propositions 2.15 and 2.16.

Let D ∈ Z, and let n be an integer≥ 3. Then Ker[G(D)(Z/2nZ) → G(D)(Z/2Z)] is cyclic of

order 2n−1 and generated by β(1 + 2δ).

Remark 2.18. Let D ∈ Z with D ≡ 2, 3 mod 4, and let n be an integer ≥ 2. We re-

gard G(4nD)(Z(2)) as a subgroup of G(D)(Z(2)), and G(D)(Z(2)) as a subgroup of UD(Z(2)) by

the injective homomophisms 2n : G(4nD)(Z(2)) → G(D)(Z(2)) and α : G(D)(Z(2)) → UD(Z(2)),

respectively. Then we have

|G(D)(Z(2))/G(4nD)(Z(2))| = |G(D)(Z/2nZ)| = 2n

by Propositions 2.15 and 2.16, and

|UD(Z(2))/G(D)(Z(2))| = 2

by Proposition 2.3. Therefore, we obtain

|UD(Z(2))/G(4nD)(Z(2))| = 2n+1.

More precisely,

(a) If D ≡ 2 mod 4 or D ≡ −5 mod 8, then UD(Z(2))/G(4nD)(Z(2)) is isomorphic to Z/2Z ×
Z/2nZ.
(b) If D ≡ −1 mod 8, then UD(Z(2))/G(4nD)(Z(2)) is isomorphic to Z/4Z× Z/2n−1Z.

Indeed, assume D ≡ 2 mod 4. Then we obtain an exact sequence

0→ G(D)(Z(2))/G(D)(Z(2))→ UD(Z(2))/G(4nD)(Z(2))→ UD(Z(2))/G(D)(Z(2))→ 0.
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Moreover, G(D)(Z(2))/G(4nD)(Z(2)) = G(D)(Z/2nZ) is generated by β(1 + δ) by Proposition

2.15, and UD(Z(2))/G(4nD)(Z(2)) = G(D)(Z/2nZ) is generated by γ(δ) = −1 as is remarked in

the proof of Proposition 2.3. The above exact sequence splits since −1 is order of 2 in UD(Z(2)),

and we obtain a decomposition

UD(Z(2))/G(4nD)(Z(2)) =

(the subgroup generated by γ(δ) = −1)×(the subgroup generated by γ(1 + δ)).

Assume now D ≡ −5 mod 8. Then we have a decompostion

G(D)(Z(2))/G(4nD)(Z(2)) = G(D)(Z/2nZ)

= (the subgroup generated by β(δ))×Ker[G(D)(Z/2nZ)→ G(D)(Z/2Z)]

= (the subgroup generated by β(δ))×(the subgroup generated by β(1 + 2δ)),

UD(Z(2))/G(4nD)(Z(2)) = G(D)(Z/2nZ) is generated by γ(1 + δ). Moreover, we have

(1 + δ)2 =
2

δ

(
D +

1 +D

2
δ
)

and therefore

β(1 + δ)2 = β(δ)β
(
D +

1 +D

2
δ
)
= β(δ)β(−1 + 2δ) ∈ G(D)(Z/4Z)

since (D + 1)/2 ≡ 2 mod 4. Hence β(1 + δ)2 is of order 2n−1 in G(D)(Z/2nZ), and γ(1 + δ) is

of order 2n in UD(Z(2))/G(4nD)(Z(2)). Therefore we obtain a decomposition

UD(Z(2))/G(4nD)(Z(2)) =

(the subgroup generated by γ(δ) = −1)×(the subgroup generated by γ(1 + δ)).

Finally assume D ≡ −1 mod 8. Then there exists r ∈ Z2 such that r2 = −D. Mo-

roever, we have β(δ/r) = (0, 1/r2) ∈ G(D)(Z2), γ(δ/r) = −1 ∈ UD(Z2) and β(1 + δ/r) =

(1/2r, 1/2r2) ∈ G(D)(Q2), γ(1+ δ/r) = δ/r ∈ UD(Z2). Note now that γ(1+ δ/r) is of order 4 in

UD(Z(2))/G(4nD)(Z(2)) since (δ/r)2 = −1. Hence we obtain a decomposition

UD(Z(2))/G(4nD)(Z(2)) =

(the subgroup generated by γ(1 + δ/r) = δ/r)×(the subgroup generated by γ(1 + 2δ))

from the decompostion

G(D)(Z(2))/G(4nD)(Z(2)) = G(D)(Z/2nZ) =

(the subgroup generated by β(δ))×(the subgroup generated by β(1 + 2δ)).

2.19. Let P,Q ∈ Z, and put D = P 2 − 4Q. If P ≡ 0 mod 2, then we have D ≡ 0 mod 4 and

there exist isomorphisms GP,Q
∼→ GD/4 and G(P,Q)

∼→ G(D/4), as is remarked in 1.6.1.
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On the other hand, if P ≡ 1 mod 2, then we haveD ≡ 1 mod 4 and there exist isomorphisms

G2P,4Q
∼→ GD and G(2P,4Q)

∼→ G(D). Moreover, if Q ≡ 0 mod 2, then we have G(P,Q)(Z/2Z) =
{0}. Hence the homomorphisms 2 : G2P,4Q(Z(2)) → GP,Q(Z(2)) and 2 : G(2P,4Q)(Z(2)) →
G(P,Q)(Z(2)) are bijective, and therefore, we obtain isomorphisms GD(Z(2))

∼→ GP,Q(Z(2)) and

G(D)(Z(2))
∼→ G(P,Q)(Z(2)).

Notation 2.20. Assume P ≡ 1 mod 2 and Q ≡ 1 mod 2, and let θ denote the image of t in

the residue ring Z[t]/(t2 − Pt + Q), and put δ = −P + 2θ. Then we have δ2 = D. Moreover,

there exists r ∈ Z2 such that r2 = −D/3 since D ≡ 5 mod 8. We may assume r ≡ 1 mod 4,

replacing r by −r if r ≡ −1 mod 4. Put

ω =
−r + δ

2r
= −r + P

2r
+
θ

r
∈ Z2[t]/(t

2 − Pt+Q).

Then we have (δ/r)2 = −3 and therefore ω3 = 1. It is readily seen that {1, ω} is a Z2-basis of

Z2[t]/(t
2 − Pt+Q).

Proposition 2.21. Let P and Q be odd integers. Then:

(1) GP,Q(Z/2Z) is isomorphic to Z/3Z.
(2) GP,Q(Z/4Z) is isomorphic to Z/6Z× Z/2Z.
(3) GP,Q(Z/2nZ) is isomorphic to Z/6Z× Z/2n−1Z× Z/2n−2Z for n ≥ 3.

Proof. By the definition, we have GP,Q(Z/2nZ) = {(u, v) ∈ Z/2nZ ; u2 + uv + v2 ≡ 1 mod 2}.
Then we obtain |GP,Q(Z/2nZ)| = 3 · 22(n−1), noting the implications: u2 + uv + v2 ≡ 1 mod 2

⇔ u ≡ 1 mod 2 or v ≡ 1 mod 2. We obtain also

GP,Q(Z/2Z) = {1, 1 + θ, θ} = {1, ω, ω2}

and

GP,Q(Z/4Z) = {±1,±(1 + θ),±θ} × {1, 1 + 2θ} = {±1,±ω,±ω2} × {1, 1 + 2ω}.

Assume now n ≥ 3. Then:

(a) the order of 1 + 2ω in GP,Q(Z/2nZ) = 2n−1 since (1 + 2ω)2 = −3;
(b) the order of 1 + 4ω in GP,Q(Z/2nZ) = 2n−2 since (1 + 4ω)2

n−3
= 1 + 2n−1ω mod 2n and

(1 + 4ω)2
n−2

= 1 + 2n−1ω mod 2n.

Moreover, we have (1 + 2ω)2
n−2

= 1 + 2n−1 and (1 + 4ω)2
n−3

= 1 + 2n−1ω ̸= (−3)2n−3
=

(1 + 2ω)2
n−2

in GP,Q(Z/2nZ). Hence we obtain a decomposition

GP,Q(Z/2nZ) =

{±1,±ω,±ω2} × (the subgroup generated by 1 + 2ω)× (the subgroup generated by 1 + 4ω).

Corollary 2.22. Let P and Q be odd integers. Then:

(1) G(P,Q)(Z/2Z) is isomorphic to Z/3Z.
(2) G(P,Q)(Z/4Z) is isomorphic to Z/6Z.
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(3) G(P,Q)(Z/2nZ) is isomorphic to Z/6Z× Z/2n−2Z for n ≥ 3.

Proof. The homomorphism α : G(P,Q)(Z/2nZ) → UP,Q(Z/2nZ) is bijective since (D, 2) = 1.

Therefore, it is sufficient to verify the assertions for UP,Q(Z/2nZ) instead of G(P,Q)(Z/2nZ).
First note that UP,Q(Z/2Z) = {1, ω, ω2} and UP,Q(Z/4Z) = {±1,±ω,±ω2}. Assume now

n ≥ 3. Then we have an exact sequence

0 −→ (Z/2nZ)× −→ GP,Q(Z/2nZ)
γ−→ UP,Q(Z/2nZ) −→ 0.

Noting the relations γ(±ω) = ω2, γ(1+2ω) = −1 and γ(1+4ω)2
n−2

= γ(1+2n−1ω) = 1+2n−1 ̸=
±1 in UP,Q(Z/2nZ), we obtain a decomposition

UP,Q(Z/2nZ) = {±1,±ω,±ω2} × (the subgroup generated by γ(1 + 4ω)).

Remark 2.23. Similarly as Remarks 2.14 and 2.17, we obtain the following assertion.

Let P and Q be odd integers, and let n be an integer ≥ 3. Then Ker[GP,Q(Z/2nZ) →
GP,Q(Z/4Z)] is isomorphic to Z/2n−2Z× Z/2n−2Z. More precisely, we have a decomposition

Ker[GP,Q(Z/2nZ)→ GP,Q(Z/4Z)] =

(the subgroup generated by 5)× (the subgroup generated by 1 + 4ω).

On the other hand, Ker[G(P,Q)(Z/2nZ) → G(P,Q)(Z/4Z)] is cyclic of order 2n−2 and generated

by β(1 + 4ω). Furthermore, the exact sequence

0→ Ker[G(P,Q)(Z/2nZ)→ G(P,Q)(Z/4Z)]→ G(P,Q)(Z/2nZ)→ G(P,Q)(Z/4Z)→ 0

splits.

Remark 2.24. We recall elementary facts on p-adic analysis. As is well known, for a ∈ 4Z2,

the series

exp a =

∞∑
k=0

ak

k!

converges in Z2. The map exp : 4Z2 → Z2 induces an isomoprhism of the additive group 4Z2 to

the multiplicative group 1 + 4Z2. The inverse of exp : 4Z2
∼→ 1 + 4Z2 is given by

1 + a 7→ log(1 + a) =

∞∑
k=1

(−1)k−1

k
ak.

The hyperbolic functions and the inverse hyperbolic functions are defined by

cosh a =
exp a+ exp(−a)

2
=

∞∑
k=0

1

(2k)!
a2k,

sinh a =
exp a− exp(−a)

2
=

∞∑
k=0

1

(2k + 1)!
a2k+1,

tanh−1 a =
1

2
log

1 + a

1− a
=

∞∑
k=0

1

2k + 1
a2k+1
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for a ∈ 4Zp as usual.

Assume first that D is a square in Z2, and we take r ∈ Z2 such that D = r2. We define a

homomorphism of groups

exp : 4Z2 × 4Z2 → GD(Z4)

by

exp : (a, b) 7→
(
exp a cosh rb,

1

r
exp a sinh rb

)
.

The composite β ◦ exp : 4Z2 × 4Z2 → GD(Z2)→ G(D)(Z2) is given by

(a, b) 7→
(1
r
cosh rb sinh rb,

1

r2
sinh2 rb

)
.

Define a homomorphism exp : pZp → G(D)(Zp) by

b 7→
(1
r
cosh rb sinh rb,

1

r2
sinh2 rb

)
.

Then we obtain a commutative diagram with exact rows and columns

0 0 0y y y
0 −−−→ 4Z2

i1−−−→ 4Z2 × 4Z2
j2−−−→ 4Z2 −−−→ 0yexp

yexp

yexp

0 −−−→ Z×
2

i−−−→ GD(Z2)
β−−−→ G(D)(Z2) −−−→ 0y y y

0 −−−→ (Z/4Z)× i−−−→ GD(Z/4Z)
β−−−→ G(D)(Z/4Z) −−−→ 0y y y

0 0 0

,

Here i1 : 4Z2 → 4Z2 × 4Z2 and j2 : 4Z2 × 4Z2 → 4Z2 are defined by i1(a) = (a, 0) and

j2 : (a, b) 7→ b, respectively.

Now assume that D is not a square in Z2. Define a homomorphism

exp : 4Z2[
√
D]→ GD(Z2)

by

exp : a+ b
√
D 7→

(
exp a cosh b

√
D,

1√
D

exp a sinh b
√
D
)
.

The composite β ◦ exp : 4Z2[
√
D]→ GD(Z2)→ G(D)(Z2) is given by

a+ b
√
D 7→

( 1√
D

cosh b
√
D sinh b

√
D,

1

D
sinh2 b

√
D
)
.

Define a homomorphism exp : 4Z2 → G(D)(Z2) by

b 7→
( 1√

D
cosh b

√
D sinh b

√
D,

1

D
sinh2 b

√
D
)
.
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Then we obtain a commutative diagram with exact rows and columns

0 0 0y y y
0 −−−→ 4Z2

i−−−→ 4Z2[
√
D]

j−−−→ 4Zp −−−→ 0yexp

yexp

yexp

0 −−−→ Z×
2

i−−−→ GD(Z2)
β−−−→ G(D)(Z2) −−−→ 0y y y

0 −−−→ (Z/4Z)× i−−−→ GD(Z/4Z)
β−−−→ G(D)(Z/4Z) −−−→ 0y y y

0 0 0

,

Here i : 4Z2 → 4Z2[
√
D] and j : 4Z2[

√
D]→ 4Z2 are defined by i(a) = a and j : a+ b

√
D 7→ b,

respectively.

We can verify the following assertions similarly as [14, Proposition 2.9, Corollary 2.10 and

Corollary 2.12].

(1) The reduction map GD(Z2)→ GD(Z/2nZ) is surjective. Moreover, let n be an integer ≥ 3.

Then Ker[GD(Z2) → GD(Z/2nZ)] is isomorphic to the additive group 2nZ2 × 2nZ2 under the

identification through the isomorphim exp : 4Z2 × 4Z2
∼−→ Ker[GD(Z2)→ GD(Z/4Z)].

(2) Let n be an integer ≥ 3. We have an exact sequence

0 −→ Z/2n−2Z× Z/2n−2Z −→ GD(Z/2nZ) −→ GD(Z/4Z) −→ 0

(3) Let n be an integer ≥ 2. Let η ∈ GD(Z2), and assume that

η ∈ Ker[GD(Z2)→ GD(Z/2nZ)], η ̸∈ Ker[GD(Z2)→ GD(Z/2n+1Z)].

Then we have

η2 ∈ Ker[GD(Z2)→ GD(Z/2n+1Z)], η2 ̸∈ Ker[GD(Z2)→ GD(Z/pn+2Z)].

Summary 2.25. We conclude the section, summing up exact sequences deduced from the exact

sequence of group schemes

0 −→ Gm,Z
i−→ GP,Q

β−→ G(P,Q) −→ 0

in terms of quadratic extensions. The assertions mentioned below are deduced from Proposition

1.10 and Corollary 1.11 in combination.

Assume that D = P 2 − 4Q is not a square. Then we have GP,Q(Q) = Q(
√
D)× and

GP,Q(Z(2)) = (OD ⊗Z Z(2))
×, and the homomorphism α : G(P,Q)(Q) → UP,Q(Q) is bijective.

Moreover, if D ≡ 1 mod 4, then the homomorphism α : G(P,Q)(Z(2))→ UP,Q(Z(2)) is bijective.
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(1) If D ≡ 1 mod 8, then we obtain a commutative diagram with exact rows and columns:

1 1 1y y y
1 −−−→ Z×

(2) −−−→ (OD ⊗Z Z(2))
× γ−−−→ UP,Q(Z(2)) −−−→ 1y y y

1 −−−→ Q× −−−→ Q(
√
D)×

γ−−−→ UP,Q(Q) −−−→ 1yordp

y(ordp ,ordp̄ )

yordp

0 −−−→ Z ∆−−−→ Z× Z δ−−−→ Z −−−→ 0y y y
0 0 0

.

Here p is a prime of Q(
√
D) over 2, and p̄ denotes the conjugate of p. Furthermore, ∆ : Z→ Z×Z

and δ : Z× Z→ Z are defined by ∆(a) = (a, a) and δ(a, b) = a− b, respectively.

(2) If D ≡ 5 mod 8, then we obtain a commutative diagram with exact rows and columns:

1 1y y
1 −−−→ Z×

(2) −−−→ (OD ⊗Z Z(2))
× γ−−−→ UP,Q(Z(2)) −−−→ 1y y y≀

1 −−−→ Q× −−−→ Q(
√
D)×

γ−−−→ UD(Q) −−−→ 1yord2

yord2

Z id−−−→ Zy y
0 0

.

(3) If D/4 ≡ 2, 3 mod 4, then we obtain a commutative diagram with exact rows and columns:

1 1 1y y y
1 −−−→ Z×

(2) −−−→ (OD ⊗Z Z(2))
× β−−−→ G(P,Q)(Z(2)) −−−→ 1y y yα

1 −−−→ Q× −−−→ Q(
√
D)×

γ−−−→ UP,Q(Q) −−−→ 1yord2

yordp

y
0 −−−→ Z 2−−−→ Z −−−→ Z/2Z −−−→ 0y y y

0 0 0

.

Here p denotes the prime of Q(
√
D) over 2.
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3. Lucas sequences

The subsections from 3.1 to 3.8 are devoted for reformulation of linear recurrence sequences

of order 2.

Notation 3.1. Let R be a ring and P,Q ∈ R. We put

L(f,R) = {(wk)k≥0 ∈ RN ; wk+2 − Pwk+1 +Qwk = 0 for each k ≥ 0}.

The map (wk)k≥0 7→ (w0, w1) gives rise to an R-isomorphism L(f,R) ∼→ R2.

Now put R̃ = R[t]/(t2−Pt+Q) and θ = t mod (t2−Pt+Q). We define an R-homomorphism

ω : R̃ by ω(a + bθ) = b (a, b ∈ R). Moreover, we define an R-homomorphism ω : R̃ → RN by

ω(η) = (ω(ηθk))k≥0. For η = a+ bθ ∈ R̃, we have ω(η) = (b, a+ Pb, . . . ).

We can verify the following statements, paraphrasing the proofs of [14, Proposition 3.2 and

Corollary 3.3].

(1) The R-homomorphism R̃→ L(f,R) is bijective.
(2) Let I be an ideal of R, and let η, η′ ∈ R̃. Then η ≡ η′ mod I if and only if ω(η) ≡ ω(η′)

mod I in L(f,R).
(3) We define an R-algebra structure of L(f,R) through the R-isomorphism ω : R̃

∼→ L(f,R).
Then the Lucas sequence (Lk)k≥0 = ω(1) is the unit of the ring L(f,R).

More precisely, let R be a ring and w = (wk)k≥0,w
′ = (w′

k)k≥0 ∈ L(f,R). Then the product

of w and w′ is given by

(w0w
′
1 + w1w

′
0 − Pw0w

′
0, w1w

′
1 −Qw0w

′
0, . . . ).

It is readily seen that the multiplication by θ on R̃ induces the shift operation (wk)k≥0 7→
(wk+1)k≥0 on L(f,R) through the isomorphism ω : R̃

∼→ L(f,R).
(4) For η ∈ R̃ = R/(t2−Pt+Q), we define Nr η ∈ R by Nr η = η(P − η). For example, we have

Nr θ = Q. Obviously, η is invertible in R̃ if and only if Nr η is invertible in R.

Now let w = (wk)k≥0 ∈ L(f,R). Define ∆(w) ∈ R by ∆(w) = w2
1 − Pw0w1 +Qw2

0. If η ∈ R̃
and w = ω(η), then we have Nr η = ∆(w). Therefore, the sequence w = (wk)k≥0 is invertible

in L(f,R) if and only if ∆(w) = w2
1 − Pw0w1 +Qw2

0 is invertible in R.

Hereafter we fix P,Q ∈ Z, putting f(t) = t2 − Pt+Q and D = P 2 − 4Q.

Remark 3.2. Assume that Q ̸= 0. Then θ ∈ G(P,Q)(Q). Moreover, let (Lk)k≥0 denote the

Lucas sequence associated to (P,Q). Then, for k ≥ 1, we obtain inductively

θk = −QLk−1 + Lkθ,

and therefore

β(θ)k =
(
−Lk−1Lk

Qk−1
,
L2
k

Qk

)
in G(P,Q)(Q).
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Remark 3.3. Assume Q ̸= 0, and let Θ denote the subgroup of G(P,Q)(Q) generated by β(θ).

If Θ is finite, then Θ is cyclic of 2, 3, 4 or 6. Furthermore,

|Θ| = 2 ⇔ P = 0,

|Θ| = 3 ⇔ P 2 −Q = 0,

|Θ| = 4 ⇔ P 2 − 2Q = 0,

|Θ| = 6 ⇔ P 2 − 3Q = 0

Indeed, G(P,Q)(Q) is isomorphic to the additive group Q if D = 0, and G(P,Q)(Q) is isomorphic

to the multiplicative group Q× if D is a square ̸= 0. On the other hand, if D is note a square,

then G(P,Q)(Q) is isomorphic to a subgroup of the multiplicative group Q(
√
D)×. These imply

the first assertion.

To verify the second assertion, we have only to note

β(θ2) =
(
−P
Q
,
P 2

Q2

)
,

β(θ3) =
(
−P (P

2 −Q)

Q2
,
(P 2 −Q)2

Q3

)
,

β(θ4) =
(
−P (P

2 −Q)(P 2 − 2Q)

Q3
,
P 2(P 2 − 2Q)2

Q4

)
,

β(θ6) =
(
−P (P

2 −Q)(P 2 − 3Q)(P 4 − 3P 2Q+Q2)

Q5
,
P 2(P 2 −Q)2(P 2 − 3Q)2

Q6

)
,

which follow from

L1 = 0, L2 = P, L3 = P 2 −Q,

L4 = P (P 2 − 2Q), L5 = P 4 − 3P 2Q+Q2, L6 = P (P 2 −Q)(P 2 − 3Q).

From 3.4 to 3.19, we give an interpretation of the rank and the period of Lucas sequences and

new proofs for more or less known facts in our context.

Definition 3.4. The rank (resp. the period) of the Lucas sequence (Lk)k≥0 mod m is defined

as the least positive integer k such that Lk ≡ 0 mod m (resp. Lk ≡ 0 mod m and Lk+1 ≡ 1

mod m), if exists. We shall denote by r(m) (resp. k(m)) the rank (resp. the period) of the

Lucas sequence (Lk)k≥0 mod m.

Proposition 3.5. Let m be an integer with m ≥ 2 and (m,Q) = 1. Then we have:

(1) k(m) is equal to the order of θ = (0, 1) in GP,Q(Z/mZ);

(2) r(m) is equal to the order of β(θ) = (0, 1/Q) in G(P,Q)(Z/mZ).
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Proof. Consider the commutative diagram with exact rows

0 −−−→ (Z/mZ)× −−−→ GP,Q(Z/mZ) −−−→ G(P,Q)(Z/mZ) −−−→ 0∥∥∥ y≀ ω

y≀ ω

0 −−−→ (Z/mZ)× −−−→ L(f,Z/mZ)× −−−→ L(f,Z/mZ)×/(Z/mZ)× −−−→ 0

Let η ∈ GP,Q(Z/mZ) and a ∈ (Z/mZ)×. Then ω(η) = (0, a, . . . ) in L(f,Z/mZ) if and only if

ω(η) = ω(a), which means β(η) = 1. Hence the results.

Notation 3.6. Let P,Q ∈ Z, and put f(t) = t2−Pt+Q and D = P 2−4Q. Assume that P ≡ 0

mod 2 and Q ≡ 1 mod 2. Let θ denote the image of t in the residue rings Z[t]/(t2 − Pt +Q),

and put δ = −P/2 + θ. Then we have δ2 = D/4 and ω(δ) = (1, P/2, . . . ).

As is remarked in 2.19, θ 7→ P/2+δ gives rise to an isomorphism of rings Z[t]/(t2−Pt+Q)
∼→

Z[t]/(t2 − D/4), and therefore isomorphisms of group schemes GP,Q
∼→ GD/4 and G(P,Q)

∼→
G(D/4). For a ring R, we shall often indentify GP,Q(R) with GD/4(R) and G(P,Q)(R) with

G(D/4)(R) through the isomorphisms GP,Q
∼→ GD/4 and G(P,Q)

∼→ G(D/4).

Theorem 3.7. Let P,Q ∈ Z. Assume that P ≡ 0 mod 2 and Q ≡ 1 mod 2, and put ν =

ord2P .

(1) If P ̸= 0, then we have

r(2n) =

2 if n ≤ ν

2n−ν+1 if n ≥ ν + 1
.

(2) If P = 0, then we have r(2n) = 2 for any n ≥ 1.

Proof. Assume first ν = 1. Then we obtain P/2 ≡ 1 mod 2 and D/4 = (P/2)2−Q ≡ 0 mod 2.

Therefore, by Corollary 2.6, β(θ) = β(P/2+ δ) is of order 2n in G(P,Q)(Z/2nZ) = GD/4(Z/2nZ).
Hence the result.

Assume now that P ̸= 0 and ν ≥ 2. Then we obtain r(2) = · · · = r(2ν) = 2 and r(2ν+1) > 2.

Hence, for n ≥ ν + 1, we have

β(θ)2 ∈ Ker[G(P,Q)(Z/2nZ)→ G(P,Q)(Z/2νZ)]

but

β(θ)2 ̸∈ Ker[G(P,Q)(Z/2nZ)→ G(P,Q)(Z/2ν+1Z)].

Moreover, we have

β(θ)2 ∈ Ker[G(P,Q)(Z/2n)→ G(P,Q)(Z/4Z)]

= (the subgroup of G(P,Q)(Z/2nZ) generated by β(1 + 4δ))

since ν ≥ 2. It follows that β(θ)2 = β(1 + 4δ)2
νc with (c, 2) = 1 in G(P,Q)(Z/2nZ). Hence β(θ)

is of order 2n−ν+1 in G(P,Q)(Z/2nZ).

Theorem 3.8. Let P,Q ∈ Z. Assume that P ≡ 0 mod 2 and Q ≡ 1 mod 2, and put ν =

ord2P . Then:
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(1) If ν = 1, then k(2n) = 2n for n ≥ 1.

(2) If ν ≥ 2 and P ̸= 0, then

k(2n) =

2n−ν+1 if n ≥ ν + 1 and (the order of −Q mod 2n)≤ 2n−ν

2×(the order of −Q mod 2n) otherwise
.

(3) If P = 0, then k(2n) = 2×(the order of −Q mod 2n) for any n ≥ 1.

Proof. (1) It follows from the assumption that P/2 ≡ 1 mod 2 and D/4 = (P/2)2 − Q ≡ 0

mod 2. Hence, by Lemma 2.5, θ = P/2 + δ is of order 2n in GP,Q(Z/2nZ) = GD/4(Z/2nZ) for
n ≥ 1.

(2)(3) If P = 0, then we obtain L2k = 0 and L2k+1 = (−Q)k for k ≥ 0. Hence the result.

Assume now P ̸= 0. Then we have P ≡ 2ν mod 2ν+1 and therefore P 2 ≡ 22ν mod 2ν+2.

Hence we obtain P 2/2 ≡ 0 mod 2ν+1 since ν ≥ 2. This, together with δ2 = P 2/4−Q, implies

θ2 =
(P
2

)2
+ Pδ + δ2 =

P 2

2
−Q+ Pδ ≡ −Q+ 2νδ mod 2ν+1.

Moreover, if n ≤ ν, then we obtain θ2 ≡ −Q mod 2n and therefore

(the order of θ mod 2n)= 2×(the order of −Q mod 2n).

If n ≥ ν + 1, we can verify inductively

θ2
n−ν ≡ (−Q)2

n−ν−1
+ 2n−1δ mod 2n, θ2

n−ν+1 ≡ (−Q)2
n−ν

mod 2n.

These imply that

the order of θ mod 2n

=

2n−ν+1 if (the order of −Q mod 2n)≤ 2n−ν

2×(the order of −Q mod 2n) if (the order of −Q mod 2n)≥ 2n−ν+1
.

Remark 3.8.1. Let P,Q ∈ Z, and assume Q ̸= 0 and D = 0. Then there exists a ∈ Z such

that P = 2a and Q = a2, and we obtain

ξ(θ) =
(
a,

1

a

)
in (Gm ×Ga)(Q) = Q× ×Q, and ξ(β(θ)) =

1

a
in Ga(Q) = Q.

Furthermore, let p be a prime with (a, p) = 1. Then β(θ) ∈ G(P,Q)(Z(p)), and β(θ) generates

G(P,Q)(Z/pnZ) = Z/pnZ for n ≥ 1. This implies that, for n ≥ 1, we have

r(pn) = pn

and

k(pn) =

pns if p > 2

2n if p = 2.

Here s denotes the order of a in (Z/pZ)×.
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The assertion above is a special case of Theorem 3.7 (1), Theorem 3.8 (1) and [14, Corollary

3.16 (3)]. Here is an elementary verification. The Lucas sequence associated to (P,Q) is given

by (Lk)k≥0 = (kak−1)k≥0. Then we have the following implications:

Lk ≡ 0 mod pn ⇔ pn|k,

Lk ≡ 0 mod pn, Lk+1 ≡ 0 mod pn ⇔ pn|k, pn|(ak − 1) ⇔ pn|k, s|k.

Corollary 3.9. Let P,Q ∈ Z. Assume that ν = ord2P ≥ 2 and P ̸= 0. Then:

(1) If Q ≡ 1 mod 2ν , then

k(2n) =


2 if n = 1

4 if 2 ≤ n ≤ ν

2n−ν+1 if n ≥ ν + 1

.

(2) If Q ≡ −1 mod 2ν , then

k(2n) =

2 if 1 ≤ n ≤ ν

2n−ν+1 if n ≥ ν + 1
.

Notation 3.10. Let P and Q be odd integers. Let θ denote the image of t in the residue ring

Z[t]/(t2 − Pt+Q), and put δ = −P + 2θ. Then we have δ2 = D. Moreover, there exists r ∈ Z2

such that r2 = −D/3 since D ≡ 5 mod 8. We may assume r ≡ 1 mod 4, replacing r by −r if

r ≡ −1 mod 4. Put

ω =
−r + δ

2r
= −r + P

2r
+
θ

r
∈ Z2[t]/(t

2 − Pt+Q).

Then we have (δ/r)2 = −3 and there ω3 = 1.

Lemma 3.11. Under the notations above, we have ord2(r − 1) = ord2(D + 3)− 1.

Proof. By the definition, we obtain 3(r2−1) = −(D+3) and therefore ord2(r
2−1) = ord2(D+3).

Moreover, we have ord2(r + 1) = 1 since r ≡ 1 mod 4. Hence the result.

Theorem 3.12. Let P,Q ∈ Z. Assume that P ≡ 1 mod 2 and Q ≡ 1 mod 4, and put

ν = ord2(P
2 −Q). Then we have ν ≥ 2. Furhtermore,

(1) If P 2 −Q ̸= 0, then we have

r(2n) =

3 if n ≤ ν

3× 2n−ν if n ≥ ν + 1
.

(2) If P 2 −Q = 0, then we have r(2n) = 3 for any n ≥ 1.

Proof. First note that L3 = P 2 − Q and that ord2(P
2 − Q) ≥ 2 follows from the assumptions

P ≡ 1 mod 2 and Q ≡ 1 mod 4. If P 2 −Q = 0, then we have r(2n) = 3 for any n ≥ 1.
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Assume now that P 2 − Q ̸= 0. Then we obtain r(2) = · · · = r(2ν) = 3 and r(2ν+1) > 3.

Hence, for n ≥ ν + 1, we have

β(θ)3 ∈ Ker[G(P,Q)(Z/2nZ)→ G(P,Q)(Z/2νZ)]

but

β(θ)3 ̸∈ Ker[G(P,Q)(Z/2nZ)→ G(P,Q)(Z/2ν+1Z)].

Moreover, we have

β(θ)3 ∈ Ker[G(P,Q)(Z/2n)→ G(P,Q)(Z/4Z)]

= (the subgroup of G(P,Q)(Z/2nZ) generated by β(1 + 4δ))

since ν ≥ 2. This means

γ(θ)3 ∈ Ker[U(P,Q)(Z/2n)→ U(P,Q)(Z/4Z)]

= (the subgroup of U(P,Q)(Z/2nZ) generated by γ(1 + 4ω))

since the homomorphism α : G(P,Q) → UP,Q is isomorphic. Therefore we obtain γ(θ)3 =

γ(1 + 4ω)2
ν−2c with (c, 2) = 1 in UP,Q(Z/2nZ). This implies that γ(θ) is of order 3 × 2n−ν in

UP,Q(Z/2nZ) and therefore β(θ) is of order 3× 2n−ν in G(P,Q)(Z/2nZ).

Remark 3.12.1. If Q ≡ 5 mod 8, then ν = ord2(P
2 −Q) = 2.

Theorem 3.13. Let P,Q ∈ Z. Assume that P ≡ 1 mod 2 and Q ≡ −1 mod 4, and put

ν = ord2(P
2 −Q)(P 2 − 3Q). Then we have ν ≥ 3. Futhermore,

(1) If P 2 − 3Q ̸= 0, then

r(2n) =


3 if n = 1

6 if 2 ≤ n ≤ ν

6× 2n−ν if n ≥ ν + 1

.

(2) If P 2 − 3Q = 0, then r(2) = 3 and r(2n) = 6 for any n ≥ 2.

Proof. First note that L6 = P (P 2 −Q)(P − 3Q2) and that the assumption P ≡ 1 mod 2 and

Q ≡ −1 mod 4 implies ord2(P
2 − Q) = 1 and ord2(P

2 − 3Q) ≥ 2. If P − 3Q2 = 0, then we

have r(2n) = 6 for any n ≥ 2.

Assume now that P 2 − 3Q ̸= 0. Then we obtain r(2) = 3, r(4) = . . . = r(2ν) = 6 and

r(2ν+1) > 6. Hence, for n ≥ ν + 1, we have

β(θ)6 ∈ Ker[G(P,Q)(Z/2nZ)→ G(P,Q)(Z/2νZ)]

but

β(θ)6 ̸∈ Ker[G(P,Q)(Z/2nZ)→ G(P,Q)(Z/2ν+1Z)].
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Moreover, we have

β(θ)6 ∈ Ker[G(P,Q)(Z/2n)→ G(P,Q)(Z/4Z)]

= (the subgroup of G(P,Q)(Z/2nZ) generated by β(1 + 4δ))

since ν ≥ 3. This means

γ(θ)6 ∈ Ker[U(P,Q)(Z/2n)→ U(P,Q)(Z/4Z)]

= (the subgroup of U(P,Q)(Z/2nZ) generated by γ(1 + 4ω)).

Therefore we obtain γ(θ)6 = γ(1 + 4ω)2
ν−2c with (c, 2) = 1 in UP,Q(Z/2nZ). This implies that

γ(θ) is of order 6×2n−ν in UP,Q(Z/2nZ) and therefore β(θ) is of order 6×2n−ν in G(P,Q)(Z/2nZ).

Remark 3.13.1. If Q ≡ −1 mod 8, then ord2(P
2 − 3Q) = 2. This implies ν = 3.

Theorem 3.14. Let P,Q ∈ Z. Assume that P ≡ 1 mod 2 and Q ≡ −1 mod 4. Then we have

k(2n) = 3× 2n−1 for n ≥ 1.

Proof. By the assumption we have 4Q ≡ −4 mod 16. Then we obtain D ≡ 5 mod 16 and

r ≡ 5 mod 8 if P ≡ ±1 mod 8, and D ≡ −3 mod 16 and r ≡ 1 mod 8 if P ≡ ±5 mod 8.

This implies:

(1) if P ≡ 1, 5 mod 8, then P + r ≡ −2 mod 8 and therefore θ ≡ −1 + ω mod 4;

(2) if P ≡ −1,−5 mod 8, then P + r ≡ 4 mod 8 and therefore θ ≡ 2 + ω mod 4.

In both the cases, we have θ3 ≡ −1 + 2ω mod 4. Then we can verify inductively θ3·2
n−2 ≡

1 + 2n−1ω mod 2n and θ3·2
n−1 ≡ 1 mod 2n for n ≥ 2.

Theorem 3.15. Let P,Q ∈ Z. Assume that P ≡ 5 mod 8 and Q ≡ 1 mod 4. Then we have

k(2n) =


3 if n = 1

6 if n = 2

3× 2n−2 if n ≥ 3

.

Proof. By the assumption, we have 4Q ≡ 4 mod 16, D ≡ 5 mod 16 and r ≡ 5 mod 8. These

imply P+r ≡ 2 mod 8 and therefore θ ≡ (1+ω)+4ω mod 8. Hence we obtain θ3 ≡ −1+4(1+ω)

mod 8, and we can verify inductively θ3·2
n−3 ≡ 1+2n−1(1+ω) mod 2n and θ3·2

n−2 ≡ 1 mod 2n

for n ≥ 3.

Theorem 3.16. Let P,Q ∈ Z. Assume that P ≡ −5 mod 8 and Q ≡ 1 mod 4. Then we have

k(2n) =

3 if n = 1, 2

3× 2n−2 if n ≥ 3
.

Proof. By the assumption, we have 4Q ≡ 4 mod 16, D ≡ 5 mod 16 and r ≡ 5 mod 8. These

imply P + r ≡ 0 mod 8 and therefore θ ≡ 5ω mod 8. Hence we obtain θ3 ≡ 5 mod 8, and we

can verify inductively θ3·2
n−3 ≡ 1 + 2n−1 mod 2n and θ3·2

n−2 ≡ 1 + 2n−1 mod 2n for n ≥ 3.
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Theorem 3.17. Let P,Q ∈ Z. Assume that P ≡ 1 mod 8, Q ≡ 1 mod 4 and P 2 − Q ̸= 0,

and put µ = min[ord2(P + r − 2)− 1, ord2(r − 1)]. Then we have µ ≥ 2 and

k(2n) =


3 if n = 1

6 if 2 ≤ n ≤ µ+ 1

6× 2n−µ−1 if n ≥ µ+ 2

.

Proof. By the assumption, we have P 2 ≡ 1 mod 16 and 4Q ≡ 4 mod 16 and thereforeD+3 ≡ 0

mod 16. Then ord2(r − 1) ≥ 3. On the other hand, we have ord2(P − 1) ≥ 3. Then we obtain

µ ≥ 2. Moreover, we have µ <∞.

Indeed, note the implications:

µ =∞ ⇔ P + r − 2 = 1, r = 1⇔ P = 1, D = −3 ⇔ P = 1, Q = 1.

Therefore, the possibility of µ =∞ is excluded by the assumption P 2 −Q ̸= 0.

By the definition of µ, we have

P + r

2
≡ 1 mod 2µ, r ≡ 1 mod 2µ.

and therefore θ ≡ (1+ω)+2µη mod 2µ+1, where η ∈ {1, ω, 1+ω}. Hence we obtain θ3 ≡ −1+
2µωη mod 2µ+1, and we can verify inductively θ3·2

n−µ−1 ≡ 1+2n−1ωη mod 2n and θ3·2
n−µ ≡ 1

mod 2n for n ≥ µ+ 2. Hence the result.

Theorem 3.18. Let P,Q ∈ Z. Assume that P ≡ −1 mod 8, Q ≡ 1 mod 4 and P 2 − Q ̸= 0.

Put µ = min[ord2(P + r), ord2(r − 1)]. Then we have µ ≥ 2 and

k(2n) =

3 if 1 ≤ n ≤ µ

3× 2n−µ if n ≥ µ+ 1
.

Proof. By the assumption, we have P 2 ≡ 1 mod 16 and 4Q ≡ 4 mod 16 and thereforeD+3 ≡ 0

mod 16. Then ord2(r − 1) ≥ 3. On the other hand, we have ord2(P + 1) ≥ 3. Then we obtain

µ ≥ 2. Moreover, we have µ <∞.

Indeed, note the implications:

µ =∞ ⇔ P + r = 0, r = 1⇔ P = −1, D = −3 ⇔ P = −1, Q = 1.

Therefore, the possibility of µ =∞ is excluded by the assumption P 2 −Q ̸= 0.

By the definition of µ, we have

P + r

2
≡ 0 mod 2µ, r ≡ 1 mod 2µ.

and therefore θ ≡ ω+2µη mod 2µ+1, where η ∈ {1, ω, 1+ ω}. Hence we obtain θ3 ≡ 1+ 2µω2η

mod 2µ+1, and we can verify inductively θ3·2
n−µ−1 ≡ 1 + 2n−1ω2η mod 2n and θ3·2

n−µ ≡ 1

mod 2n for n ≥ µ+ 1. Hence the result.
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Remark 3.19. Let P,Q ∈ Z, and assume P 2−Q = 0, Then there exists a ∈ Z such that P = a

and Q = a2. Moreover, for k ≥ 0, we have

L3k = 0, L3k+1 = (−a3)k, L3k+2 = (−a3)ka.

Therefore, if a ≡ 1 mod 2, then we have k(2n) = 3×(the order of −a in (Z/2nZ)×).

We conclude the section, by discussing the action of G(D)(Z/pnZ) on P1(Z/pnZ) for a prime

p and a positive integer n. We refer to [12, Section 2] concerning a precise argument on the

action of PGL2,Z on P1
Z.

3.20. Let R be a ring. Then the group GP,Q(R) acts R-linearly on the R-algebra L(f,R)
through the isomorphism ω : GP,Q(R)

∼→ L(f,R)×. This defines an R-linear action of GP,Q(R)

on R2 through the R-isomorphism L(f,R) ∼→ R2 given by (wk)k≥0 7→ (w0, w1). Hence we obtain

a homomorphism iR : GP,Q(R)→ GL(2, R), which is described explicitly as

iR : η = (u, v) 7→

(
u −Qv
v u+ Pv

)
.

The homomorphism iR : GP,Q(R) → GL(2, R) is represented by a homomorphism of group

schemes i : GP,Q → GL2. It is readily seen that i : GP,Q → GL2 is a closed immersion.

Let η = (u, v) ∈ GP,Q(Q), and put w0 = ω(η) and w1 = ω(ηθ). Then we have(
u −Qv
v u+ Pv

)
=

(
w1 − Pw0 −Qw0

w0 w1

)

and

u2 + Puv +Qv2 = w2
1 − Pw0w1 +Qw2

0.

By the definition, we have a commutative diagram with exact rows

0 −−−→ Gm −−−→ GP,Q
β−−−→ G(P,Q) −−−→ 0∥∥∥ yi

yi

1 −−−→ Gm −−−→ GL2 −−−→ PGL2 −−−→ 1

.

The induced homomorphism i : G(P,Q) → PGL2 is a closed immersion.

Notation 3.21. We shall denote by Θ all the subgroup of GP,Q(Z[1/Q]) generated by θ = (0, 1),

the subgroup of G(P,Q)(Z[1/Q]) generated by β(θ) = (0, 1/Q) and the subgroup of UD(Z[1/Q])

generated by γ(θ) = (−1, P/Q).

Notation 3.22. We have

i(θ) = i(0, 1) =

(
0 −Q
1 P

)
∈ GL(2,Z[ 1

Q
]).
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By the abbreviation, we shall denote by Θ the image of the subgroup Θ of G(P,Q)(Z[1/Q]) by

i : G(P,Q)(Z[1/Q])→ PGL(2,Z[1/Q]). Let (wn)n≥0 ∈ L(f,Q). Then it is readily seen that

(wn+1 wn+2) = (wn wn+1)

(
0 −Q
1 P

)
.

3.23. Let p be a prime with (p,Q) = 1, and let w = (wk)k≥0 ∈ L(f,Z(p)). Then we have

(w0, w1) = (w1, w2) = (w2, w3) = · · ·

in Z(p) since

(
0 −Q
1 P

)
is invertible in GL(2,Z(p)). In particular, if (w0, w1) = Z(p), then we

have (wk, wk+1) = Z(p) for all k > 0.

Notation 3.24. Let p be a prime and n a positive integer. Then we have

P1(Z(p)) = {(w0 : w1) ; w0, w1 ∈ Z(p) and (w0, w1) = Z(p)}

and

P1(Z/pnZ) = {(w0 : w1) ; w0, w1 ∈ Z/pnZ and (w0, w1) = Z/pnZ},

by [5, Corollaire 4.2.6]. We can verify that the embeddings Z → Z(p) → Q induce bijections

P1(Z) ∼→ P1(Z(p))
∼→ P1(Q), canceling denominators.

Notation 3.25. A sequence w = (wk)k≥0 ∈ L(f,Z) is said to be reduced if w0 and w1 are

relatively prime to each other. We put

R(f,Z) = {w = (wk)k≥0 ∈ L(f,Z) ; w is reduced, and w0 > 0 or w0 = 0, w1 > 0}.

Then (w0, w1) 7→ (w0 : w1) gives rise to a bijection R(f,Z) ∼→ P1(Z) = P1(Q).

Furthermore, a complete representative system of L(f,Q)×/Q× ⊂ P1(Q) is given by

{w = (wk)k≥0 ∈ R(f,Z) ; ∆(w) = w2
1 − Pw0w1 +Qw2

0 ̸= 0}.

Indeed, the inclusion map {w ∈ R(f,Z) ; ∆(w) ̸= 0} → L(f,Q)× is a section of the canonical

surjection L(f,Q)× → L(f,Q)×/Q×.

Similarly, a complete representative system of L(f,Z(p))
×/Z×

(p) ⊂ P1(Z(p)) = P1(Q) is given

by

{w = (wk)k≥0 ∈ R(f,Z) ; ∆(w) = w2
1 − Pw0w1 +Qw2

0 ̸≡ 0 mod p}.

Indeed, the inclusion map {w ∈ R(f,Z) ; ∆(w) ̸≡ 0 mod p} → L(f,Z(p))
× is a section of the

canonical surjection L(f,Z(p))
× → L(f,Z(p))

×/Z×
(p).

We can now mention the main result on the action of G(D)(Z/pnZ) on P1(Z/pnZ). The

following assertions was established as [14, Proposition 3.23 and Theorem 3.25] in the case of

p > 2. We can verify the assertions, only replacing G(D)(Z(p)) by G(P,Q)(Z(p)), so we omit the

proof.
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Proposition 3.26. Let p be a prime, n a positive integer and w = (wk)k≥0 ∈ L(f,Z). Assume

that neither Q nor (w0, w1) is divisible by p. Then, there exists k ≥ 0 such that wk ≡ 0 mod pn

if and only if (w0 : w1) is contained in the Θ-orbit of (0 : 1) in P1(Z/pnZ). Therefore we have

#{(w0 : w1) ∈ P1(Z/pnZ) ; (wk)k≥0 ∈ L(f,Z/pnZ) and wk ̸= 0 for any k} = (p+1)pn−1−r(pn).

Theorem 3.27. Let p be a prime with (p,Q) = 1 and n a positive integer. Let w = (wk)k≥0 ∈
L(f,Z(p)), and put µ = ordp∆(w). Assume that (w0, w1) = Z(p). Then we have

the length of the orbit (w0 : w1)Θ in P1(Z/pnZ) =

1 (n ≤ µ)

r(pn−µ) (n ≥ µ+ 1)
.

Here are a few numerical examples.

Example 3.28.1. P = 1, Q = 3. In this case, the Θ-orbits in P1(Z/16Z) are given by

{(0 : 1), (1 : 1), (1 : 14), (2 : 5), (1 : 3), (1 : 0)}, {(1 : 2), (2 : 7), (1 : 7), (1 : 12), (1 : 13), (1 : 5)},

{(1 : 4), (4 : 1), (1 : 5), (1 : 10), (2 : 3), (1 : 15)}, {(1 : 6), (2 : 1), (1 : 11), (1 : 8), (8 : 5), (1 : 9)}.

Note that

∆(0, 1) = 1, ∆(1, 2) = 5, ∆(1, 4) = 15, ∆(1, 6) = 33.

Example 3.28.2. P = 8, Q = 7. In this case, the Θ-orbits in P1(Z/16Z) are given by

{(0 : 1), (1 : 8), (8 : 1), (1 : 0)}, {(1 : 2), (2 : 1), (1 : 10), (2 : 5)},

{(1 : 4), (4 : 1), (1 : 12), (4 : 3)}, {(1 : 6), (2 : 3), (1 : 14), (2 : 7)},

{(1 : 3), (1 : 11)}, {(1 : 5), (1 : 13)},

{(1 : 9)}, {(1 : 15)}, {(1 : 1)}, {(1 : 7)}

Note that

∆(0, 1) = 1, ∆(1, 2) = −5, ∆(1, 4) = −9, ∆(1, 6) = −5,

∆(1, 3) = −8, ∆(1, 5) = −8, ∆(1, 9) = 16, ∆(1, 15) = 112, ∆(1, 1) = 0, ∆(1, 7) = 0.

4. Laxton groups

Throughout the section, we fix P,Q ∈ Z, putting f(t) = t2 − Pt+Q and D = P 2 − 4Q. We

denote by θ the image of t in the residue ring Z[t]/(t2 − Pt+Q).

Definition 4.1. First we recall the defintion of the group G(f) due to Laxton [8, Section 2],

modifying descriptions and notations, for the reader’s convenience though a copy and paste from

[14, Defintion 4.1]. We shall call G(f) the Laxton group associated to the quadratic polynomial

f(t) = t2 − Pt+Q.
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Put L(f,Z)◦ = {(wk)k≥0 ∈ L(f,Z) ; (w0, w1) ̸= (0, 0)}. We define an equivalence relation ∼L

on L(f,Z)◦ as the relation generated by the following two equivalence relations:

(1) for v,w ∈ L(f,Z)◦, we have v ∼′
L w if there exist non-zero integers k and l such that

kv = lw;

(2) for v = (vk)k≥0,w = (wk)k≥0 ∈ L(f,Z)◦, we have v ∼′′
L w if there exists a positive integer

n such that vk+n = wk for all k ≥ 0 or vk = wk+n for all k ≥ 0.

We put G(f) = L(f,Z)◦/∼L. We shall denote by [w] the equivalence class of w ∈ L(f,Z)◦

in G(f).

Furthermore, for v = (vk)k≥0,w = (wk)k≥0 ∈ L(f,Z)◦, the product vw ∈ L(f,Z)◦ is defined

by

vw = (v0w1 + v1w0 − Pv0w0, v1w1 −Qv0w0, . . . ),

which coincides with the multiplication mentioned in 3.1. Then L(f,Z)◦/∼L is a commutative

group.

Fix now a prime p. Put

G(f, pn) =

{
[w] ∈ G(f) ;

(w0, w1) = 1 and wk ≡ 0 mod pn

for some (wk)k≥0 ∈ [w]

}
.

for each positive integer n. Then G(f, pn) is a subgroup G(f). Futhermore, put

K(f, p) =

{
[w] ∈ G(f) ;

(w0, w1) = 1 and (w2
1 − Pw0w1 +Qw2

0, p) = 1

for some (wk)k≥0 ∈ [w]

}

and

H(f, p) = the inverse image in G(f) of the torsions in G(f)/K(f, p)}.

Then K(f, p) and H(f, p) are subgroups G(f).

Summing up, we have gotten a descending chain of subgroups

G(f) ⊃ H(f, p) ⊃ K(f, p) ⊃ G(f, p) ⊃ G(f, p2) ⊃ · · · ⊃ G(f, pn) ⊃ · · · .

Remark 4.1.1. To define the group G(f), Laxton assumed in [8] that (P,Q) = 1 and P ̸= 0,

P 2−Q ̸= 0, P 2− 2Q ̸= 0, P 2− 3Q ̸= 0, D = P 2− 4Q ̸= 0, probably for simplicity. We followed

his way in [14], however, we treat here also the cases excluded by Laxton because of its own

interest in each case.

Theorem 4.2. Let P,Q ∈ Z, and assume Q ̸= 0. Then we have θ ∈ GP,Q(Q). Further-

more, let Θ denote the subgroup of G(D)(Q) generated by β(θ) = (0, 1/Q). Then the isomor-

phism ω : UP,Q(Q) = G(P,Q)(Q)
∼→ L(f,Q)×/Q× induces an isomorphism ω : UP,Q(Q)/Θ =

G(P,Q)(Q)/Θ
∼→ G(f).

Proof. Let η, η′ ∈ Z[t]/(t2 − Pt+Q), and put w = (wk)k≥0 = ω(η) and w′ = (w′
k)k≥0 = ω(η′).

Then there exist non-zero integers k and l such that kw = lw′ if and only if γ(η) = γ(η′) in
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G(P,Q)(Q) = GP,Q(Q)/Q×. Indeed, the inclusion L(f,Z)◦ → L(f,Q)× induces an isomorphism

L(f,Z)◦/ ∼′
L

∼→ L(f,Q)×/Q×.

On the other hand, there exists a positive integer n such that wk+n = w′
k for all k ≥ 0 or

wk = w′
k+n for all k ≥ 0 if and only if ηθn = η′ or η = η′θn for some n > 0. Hence the result.

Corollary 4.3. Let P,Q ∈ Z with Q ≡ 1 mod 2 and D = P 2 − 4Q ̸= 0. Then we have

Θ ⊂ G(P,Q)(Z(2)). Furthermore, put

r =
[ord2D

2

]
, D̃ =

D

4r

and

(P̃ , Q̃) =


(
−1, 1− D̃

4

)
if D̃ ≡ 1 mod 4

(0, D̃) if D̃ ≡ 2, 3 mod 4

.

Then the descending chain of subgroups of G(P,Q)(Q) = UP,Q(Q):

UP,Q(Q) ⊃ UP̃ ,Q̃(Z(2)) ⊃ G(P,Q)(Z(2)) ⊃ G(22P,42Q)(Z(2)) ⊃ · · · ⊃ G(2nP,4nQ)(Z(2)) ⊃ · · ·

gives a descending chain of subgroups of G(f):

G(f) ⊃ H(f, 2) ⊃ K(f, 2) = G(f, 2) ⊃ · · · ⊃ G(f, 2n) ⊃ · · · .

More precisely,

(1) The isomorphism ω : G(P,Q)(Q)/Θ
∼→ G(f) induces isomorphisms

UP̃ ,Q̃(Z(2))/Θ
∼−→ H(f, 2),

G(P,Q)(Z(2))/Θ
∼−→ K(f, 2)

and

(G(2nP,4nQ)(Z(2)) + Θ)/Θ
∼−→ G(f, 2n)

for each n > 0.

(2) The isomorphism ω : G(P,Q)(Q)/Θ
∼−→ G(f) induces isomorphisms

UP̃ ,Q̃(Z(2))(Z(2))/G(P,Q)(Z(2)) = (UP̃ ,Q̃(Z(2))(Z(2))/Θ)/(G(P,Q)(Z(2))/Θ)
∼−→ H(f, 2)/K(f, 2)

and

G(P,Q)(Z(2))/(G(2nP,4nQ)(Z(2)) + Θ)
∼−→ K(f, 2)/G(f, 2n)

for each n > 0. Therefore, K(f, 2)/G(f, 2n) is isomorphic to G(P,Q)(Z/2nZ)/Θ.

(3) For each n > 0, we have

|G(f, 2n)/G(f, 2n+1)| = |K(f, 2)/G(f, 2n+1)|/|K(f, 2)/G(f, 2n)|.

Proof. Note first that r = 0 if and only if P ≡ 1 mod 2 and Q ≡ 1 mod 2. In this case, we

obtain an isomorhism G(P̃ ,Q̃)
∼→ G(P,Q) through the identity(

t− P − 1

2

)2
−
(
t− P − 1

2

)
+

1−D
4

= t2 − Pt+Q.
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On the other hand, if r ≥ 1, then G(P,Q) is isomorphic to G(D/4) as is reamrked in 2.19. Moreover,

G(D̃) is isomorphic to G(2P̃ ,4Q̃) if D̃ ≡ 1 mod 4, and G(D̃) = G(P̃ ,Q̃) if D̃ ≡ 2, 3 mod 4.

First we prove the main assertion except K(2, f) = G(f, 2), which we verify after proving the

assertion (2). The assumption (2, Q) = 1 implies Θ ⊂ G(P,Q)(Z(2)). Furthermore, by Proposition

2.2, we have

UP̃ ,Q̃(Q)/UP̃ ,Q̃(Z(2)) =

Z if D̃ ≡ 1 mod 8

0 otherwise
.

On the other hand, UP̃ ,Q̃(Z(2))/GP,Q(Z(2)) is finite. Indeed, by Proposition 2.3, we have

UP̃ ,Q̃(Z(2))/G(P̃ ,Q̃)(Z(2)) =

0 if D̃ ≡ 1 mod 4

Z/2Z if D̃ ≡ 2, 3 mod 4
.

Moreover, we have

G(P,Q)(Z(2)) =

G(2rP̃ ,4rQ̃)(Z(2)) if D̃ ≡ 1 mod 4

G(2r−1P̃ ,4r−1Q̃)(Z(2)) if D̃ ≡ 2, 3 mod 4

as is mentioned above. Hence we obtain

G(P̃ ,Q̃)(Z(2))/G(P,Q)(Z(2)) =

G(P̃ ,Q̃)(Z/2
rZ) if D̃ ≡ 1 mod 4

G(P̃ ,Q̃)(Z/2
r−1Z) if D̃ ≡ 2, 3 mod 4

as is remarked in 2.1.

These yield that the torsion part of GP,Q(Q)/GP,Q(Z(2)) = G(f)/K(f, 2) coincides with

UP̃ ,Q̃(Z(2))/GP,Q(Z(2)).

Now we prove the assertion (1). Under the identifications

G(P,Q)(Q) = L(f,Q)×/Q× = {w = (wk)k≥0 ∈ R(f,Z) ; ∆(w) ̸= 0},

we have

G(P,Q)(Z(2)) = {w = (wk)k≥0 ∈ R(f,Z) ; ∆(w) ≡ 1 mod 2}

and, by Lemma 1.9,

G(2nP,4nQ)(Z(2)) = Ker[G(P,Q)(Z(2))→ G(P,Q)(Z/2nZ)]

= {(wk)k≥0 ∈ R(f,Z) ; w0 ≡ 0 mod 2n}.

It follows that the isomorphism ω : G(P,Q)(Q)/Θ
∼→ G(f) induces isomorphisms

G(P,Q)(Z(2))/Θ
∼→ K(f, 2)

and

(G(2nP,4nQ)(Z(2)) + Θ)/Θ
∼→ G(f, 2n)

for each n > 0.
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Next we prove the assertion (2). Combining the isomorphisms

G(P,Q)(Z(2))/Θ
∼−→ K(f, 2)

and

(G(2nP,4nQ)(Z(2)) + Θ)/Θ
∼−→ G(f, 2n),

we obtain an isomorphism

G(P,Q)(Z(2))/(G(2nP,4nQ)(Z(2)) + Θ)
∼−→ K(f, 2)/G(f, 2n).

Furthemore, using the isomorphism

Coker[2n : G(2nP,4nQ)(Z(2))→ G(P,Q)(Z(2))]
∼−→ G(P,Q)(Z/2nZ),

established by Lemma 1.9 and 2.1(2), we obtain an isomorphism

G(P,Q)(Z/2nZ)/Θ
∼−→ K(f, 2)/G(f, 2n).

In particular, K(f, 2)/G(f, 2) is isomorphic to G(P,Q)(Z/2Z)/Θ. Note now that, by Proposi-

tions 2.15, 2.16 and 2.22, we have |G(P,Q)(Z/2Z)| = 2 or 3 and that β(θ) = (0, 1/Q) is not trivial

in G(P,Q)(Z/2Z). These imply that G(P,Q)(Z/2Z)/Θ = 0 and therefore K(f, 2) = G(f, 2).

The assertion (3) is a standard fact. Indeed, it is sufficient to notice the canonical isomorphism

(K(f, 2)/G(f, 2n+1))/(G(f, 2n)/G(f, 2n+1))
∼−→ K(f, 2)/G(f, 2n).

Corollary 4.3.1. Let P,Q ∈ Z with P ≡ 1 mod 2, Q ≡ 1 mod 2 and D = P 2 − 4Q ̸= 0.

Then:

(1) We have G(f) = H(f, 2) = K(f, 2).

(2) Put

ν =

ord2(P
2 −Q) if Q ≡ 1 mod 4

ord2(P
2 −Q)(P 2 − 3Q) if Q ≡ −1 mod 4

.

Then:

(a) If Q ≡ 5 mod 8, then we have ν = 2 and

K(f, 2)/G(f, 2n) =

0 if n = 1

Z/2Z if n ≥ 2
.

(b1) If Q ≡ 1 mod 8 and P 2 −Q ̸= 0, then we have ν ≥ 3 and

K(f, 2)/G(f, 2n) =



0 if n = 1

Z/2Z if n = 2

Z/2Z× Z/2n−2Z if 3 ≤ n ≤ ν

Z/2Z× Z/2ν−2Z if n ≥ ν + 1

.
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(b2) If P 2 −Q = 0, then we have

K(f, 2)/G(f, 2n) =


0 if n = 1

Z/2Z if n = 2

Z/2Z× Z/2n−2Z if n ≥ 3

.

(c1) If Q ≡ −1 mod 4 and P 2 − 3Q ̸= 0, then we have ν ≥ 3 and

K(f, 2)/G(f, 2n) =


0 if n = 1, 2

Z/2n−2Z if 3 ≤ n ≤ ν

Z/2ν−2Z if n ≥ ν + 1

.

(c2) If P 2 − 3Q = 0, then we have

K(f, 2)/G(f, 2n) =

0 if n = 1, 2

Z/2n−2Z if n ≥ 3
.

(3) If Q ≡ 1 mod 4, then we have |G(f, 2n)/G(f, 2n+1)| = 2 for 1 ≤ n < ν, and G(f, 2n) =

G(f, 2ν) for n ≥ ν. On the other hand, if Q ≡ −1 mod 4, then we have |G(f, 2n)/G(f, 2n+1)| =
2 for 2 ≤ n < ν, and G(f, 2n) = G(f, 2ν) for n ≥ ν and n = 1.

Proof. First we prove the assertion (1). We have UP,Q(Q) = UP,Q(Z(2)) by Proposition 2.2(1),

and UP,Q(Z(2)) = G(P,Q)(Z(2)) since α : G(P,Q)(Z(2))→ UP,Q is isomorphic. Hence the result.

Now we prove the assertion (2) in each case.

(a) By the assumption, we obtain D ≡ 5 mod 8 and P 2−Q ≡ 4 mod 8, i.e. ord2(P
2−Q) = 2.

Hence, by Theorem 3.10, we have

r(2n) =

3 if n = 1

3× 2n−2 if n ≥ 2
.

Furthermore, by Corollary 2.22, we have

|G(P,Q)(Z/2nZ)| =

3 if n = 1

3× 2n−1 if n ≥ 2
.

These imply

|G(P,Q)(Z/2nZ)/Θ| =

0 if n = 1

2 if n ≥ 2
.

(b1) By the assumption Q ≡ 1 mod 8, we obtain D ≡ 5 mod 8 and P 2 − Q ≡ 0 mod 8, i.e.

ord2(P
2 −Q) ≥ 3. Hence, for n ≥ 3, we have a decompsition

UP,Q(Z/2nZ) = {±1,±ω,±ω2} × (the subgroup generated by γ(1 + 4ω)) = Z/6Z× Z/2n−2Z,
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as is shown in the proof of Corollary 2.22. On the other hand, ν < ∞ since P 2 − Q ̸= 0.

Therefore, for n ≥ 3, we have a decompsition

the image of Θ in UP,Q(Z/2nZ) = {1, ω, ω2} × (the subgroup generated by γ(1 + 4ω)2
ν−2

),

as is shown in the proof of Theorem 3.12. These imply

UP,Q(Z/2nZ)/Θ =



0 if n = 1

Z/2Z if n = 2

Z/2Z× Z/2n−2Z if 3 ≤ n ≤ ν

Z/2Z× Z/2ν−2Z if n ≥ ν + 1

.

Therefore we obtain the result since the homomorphism α : G(P,Q) → UP,Q is isomorphic.

(b2) By the assumption, we have

Θ = {1, ω, ω2} ⊂ UP,Q(Z(2))

This implies

UP,Q(Z/2nZ)/Θ =


0 if n = 1

Z/2Z if n = 2

Z/2Z× Z/2n−2Z if n ≥ 3

.

(c1) By the assumption Q ≡ −1 mod 4, we obtain D ≡ 5 mod 8 and P 2 − Q ≡ 2 mod 4,

P 2−3Q ≡ 0 mod 4, i.e. ord2(P
2−Q)(P 2−3Q) ≥ 3. Hence, for n ≥ 3, we have a decompsition

UP,Q(Z/2nZ) = {±1,±ω,±ω2} × (the subgroup generated by γ(1 + 4ω)) = Z/6Z× Z/2n−2Z,

as is shown in the proof of Corollary 2.22. On the other hand, ν < ∞ since P 2 − 3Q ̸= 0.

Therefore, for n ≥ 3, we have a decompsition

the image of Θ in UP,Q(Z/2nZ) = {±1,±ω,±ω2}× (the subgroup generated by γ(1 + 4ω)2
ν−2

),

as is shown in the proof of Theorem 3.13. These imply

UP,Q(Z/2nZ)/Θ =


0 if n = 1, 2

Z/2n−2Z if 3 ≤ n ≤ ν

Z/2ν−2Z if n ≥ ν + 1

.

(c2) By the assumption, we have

Θ = {±1,±ω,±ω2} ⊂ UP,Q(Z(2))

This implies

UP,Q(Z/2nZ)/Θ =

0 if n = 1, 2

Z/2n−2Z if n ≥ 3
.
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The assertion (3) is a direct consequence of (2).

Corollary 4.3.2. Let P,Q ∈ Z with P ≡ 0 mod 4, Q ≡ 1 mod 2 or P ≡ 2 mod 4, Q ≡ −1
mod 4. Then we have r = [(ord2D)/2] = 1. Furthermore:

(1) We have

G(f)/H(f, 2) =

Z if (P,Q) ≡ (0,−1), (4,−5) mod 8

0 otherwise

and

H(f, 2)/K(f, 2) =


0 if (P,Q) ≡ (0,−1), (4,−5) mod 8

Z/3Z if (P,Q) ≡ (0,−5), (4,−1) mod 8

Z/2Z if (P,Q) ≡ (0, 1), (2,−1) mod 4

.

(2) Assume P ̸= 0, and put ν = ord2P .

(a) If ν = 1, then we have K(f, 2)/G(f, 2n) = 0 for any n ≥ 1.

(b) If ν ≥ 2, then we have

K(f, 2)/G(f, 2n) =


0 if n = 1

Z/2n−1Z if 2 ≤ n ≤ ν

Z/2ν−1Z if n ≥ ν + 1

.

(3) We have |G(f, 2n)/G(f, 2n+1)| = 2 for 1 ≤ n < ν, and G(f, 2n) = G(f, 2ν) for n ≥ ν.

Proof. First note the implications

P ≡ 0 mod 4 ⇒ D/4 ≡ −Q mod 4,

P ≡ 2 mod 4 ⇒ D/4 ≡ 1−Q mod 4.

Hence the assumption on P and Q implies that [(ord2D)/2] = 1. Moreover, G(P,Q) is isomorphic

to G(D/4), as is remarked in 2.19.

We begin with a verification of the assertion (2). We have |G(D/4)(Z/2nZ)| = 2n by Proposi-

tions 2.15 and 2.16, and

r(2n) =

2 if n ≤ ν

2n−ν+1 if n ≥ ν + 1
.

by Theorem 3.7. Hence we obtain

|K(f, 2)/G(f, 2n)| = |G(D/4)(Z/2nZ)/Θ| =


1 if n = 1

2n−1 if 2 ≤ n ≤ ν

2ν−1 if n ≥ ν + 1

.

Note now that the surjective homomorphism

ω : G(D)(Z(2)) = Ker[G(D/4)(Z(2))→ G(D/4)(Z/2Z)]→ G(f, 2)
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induces a surjection

Ker[G(D/4)(Z/2nZ)→ G(D/4)(Z/2Z)]→ G(f, 2)/G(f, 2n) = K(f, 2)/G(f, 2n).

Therefore, K(f, 2)/G(f, 2n) is cyclic since Ker[G(D/4)(Z/2nZ) → G(D/4)(Z/2Z)] is cyclic, as is

remarked in 2.17. Hence the result.

Now we verify the assertions (1) case by case.

(a) P ≡ 2 mod 4, Q ≡ −1 mod 4, or P ≡ 0 mod 4, Q ≡ 1 mod 4. In this case, we have

D̃ = D/4 ≡ 2, 3 mod 4. Hence, by the definition of P̃ and Q̃, we have UP̃ ,Q̃ = UD/4 and

G(P̃ ,Q̃) = G(D/4). Therefore, we obtain UP,Q(Q) = UP,Q(Z(2)) by Proposition 2.2(3), and

|UP,Q(Z(2))/G(P,Q)(Z(2))| = 2 by Proposition 2.3. Hence the result.

(b) P ≡ 0 mod 4, Q ≡ −1 mod 4, P ̸= 0. In this case, D̃ = D/4 ≡ 1 mod 4. We have also

implications

P ≡ 0 mod 8, Q ≡ −1 mod 8, or P ≡ 4 mod 8, Q ≡ −5 mod 8 ⇒ D/4 ≡ 1 mod 8,

P ≡ 0 mod 8, Q ≡ −5 mod 8, or P ≡ 4 mod 8, Q ≡ −1 mod 8 ⇒ D/4 ≡ 5 mod 8.

Moreover, there exist isomorphisms U2P̃ ,4Q̃
∼→ UD/4

∼→ UP,Q and G(2P̃ ,4Q̃)
∼→ G(D/4)

∼→ G(P,Q)

as is remarked in the proof of Corollary 4.3. Therefore, we have

UP,Q(Q)/UP̃ ,Q̃(Z(2)) = UP̃ ,Q̃(Q)/UP̃ ,Q̃(Z(2)) =

Z if (P,Q) ≡ (0,−1), (4,−5) mod 8

0 if (P,Q) ≡ (0,−5), (4,−1) mod 8

by Proposition 2.2(1)(2), and

UP̃ ,Q̃(Z(2))/G(P,Q)(Z(2)) = G(P̃ ,Q̃)(Z(2))/G(2P̃ ,4Q̃)(Z(2))

=

0 if (P,Q) ≡ (0,−1), (4,−5) mod 8

Z/3Z if (P,Q) ≡ (0,−5), (4,−1) mod 8

by Corollary 2.22. Hence the result.

Remark 4.3.3. If P = 0 and Q ≡ 1 mod 2, then we have

|K(f, 2)/G(f, 2n)| =

1 if n = 1

2n−1 if n ≥ 2
.

Corollary 4.3.4. Let P,Q ∈ Z with P ≡ 2 mod 4, Q ≡ 1 mod 4. Then we have r =

[(ord2D)/2] ≥ 2. Furthermore:

(1) We have

G(f)/H(f, 2) =

Z if D̃ ≡ 1 mod 8

0 otherwise
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and

H(f, 2)/K(f, 2) =



Z/2Z× Z/2r−1Z if D̃ ≡ 0 mod 2 or D̃ ≡ −5 mod 8

Z/2Z× Z/2r−2Z if D̃ ≡ 1 mod 8

Z/6Z× Z/2r−2Z if D̃ ≡ 5 mod 8

Z/4Z× Z/2r−2Z if D̃ ≡ −1 mod 8

.

(2) We have G(f, 2n) = K(f, 2) for n ≥ 1.

Proof. First note that the assumption P ≡ 2 mod 4 and Q ≡ 1 mod 4 implies P 2 − 4Q ≡
4− 4Q ≡ 0 mod 16. Hence we obtain [(ord2D)/2] ≥ 2.

We verify now the assertion (1). There exist isomorphisms U2rP̃ ,4Q̃
∼→ U4r−1D̃

∼→ UP,Q and

G(2rP̃ ,4rQ̃)
∼→ G(4r−1D)

∼→ G(P,Q) if D̃ ≡ 1 mod 4, and there exist isomorphisms U2r−1P̃ ,4r−1Q̃
∼→

U4r−1D̃
∼→ UP,Q and G(2r−1P̃ ,4r−1Q̃)

∼→ G(4r−1D)
∼→ G(P,Q) if D̃ ≡ 2, 3 mod 4, as is remarked in

the proof of Corollary 4.3. Therefore, we have

H(f, 2)/K(f, 2) = UP̃ ,Q̃(Q)/UP̃ ,Q̃(Z(2)) =

Z if (P,Q) ≡ (0,−1), (4,−5) mod 8

0 if (P,Q) ≡ (0,−5), (4,−1) mod 8

by Proposition 2.2(1)(2).

Furthermore, if D̃ ≡ 1 mod 4, then we have G(P,Q)(Z(2)) = G(2rP̃ ,4rQ̃)(Z(2)). Hence we obtain

isomorphisms

H(f, 2)/K(f, 2)
∼←− G(P̃ ,Q̃)(Z(2))/G(2rP̃ ,4rQ̃)(Z(2))

∼−→ G(P̃ ,Q̃)(Z/2
rZ).

Now we have

G(P̃ ,Q̃)(Z/2
rZ) =

Z/2Z× Z/2r−2Z if D̃ ≡ 1 mod 8

Z/6Z× Z/2r−2Z if D̃ ≡ 5 mod 8

by Corollary 2.22.

On the other hand, if D̃ ≡ 2, 3 mod 4, then we have G(P,Q)(Z(2)) = G(2r−1P̃ ,4r−1rQ̃)(Z(2)).

Hence we obtain isomorphisms

K(f, 2)/G(f, 2n)
∼←− G(P̃ ,Q̃)(Z(2))/G(2r−1P̃ ,4r−1Q̃)(Z(2))

∼−→ G(P̃ ,Q̃)(Z/2
r−1Z).

Now we have

G(P̃ ,Q̃)(Z/2
r−1Z) =

Z/2Z× Z/2r−1Z if D̃ ≡ 0 mod 2 or D̃ ≡ −5 mod 8

Z/4Z× Z/2r−2Z if D̃ ≡ −1 mod 8

by Remark 2.18.

Finally we verify the assertion (2). By Theorem 3.7, we have r(2n) = 2n for n ≥ 1. This

means that β(θ) generates G(P,Q)(Z(2))/G(2nP,4nQ)(Z(2)) = G(P,Q)(Z/2n) = Z/2n. Hence the

result.

Remark 4.4. Laxton established in [8]:
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(1) the assertion G(f) = H(f, 2) mentioned in Corollay 4.3.1 as [8, Theorem 3.7. (a)]. (When

p = 2, the condition m = p + 1 is equivalent to the condition P ≡ 1 mod 2, Q ≡ 1 mod 2.

Here m denotes the maximal rank of p in G(f), defined by Laxton [8, p.728].)

(2) the assertion K(f) = G(f, 2) mentioned in Corollay 4.3 as [8, Theorem 3.7 (a)(c)]. (When

p = 2, the condition m = p is equivalent to the condition P ≡ 0 mod 2, Q ≡ 1 mod 2.)

(3) Corollary 4.3.1 (3), Corollary 4.3.2 (3) and Corollary 4.3.4 (2) as [8, Theorem 3.10 (a)(c)].

It would be kind to correct a statement in [8].

(1) [8, Theorem 3.7 (c)] G(f) = H(f, 2) if P ≡ 0 mod 2 and Q ≡ 1 mod 2. The assertion is

false if D̃ ≡ 1 mod 8. Indeed, we have G(f)/H(f, p) = Z in this case as is shown in Corollaries

4.3.2 and 4.3,4.

Corollary 4.5. Let P,Q ∈ Z with P ≡ 1 mod 2 and Q ≡ 0 mod 2. Assume that Q ̸= 0. Then

we have G(P,Q)(Z(2))∩Θ = {1}, and the descending chain of subgroups of UP,Q(Q) = G(P,Q)(Q):

G(P,Q)(Q) ⊃ G(P,Q)(Z(2)) = G(2P,4Q)(Z(2)) ⊃ G(22P,42Q)(Z(2)) ⊃ · · · ⊃ G(2nP,4nQ)(Z(2)) ⊃ · · ·

gives a descending chain of subgroups of G(f):

G(f) ⊃ K(f, 2) = G(f, 2) ⊃ G(f, 22) ⊃ · · · ⊃ G(f, 2n) ⊃ · · · .

More precisely,

(1) The isomorphism ω : G(P,Q)(Q)/Θ
∼→ G(f) induces isomorphisms

(G(P,Q)(Z(2)) + Θ)/Θ
∼→ K(f, p)

and

(G(2nP,4nQ)(Z(2)) + Θ)/Θ
∼→ G(f, 2n)

for each n > 0. Therefore, K(f, 2) is isomorphic to G(P,Q)(Z(2)), and G(f, 2
n) is isomorphic to

G(2nP,4nQ)(Z(2)) for each n > 0.

(2) The isomorphism ω : G(P,Q)(Q)/Θ
∼→ G(f) induces isomorphisms

UP,Q(Q)/(G(P,Q)(Z(2)) + Θ)
∼→ H(f, 2)/K(f, 2)

and

G(P,Q)(Z(2))/G(2nP,4nQ)(Z(2))
∼→ K(f, 2)/G(f, 2n)

for each n ≥ 1. Therefore, K(f, 2)/G(f, 2) is isomorphic to G(P,Q)(Z/2Z) = Z/2Z, and

K(f, p)/G(f, 2n) is isomorphic to G(P,Q)(Z/2nZ) = Z/2Z× Z/2n−1Z for n ≥ 2.

(3) G(f)/K(f, 2) is cyclic of order ord2Q. Therefore, we have G(f) = H(f, 2).

(4) We have |G(f, 2n)/G(f, 2n+1)| = 2 for n ≥ 1.

Proof. The assumption P ≡ 1 mod 2 and Q ≡ 0 mod 2 implies D = P 2 − 4Q ≡ 1 mod 8,

Hence, by Proposition 2.2(1), G(P,Q)(Q)/G(P,Q)(Z(2)) is isomorphic to Z. On the other hand, we



LUCAS SEQUENCES 47

have β(θ) ̸∈ G(P,Q)(Z(2)) since β(θ) = (0, 1/Q) and ord2(1/Q) < 0. It follows that G(P,Q)(Z(2))∩
Θ = {1} ⊂ G(P,Q)(Q).

First we prove the assertion (1). As is mentioned in the proof of Corollary 4.3, under the

identifications

G(P,Q)(Q) = L(f,Q)×/Q× = {w = (wk)k≥0 ∈ R(f,Z) ; ∆(w) ̸= 0},

we have

G(P,Q)(Z(2)) = {w = (wk)k≥0 ∈ R(f,Z) ; ∆(w) ≡ 1 mod 2}

and

G(2nP,4nQ)(Z(2)) = Ker[G(P,Q)(Z(p))→ G(P,Q)(Z/2nZ)]

= {(wk)k≥0 ∈ R(f,Z) ; w0 ≡ 0 mod pn}.

It follows that the isomorphism ω : G(P,Q)(Q)/Θ
∼→ G(f) induces isomorphisms

G(P,Q)(Z(2))
∼−→ (G(P,Q)(Z(2)) + Θ)/Θ

∼−→ K(f, 2)

and

G(2nP,4nQ)(Z(2))
∼−→ (G(2nP,4nQ)(Z(2)) + Θ)/Θ

∼−→ G(f, 2n)

for each n ≥ 1.

The assertion (2) is a direct consequence of (1). Moreover, the fact D ≡ 1 mod 8 implies

G(P,Q)(Z(2)) = G(2P,4Q)(Z(2)) as is remarked in 2.19, and G(2n+1P,4n+1Q) is isomorphic to G(4nD)

for n ≥ 0 as is remarked in 1.6.1. Therefore we obtain the last assertion by Proposition 2.16.

Finally we prove the assertion (3). It is sufficient to verify that G(P,Q)(Q)/(G(P,Q)(Z(2))+Θ) =

G(f, 2)/K(f, 2) is cyclic of order ordpQ.

Assume first that D is not a square. Let p denote a prime of Q(
√
D) over 2. Then the map

η 7→ ordpη induces an isomorphism G(P,Q)(Q)/G(P,Q)(Z(2))
∼→ Z by Prpposition 2.3(1). On the

other hand, the subgroup Θ ofG(P,Q)(Q) is generated by β(θ) = (0, 1/Q), where θ = (P+
√
D)/2.

Note now θ+θ̄ = P and (P, 2) = 1. These imply that ordpθ = 0 or ordpθ̄ = 0. On the other hand,

we have θθ̄ = Q, and therefore, ordpθ + ordpθ̄ = ordpQ. Hence we obtain ordpγ(θ) = ±ordpQ.

Next assume that D is a square. Take r ∈ Z such that r2 = R. Then (u, v) 7→ ordp(u + rv)

induces an isomorphism G(P,Q)(Q)/G(P,Q)(Z(2))
∼→ Z. Furthermore, we have

ξ(γ(θ)) = −1 + P

Q

P + r

2
= 1 +

2r

P − r
.

Note now (P + r)/2 + (P − r)/2 = P and (P, 2) = 1. These imply that ord2(P + r)/2 = 0

or ord2(P − r)/2 = 0. On the other hand, we have (P + r)(P − r)/4 = Q, and therefore,

ordp(P + r)/2 + ord2(P − r) = ord2Q. Hence we obtain ord2ξ(γ(θ)) = ±ord2Q.
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Corollary 4.6. Let P,Q ∈ Z with P ≡ 2 mod 4, Q ≡ 2 mod 4 and P 2 − 2Q ̸= 0. Put

s = ord2(P
2 − 2Q). Then we have s ≥ 3, and the descending chain of subgroups of UP,Q(Q) =

G(P,Q)(Q):

UP,Q(Q) = UP,Q(Z(2)) ⊃ G(P,Q)(Z(2)) ⊃ G(2P,4Q)(Z(2)) ⊃ · · ·

⊃ G(2s−1P,4s−1Q)(Z(2)) ⊃ G(2sP,4sQ)(Z(2)) ⊃ G(2s+1P,4s+1Q)(Z(2)) ⊃ · · ·

gives a descending chain of subgroups of G(f):

G(f) = H(f, 2) = K(f, 2) = G(f, 2) ⊃ · · · ⊃ G(f, 2s−1) = G(f, 2s) = G(f, 2s+1) = · · · .

More precisely, let Θ1 and Θ2 denote the subgroup of Θ generated by β(θ)2 and β(θ)4. Then

we have G(P,Q)(Z(2))∩Θ = Θ1 and G(2nP,4nQ)(Z(2))∩Θ = Θ2 for 1 ≤ n ≤ s− 1. Therefore, the

isomorphism ω : G(P,Q)(Q)/Θ
∼→ G(f) induces isomorphisms

G(P,Q)(Z(2))/Θ1
∼→ G(P,Q)(Z(2)) + Θ)/Θ

∼→ K(f, p)

and

G(2nP,4n)(Z(2))/Θ2
∼→ (G(2nP,4n)(Z(2)) + Θ)/Θ

∼→ G(f, 2n)

for 1 ≤ n ≤ s− 1.

Proof. Note first that the assumption P ≡ 2 mod 4 and Q ≡ 2 mod 4 implies

D ≡ 0 mod 4,
D

4
=
(P
2

)2
−Q ≡ −1 mod 4

and

P 2 − 2Q ≡ 0 mod 8.

Hence UP,Q is isomorphic to UD/4, and G(2nP,4nQ) is isomorphic to G(4n−1D) for n ≥ 0 as

is remarked in 1.6.1. Moreover we have UP,Q(Q) = UP,Q(Z(2)) by Proposiiton 2.2(3), and

UP,Q(Z(2))/G(P,Q)(Z(2)) = UD/4(Z(2))/G(D/4)(Z(2)) is isomorphic to Z/2Z by Proposition 2.3.

Now we prove the last assertion. Noting

θ2 = −Q+ Pθ,
θ

θ̄
=

θ2

Nr θ
=
−Q+ pθ

Q
, θ4 = −Q(P 2 −Q) + P (P 2 − 2Q)θ,

we obtain

γ(θ) =
(
− 1,

P

Q

)
in UP,Q(Q), β(θ) =

(
0,

1

Q

)
in G(P,Q)(Q),

β(θ)2 =
(
− P

Q
,
P 2

Q2

)
in G(P,Q)(Q),

β(θ)4 =
(
− P (P 2 −Q)(P 2 − 2Q)

Q3
,
P 2(P 2 − 2Q)2

Q4

)
in G(P,Q)(Q).
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These imply that

γ(θ) ∈ UP,Q(Z(2)), β(θ) ̸∈ G(P,Q)(Z(2)),

β(θ)2 ∈ G(P,Q)(Z(2)), β(θ)
2 ̸∈ Ker[G(P,Q)(Z(2))→ G(P,Q)(Z/2Z)],

β(θ)4 ∈ Ker[G(P,Q)(Z(2))→ G(P,Q)(Z/ps−1Z)], β(θ)4 ̸∈ Ker[G(P,Q)(Z(2))→ G(P,Q)(Z/2sZ)]

since

ord2
1

Q
= −1, ord2

P

Q
= 0,

ord2
P (P 2 −Q)(P 2 − 2Q)

Q3
= s− 1 ≥ 2,

P 2(P 2 −Q)2

Q4
= 2(s− 1) ≥ 4.

Moreover, we have

UP,Q(Z(2))/G(P,Q)(Z(2)) = Z/2Z,

and

G(P,Q)(Z(2))/G(2P,4Q)(Z(2)) = G(D/4)(Z(2))/G(D)(Z(2)) = Z/2Z

by Proposition 2.16,

G(2s−1P,4s−1Q)(Z(2))/G(2s−1+nP,4s−1+nQ)(Z(2)) = G(4s−2D)(Z(2))/G(4s−2+nD)(Z(2)) = Z/2nZ

for n ≥ 1 by Proposition 2.15. Hence we obtain

UP,Q(Z(2)) = G(P,Q)(Z(2)) + Θ,

G(P,Q)(Z(2)) ⊃ Θ1, G(P,Q)(Z(2)) = G(2P,4Q)(Z(2)) + Θ1,

G(2s−1P,4s−1Q)(Z(2)) ⊃ Θ2, G(2s−1P,4s−1Q)(Z(2)) = G(2s−1+nP,4s−1+nQ)(Z(2)) + Θ2 for n ≥ 1,

and the results.

Remark 4.6.1. Let P,Q ∈ Z with P ≡ 2 mod 4, Q ≡ 2 mod 4 and P 2 − 2Q = 0. Then we

have β(θ)2 = (−P/Q,P 2/Q2) and β(θ)4 = (0, 0) in G(P,Q)(Q). Hence UP,Q(Z(2))/G(2P,4Q)(Z(2))

is isomorphic to Θ, and the exact sequence

0 −→ G(2P,4Q)(Z(2)) −→ UP,Q(Z(2)) −→ UP,Q(Z(2))/G(2P,4Q)(Z(2)) −→ 0

splits. Therefore, the descending chain of subgroups of UP,Q(Q) = G(P,Q)(Q):

UP,Q(Q) = UP,Q(Z(2)) ⊃ G(P,Q)(Z(2)) ⊃ G(2P,4Q)(Z(2)) ⊃ · · · ⊃ G(2nP,4nQ)(Z(2)) ⊃ · · ·

gives a descending chain of subgroups of G(f):

G(f) = H(f, 2) = K(f, 2) = G(f, 2) ⊃ · · · ⊃ G(f, 2n) ⊃ · · · .

More precisely, the isomorphism ω : G(P,Q)(Q)/Θ
∼→ G(f) induces isomorphisms

(G(P,Q)(Z(2)) + Θ)/Θ
∼→ K(f, p)
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and

G(2nP,4n)(Z(2))
∼→ (G(2nP,4n)(Z(2)) + Θ)/Θ

∼→ G(f, 2n)

for n ≥ 1.

Corollary 4.7. Let P,Q ∈ Z with P ≡ 0 mod 4, Q ≡ 2 mod 4 and P ̸= 0. Put s = ord2P .

Then we have s ≥ 2, and the descending chain of subgroups of UP,Q(Q) = G(P,Q)(Q):

UP,Q(Q) = UP,Q(Z(2)) ⊃ G(P,Q)(Z(2)) ⊃ G(2P,4Q)(Z(2)) ⊃ · · ·

⊃ G(2s−1P,4s−1Q)(Z(2)) ⊃ G(2sP,4sQ)(Z(2)) ⊃ G(2s+1P,4s+1Q)(Z(2)) ⊃ · · ·

gives a descending chain of subgroups of G(f):

G(f) = H(f, 2) = K(f, 2) ⊃ G(f, 2) ⊃ · · · ⊃ G(f, 2s−1) = G(f, 2s) = G(f, 2s+1) = · · · .

More precisely, let Θ1 denote the subgroup of Θ generated by β(θ)2. Then, for 0 ≤ n ≤ s− 1,

we have G(2nP,4nQ)(Z(2)) ∩ Θ = Θ1. Therefore, the isomorphism ω : G(P,Q)(Q)/Θ
∼→ G(f)

induces isomorphisms

G(P,Q)(Z(2))/Θ1
∼→ G(P,Q)(Z(2)) + Θ)/Θ

∼→ K(f, p)

and

G(2nP,4n)(Z(2))/Θ1
∼→ (G(2nP,4n)(Z(2)) + Θ)/Θ

∼→ G(f, 2n)

for 1 ≤ n ≤ s− 1.

Proof. Note first that the assumption P ≡ 0 mod 4 and Q ≡ 2 mod 4 implies

D ≡ 0 mod 4,
D

4
=
(P
2

)2
−Q ≡ 2 mod 4.

Hence UP,Q is isomorphic to UD/4, and G(2nP,4nQ) is isomorphic to G(4n−1D) for n ≥ 0 as

is remarked in 1.6.1. Moreover we have UP,Q(Q) = UP,Q(Z(2)) by Proposiiton 2.2(3), and

UP,Q(Z(2))/G(P,Q)(Z(2)) = UD/4(Z(2))/G(D/4)(Z(2)) is isomorphic to Z/2Z by Proposition 2.3.

Note now that we have

γ(θ) =
(
− 1,

P

Q

)
in UP,Q(Q), β(θ) =

(
0,

1

Q

)
in G(P,Q)(Q),

β(θ)2 =
(
− P

Q
,
P 2

Q2

)
in G(P,Q)(Q),

These imply that

γ(θ) ∈ UP,Q(Z(2)), β(θ) ̸∈ G(P,Q)(Z(2)),

β(θ)2 ∈ Ker[G(P,Q)(Z(2))→ G(P,Q)(Z/2s−1Z)], β(θ)2 ̸∈ Ker[G(P,Q)(Z(2))→ G(P,Q)(Z/2sZ)]

since

ord2
1

Q
= −1, ord2

P

Q
= s− 1 ≥ 1, ord2

P 2

Q2
= 2(s− 1) ≥ 2.
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Moreover, we have

UP,Q(Z(2))/G(P,Q)(Z(2)) = Z/2Z,

and

G(2s−1P,4s−1Q)(Z(2))/G(2s−1+nP,4s−1+nQ)(Z(2)) = G(4s−2D)(Z(2))/G(4s−2+nD)(Z(2)) = Z/2nZ

for n ≥ 1 by Proposition 2.15. Hence we obtain

UP,Q(Z(2)) = G(P,Q)(Z(2)) + Θ,

G(2s−1P,4s−1Q)(Z(2)) ⊃ Θ1, G(2s−1P,4s−1Q)(Z(2)) = G(2s−1+nP,4s−1+nQ)(Z(2)) + Θ1 for n ≥ 1,

and the results.

Remark 4.7.1. Let Q ∈ Z with Q ≡ 2 mod 4, and put P = 0. Then we have β(θ)2 = (0, 0).

Hence UP,Q(Z(2))/G(2P,4Q)(Z(2)) is isomorphic to Θ, and the exact sequence

0 −→ G(P,Q)(Z(2)) −→ UP,Q(Z(2)) −→ UP,Q(Z(2))/G(P,Q)(Z(2)) −→ 0

splits. Therefore, the descending chain of subgroups of UP,Q(Q) = G(P,Q)(Q):

UP,Q(Q) = UP,Q(Z(2)) ⊃ G(P,Q)(Z(2)) ⊃ G(2P,4Q)(Z(2)) ⊃ · · · ⊃ G(2nP,4nQ)(Z(2)) ⊃ · · ·

gives a descending chain of subgroups of G(f):

G(f) = H(f, 2) = K(f, 2) ⊃ G(f, 2) ⊃ · · · ⊃ G(f, 2n) ⊃ · · · .

More precisely, the isomorphism ω : G(P,Q)(Q)/Θ
∼→ G(f) induces isomorphisms

G(P,Q)(Z(2))
∼→ (G(P,Q)(Z(2)) + Θ)/Θ

∼→ K(f, p)

and

G(2nP,4n)(Z(2))
∼→ (G(2nP,4n)(Z(2)) + Θ)/Θ

∼→ G(f, 2n)

for n ≥ 1.

Remark 4.8. Laxton established the assertions (3) and (4) of Corollary 4.5 as [8, Theorem 3.7

(d) and Theorem 3.10 (c)].

4.9. Here are a few numerical examples. For w = (wk)k≥0 ∈ L(f,Q)×, we denote by [w0, w1]

the class of w in the Laxton group G(f).

Example 4.9.1. P = 1, Q = 5. In this case, we have D = −19 and ν = ord2(P
2 − Q) = 2.

Therefore, Corollary 4.3.1 implies

G(f) = H(f, 2) = K(f, 2) = G(f, 2) ⊃ G(f, 22) = G(f, 23) = · · · .

Moreover, K(f, 2)/G(f, 22) = G(P,Q)(Z/22Z)/Θ = Z/2Z is generated by [1, 2], and we have

ω(1 + θ) = (1, 2), β(1 + θ) =
(1
7
,
1

7

)
, γ(1 + θ) =

−4 + 3θ

7
.
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Example 4.9.2. P = 1, Q = 9. In this case, we have D = −35 and ν = ord2(P
2 − Q) = 3.

Therefore, Corollary 4.3.1 implies

G(f) = H(f, 2) = K(f, 2) = G(f, 2) ⊃ G(f, 22) ⊃ G(f, 23) = G(f, 24) = · · · .

Moreover, K(f, 2)/G(f, 23) = G(P,Q)(Z/23Z)/Θ = Z/2Z×Z/2Z = {[0, 1], [1, 3], [1, 5], [1, 7]}, and
we have

ω(2 + θ) = (1, 3), β(1 + θ) =
( 2
15
,
1

15

)
, γ(2 + θ) =

−1 + θ

3
,

ω(4 + θ) = (1, 5), β(4 + θ) =
( 4
29
,
1

29

)
, γ(2 + θ) =

7 + 9θ

29
,

ω(6 + θ) = (1, 7), β(6 + θ) =
( 6
51
,
1

51

)
, γ(6 + θ) =

27 + 13θ

51
.

Example 4.9.3. P = 1, Q = 3. In this case, we haveD = −11 and ν = ord2(P
2−Q)(P 2−3Q) =

4. Therefore, Corollary 4.3.1 implies

G(f) = H(f, 2) = K(f, 2) = G(f, 2) = G(f, 22) ⊃ G(f, 23) ⊃ G(f, 24) = G(f, 25) = · · ·

Moreover, K(f, 2)/G(f, 24) = G(P,Q)(Z/24Z)/Θ = Z/4Z = {[0, 1], [1, 2], [1, 6], [1, 4]} is generated
by [1, 2], and we have

ω(1 + θ) = (1, 2), β(1 + θ) =
(1
5
,
1

5

)
, γ(1 + θ) =

−2 + 3θ

5
,

ω(5 + θ) = (1, 6), β(5 + θ) =
( 5
33
,
1

33

)
, γ(5 + θ) =

2 + θ

3
,

ω(3 + θ) = (1, 4), β(3 + θ) =
(1
5
,
1

15

)
, γ(3 + θ) =

6 + 7θ

15
.

Example 4.9.4. P = 8, Q = 7. In this case, we have D = 36, r = 1, D̃ = D/4 = 9 and

ν = ord2P = 3. Therefore, Corollary 4.3.2 implies

G(f) ⊃ H(f, 2) = K(f, 2) = G(f, 2) ⊃ G(f, 22) ⊃ G(f, 23) = G(f, 24) = · · · .

Moreover, K(f, 2)/G(f, 23) = G(P,Q)(Z/22Z)/Θ = Z/4Z = {[0, 1], [1, 2], [1, 4], [1, 6]} is generated
by [1, 2], and we have

ω(−6 + θ) = (1, 2), β(−6 + θ) =
(6
5
,−1

5

)
, γ(−6 + θ) =

−29 + 4θ

5
,

ω(−4 + θ) = (1, 4), β(−4 + θ) =
(4
9
,−1

9

)
, γ(−4 + θ) = −1,

ω(−2 + θ) = (1, 6), β(−2 + θ) =
(2
5
,−1

5

)
, γ(−2 + θ) =

3− 4θ

5
.

On the other hand, H(f, 2)/K(f, 2) = Z is generated by [1, 3], and we have

ω(−5 + θ) = (1, 3), β(−5 + θ) =
(5
8
,−1

8

)
, γ(−5 + θ) =

−9 + θ

4
.
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Example 4.9.5. P = 8, Q = 3. In this case, we have D = 52, r = 1, D̃ = D/4 = 13 and

ν = ord2P = 3. Therefore, Corollary 4.3.2 implies

G(f) = H(f, 2) ⊃ K(f, 2) = G(f, 2) ⊃ G(f, 22) ⊃ G(f, 23) = G(f, 24) = · · · .

Moreover, K(f, 2)/G(f, 23) = G(P,Q)(Z/23Z)/Θ = Z/4Z = {[0, 1], [1, 2], [1, 4], [1, 6]} is generated
by [1, 2], and we have

ω(−6 + θ) = (1, 2), β(−6 + θ) =
(2
3
,−1

9

)
, γ(−6 + θ) =

−33 + 4θ

9
,

ω(−4 + θ) = (1, 4), β(−4 + θ) =
( 4
13
,− 1

13

)
, γ(−4 + θ) = −1,

ω(−2 + θ) = (1, 6), β(−2 + θ) =
(2
9
,−1

9

)
, γ(−2 + θ) =

−1− 4θ

9
.

On the other hand, H(f, 2)/K(f, 2) = Z/3Z = {[0, 1], [1, 1], [1, 3]} is generated by [1, 1], and we

have

ω(−7 + θ) = (1, 1), β(−7 + θ) =
(7
4
,−1

4

)
, γ(−7 + θ) =

−23 + 3θ

2
,

ω(−5 + θ) = (1, 3), β(−5 + θ) =
( 5
12
,− 1

12

)
, γ(−5 + θ) =

11− θ
6

.

Example 4.9.6. P = 4, Q = 1. In this case, we have D = 12, r = 1, D̃ = D/4 = 3 and

ν = ord2P = 2. Therefore, Corollary 4.3.2 implies

G(f) = H(f, 2) ⊃ K(f, 2) = G(f, 2) = G(f, 22) ⊃ G(f, 23) = G(f, 24) = · · · .

Moreover, K(f, 2)/G(f, 22) = G(P,Q)(Z/22Z)/Θ = Z/2Z is generated by [1, 2], and we have

ω(−2 + θ) = (1, 2), β(−2 + θ) =
(
−2

3
,−1

3

)
, γ(−2 + θ) = −1.

On the other hand, H(f, 2)/K(f, 2) = Z/2Z is generated by [1, 1], and we have

ω(−3 + θ) = (1, 1), β(−3 + θ) =
(3
2
,−1

2

)
, γ(−3 + θ) = −4 + θ.

Example 4.9.7. P = 2, Q = 9. In this case, we have D = −32, r = 2 and D̃ = D/42 = −2.
Therefore, Corollary 4.3.4 implies

G(f) = H(f, 2) ⊃ K(f, 2) = G(f, 2) = G(f, 22) ⊃ G(f, 23) = G(f, 24) = · · · .

Moreover, H(f, 2)/K(f, 2) = Z/2Z× Z/2Z = {[0, 1], [1, 1], [1, 3], [1, 5]}, and we have

ω(−1 + θ) = (1, 1), β(−1 + θ) =
(
−1

8
,
1

8

)
, γ(−1 + θ) = −1,

ω(1 + θ) = (1, 3), β(1 + θ) =
( 1
12
,
1

12

)
, γ(1 + θ) =

−2 + θ

3
,

ω(3 + θ) = (1, 5), β(3 + θ) =
(1
8
,
1

24

)
, γ(3 + θ) =

θ

3
.
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5. Complements

Proposition 5.1. Let P,Q ∈ Z, and let p be a prime and s a positive integer. Put fs(t) =

t2− psPt+ p2sQ. Then the isomorphism ps : G(psP,p2sQ)(Q)
∼→ G(P,Q)(Q) induces isomorphisms

G(fs)
∼→ G(f), K(fs, p)

∼→ G(f, ps) and G(fs, p
n)

∼→ G(f, p
n+s) for n ≥ 1. Furthermore,

(1) Assume ordpP = 0 and ordpQ = 1. Then we have an exact sequence

0 −→ G(D)(Z/psZ) −→ H(fs, p) −→ H(f, p) −→ 0.

(2) Assume ordpP ≥ 1 and ordpQ = 1. Let Θ1 denote the subgroup of Θ generated by β(θ2).

Then we have G(P,Q)(Z(p)) ∩Θ = Θ1, and we have an exact sequence

0 −→ G(D)(Z/psZ)/Θ1 −→ H(fs, p) −→ H(f, p) −→ 0.

(3) Assume ordpQ = 0. Then we have an exact sequence

0 −→ G(D)(Z/psZ)/Θ −→ H(fs, p) −→ H(f, p) −→ 0.

Proof. Let θ denote the image of t in Z[t]/(t2−Pt+Q), and let θs denote Z[t]/(t2−psPt+p2sQ).

Then θs 7→ θ defines an embedding of rings Z[t]/(t2−psPt+p2sQ)→ Z[t]/(t2−Pt+Q). Moreover,

then we have

β(θ) =
(
0,

1

Q

)
in G(P,Q)(Q), β(θs) =

(
0,

1

p2sQ

)
in G(psP,p2sQ)(Q)

and therefore

ps(β(θs)) = β(θ).

Now let Θ denote the subgroup of G(P,Q)(Q) generated by β(θ), and let Θ′ denote the subgroup

of G(psP,p2sQ)(Q) generated by β(θs). Then the isomorphisms ω : G(P,Q)(Q)/Θ
∼→ G(f) and

ω : G(psP,p2sQ)(Q)/Θ′ ∼→ G(fs) give a commutative diagram

G(psP,p2sQ)(Q)/Θ′ ∼−−−→ G(P,Q)(Q)/Θy≀ ω

y≀ ω

G(fs)
∼−−−→ G(f)

.

Moreover, under the identification G(fs) = G(f), we have

K(fs, p) = (G(psP,p2sQ)(Z(p)) + Θ′)/Θ′ = (G(psP,p2sQ)(Z(p)) + Θ)/Θ = G(f, ps)

and

G(fs, p
n) = (G(pn+sP,p2(n+s)Q)(Z(p)) + Θ′)/Θ′ = (G(pn+sP,p2(n+s)Q)(Z(p)) + Θ)/Θ = G(f, pn+s)

for n > 0.

Now we verify the last assertions in each case. We obtain an exact sequence

0 −→ K(f, p)/K(fs, p) −→ H(f)/K(fs, p) −→ H(f)/K(f, p) −→ 0,
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taking the torsion part of each term for the exact sequence

0 −→ K(f, p)/K(fs, p) −→ G(f)/K(fs, p) −→ G(f)/K(f, p) −→ 0

and noting that K(f, p)/K(fs, p) = K(f, p)/G(f, ps) is finite.

(1) Assume ordpP = 0 and ordpQ = 1. Then we obtain
(D
p

)
= 1 if p > 2, and D ≡ 1

mod 8 if p = 2. These, together with [14, Proposition 1.5] and Proposition 2.2 (1), imply

that G(P,Q)(Q)/G(P,Q)(Z(p)) is isomorphic to Z. Moreover, we have β(θ) ̸∈ G(P,Q)(Z(p)) since

β(θ) = (0, 1/Q) and ordp(1/Q) = −1. It follows that G(P,Q)(Z(p)) ∩ Θ = {1} and that the

isomorphism G(P,Q)(Q)/Θ
∼→ G(f) induces isomorphisms

G(P,Q)(Z(p))
∼→ K(f, p)

and

G(psP,p2sQ)(Z(p))
∼→ G(f, ps) = K(fs, p).

Hence we obtain an isomorphism

G(P,Q)(Z/psZ) = G(P,Q)(Z(p))/G(psP,p2sQ)(Z(p))
∼→ K(f, p)/K(fs, p).

(2) Assume ordpP ≥ 1 and ordpQ = 1. Then we have β(θ) ̸∈ G(P,Q)(Z(p)) since β(θ) = (0, 1/Q)

and ordp(1/Q) = −1. Moreover, we have

β(θ2) =
(
−P
Q
,
P 2

Q2

)
in G(P,Q)(Q).

since θ2 = −Q + Pθ in Z[t]/(t2 − Pt + Q). Hence we obtain β(θ2) ∈ G(P,Q)(Z(p)) since

ordp(P/Q) = ordpP − ordpQ ≥ 0. It follows that G(P,Q)(Z(p)) ∩ Θ = Θ1 and that the iso-

morphism G(P,Q)(Q)/Θ
∼→ G(f) induces isomorphisms

G(P,Q)(Z(p))/Θ1
∼→ (G(P,Q)(Z(p)) + Θ)/Θ

∼→ K(f, p)

and

(G(psP,p2sQ)(Z(p)) + Θ1)/Θ1
∼→ (G(psP,p2sQ)(Z(p)) + Θ)/Θ

∼→ G(f, ps) = K(fs, p).

Hence we obtain an isomorphism

G(P,Q)(Z/psZ)/Θ1 = G(P,Q)(Z(p))/(G(psP,p2sQ)(Z(p)) + Θ1)
∼→ K(f, p)/K(fs, p).

(3) Assume ordpQ = 0. Then we have β(θ) ∈ G(P,Q)(Z(p)) since β(θ) = (0, 1/Q) and ordp(1/Q) =

0. It follows that G(P,Q)(Z(p)) ⊃ Θ and that the isomorphism G(P,Q)(Q)/Θ
∼→ G(f) induces

isomorphisms

G(P,Q)(Z(p))/Θ
∼→ K(f, p)

and

(G(psP,p2sQ)(Z(p)) + Θ)/Θ
∼→ G(f, ps) = K(fs, p).
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Hence we obtain an isomorphism

G(P,Q)(Z/psZ)/Θ = G(P,Q)(Z(p))/(G(psP,p2sQ)(Z(p)) + Θ)
∼→ K(f, p)/K(fs, p).

Remark 5.2. Proposition 5.1 allows us to reduce the case of p|P and p|Q to the case of

ordpP = 0 or ordpQ ≤ 1 on examination of Laxton groups.

In [14], assuming p > 2, we make an examination of Laxton groups in [14, Corollary 4.3]

when ordpQ = 0 and in [14, Colloary 4.9] when ordpP = 0 and ordpQ=1. We assume there that

P and Q is prime to each other, however the argument developed there works well also under

the assumption ordpQ = 0 or ordpP = 0. We shall complement the case of ordpP ≥ 1 and

ordpQ = 1 as Proposition 5.3.

On the other hand, we treat the case of p = 2 in this article, referring to Corollary 4.3 when

ord2Q = 0, to Corollary 4.5 when ord2P = 0, to Corollary 4.6 when ord2Q = 1 and ord2P = 1,

and to Corollary 4.7 when ord2Q = 1 and ord2P ≥ 2.

Proposition 5.3. Let P,Q ∈ Z, and let p be a prime > 2. Assume ordpP ≥ 1 and ordpQ = 1,

and put s = ordpP . Then:

(1) Assume that s = 1 and that p > 3 or p = 3, D ≡ 3 mod 9. Then the descending chain of

subgroups of UP,Q(Q) = G(P,Q)(Q):

UP,Q(Q) = UP,Q(Z(p)) ⊃ G(P,Q)(Z(p)) ⊃ G(pP,p2Q)(Z(p)) ⊃ · · · ⊃ G(pnP,p2nQ)(Z(p)) ⊃ · · ·

gives a descending chain of subgroups of G(f):

G(f) = H(f, 2) = K(f, 2) = G(f, 2) = · · · = G(f, 2n) = · · · .

(2) Assume that p = 3, s = 1 and D ≡ 3 mod 9. and put s′ = ord3(P
2 − 3Q). Then we have

s′ ≥ 2, and the descending chain of subgroups of UP,Q(Q) = G(P,Q)(Q):

UP,Q(Q) = UP,Q(Z(p)) ⊃ G(P,Q)(Z(p)) ⊃ G(pP,p2Q)(Z(p)) ⊃ · · ·

⊃ G(ps′−1P,p2(s
′−1)Q)(Z(p)) ⊃ G(ps′P,p2s′Q)(Z(p)) ⊃ G(ps′+1P,p2(s

′+1)Q)(Z(p)) ⊃ · · ·

gives a descending chain of subgroups of G(f):

G(f) = H(f, 2) = K(f, 2) = G(f, 2) ⊃ · · · ⊃ G(f, 2s′−1) = G(f, 2s
′
) = G(f, 2s

′+1) = · · · .

More precisely, let Θ1 and Θ2 denote the subgroup of Θ generated by β(θ)2 and β(θ)6. Then

we have G(P,Q)(Z(p)) ∩ Θ = Θ1 and G(pnP,4nQ)(Z(p)) ∩ Θ2 = Θ2 for 1 ≤ n ≤ s′ − 1. Therefore,

the isomorphism ω : G(P,Q)(Q)/Θ
∼→ G(f) induces isomorphisms

G(P,Q)(Z(p))/Θ1
∼→ (G(P,Q)(Z(p)) + Θ)/Θ

∼→ K(f, p)

and

G(pnP,p2nQ)(Z(p))/Θ2
∼→ (G(P,Q)(Z(p)) + Θ)/Θ

∼→ G(f, pn)

for 1 ≤ n ≤ s′ − 1.
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(3) Assume that s ≥ 2. Then the descending chain of subgroups of UP,Q(Q) = G(P,Q)(Q):

UP,Q(Q) = UP,Q(Z(p)) ⊃ G(P,Q)(Z(p)) ⊃ G(pP,p2Q)(Z(p)) ⊃ · · ·

⊃ G(ps−1P,p2(s−1)Q)(Z(p)) ⊃ G(psP,p2sQ)(Z(p)) ⊃ G(ps+1P,p2(s+1)Q)(Z(p)) ⊃ · · ·

gives a descending chain of subgroups of G(f):

G(f) = H(f, 2) = K(f, 2) = G(f, 2) ⊃ · · · ⊃ G(f, 2s−1) = G(f, 2s) = G(f, 2s+1) = · · · .

More precisely, let Θ1 denote the subgroup of Θ generated by β(θ)2. Then we have G(P,Q)(Z(p))

∩Θ = Θ1. Therefore, the isomorphism ω : G(P,Q)(Q)/Θ
∼→ G(f) induces an isomorphism

G(P,Q)(Z(p))/Θ1
∼→ (G(P,Q)(Z(p)) + Θ)/Θ

∼→ K(f, p).

Proof. Note first that the assumption ordpP ≥ 1 and ordpQ = 1 implies ordpD = 1. Hence

we have UP,Q(Q) = UP,Q(Z(p)) by [13, Proposiiton 2.2(3)], and UP,Q(Z(p))/G(P,Q)(Z(p)) =

UD(Z(p))/G(D)(Z(p)) is isomorphic to Z/2Z by [14, Proposition 2.3].

Furthermore, noting

θ2 = −Q+ Pθ,
θ

θ̄
=

θ2

Nr θ
=
−Q+ pθ

Q
,

we obtain

γ(θ) =
(
− 1,

P

Q

)
in UP,Q(Q), β(θ) =

(
0,

1

Q

)
in G(P,Q)(Q).

Moreover, we have ordp(1/Q) = −1 and ordp(P/Q) = s − 1 ≥ 1. These imply that γ(θ) ∈
UP,Q(Z(p)), β(θ) ̸∈ G(P,Q)(Z(p)). Hence we obtain

UP,Q(Z(p)) = G(P,Q)(Z(p)) + Θ

since UP,Q(Z(p))/G(P,Q)(Z(p)) is isomorphic to Z/2Z.
Note now that

β(θ)2 =
(
− P

Q
,
P 2

Q2

)
in G(P,Q)(Q)

and ordp(P/Q) = s− 1 ≥ 0. It follows:

(a) If s = 1, then we have

β(θ)2 ∈ G(P,Q)(Z(p)), β(θ)
2 ̸∈ Ker[G(P,Q)(Z(p))→ G(P,Q)(Z/pZ)].

Moreover, we have ordp(1/Q) = −1 and ordp(P/Q) = s− 1 ≥ 1. Hence we obtain

G(P,Q)(Z(p)) ∩Θ = Θ1,

and

G(P,Q)(Z(p)) = G(pP,p2Q)(Z(p)) + Θ1

since G(P,Q)(Z(p))/G(pP,p2Q)(Z(p)) is isomorphic to Z/pZ by [14, Corollary 2.21].

(b) If s ≥ 2, then we have

β(θ)2 ∈ Ker[G(P,Q)(Z(p))→ G(P,Q)(Z/ps−1Z)], β(θ)2 ̸∈ Ker[G(P,Q)(Z(p))→ G(P,Q)(Z/psZ)].



58 N. SUWA

Hence we obtain

G(ps−1P,p2(s−1)Q)(Z(p)) ∩Θ = Θ1,

and

G(ps−1P,p2(s−1)Q)(Z(p)) = G(psP,p2sQ)(Z(p)) + Θ1

since G(ps−1P,p2(p−1)Q)(Z(p))/G(p2P,p2sQ)(Z(p)) is isomorphic to Z/pZ.

Now we prove the assertions in each case.

(1) Assume that s = 1 and that p > 3 or p = 3, D ≡ 3 mod 9. Then, it follows from [14,

Corollary 2.21 (1)] that

G(P,Q)(Z(p))/G(pnP,p2nQ)(Z(p)) = G(P,Q)(Z/pnZ)
∼−→ Z/pnZ

for n ≥ 1. Hence we obtain

G(P,Q)(Z(p)) = G(pnP,p2nQ)(Z(p)) + Θ1

for n ≥ 1, which implies the conclusion.

(2) Assume that p = 3, s = 1 and D ≡ −3 mod 9. Noting

θ6 = −Q(P 4 − 3P 2Q+Q2) + P (P 2 −Q)(P 2 − 3Q)θ,

we obtain

β(θ)6 =
(
− P (P 2 −Q)(P 2 − 3Q)(P 4 − 3P 2Q+Q2)

Q5
,
P 2(P 2 −Q)2(P 2 − 3Q)2

Q6

)
in G(P,Q)(Q).

Moreover, we have

P (P 2 −Q)(P 2 − 3Q)(P 4 − 3P 2Q+Q2)

Q5
= (1 + 1 + s′ + 2)− 5 = s′ − 1,

ordp
P 2(P 2 −Q)2(P 2 − 3Q)2

Q6
= (2 + 2 + 2s′)− 6 = 2(s′ − 1).

These imply that

β(θ)6 ∈ Ker[G(P,Q)(Z(p))→ G(P,Q)(Z/ps
′−1Z)], β(θ)6 ̸∈ Ker[G(P,Q)(Z(p))→ G(P,Q)(Z/ps

′
Z)],

and therefore

G(ps′−1P,p2(s
′−1)Q)(Z(p)) ∩Θ = Θ2.

Furthermore, it follows from [13, Corollary 2.21 (1)] and the fact s′ − 1 ≥ 1 that

G(ps′−1P,p2(s
′−1)Q)(Z(p))/G(ps′−1+nP,p2(s

′−1+n)Q)(Z(p)) = G(ps′−1P,p2(s
′−1)Q)(Z/p

nZ) ∼−→ Z/pnZ

for n ≥ 1. Hence we obtain

G(ps′−1P,p2(s
′−1)Q)(Z(p)) = G(ps′−1+nP,p2(s

′−1+n)Q(Z(p)) + Θ2,

for n ≥ 1, which implies the conclusion.



LUCAS SEQUENCES 59

(3) Assume that s ≥ 2. Then it follows from [14, Corollary 2.21 (1)] and the fact s− 1 ≥ 1 that

G(ps−1P,p2(s−1)Q)(Z(p))/G(ps−1+nP,p2(s−1+n)Q)(Z(p)) = G(ps−1P,p2(s−1)Q)(Z/p
nZ) ∼−→ Z/pnZ

for n ≥ 1. Hence we obtain

G(ps−1P,p2(s−1)Q)(Z(p)) = G(ps−1+nP,p2(s−1+n)Q(Z(p)) + Θ1,

for n ≥ 1, which implies the conclusion.

5.4. Let P,Q ∈ Z, and put f(t) = t2 − Pt + Q. Assume that D = P 2 − 4Q = 0 and Q ̸= 0.

Then there exists a ∈ Z such that P = 2a and Q = a2. Hence we have t2 − Pt+Q = (t− a)2,
θ ∈ GP,Q(Q) and

ξ(θ) =
(
a,

1

a

)
, ξ(β(θ)) =

1

a
.

Let p be a prime. If a is prime to p, then the descending chain of subgroups of G(P,Q)(Q):

G(P,Q)(Q) ⊃ G(P,Q)(Z(p)) ⊃ G(pP,p2Q)(Z(p)) ⊃ · · · ⊃ G(pnP,p2nQ)(Z(p)) ⊃ · · ·

gives a descending chain of subgroups of G(f):

G(f) ⊃ K(f, 2) = G(f, 2) = · · · = G(f, 2n) = · · · .

Note that G(f) = H(f, p) and H(f, p)/K(f, p) = Qp/Zp since G(P,Q)(Q)/G(P,Q)(Z(p)) = Q/Z(p)

= Qp/Zp and Qp/Zp is a torsion group.

We interpret the assertion mentioned above more concretely. Take w = (wk)k≥0 ∈ L(f,Z).
Then we have wk = w0a

k + k(w1 − aw0)a
k−1 for k ≥ 0, and ∆(w) = w2

1 − Pw0w1 + Qw2
0 =

(w1− aw0)
2. Moreover, we have ω((w1− 2aw0) +w0θ) = w. Take now w = (wk)k≥0 ∈ R(f,Z).

Then, pn|wk if and only if pn|(aw0+k(w1−aw0)). Therefore we have the following implications:

p ∤ (w1 − aw0) ⇔ for any n > 0, there exists k such that pn|wk,

p|(w1 − aw0) ⇔ there does not exist k such that p|wk.

Indeed, if p|(w1−aw0) and p|(aw0+k(w1−aw0)), then we obtain p|aw0 and therefore p|w0 and

p|w1. This contradicts w ∈ R(f,Z).
Now put η = (w1 − 2aw0) + w0θ. Then we have

β(η) =
((w1 − 2aw0)w0

(w1 − aw0)2
,

w2
0

(w1 − aw0)2

)
in G(P,Q)(Q)

and

ξ(β(η)) =
w0

w1 − aw0
in Ga(Q) = Q.

Hence we obtain the implication

p ∤ (w1 − aw0) ⇔ β(θ) ∈ G(P,Q)(Z(p)).

This means K(f, p) = G(f, p) = G(f, p2) = · · · = G(f, pn) = · · · .

We conclude the article by remarking on a result in Ward [15], which was refined by Hall [6].
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Notation 5.5. Let P,Q ∈ Z, and put f(t) = t2 − Pt+Q and D = P 2 − 4Q. Let θ denote the

image of t. in the residue ring Z[t]/(t2 − Pt+Q). Fix a prime number p with (p,Q) = 1. Then

we have θ ∈ GP,Q(Z(p)) and therefore β(θ) = (0, 1/Q) ∈ G(P,Q)(Z(p)).

Take now w = (wk)k≥0 ∈ L(f,Z), and put

η = (w1 − Pw0) + w0θ ∈ Z[t]/(t2 − Pt+Q).

Then we have ω(η) = w. Assume ∆(w) = w2
1 −Pw0w1 +Qw2

0 ̸= 0. Then we have η ∈ GP,Q(Q)

and

β(η) =
( (w1 − Pw0)w0

w2
1 − Pw0w1 +Qw2

0

,
w2
0

w2
1 − Pw0w1 +Qw2

0

)
∈ G(P,Q)(Q).

Moreover, if p ∤ ∆(w), then we have η ∈ GP,Q(Z(p)) and therefore β(η) ∈ G(P,Q)(Z(p)).

Assume now w0 ̸= 0. Put

P̃ = Pw0 − 2w1, Q̃ = w2
1 − Pw0w1 +Qw2

0, D̃ = P̃ 2 − 4Q̃.

Then we obtain

P̃ 2 − 4Q̃ = w2
0(P

2 − 4Q).

Let θ̃ denote the image of t in Z[t]/(t2 − P̃ t+ Q̃). Then we obtain

β(θ̃) =
(
0,

1

Q̃

)
=
(
0,

1

w2
1 − Pw0w1 +Qw2

0

)
∈ G(P̃ ,Q̃)(Q).

Moreover, θ̃ 7→ (Pw0−w1)−w0θ gives rise to a homomorphism of rings ψ : Z[t]/(t2− P̃ t+ Q̃)→
Z[t]/(t2 − Pt−Q). Hence a homomorphism group schemes

ψ : GP̃ ,Q̃ = SpecZ
[
X,Y,

1

X2 + P̃XY + Q̃Y 2

]
→ GP,Q = SpecZ

[
X,Y,

1

X2 + PXY +QY 2

]
is defined by

X 7→ X+(Pw0 − w1)Y, Y 7→ −w0Y :

Z
[
X,Y,

1

X2 + P̃XY + Q̃Y 2

]
→ Z

[
X,Y,

1

X2 + PXY +QY 2

]
.

Moreover, ψ : GP̃ ,Q̃ → GP,Q induces a homomorphism

ψ : G(P̃ ,Q̃) = SpecZ[X,Y ]/(X2 + P̃XY + Q̃Y 2 − Y )

→ G(P,Q) = SpecZ[X,Y ](X2 + PXY +QY 2 − Y )].

Indeed, ψ : GP̃ ,Q̃ → GP,Q is given by

X 7→ −w0X−(Pw0 − w1)Y, Y 7→ w2
0Y :

Z[X,Y ](X2 + P̃XY + Q̃Y 2 − Y )]→ Z[X,Y ]/(X2 + PXY +QY 2 − Y ).

In particular, we have ψ(θ̃) = −η in GP,Q(Q) and ψ(β(θ̃)) = β(η) in G(P,Q)(Q).
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Proposition 5.6. Let L̃ denote the Lucas sequence associated to (P̃ , Q̃), and assume that

w0∆(w) is not divisible by p. Then we have

the order of β(η) in G(P,Q)(Z/pnZ) = the rank of the Lucas sequence L̃ mod pn.

Proof. The assumption p ∤ w0∆(w) implies that the homomorphism ψ : GP̃ ,Q̃ → GP,Q is isomor-

phic over Z(p) and that θ̃ ∈ G(P̃ ,Q̃)(Z(p)). In particular, the homomorphism ψ : G(P̃ ,Q̃)(Z/p
nZ)→

G(P,Q)(Z/pnZ) is bijective, and we have ψ(β(θ̃)) = β(η) in G(P,Q)(Z/pnZ). Therefore it is suf-

ficient note that the rank of the Lucas sequence L̃ mod pn is nothing but the order of β(θ̃) in

G(P̃ ,Q̃)(Z/p
nZ).

Corollary 5.7. Besides the assumption in Proposition 5.6, we suppose that G(P,Q)(Z/pnZ) is

a cyclic group. Then, there exists k ≥ 0 such that wk is divisible by pn if and only if the rank of

the Lucas sequence L mod pn is divisible by the rank of the Lucas sequence L̃ mod pn.

Proof. By abus of notaion, let Θ denote the subgroup ofG(P,Q)(Z/pnZ) generated by β(θ). Then,

there exists k ≥ 0 such that wk is divisible by pn if and only β(η) ∈ Θ in G(P,Q)(Z/pnZ). Now

let r(pn) and r̃(pn) denote the rank of L mod pn and L̃ mod pn, respectively. Then, β(η) ∈ Θ

if and only r(pn) is divisible by r̃(pn), since G(P,Q)(Z/pnZ) is cyclic and Θ ⊂ G(P,Q)(Z/pnZ) is
of order r(pn).

Remark 5.8. G(P,Q)(Z/pnZ) is a cyclic group in the following cases.

(1) n = 1;

(2) p > 3, or p = 3 and D ̸≡ −3 mod 9 ([14, Corollary 2.21]);

(3) p = 2 and ord2D ≥ 2 (Proposition 2.16).

Remark 5.9. The assertion of Corollary 5.7 in the case of n = 1 was established by Ward [15]

and Hall [6]. As is mentioned in the introduction of [15], Ward’s study was motivated by the

following assertion established by Lucas [7]:

Let P,Q ∈ Z, and put f(t) = t2 − Pt + Q and D = P 2 − 4Q. Let S = (Sk)k≥0 denote the

companion Lucas sequence associated to (P,Q), that is to say, S ∈ L(f,Z) with the initial terms

S0 = 2 and S1 = P . Moreover, let p be an odd prime, and assume that p ∤ Q and p ∤ D. Then,

there exists k ≥ 0 such that Sk is divisible by p if and only if r(p) is divisible by 2. Here r(p)

denotes the rank of the Lucas sequence assocaited to (P,Q) mod p.

References.

[1] M. Aoki, Y. Sakai, Mod p equivalence classes of linear recurrence sequences of degree 2.

Rocky Mountain J. Math. 47 (2017) 2513–2533.

[2] R. D. Carmichael, On the numerical factors of the arithmetic forms αn± βn. Ann. of Math.

15 (1913) 30–70

[3] M. Demazure, P. Gabriel, Groupes algébriques, I, Masson/North-Holland, 1970.
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