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Chapter 1

Introduction

The theory of function spaces and partial differential equations on Euclidian spaces
or Lie groups has been developed on the basis of Fourier analysis. In particular,
the Fourier multiplier defined via the Fourier transform is one of the powerful
tools, and enables one to introduce the derivative of fractional order and solution
operators of the Cauchy problem for partial differential equations. However, when
one considers the Fourier multipliers on measure spaces not having the invariance
properties of measures, these operators cannot be well-defined in general. For
example, it is difficult to define the Fourier transform on non-smooth domains or
domains with unbounded boundary. To overcome this difficulty, we arrived at the
idea of the spectral multiplier which is a generalization of the Fourier multiplier.
This thesis is concerned with boundedness of spectral multipliers for Schrodinger
operators on open sets of Euclidian spaces, and its application to the theory of
Besov spaces. This framework is the most general in the setting of Euclidian
spaces. The motivation of the study of this thesis comes from obtaining several
estimates for solutions to the initial-boundary value problem of partial differential
equations on unbounded domains. On account of defining the Besov spaces on
open sets, we can discuss the bilinear estimates on these spaces.

Since the 1970s, many authors have investigated the spectral multipliers for the
Laplace operators acting on Lie groups of polynomial growth and for the Laplace-
Beltrami operators on compact manifolds. In 1990 Hebisch proved boundedness of
spectral multipliers for Schrodinger operators with positive potential on Euclidian
spaces (see [33]). There are also several results on the Schrédinger operators with
more general potentials. For example, Jensen and Nakamura dealt with potentials
admitting negative part of Kato class on Euclidian spaces (see [44,45], and also
D’Ancona and Pierfelice [I8] and Duong, Ouhabaz and Sikora [20]). Since the
1990s, the above results have been applied to the theory of function spaces (see
(0,9, 08,28, 44, 88]), and there are a lot of literatures on Besov spaces. As is well
known, the Besov spaces were introduced by Besov in around 1960 (see [2,3]).
These spaces play an important role in studying approximation and regularity of
functions, and have various characterizations (see, e.g., Triebel [81,82 &4]). Among



other things, the characterization by Peetre via the Fourier multipliers has many
applications to partial differential equations on Euclidian spaces or Lie groups (see
[62-64]). Recently, many authors have investigated Besov spaces on domains via
the spectral approach instead of Fourier multipliers (see [6,88,49]). However, to
the best of our knowledge, it is necessary to impose some smoothness assumptions
on the domains in order to define the inhomogeneous and homogeneous Besov
spaces with full range of indices.

The purpose in chapter B is to prove LP-boundedness of spectral multipliers for
Schrodinger operators with potentials of Kato class K4(2) on an open set 2. The
Coulomb potential is a typical example of potentials of this class which is defined
in section 2 of chapter B. The advantage of introducing K,4(2) is twofold; we
need not impose any assumption on decay and smoothness of potentials of Ky(€2).
Self-adjointness of Schrodinger operators is discussed in section ZZ3. We need
Gaussian upper bounds on {2, which are proved in section 2ZZ4. The results on
spectral multipliers are described in section Bl of chapter B. As a by-product, the
result on gradient estimates for spectral multipliers are obtained.

The purpose in chapter @ is to define the Besov spaces generated by the
Schrodinger operators on open sets without any geometrical and smoothness as-
sumption on the boundary, based on the spectral theory by referring to the idea
of Peetre. In chapter @ we give the definitions of Besov spaces and prove the fun-
damental properties such as completeness, duality, lifting properties, embedding
relations and equivalence relations between the perturbed Besov spaces and the
free ones. In the formulation we will face on the problem how to determine topo-
logical vector spaces over open sets corresponding to the Schwartz space and the
Lizorkin test function space on R%. In section Bl we introduce new test function
spaces on open sets and show their properties similar to the Schwartz space and
the Lizorkin test function space. This is a main novelty in this thesis.

In chapter B we discuss bilinear estimates in Besov spaces. These estimates are
also called the fractional Leibniz rule. The bilinear estimates in Sobolev spaces or
Besov spaces are of great importance to study the well-posedness for the Cauchy
problem to nonlinear partial differential equations such as the KdV equations and
Navier-Stokes equations (see [[3,31, 82 4R]). These estimates for the Dirichlet
Laplacian or more general operators are important to study the initial-boundary
value problem of nonlinear partial differential equations. The purpose in this
chapter is to prove the bilinear estimates in Besov spaces generated by the Dirichlet
Laplacian on domains. More precisely, we reveal that these estimates hold for some
small regularity number in Besov spaces, and as to the large regularity we present
a counter-example. The gradient estimates for heat equation play an important
role.

In chapter B we derive the gradient estimates for heat equation with the Dirich-
let boundary condition in an exterior domain. These estimates are not only of
interest itself, but also have some applications. As is mentioned above, these es-
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timates are related to the bilinear estimates in Besov spaces generated by the
Dirichlet Laplacian. It is well known that the gradient estimates hold for solutions
to heat equation on RY, and that their time decay rate is t~'/2. It is also true in
half spaces Ri and bounded domains. However, it is not true in general in exterior
domains. More precisely, the time decay rate is not necessarily the rate t~1/2 in
this case (see [87,88,561]). The purpose in this chapter is to reveal the sharp time
decay rates in exterior domains.

Finally we consider the case of the Laplace operator with the Neumann bound-
ary condition on a Lipschitz domain. In particular, we are interested in the case of
bounded domains, since the situation is different from the case of Dirichlet bound-
ary condition: Zero is not an eigenvalue of the Dirichlet Laplacian, but that of the
Neumann Laplacian. In chapter [@ we state the results on spectral multipliers and
Besov spaces for the Neumann Laplacian.
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Chapter 2

Preliminaries

In this chapter we shall give some notations, and state assumptions on potentials.
Furthermore, we prove self-adjointness of Schrédinger operators, and finally Gaus-
sian upper estimates for heat semigroups. These results will play an important
role in the later chapters.

2.1 Notations

Let E be a measurable set of R? with d > 1. For 0 < p < oo, we denote by LP(FE)
the Lebesgue space, i.e., f € LP(E) if and only if || f||1r(5) < 00, where

(/|f |pdx) if 0 < p < oo,
| fllzr () =

ess. sup|f(z)] if p = oo.
el

Let © be an open set of R? with d > 1, and we put Ny := NU{0}. For 1 < p < oo
and m € Ny, we denote by W™P(Q) the Sobolev spaces over €2, i.e., f € W™P(Q)
if and only if

o0 f € LP(QQ) for any multi-index a = (ay, - -+ , ag) with |a| < m,

where 0y = 991 - -- 04, Here the norm of W™P((2) is given by

1
P

( 3 Hé’i‘f!lip(m) 1< p< oo

| fllwme) == lal<m |
Z 105 f | oo () if p = 0.

laj<m

The space C§°(2) is the set of all C*-functions on 2 having compact supports
in Q. Then we denote by Wy""(Q2) the completion of C§°(£2) with respect to the
norm || - |[wme(q). In particular case p = 2, we write

H™Q) :=W™2(Q) and HIQ) = W7?(Q).
7



We denote by L _(€) the space of locally integrable functions on Q and by .7 (R%)

loc
the Schwartz space, i.e., the space of all rapidly decreasing functions on R¢.

The convolution of measurable functions f and g on R? is defined by

(f*g)(z) = o flx—y)gly)dy, ae. x€ R4,

We use the notation #(X,Y") for the space of all bounded linear operators from
a Banach space X to another one Y with operator norm ||- || z(x,y). When X =Y,
we write Z(X) = #(X, X). We denote by D(T') the domain of an operator T,
and by o(7') the spectrum of T

We use the notation x/(-,-)x for the duality pair of a topological vector space
X and its dual X'. We say that a sequence { fy}%¥_; in X’ converges to f € X’ if

x{fn,o)x = x(f,)x as N — oo forany ¢ € X.

2.2 Assumptions on potentials

Throughout this thesis we assume that the potential V' = V(z) is a real-valued
measurable function on an open set Q of R? whose negative part belongs to the
Kato class. More precisely, we impose the following assumption on V:

Assumption A. V is a real-valued measurable function on §2, and is decomposed
into V="V, — V_ such that Vo >0, V. € Li..(R2) and V_ € K4(Q2), where Kq4()

loc
1s the Kato class of potentials.

Here, let us give the definition of K4(2) as follows:

Definition. We say that V_ belongs to the class K,(2) if

( V_
lim sup/ % dy =0 for d > 3,
r=02eQ Jan{|la—y|<r} ’% - Z/’
lim sup/ log(lz —y| ™ HV_(y)dy =0 for d =2,
=0 2€Q Jon{|z—y|<r}
sup/ V_(y)dy < oo ford =1
\ z€Q JOon{|z—y|<1}

(see Kato [27] and Schechter [73]).

It is noted that the potentials of Kato class assure the self-adjointness and the
lower bound of the Schrodinger operator (see section EZ3).



Under assumption A, we can obtain uniform LP-estimates in high frequency
part of the spectral multipliers which are useful in the study of inhomogeneous
Besov spaces (see part (i) in Theorem BT below). To study homogeneous Besov
spaces we need to discuss uniform LP-estimates in low frequency part, and hence,
we need to impose a smallness assumption on the negative part of V' as follows:

Assumption B. The negative part V_ of V satisfies

V_ .
SHP/%G{Q<% if d > 3,

e

V.o=0 ifd=1,2,

where 74 is the absolutely constant such that

[SIIoH

™

S T 1)

for d > 3 with the Gamma function I'(-).

Throughout this thesis we use the following notation:

V_(y)
V_ ‘= su ——d
| HKd(Q) :Sceg/ﬁ‘x y[4-2 Y

for d > 3.

2.3 Self-adjointness of Schrodinger operators

In this section we show self-adjointness of Schrodinger operators with the Dirichlet
boundary condition by using the theory of quadratic forms. We make the assump-
tion as follows:

Assumption C. The negative part V_ of V satisfies

V_ .
Sup/%dy<4’yd Zfdzg,

e

V.=0 ifd=1,2.

We note here that assumption C is weaker than assumption B.

The purpose in this section is to prove the following:



Proposition 2.1. Suppose that the potential V' satisfies assumption A. Let q be a
quadratic form defined by

a(f.g) = / Vf(z)  Vg(@) de + / V(@) f(@)g@) de.  f.g € Qq).

where
Qg) = {f € HL(Q) : Vi f € L)}
Then the following assertions hold:

(i) There exists a unique semi-bounded self-adjoint operator Hy on L*(Q) such
that

D(Hv) = {f € Qq) : Thy € L*(Q) such that

a(f,9) = (hy,9)r20) for any g € Q(q)},  (2.1)
Hvf=hsy, feDMHy),

where (-,-)2q) stands for the inner product of L*(Q).

(i) If V_ further satisfies assumption C, then Hy is non-negative on L*(2), and
zero is not an eigenvalue of Hy .

We note that D(Hy ) can be simply written as

'D(Hv) = {f S Q(q) cHyf € L2(Q)}.

We recall a notion of quadratic forms on a Hilbert space (see p. 276 in Reed and
Simon [65]).

Definition. Let .7 be a Hilbert space with norm || - ||. A quadratic form ¢ is a
map

q:Q(q) x Qq) = C,

where Q(q) is a dense linear subset of ¢ called the form domain of ¢, such that
G(+, g) is linear and §(f,-) is conjugate linear for f,g € Q(¢). A quadratic form ¢
is called semi-bounded if there exists a real number M such that

q(f. f) = =M fI

for any f € Q(§), and in particular, § is called non-negative if

q(f, f) =0

for any f € Q(g¢). We say that a semi-bounded quadratic form § is closed if Q(q)
is complete with respect to the norm

1l = Va(f, f) + (M + D] f]* (2.2)
10




The proof of Proposition 211 is done by using the following two lemmas.

Lemma 2.2. Let 5 be a Hilbert space with the inner product (-,-), and let
q:9(q) x Qg —C

be a densely defined semi-bounded closed quadratic form. Then there exists a semi-
bounded self-adjoint operator T on € uniquely such that

D(T) = {f € Q(q) : 3y € 5 such that §(f,g) = (hs,g) for any g € Q(q)},
Tf=hs, uecD).

For the proof of Lemma 272, see Theorem VIII.15 in [63] (see also subsection
1.2.3 in Ouhabaz [60] and Theorem 5.37 in Weidmann [86]).

The following lemma states that the negative part V_ of the potential is rela-
tively form-bounded with respect to the Dirichlet Laplacian.

Lemma 2.3. Suppose that V_ belongs to K4(2). Then the following assertions
hold:

(i) For any e > 0, there exists a constant b. > 0 such that
K)V—(ﬁ)\f(x)|2dx < ellV£lZ2@ + bell FllZ2 o) (2.3)

for any f € HL(Q).
(ii) Let d > 3. Assume further that V_ satisfies ||V_|| k) < 0o. Then

2 V-l rcae) 2
| @i a < EE 9 (2.4

for any f € HL(Q).

Proof. The proof is done by reducing the problem to the whole space case, and by
the similar argument of Lemma 3.1 from D’Ancona and Pierfelice [I8] who treated
mainly three dimensional case.

First we show the assertion (i). Let f € C5°(2), and let f and V_ be the zero
extensions of f and V_ to R? respectively. We prove that for any € > 0, there
exists a constant b, > 0 such that

|- do < I + b e 2.5)
The inequality (Z3) is equivalent to
/R V@ f@dw < (=AF. Pz + bell Fll g
= 5H(_A + bag_l)%fH;(Rd)’

11



where we note that —A is the self-adjoint operator with domain H?(R%). Put
= (=A+beHzf.
Then the inequality (23) takes the form
3 —1\—2 12 2
H —<_A+b€‘€ ) QQHLQ(Rd) < 8HgHLQ(]Rd)'
This estimate can be obtained if we show that
1TT"|| L2(ray <, (2.6)

where we set

-

T :=V(—A+be ') 2.

Thus, our goal is to show that for any € > 0, there exists a constant b, > 0 such
that the estimate (28) holds.

Let € > 0 be fixed arbitrarily, and let b > 0. Let Go(x —y; M) be the kernel of
(—A+ M)~! for M > 0. By the definition of Gy and the Schwarz inequality, we
estimate

17T gl sy = [V (~ A+ =) V2 g3

- [ V@[ cote - gt ]

dz
< [ @ [ Gole— o=ty ) ([ Galo =t latdy ) d

N840 gy [ T [ Gl = it )

Applying Fubini-Tonelli theorem to the integral on the right, we estimate

/Rd V(@) (/Rd Go(x = yibe Dlg(y)I? dy) da
B / (/ Golx = y:be™ V- (x) dx) l9(w) P dy

< H(—A + bg_l)_lf/_HLOO(]RD!)HQH%Q(Rd)‘
Combining the above two estimates, we obtain
||TT*9||L2 (Rd) = H A+ b5_1 A HLoo Rd)”g”L? Rd)-
Using the fact that V € K4(R?) is equivalent to
lim [[(—A+ M)_1|V|||Loo(Rd) =0

M—o0

12



(see Proposition A.2.3 in [76]), we see that there exists a constant b. > 0 such that

”(_A + bfg_l)_lv— HLOO(Rd) <eg, (2.7)

since V_ € K4(R?), which implies (28). Hence (23) is proved.
Now the required inequality (223) follows from (EZ3). In fact, by using (23),
we estimate

[v@it@Pd= [ V@liwP

< eV FlITagay + bell £l 22 ay
= 5va‘|i2(9) + bs“f”%%@)-
As a consequence, the inequality (233) is proved by density argument.
Next we show the assertion (ii). The proof of (£4) is almost identical to that

of (Z33) by regarding b. as 0. The only difference is the estimate (220). We use the
following pointwise estimate:

1
0<Go(z;0) < ——— 0
O(xv ) — 47d|$|d_2’ z 7£

for d > 3. Instead of (272), we can apply the following estimate:

[(=A) V|| pemay = sup | Golz —y;0)V_(y) dy

zeR4 J R4
1 V.
<— SUP/ %dy
494 zerd JRrd ‘SU - y\
_ IV llkae)
44 7

whence the argument in the proof of (223) works well in this case, and we get (E4).
The proof of Lemma 23 is complete. O]

We are now in a position to prove Proposition 2.

Proof of Proposition 2. Tt is clear that g is densely defined on L?(Q2). Moreover,
q is semi-bounded. In fact, it follows from the inequality (2=3) for ¢ = 1 that

a(f. 1) 2 IV FIlize) —/QV(x)If(ﬂf)IQdfv > —bill flZxe) (2.8)

for any f € Q(q). Hence, if we show that ¢ is closed, then Lemma P72 ensures the
unique existence of the semi-bounded self-adjoint operator Hy on L?(Q) satisfying
(2).

13



We show that ¢ is closed. Put

w(f.g) = / Vf(x) Vgl do - / V(o) f(2)g@) dz, frg € Qulq) == HAQ),

a0(f.9) = /Q Vi(2)f(z)g(z)dz, f,g€ Qalq) :={f € L*Q):/Vife L)}

Then we have

q(fag):ql(fag)+q2(fag)a f?ge Ql(Q)ﬁQ2(Q)

Since the sum of two closed quadratic forms is also closed, it suffices to show that
¢1 and o are closed. First we show that ¢; is closed. All we have to do is to show
that the norm || - ||4; is equivalent to that of Hg(2), where || - |41 is defined in
(Z2), ie.,

11 = Jar(f, )+ B+ DI -

Since V_ > 0, we see that

£ < IV FIIZ20) + (b + DI Z) < (01 + DIFIln o)

for any f € Hj(Q), and by using the inequality (223), we have

111 = IV flZ2) — /Q V(@) f (@) * dz + (b + DI f 11220
> (1= o)V fliZzq) + (b1 = be + DI flI 720

for any f € H}(Q), where we choose ¢ € (0,1) and b. such that b < b. < by + 1.
The above two inequalities imply that | - [|41 is equivalent to || - || g1(q). Hence ¢
is closed.

Next we show that ¢y is closed. Put ¢o(f) = ¢2(f, f) for simplicity. Assume
that

fELZ(Q)a fne Q(q2)7 Q2<fn_fm) _>07 ”fn_fHLQ(Q) — 0 as n,m — 00,

and we prove that

f€9Q(q) and ¢(f,—f)—0 asn— oc. (2.9)

Since {/V, fn}52, is a Cauchy sequence in L?(2), there exists g € L?(£2) such
that

\/ V+fn — g in Lz(Q)
Hence the sequence {\/V, f,,}°°, converges to g almost everywhere along a subse-
quence denoted by the same, namely,

VVifo(x) = g(x) ae.xe€Qasn— .
14



On the other hand, since any convergent sequence in L*({2) contains a subsequence
which converges almost everywhere in €, it follows that

VVifulz) = /Vif(z) aezeQasn— oco.

Summarizing three convergences obtained now, we get

VVif =geL*9Q).
This proves (Z9). Thus ¢ is closed.

Next, we prove the assertion (ii). We estimate by using the inequality (24)
from Lemma 223 and assumption C on V_,

(o f F iz > [V By — / V(@) ()P da

HVHKd(Q)> 9
>(1 - ——2)||V 2
> ( Ty IV fllz2

>0

for any f € D(Hy). Hence Hy is non-negative on L*(Q).
Finally, we prove that zero is not an eigenvalue of Hy-, namely, f satisfies

fE€DHy) and Hyf =0 in L*(Q), (2.10)

then f = 0. We consider the case d > 3. It follows from the assertion (ii) in
Lemma P23 and assumption (27I0) that

V-l s
0= (Hvf [ = (1 - 4—%;() IV flIZ20)»

which implies that f = 0, since u € D(Hy) C Hg(€2). The case d = 1,2 is similar,
since V_ = 0. The proof of Proposition 271 is complete. n

2.4 Gaussian upper estimates for heat semigroup

In this section we shall prove LP-Li-estimates for semigroup {e~t"v},., generated
by Hy and pointwise estimates for the kernel of e7**v. We denote by e~ *L(x,y)
the kernel of semigroup {e~**};~¢ generated by an operator L.

When Q =R? and V = 0, i.e., Hy = —A on L*(R?), it is well known that the
kernel e'®(z,y) is written as

_Jz—y|?

e (z,y) = (47Tt)_%€ at (2.11)

15



for any ¢ > 0 and z,y € R?. This representation is fundamental in the study of
the Cauchy problem to heat equations on R?, since various properties on solutions
of heat equations are derived from (EZI0). Our goal in this section is to prove some
estimates for the kernel e~V (x, ).

The main result in this section is the following:

Proposition 2.4. Let 1 < p < q < oo. Suppose that the potential V' satisfies
assumption A. Then e~V is extended to a bounded linear operator from LP(S2) to
L9(QY) for each t > 0. Furthermore, the following assertions hold:

(i) There ezist two constants w > —inf o(Hy) and Cy; > 0 such that
_di_1y
™™ Fllzaey < Crt™ 2072 ooy (212)
for any t >0 and f € LP(9).

(ii) There ezist two constants w > —inf o(Hy) and Cy > 0 such that the kernel
e ™MV (z,y) fulfills with the following estimate:

z—y|2
0<e ™ (2,y) < Ogt_%€Wt€_‘ st a.e.x,y € (2.13)
for any t > 0.
(iii) Assume further that V_ satisfies
V_ <2 fd >3
| JKd(Q) Vd Z'f =5 (2.14)
Vo=0 ifd=1,2.
Then
drl 1
(2mt) 2% a ,
- 1Ly ofd >3,
le™ flloy < (1 - ||Y—\|Kd(9)/27d)2 (2.15)
(4mt) 72573 f | o ifd=12
for anyt >0 and f € LP(Q2).
(iv) If V_ further satisfies assumption B, then
0 R
0<e ™ (z,y) < 1= Vo|lkye)/7a - aex,yeQ
2
(4rt)~ 5 e ifd=1,2,
(2.16)

for any t > 0.

16



We denote by H and Hy the self-adjoint realizations of —A+V and —A—V_

on L%(R%), respectively, where V and V_ are the zero extensions of Vand V_ to
R?, respectively. Then, under assumption A, we have

DHy) = {f € HY(R?Y) :\/V,f € L*(RY), Hpf € L?(Rd)},
D(Hy )= {f e H'RY : Hy f e L*RY)).
The following lemma is crucial in the proof of Proposition 2Z4.

Lemma 2.5. Suppose that the potential V satisfies assumption A. Let V and V_
be the zero extensions of V and V_ to R?, respectively. Then for any non-negative
function f € L*(2), the following estimates hold:

(e f)(z) >0 aexe, (2.17)
(e f)(z) < (e‘tﬁ"/f)(x) a.e.x € Q, (2.18)
(e_me)(m) < (e_m‘_/—f)(x) a.e.z €S (2.19)

for any t > 0, where f is the zero extension of f to RY.
The proof of Lemma 3 is rather long, and will be postponed.

Proof of Proposition 2. The assertion (i) is an immediate consequence of the as-
sertion (ii) and Young’s inequality. Hence we concentrate on proving the assertion
(ii). We adopt a sequence {j.(z)}eso of functions on R? defined by letting

1 x
(z)=—=j=), e RY, 2.20
)= 5i(%). (2.20)
where )
: Age =1 for |z| < 1,
j(x) =
0 for |x] > 1
with

1 —1
Ag = (/ e 1-l=1? d:c) .
Jz|<1

As is well known, the sequence {j.(x)}.~o enjoys the following property:
je(-—y) =0, in. (R ase— 0, (2.21)

where 4, is the Dirac delta function at y € Q and .%/(R?) is the topological dual
of .Z(R%). Let y € Q be fixed, and let K(t,z,%) be the kernel of e=*v. Taking
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e > 0 sufficiently small so that supp j.(- — y) € 2, and applying (Z12) and (ZI8)
from Lemma P73 to both f and f replaced by j.(- — y), we get

0< / e (2, 2)j.(2 — y)dz < / e M (2,2)jo(z — y)dz ae.x €
Q Rd
Noting (2Z1) and taking the limit of the previous inequality as ¢ — 0, we get

0< e ™ (2,y) < e (2,y) ae.az,yeQ

for any ¢ > 0. Finally, by using the pointwise estimates:

~ -y 2
e_m\"/(x,y) < Ct‘%ew’fe_% a.e.x,y € () (2.22)

for any t > 0 (see Proposition B.6.7 in [76]), we obtain the estimate (213), as
desired. Thus the assertion (ii) is proved.

Finally, we prove the estimates (Z13) in (iii) and (2Z08) in (iv). We recall
Proposition 5.1 in [I8] that if d > 3, then

2r) 43D
(1 = IV-llxuzy/27a)

||6_t7:t‘7|}|HLq(]Rd) < 2 HfHLP(Rd)

for any ¢ > 0, and

_d _d
ety (g ) < — 2T gl ( __ (@nt)= e—“;i"2>
1 — IVl kyray/Va L — V- kg /va

for a.e. x,y € Q and any t > 0. When d = 1,2, we have

d la—y|?

e (z,y) < (drt) "2 @ ae.z,y € Q

for any ¢ > 0. Then, applying the above estimates to the argument of the deriva-
tions of (Z12) and (Z13), we conclude (Z13) and (218). The proof of Proposition
23 is finished. O

In the rest of this section we shall prove Lemma P4, For this purpose, we
need two lemmas. The first one is concerned with the existence and uniqueness of
solutions for evolution equations in abstract setting.

Lemma 2.6. Let 7 be a Hilbert space with norm || -||. Assume that A is a non-
negative self-adjoint operator on F. Let {T(t)}i>0 be the semigroup generated by
A, and let f € A and u(t) =T(t)f. Then u is a unique solution of the following
problem:

u € C([0,00);.2) N C((0,00); D(A)) N C((0, 00); ),

W (t)+ Au(t) =0, t>0,

u(0) = f,
where D(A) means the Banach space with graph norm || - ||+ ||A - ||.

18



For the proof of Lemma P8, see, e.g., Theorem 3.2.1 in [I0].

Remark. It is known that for any non-negative self-adjoint operator on a Hilbert
space, its domain is a Banach space with respect to the graph norm of its operator
(see Corollary 2.2.9 in Cazenave and Haraux [I0]).

The second one is about the differentiability properties for composite functions
of Lipschitz continuous functions and W P-functions.

Lemma 2.7. Consider the positive and negative parts of a real-valued function
ue WhP(Q) for 1 < p < oco:

ut = X{us0yt and U~ = —X{u<0}U-

Then u* € WYP(Q) and
8@«].u+ = X{u>010z; U,  Op; U = —X{u<0}0z,;U

forj=1,2,...,d, where 0., = 0/0x;. Furthermore, if u € WyP(Q) for 1 <p <
oo, then
ut e WyP(Q). (2.23)

Proof. Since the first part of the lemma is well known, we omit the proof. For
the proof, see Lemma 7.6 in Gilbarg and Trudinger [29]. Hence we prove only the
latter part.
Since u € W, P(Q) with 1 < p < oo, there exists a sequence {¢,}, in C$°(Q)
such that
¢n — u in WH(Q) as n — oo. (2.24)

Let us take a non-negative function ¢ € C*°(R) as

=—x ifxr<-—1,
Pr)s < —z if —1<z<0,
—0 ifz>0,
and put
1
() = ﬁw(nx), n € N. (2.25)

Then there exists a constant Cy > 0 such that
[, (2)| < Co, neN. (2.26)

Let us consider two kinds of composite functions v, o ¢,, and v, ou. We show that

Yn 0 Gp —Ypou — 0 in WH(Q), (2.27)

Ypou—u" —0 in WH(Q) (2.28)
19



as n — oo. In fact, noting (Z228), we deduce from the mean value theorem that

1
|Wmo¢n—wnomumm:{mé«%&wn+<r—mux¢n—uww

< Collpn — ul| r(0)-

As to the derivatives of ¥, o ¢, — 1, 0 u, we write
||amj (¢n © (bn - 1% o U)HLP(Q)
= W;(%)ax]% - %/1(“)39:1““&(9)
< 0 (00) Doy — Do) lrcy + | [(6) — ()0
S CO||8JIJ¢TL - aﬂ»‘ju”LP(Q) + H[¢;z<¢n) - ¢;(u)]8xju“Lp(Q)7

(2.30)

where we used again (228) in the last step. Noting the pointwise convergence and
uniform boundedness with respect to n:

[0 (0n) () — Uy, (u)(2)]0p,u(x) = 0 ae. z€Qasn— oo,

|[¥n(0n) (@) — 95, (w) ()]0, u(@)| < 2Co|0u,u(@)] € LP(Q),

we can apply Lebesgue’s dominated convergence theorem to obtain

H[wg(%) — w;(u)]axjuHLp(m —0 asn — oo. (2.31)

Hence, summarizing (2224) and (2229)—(2=311), we obtain (E227).

As to the latter convergence (Z28), since
|(¥n 0 u)(2) — u”(2)] < 2Ju(z)] € LP(Q),

92, (thn 0 1) () — Dy~ (2)] < (Co+ 1)]0s;ula)] € LP(Q),

and since
(Ypou)(z) —u (x) =0, ae x€

0, (0 u)(x) — By, (2) = [0, (u) — Xgucop)On,ulx) =0, ae. z €0
as n — 00, Lebesgue’s dominated convergence theorem allows us to conclude
It follows from (2224) and (228) that
Ypodp —u~ — 0 in WHP(Q) as n — oo.

Since {1y, 0 ¢, } is a sequence in C§°(2), we conclude (2223) from the above con-
vergence. The proof of Lemma P77 is finished. O]
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Proof of Lemma ZZ3. We start by proving (ZI1). Let M be a real number satis-

fying
M > —info(Hy).

Then Hy + M is the non-negative self-adjoint operator on L*(€) with domain
D(Hy + M) = {uec Hy(Q) : v/Vou e L*(Q), Hyu e L*(Q)}.
Put
u(t) = e v >
for a non-negative function f € L*()). Lemma 28 implies that u(t) satisfies

() N C([0,00); D(Hy + M)) N C((0, 00); L*(2)),

u e O([0,00); L
(Hy + M)u(t) =0, >0,

8tu( ) +
u(0) = f.
If we show that

||u_(t)||2L2(Q) is monotonically decreasing with respect to ¢ > 0, (2.32)

then we obtain
u (t,z) =0 ae.x €

for each t > 0, since
u (0,z)=f"(z)=0 aexec
This means that
u(t,z) >0 a.e.x € Q
)-

for each ¢ > 0; thus we conclude (2I7). Now the assertion (2232) is an immediate

consequence of the following:

d

- (u™)?dz < 0. (2.33)

Hence we pay attention to prove (2233). Here and below, the time variable ¢t may
be omitted, since no confusion arises.
By the definition of u™, we have

Ot (t,r) =0 for z € {u < 0} and each t > 0.

We compute

4 (u)*dr = 2/ u O dr = 2/ u” Oy (ut — ) dz
dt Q Q {u<0}

= —2/ u” Oudr = 2 / [(Hy + M)u]u™ dz
{u<0} Q

21
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where we use the equation
Oy + (Hv—f—M)u:O

in the last step. Since u~ € H}(Q) and /Viu~ € L*(Q) by Lemma =2 and
VViu € L*(9), we have, by going back to (270) in the definition of Hy,

/[(HV + M)ulu~ dr = / Vu-Vu dr+ / Vuu™ dz + / Muu™ dz.  (2.35)
Q Q Q Q
Here we see from Lemma P74 that

Vu~ = —X{u<0} VU,

and hence, the first term on the right of (2233) is written as

/Vu Vu™ dr = — /\Vu ? dz.

As to the second, by the estimate (233) for ¢ = 1 from Lemma =3, we have
/QVuu_ dz < /QV_|u_\2dx < [l |Baggy + bV 220
thus, by choosing M as
M > b (> —info(Hy)), (2.36)
we find that

/Q[(’HV T+ MYu)u di < (b — M)||Vu By < 0.

Hence, combining this inequality and (2234), we conclude (2233).
Next, we prove (ZI8). Let us define two functions v* (t) and v (t) as follows:
v (t) = e_t(ﬂ‘"/JrM)f and v@(t) ;= etV HM) ¢
for t > 0. Then it follows from Lemma 28 that v(!) and v® satisfy

Y e C([0,00); L*(R") N C((0, 00); D(Hy + M)) N C((0, 00); L*(RY)),
vV (t) + (Hy + M)W (t) =0, t>0,

v(0) = f
(2.37)
and
v® € C((0,00); L2(92)) N C((0,00); D(Hy + M)) N CH((0, 00); L*(R2)),
O @ (t) + (Hy + M)v@(t) =0, t>0, (2.38)
v®(0) = f
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for each t > 0, respectively. We define a new function v as
o(t) == v (1)) — v (1)

for t > 0, where v (t)|q is the restriction of v(V(¢) to Q. Let us consider the
negative part of v:

= —X{w<0}V-.

Then, thanks to (2231) and (EZ38), we have
v~ € C([0,00); L*(Q2)) N C((0, 00); L*(€2)).

Moreover, we have v~ € H'(Q2) by using Lemma P72, since v € H'(2), and we
immediately have /V, v~ € L?(Q), since v/Viv € L*(2). Once we prove that

v e HA(9), (2.39)

we obtain

d

— [ (

dt Jo
by the previous argument. In fact, in a similar way to (2234, we have

d
— [ (v7)¥dx = —2/ v 9o dx + 2/ v 90 dx
dt Q {v<0} {v<0}

= 2/ {(Hy + M)}~ do — 2/ {(Hv + M)W }o™ da,

v ) dr <0 (2.40)

where 0~ is the zero extension of v~ to R%. Since v~ € Hj(Q) and /V v~ € L*(Q)
by (2339), we have, by the definitions of Hy and Hy,

[ [+ 2005 do = [ [0+ 20 e

/Vv \ dx+/Vvv dx—i—/Mvv dzx

< (by — M)jv~ HL2(Q
<0,
since M is chosen as in (238). Hence we obtain (240), which implies the required
inequality (EZI8).
We have to prove (2239). The proof is similar to that of Lemma P74. Since

2)(t) € H}(Q) for each t > 0 by (2238), there exists a sequence {¢,(t)} in CF°(£2)
such that
dn(t) = v (t) in HY(Q) as n — oo

for each t > 0. Put
v, (1) = U(l)(t)|g — ¢n(t), neN.
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Let {t,} be the sequence as in (223). As in the proof of Lemma P71, we can show
that
Ypov, — v in HY(Q) as n — oo.

Since v have compact supports in supp ¢, by v > 0 on Q, it follows that the

functions ), o v, also have compact supports in 2. Let (¢, o v, ) be the zero
extension of 1, o v, to RY, and j.(z) be the functions defined in (220). Taking e
along a sequence {e,} such that

en \y0 and suppj., * (¥, o0v,) €Q forany n € N,

we have

Jen * (Unov,) o € C5°(Q)  for any n € N.

Since

Jeo * (Ynov ) |g — v~ in H'(Q) as n — oo,

we conclude (2239).
Finally, as to the inequality (ZZ9), letting f € L?*(2) be non-negative, we put
wh(t) = e—t(ﬁojM)f’ w® () == eft(?:LVJrM)J?’ w(t) == w (1) — w ()

for t > 0. Noting that w® () € D(H; ) and w®(t) € D(Hy), it suffices to show

that
d

dt Jo
We prove (ZZ1). In a similar way to (Z239), we have w~ € H}(2). Hence we

estimate

4
dt J

(w™)?dz < 0. (2.41)

(w™)? dv = —2/(3tw)w_ dx
Q
= 2/ [(Hy + M)wD]w™ do — 2/ [(Hy + M)w?]w™ da
0 0
= —2/(|Vw_|2 —V_|jw™ | + M|w™*) dz — 2/(‘~/+w(2))w_ dx
Q Q
< —2/(‘7+w(2))w dx,
Q
where we used the inequality (223) in the last step. Since w®(t) > 0 by (212)

and (ZIR), we conclude the required inequality (2241), which proves the inequality
(219). The proof of Lemma P73 is complete. [
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Chapter 3

Boundedness of spectral
multipliers for Schrodinger
operators

In this chapter the functional calculus of spectral multipliers for Schrodinger op-
erators is developed, which was discussed in Iwabuchi, Matsuyama and Taniguchi
3]

3.1 Spectral multipliers

We consider the self-adjoint realization Hy of Schrodinger operator —A + V' (z)
whose existence is discussed in section ZZ3. Let {E, (A\)}rer be the spectral
resolution of the identity for Hy . Here the resolution { F;, (A)}rer is uniquely de-
termined for Hy by the spectral theorem. Then for any Borel measurable function
¢ on R, an operator ¢(Hy ) is defined by letting

o(Hy) = / (N dEwy (V)

with domain

[ee)

D(o(Hy)) = {fewm: | 600 a0V D) <oo}.

—00

The operator ¢(Hy ) is called the spectral multiplier for Hy .

The purpose in this chapter is to study functional calculus of spectral mul-
tipliers ¢(Hy ). More precisely, we prove uniform LP-L%-estimates and gradient
estimates for ¢(0Hy ) with respect to a parameter ¢ > 0. The motivation comes
from the point of view of harmonic analysis and partial differential equations. For
instance, the spectral multiplier is a generalization of Fourier multiplier in the
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following sense: When 2 = R? and V =0, i.e., Hy = —A on L?*(R%), the spectral
multiplier coincides with the Fourier multiplier, i.e.,

$(=0) =F o] [)F],

where .# and .Z ! denote the Fourier transform and inverse Fourier transform on
R?. These estimates play a fundamental role in studying functions spaces such
as Sobolev spaces, Hardy space, BMO spaces, Besov spaces and Triebel-Lizorkin
spaces generated by the Schrodinger operators (see |19, 18, 21,28 88,44, 49 53 8] ).
The theory of spectral multipliers is also related to the study of convergence of the
Riesz means or convergence of eigenfunction expansion of self-adjoint operators
(see, e.g., Chapter IX in Stein [[77]).

We shall prove the following:

Theorem 3.1. Let ¢ € (R) and 1 < p < q < 0o. Suppose that the potential V
satisfies assumption A. Then ¢(Hy ) is extended to a bounded linear operator from
LP(QY) to LYU(QY). Furthermore, the following assertions hold:

(i) There ezists a constant C > 0 such that

1S(OHY) | (1 (0 Loy < CO 2570 (3.1)
forany 0 <6 < 1.

(ii) If V_ further satisfies assumption B, then the estimate (B) holds for any
6> 0.

Theorem 3.2. Let ¢ € ./ (R) and 1 < p < q < 2. Suppose that the potential V
satisfies assumption A. Then ¢(Hy) is extended to a bounded linear operator from
LP(Q) to WH4(Q). Furthermore, the following assertions hold:

(i) There ezists a constant C > 0 such that
_dl_1y_ 1
IVO(OHY )| e )Ly < CO 2532 (3.2)
forany 0 <6 <1.

(ii) If V_ further satisfies assumption B, then the estimate (B2) holds for any
6> 0.

Remark. The potential like
V(z) ~ —clz|™® as|z| =+ 00, ¢>0

is very interesting. However, it is excluded from assumption A on V. The reason
is that the uniform boundedness in Theorem BT would not be generally obtained,
since
: —tHy —
A [[e™ lzze() = 00
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for some p # 2 which was proved in [34,35].

Remark. We can weaken the assumption that ¢ € .(R) in Theorems B and
B2. In fact, we have

|P(O0H V) || 2(Lr (), L9(02)) < Co H (T+1-]

Hm(R)

where m is an integer with m > (d + 1)/2 and $ is a real number with g >
d/4+ (d/2)(1/p — 1/q). For the details, see section B72.

One of the main ingredients of this chapter is to reveal that we are able to deal
with a potential whose negative part is of Kato class on open sets. The advantage
of the present argument is to provide a unified treatment of the proof of Theorems
B0 and B2. For this purpose, we introduce scaled amalgam spaces on §2 and apply
the resolvent estimates in the amalgam spaces and some commutator estimates.
This idea comes from Jensen and Nakamura [44, 45].

This chapter is organized as follow. Section B is devoted to proving the
uniform estimates in scaled amalgam spaces for the resolvent of Hy . In section B33
some commutator estimates are derived. In section B4 we prove estimates for the
spectral multipliers in amalgam spaces. Based on these estimates, the proofs of
Theorem B0 and Theorem B=2 are given in sections B and B8, respectively.

3.2 Resolvent estimates in amalgam spaces

In this section we shall prove boundedness of the resolvent of Ay, in scaled amal-
gam spaces. The result in this section plays an important role in the proof of
Theorem B

Following Fournier and Stewart [23], let us give the definition of scaled amalgam
spaces on () as follows.

Definition. Let 1 < p,q < oo and 6 > 0. The space [P(L9)y is defined by letting
(Lo = (L0(9) 1= { f € L@+ D2 1 iy < o0}
nezd

with norm

1
p
(Z“fHLqu(n> for 1 < p < o0,

nezd

sup || f | za(cy(ny) for p = oo,

neza

| fllp(zay, =
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where Cy(n) is the intersection of € and the cube centered at 0'/?n (n € Z?) with

side length /2

[NIES

0
Co(n) = {x = (21,29, - ,xq) € Q: max |z; — 02n]| 5 }
iz

Here we adopt the Euclidean norm for n = (ny, na, ..., ng) € Z%:

|n|:\/n%+n§+-~+n§.

Let us give a few remarks on the properties of amalgam spaces. The spaces
[P(L%)g are complete with respect to the norm ||-||;p(Le),. Furthermore, these spaces

enjoy the following embedding:
P(LY)g — LP(2) N LI(Q)
for any 6 > 0, provided 1 < p < g < oo. In fact, noting that
d
2

[Co(n)] < 02,

we estimate, by using Holder’s inequality,

1l 2o (Z 1A Ze (o )

nezd
1
< Z |Cy(n )| _7||fHLq(09 n)))
n€zZd
d 1_ l)
< 02577 fllw(z0),

for any # > 0 and 1 < p < ¢ < 0o, which implies that

P(L9)y — LP(S).

On the other hand, since [P < (9 for 1 < p < ¢ < o0, and since [9(L%)y =

for 6 > 0 and 1 < ¢ < 0o, we deduce that
P(LY)g — 11(LY)g = LY(Q).
Thus, (BH) and (BH) imply (833).
We have the Young inequality for scaled amalgam spaces:
| f = QHZP(Lq)Q(Rd) <3 fllier anyp mey | 912 (202 ()
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for any f € (P1(L9)y(R?) and g € 1P*(L%®)g(R?), provided 1 < p,p1, pa, ¢, g1, g2 < 00
satisfying

1 1 1 1 1 1

- =—+4+—-1 and -=—+4+——-1.
bp DP1 P2 q q1 q2

The goal in this section is to prove the following:

Proposition 3.3. Let 1 < p < q < o0, and B be such that

5>§(%—3). (3.8)

Suppose that the potential V' satisfies assumption A. Let z € C with
Re(z) < min{—w, 0}, (3.9)

where w is the constant as in Proposition 4. Then (Hy — 2)7° is extended to
a bounded linear operator from LP(QQ) to IP(L%)y with @ = 1. Furthermore, the
following assertions hold:

(i) There ezists a constant C depending on d,p,q,  and z such that

_dg1_1
10Ky — 2) || awr(@)a@) < CO 270, (3.10)
16y = 2) Pl swr@ann, < CO267 (3.11)

forany 0 <6 < 1.
(ii) Assume further that V_ satisfies (214). Let z € C be such that
Re(z) < 0.

Then the estimate (BIQ) holds for any 0 > 0. Moreover, If V_ further
satisfies assumption B, then the estimate (B) holds for any 6 > 0.
Proof. First we prove (B0). Let 0 < # < 1. We use the following formula:
1 [e.e]
Hy —2)P = —/ P teFte MY gt 3.12
W= =1 ), 1)

for any z € C with Re(z) < info(Hy) and g > 0. Thanks to (B12) and LP-L9-
estimates (Z12) for e " in Proposition P4, we estimate

16Hy —2)7"fll e

1 o0
< F(ﬂ) /0 tﬁ_leRe(z)t\|e‘t6HVfHLq(Q) dt
<Ccp G (/ #B=1 g [Re(z)—min{~w,0}]t 4= (=) dt) 1£1lzrc)
0
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for any f € LP(Q2), provided 1 < p < g < 0o, where C' is independent of 6. Here,
let us take z as in (B). Then the integral on the right is absolutely convergent,
since (3 satisfies the inequality (B3). This proves (B10).

Let us turn to the proof of (BI). If we prove that there exists a constant
C > 0 such that
1 1 1

—41_1 -g@1-1 —min{—w
™Y Fllinqray, < CO2G~a {72670 4 1}emmmt Ok £, o) (3.13)

for any t > 0 and f € LP(Q) provided 1 < p < ¢ < oo, then the estimate (B) is
obtained by combining (812) and (BL3). In fact, by using (B12), we estimate

101y = 2) 7 fllw(ray,

1 /°°
< [ PTTER O f 0 di
T(8) Jo rED

<Cp G (/ tﬁfle[Re(Z)*min{*w’O}}t{t—%(%—é) 1} dt) s
0

Here the integral on the right is absolutely convergent, since z satisfies (89) and
3 satisfies (B). This proves (B). Therefore, all we have to do is to prove the
estimate (B13).

To this end, we recall the estimate (Z13) from Proposition Z4. We define the
right member of (E13) as Ky(t,x — y), i.e.,

|z|2
Ko(t,x) = C’gt_%ew’fe_T, t>0, zeR

Now, letting 1 < r < oo, we prove that
1Ko (08, )| 1y, < CO 2070 {72075 4 1) min{-w 0}t (3.14)

for any ¢ > 0, where C' > 0 is independent of . We estimate L"(Cy(n))-norms of
Ky(0t,-) for the case n = 0 and n # 0, separately.

The case n = 0: When 1 < r < oo, we estimate

_d — min{—w _r|m\2 T
1Ko (0, )| ricoon) < CaBt)~5 e~ mind }< / dm)
R

1
“d(1-1) min{—w0}t —lel? ' (3.15)
< Cy(0t) 21 e e 8 dx
R4

d
_ (87r)zr Coy (et)fg(lfi)efmin{fw,()}t'
ror

When r = 0o, we estimate
. z 2
o0t ey = Calor) Femi=so sy 80 (@10
< 02(9t)—g6— min{—w,O}t‘
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The case n # 0: We estimate

1
Z [ Ko (0L, ) | Lr(comy) < Z [ Ko (0, )| Lo (Con)) [ Co(n) |+
n#0 n#0

. x 2
=y et S (sup o E )l
n0 z€Cy(n)

< Cuft) te e (05 ) 09

where we used in the last step

03 1
| 2n! < |z ( < 2|05n|), x € Cy(n).

Here, by an explicit calculation, we see that
> 2 d o0 2 d
St —o( o) <o [Tefan) - svaratet
n=£0 j=1 0
Summarizing the estimates obtained now, we conclude that
D (6t ey < ColBt) 260 8v/2)'mi e - (6

(8\/_) 71_202 d( -1 —min{—w,O}t

wla
3=

M

for any r € [1, 00].
Combining the estimates (B13), (B18) and (B1), we get (B1d), as desired.

We are now in a position to prove the key estimate (BL3). Let f € LP(Q) and
f be a zero extension of f to R?. Thanks to the estimate (2I3) from Proposition
24 ie.,
0<e™(ry) < Ky(t,z —y) aecxzycQ

for any ¢ > 0, we estimate

e Fllw o, < H/S2K(0t,~,y)|f(y)’dy

IP(L9)g

Ko(6t,- — y)|f(y)| dy

a H R 1P (L9)g (RY)

Applying the Young inequality (B77) to the right member, and using the inequality
(B14), we deduce that

e t&vaHl . < 3d||K0(9t, -)IIp(Lr)g(Rd)||f||lp(LP)e(Rd)
< 09—4<1—l>{t—4<1—1> + Ly O £l ga)

d

— 005G {t~ 5G9 + l}e™ min{= WO}t||f||LP
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provided that p, q,r satisfy 1 < p,q,r < oo and 1/p+ 1/r — 1 = 1/q. This proves

Finally, the proof of the assertion (ii) is done by the same argument as in (i),
if we apply (Z14) and (218) to the identity (BX12). So we may omit the details.
The proof of Proposition B3 is finished. O]

3.3 Commutator estimates

In this section we shall prepare commutator estimates. These estimates will be
also an important tool in the proof of Theorem BZ. To begin with, we introduce
operators Ad*(L) for some operator L as follows:

Definition. Let X and Y be topological vector spaces, and let A and B be contin-
uous linear operators from X and Y into themselves, respectively. For a continuous
linear operator L from X into Y, the operators Ad*(L) from X into Y, k= 0,1, ...,
are successively defined by

Ad%(L) =L, Ad*(L)=Ad""YBL-LA), k>1.

It is known that the following recursive formula holds: There exists a set of
constants {C(n, m):n>0,0<m< n} such that

B"L = i C(n, m)Ad™(L)A"™ (3.18)

m=0
(see Lemma 3.1 in [45]).

The result in this section is concerned with L*boundedness for Ad*(e=#Fv.e),
where Ry g is the resolvent operator defined by letting

Ryg:=(0Hy + M), 6>0
for a fixed constant M with M > max{—inf o(Hy),0}. Hereafter we put
X =9, V=209

where we denote by Z(Q2) the topological vector space consisting of smooth func-
tions on {2 with compact support, and by 2'(Q2) its dual space, and we take A and
B as

A:B:xj—ﬁénj for some j € {1,--- ,d}. (3.19)

Then we shall prove here the following.

Proposition 3.4. Suppose that the potential V' satisfies assumption A. Let A and
B be the operators as in (B19). Then for any non-negative integer k, the following
assertions hold:
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(i) There ezists a constant C > 0 depending on d, k and M such that
— k
A (e #Re0) | gayy < COF(1+ 1) (3.20)
foranyt eR and 0 < 0 < 1.

(ii) If V_ further satisfies assumption C given in section 23, then the estimate
(B=20) holds for anyt € R and 6 > 0.

We prepare some lemmas in order to prove Proposition B4. First, we show
L*-boundedness of Ry and V Ry.

Lemma 3.5. Suppose that the potential V' satisfies assumption A. Then the fol-
lowing assertions hold:

(i) There exists a constant C' > 0 such that

1

Ryl 4 < 3.21

1ol zece) < M + min{inf o(Hy),0}’ ( )

IV Rvsllaa@y < €O (3.22)

forany 0 < 6 < 1.
(ii) If V_ further satisfies ||V_| k) < oo, then
| Rvoll a2y < M7, (3.23)
' -3
19 vl oy < 3074 (1= DE0) ot g

for any 6 > 0.

Proof. First we prove the assertion (i). Since Hy is the self-adjoint operator on
L*(Q), we obtain (B2T), (822), (823) and (B=d) by the spectral resolution. In
fact, we have

o 1
Ryoflie) = || By, WS
” V,9fHL2(Q) \/i;'lfO'(Hv) (9/\+M)2 H 'HV( )fHL2(Q)
1 . .
< M2 Hf”%%g) if lnfa(HV) 2 0’
= 1

2 o
[M + inf o(Hy)|? ||f||L2(Q) if inf o(Hy) <0

for any f € L*(Q), since 0 < # < 1. This proves (B=20).
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Next we consider the estimate for VRy,f. Since Ryyf € D(Hy) for any
f € L*(Q), we estimate

IV Ry = [ (VRval -V Ruaf +VIRyaf = VIBvaf ) do
Q
— (M Rvaf. Reaf )iy + [ (V- = Vo)l Buaf P do
Q

< (HvRvef, Rvef)r2q) + / V_|Ryef|* dx
Q
=]+ 11

Then we estimate the first term [ as

= A
I:/ || By, (N f]32
info(iy) (OA + M)? [ Erey (M 1z

. /00 gt O |
N max{inf o(Hy),0} ON+M OX+M

< Mg / A Erey ) f 20
info(Hy)

= M_19_1||f||%2(9)-

d|| Erey (M) flIZ20

As to the second term 11, by using the inequality (E23) for € € (0, 1) from Lemma
P23 and estimate (B=2), we have

1T < el|[VRygfl7200) + bl Rvofll7z

i (3.25)
< el VRvofl7a) + Co-07 | fll 720

since 0 < # < 1. Combining the above three estimates, we conclude the estimate

We now turn to the proof of (ii). In this case we have info(Hy) > 0. It is
sufficient to prove only the estimate (B24) for V Ry, f, since the proof of (B=23)
is similar to (B2ZD). If V_ satisfies ||[V_||x, @) < oo, then we have, by using the
inequality (Z4) from Lemma 23,

V-l &)

11 <
o 4y

IV Ry fll720)-

Using this estimate instead of (B=23), the estimate (B=2) is proved for any 6 > 0

in the same way as (B222). The proof of Lemma B3 is complete. O
Next, we shall introduce two formulas on the operator Ad.

Lemma 3.6. The sequence {Ad"(Ry)}, of operators satisfies the following
recursive formula:

Ad°(Ryy) = Rvg, Ad'(Ryy) = —20Ry,40,, Rvp, (3.26)
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Ad*(Rvy) = 0{ — 2kAd* " (Rvp)0s, Rvo + k(k — 1)Ad* " (Rye)Rve}  (3.27)
for k > 2.
Lemma 3.7. For all k > 0, the following formulas hold:

AdFFL(e—itRve) (3.28)

t
:‘i/ D Tl ks, kg Ad™ (€70 ) Ad™ ! (Ryg) Ad™ (0700 ) dis
O kitha+hs=k

for each t € R, where the constants T(ky, ko, k3) (ki1, ko, ks > 0) are trinomial
coefficients:

k!
Dk, ko, k3) = T lhleal”
Proof of Lemma 3@. When k = 0, the first equation in (B728) is trivial. Hence it
is sufficient to prove the case when k£ > 1. For the sake of simplicity, we perform
a formal argument without considering the domain of operators. The rigorous
argument is given in the final part.
Let us introduce the generalized binomial coefficients I'(k, m) as follows:

k!
L(k,m) =< (k—m)lm!’
0, k<mork<D0.

k>m >0,

Once the following recursive formula is established:

E

-1
Ad*(Ryg) = — Y T'(k,m)Ad™(Rye)Ad" ™ (0Hv)Ryy, k> 1, (3.29)
0

3
]

the identities (B328) and (B=27) are an immediate consequence of (B29), since
Ad'(0Hy) = 200,,, Ad*(0Hy) = —20, Ad*(6Hy) =0, k> 3.

Hence, all we have to do is to prove (B229). We proceed the argument by induction.
For k =1, it can be readily checked that

Ad'(Ryy) = zjRyy — Ryez;
= Ryg(0Hy + M)xjRyy — Rygz;(0Hy + M)Ry,
= Ryy (Qvaj —xj- QHV)RV’Q
= —RyyAd' (0Hv) Ry
= —I'(1,0)Ad°(Ry,g)Ad" (6Hy) Ry
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Hence (B29) is true for £ = 1. For [ > 2, let us suppose that (B229) holds for
kE=1,...,1. Writing

Ad"Y(Ryy) = x;Ad (Ryp) — Ad'(Ry )z, (3.30)
we see that the first term becomes

l’jAdl (RVﬁ)

_xj{ _ li I, m)Adm(RV,g)Adl‘mw%v)}Rv,e

m=0
-1
= = > T(l,m){Ad™ (Ry,p)Ad""(0Hy) + Ad™(Ry,g)Ad" ™ (0Hy) } Ry
m=0
-1
— > T(l,m)Ad™(Ry,)Ad""™(6Hy )x; Ry
m=0

:Zjl + IQ.

Here I; is written as

l
Iy ==Y T(l,m—DAd" (Ryg)Ad™" (6Hy) Ry
m=1
-1

— ) T(l,m)Ad™(Ry,)Ad" ™ (0Hy) Ryg

m=0

l
==Y T(l,m—1)Ad™(Ry)Ad" " (0Hy) Ry

m=0

l
— > T(1,m)Ad™(Ry)Ad""" " (6Hy) Ryg + Ad'(Ry,p)Ad' (M) Ry
m=0
l

==Y T(l+1,m)Ad™(Rys)Ad" ™ (0Hy) Ry + Ad'(Ry,e) Ad' (6Hy ) Ry,

m=0
where we used in the last step
I'(lym—=1)+T(,m)=T(1+1,m).

As to Iy, we write as

-1

I = —{ > orq, m)Adm(Rvﬂ)Ad’—m(QHV)RV,G}((mv + M)z Ry
m=0
= Ad'(Rv)(0Hy + M)z, Ryp.
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Hence, summarizing the previous equations, we get

z;Ad (Ry) = Xl: (14 1,m)Ad™(Rye)Ad"™ ™ (0Hy)
m=0
+ Ad'(Ryp){Ad" (0Hv) + (0Hv + M)z, } Ryp.
Therefore, going back to (8230), and noting
AdY (OHy) + (0Hy + M)z = 2;(0Hy + M),

we conclude that

Ad" (Ryy) ir [+ 1,m)Ad™(Ry)Ad " (0Hy)
" + Ad'(Rvp) {Ad" (0Hy) + (0Hv + M)z, } Rvg — Ad'(Ry,)z;
=— Xl: I(1+1,m)Ad™(Ry)Ad™ ™ (0Hy)
m=0
+ Ad'(Ryg)z;(0Hy + M)Ryy — Ad'(Ryg)z;
=— zl: (14 1,m)Ad™(Ry o) AdT " (0Hy).

m=0

Hence (B29) is true for k =1+ 1.

The above proof is formal in the sense that the domain of operators is not
taken into account in the argument. In fact, even for f € C5°(Q2), each z;Ryyf
does not necessarily belong to the domain of Hy,, since we only know the fact that

Ryef € D(Hy) = {u € Hy(Q) : /Viu € L*(Q), Hyu € L*(Q)}.

Therefore, we should perform the argument by using a duality pair 4/ q(-, ) 2@
of 7'(Q2) and Z(Q) in a rigorous way. We may prove the lemma only for k£ = 1.
For, as to the case k > 1, the argument is done in a similar manner. Now we write

o (Ad (Rve) f, 9) o) = (Rvaf,2;9)120) — (2, f, Rveg) 12
= I —-1]

for f,g € C5°(). Since Ry f, Rvgg € Hi(Q), there exist two sequences { [, }n,
{gm}m in C5°(2) such that

fun — Ryof and g, — Rygg in H'(Q) as n,m — oc.
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Hence, since z; f,,, ;gm € C5°(2), we see that

I'= T (fo, 2;9) 12()
= T}Lrgo(xjfn, (OHv + M)Rv,69) 200
= lim {0(V(x;f0), VRv99)12(2) + ((0V + M)z; fn, Rv9) 120 }
= lim {0(V(2;fn), Vgm)r2) + (OV + M)z fr, gm)r2(2) }

n,Mm—00

= lim {Q(fnv axjgm)B(Q) +0(x;V fo, ng)L2(Q) + ((0V + M)xjfnagm)LQ(Q)}a

n,Mm—00

and in a similar way,

IT= lim {000y, fn, gm)i2) + 02V fr, Vgm) 2@y + ((OV + M)z fu, gm)12(0) }-

n,1Mm—00

Then, combining the above equations, we deduce that

o) (Ad (Rvp) f, 9) o) = lim  0{(fu, 0u,9m)12(2) — (O, frr Gm) 12(2) }

7n,M—00

= lim 60(=20y, fn, gm)r2(0)

n,Mm—00

—(—200,, Rvo f, Rv09)12(c)
=(—20Rv,00,,Rvof, 9)r2(5)

for any f,¢g € C3°(Q2). Thus (B=28) is valid in a distributional sense. In a similar

way, (BZZ0) can be also shown in a distributional sense. The proof of Lemma B8
is finished. O

Proof of Lemma [31. 1t is sufficient to prove the lemma without taking account
of the domain of operators as in the proof of Lemma BB. We consider the case
k= 0:

t
Ad! (e7 vy = —j / e~ BRve AQY (Ry g)e =) Bva (g (3.31)
0
for t > 0. We write
Adl (efitRV,g) — :L,jefithyg _ e*itRV,ng
t R (t—s)R
- _ s e—zs V""x'e_’ t—s)Ry.9 dS
| g, )
t
= —i/ e B0 (1, Ry g — Ryga;)e -9 ve gs
0

t
= —z’/ e #Rvo AdY (Ry g)e =) Rva g,
0

This proves (B=3T). The proof of (B28) is performed by induction argument. So
we may omit the details. The proof of Lemma B7 is complete. O
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We are now in a position to prove Proposition B.

Proof of Proposition [3-4. By Lemma B, we have

Ad’(Rvyp) = Rve, Ad'(Rvy) = —20Ry0,,Rvy, (3.32)

Ad*(Rvy) = 0{ — 2kAd* " (Rv9)0s, Rve + k(k — 1)Ad**(Ry)Rve}  (3.33)

for k > 2.

First we prove the assertion (i). Let 0 < 6 < 1. Since Ryy and 0., Ry, are
bounded on L*(Q) by (B21) and (B22) from Lemma B3, operators Ad*(Ry)
are also bounded on L*(Q) for each k > 0. Before going to prove the estimates
(B=20), we prepare the following estimates for Ad*(Ry): For k > 0, there exists a
constant C), > 0 such that

IA* (Ry.g) || w2y < Cif? (3.34)

for any 0 < 6 < 1. We prove (B=334) by induction. For k = 0,1, it follows from the
identity (B332) and estimates (B=21) and (B22) in Lemma BH that

IAQ°(Rvo)ll#2@) = [ Rvellzz20)) < Co,

IAd (Ryp)||2()) = 20| Rv.00, Rvell a(12(0)) < C167.
Let us suppose that (BZ34) is true for k£ € {0,1,...,l}. Combining identities (8233)
and estimates (B221) and (B22) from Lemma B3, we get (B234) for k =1+ 1:

IAA (Ryg) || 2222
=|6{ — 2(1 + 1) Ad'(Rv,0)0s, Rv,o + (1 + 1)Ad" " (Ry,9) Ry }
<201 + DO{||Ad (Rv,0) || 2 () |10z, Rvia | (r20)
+ |Ad " (Rvo) | a2 ) || Bvioll a2 }

BL2(Q)

<Cpa0{07-073 407 )
<Ci110 =
Thus (B=34) is true for any k£ > 0.
We prove (B20) also by induction. Clearly, (B20) is true for £ = 0. As to the
case k = 1, by using the estimate (B234) and the formula (B=28) with £ = 0 in
Lemma B72:

t
Adl(e—ith,e) — —Z/ e_iSRV’GAdl(Rvﬁ)e_i(t_s)Re’V ds
0
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for each t € R, we have

IAQ (&7 0) | a0
< /0 ltl [l lpz2( [IAQ* (Byg) o le ™ |l az2(0y) ds
< /It 02 ds < C107 (1 + |¢])
0
for any ¢t € R. Hence, (B220) is true for k = 1. Let us suppose that (B=20) holds

for k € {0,1,...,1}. Then, by using the estimate (B=34) and the formula (B=28) in
Lemma B, we estimate

HAdl+1 <€_itRV’9)

B(L2(Q))
<O / A (€™ ) |y 2y
0 1 tlotiz=l
lot1 l —zt SR
HAd2 (Bro)l| 2o [Ad® (€771 5 12y ds
<Cz+1/ (14 |s|)" i‘9§(1+‘t_5|)l3d3
(U P A

< O (14 e

for any ¢t € R. Hence (B20) is true for kK = [+ 1. Thus (8220) holds for any k& > 0.

The assertion (ii) is proved in the same way as assertion (i) by using the
estimate (B724) from Lemma B instead of (B=22). The proof of Proposition B4 is
complete. O

3.4 Estimates for spectral multipliers in amal-
gam spaces

In this section we prove the following. The following lemma is a result on estimates
for spectral multipliers ¢(0Hy ) in scaled amalgam spaces.

Lemma 3.8. Let ¢ € . (R). Suppose that the potential V satisfies assumption A.
Then the following assertions hold:

(i) There exists a constant C' > 0 such that
|p(OHY )| a1 (£2)y) < C (3.35)
forany 0 <6 < 1.

(ii) If V_ further satisfies assumption B, then the estimate (B233) holds for any
0> 0.
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For this purpose, let us introduce a family @7, of operators, which is useful to
prove the lemma.

Definition. Let a > 0 and 6 > 0. We say that L € o, (= o, ) if L € B(L*(Q))

and

L
L], = sup ||| - —=62n|*Lxc,m) < 00. (3.36)

e BL2(S)

First we prepare two lemmas.

Lemma 3.9. Let 0 > 0, and let L € <, for some o > d/2. Then there exists a
constant C' > 0 depending only on o and d such that

_d d 1—2
LA N2y, < C{ LNz + 05 ILNE N Ll 75 ) ) I 2y (3.37)
(L2(9))
for any f € I'(L?),.
Proof. 1f we prove that
Z Xy m) LXCom) flI L2 ()

meZd
1—4

_4a a
< (I hazy + 0~ NLIE I ) Ixcnon o)

for any @ > 0 and n € Z%, then, summing up (5-23) with respect to n € Z¢, we
conclude the required estimate (B=37):

LAl < D0 D IxcomyLxcom fllz@

n€Zd mezd
_d d 1—%
< O(ILlas@y + 0 NENE NLI s F ) )1l e,

for any € > 0 and f € ['(L?)y. Hence we have only to prove the estimate (523).
Let n € Z? be fixed. For any w > 0, we write

Z X Cotm) Lxom) 2@

meZd

1 1 —Q 1 1 o
= Y 02m—02n7*02m — 02n]*||Xcom LXCotn fllz20)

[m—n|>w

+ > Ixeom Lxcom fllzze

jm—nl<w
=:1(n)+ 1I(n).

By using the Schwarz inequality we estimate I(n) as

1

1 1 90
( S (6bm — finf? ||xC9(m>on9<n>f||iz<m) C (3.39)

|m—n|>w
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The first factor of (B38) is estimated as

d
S om-n =Y m <[] Y (4 Im)F

|m—n|>w |m|>w Jj=1 |mj|>%

d d
<c[[[ _ oHaro[w =
j= {0>%}

j=1

(3.39)

since aw > d/2. As to the second factor of (B23R), noting that

1

=
3
RS
S

for any « € Cp(m), we estimate

1 1 o
Z ’92771 - 92”’2 HXCg(m)LXCQ(”)fH%Q(Q)

[m—n|>w
= Z |9$m—9§n|2a/

) |Lxcym) f]* dz

|m—n|>w Co(m
§22a Z / “ZL’— 0%n|aLXCa(n)f{2dI.
|m—n|>w Co(m)

Moreover, by the definition (B338) of || L||,, we estimate

Z /C (m) “JZ - 9%n|aLXC'e(n)f‘2de‘ < H| . _0%n|aLXC'g(n)in2(Q)
o(m

|m—n|>w
2
< LG xeom fllzz)-

Hence, summarizing the above two estimates, we deduce that

1 1 oy a 2
> 162m = 020 |Ixcyom Lxcom fl72i0) < 22 NLIEIXCo ) FIlF2i0)- (3-40)

|m—n|>w

Thus we find from (B=38)—(820) that

@

I(n) < C(d, )0 3w DL, Ixcoim fll 2. (3.41)

Let us turn to the estimation of I1(n). It is readily to see that

I](n)g( Z 1)2( Z ||XCg(m)LXC’g(n)f||%2(Q))

[m—n|<w [m—n|<w

1
2

1
. 3
< (1+w2)( > ||X09<m)LXce<n>f||%2(m) '

Im—n|<w
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Since

2
( > ||xC0<m)LXoo<n)f|Iiz(m) < Ll zczz@) 1xcom) fll 2 ),

Im—n|<w

we deduce that
d
II(n) S (1 + CL)?)HL|‘3;(L2(Q)) HXCG(n)fHLQ(Q) (342)
Combining the estimates (B21) and (B27), we get

> Ixcoem Excom fllzz@)

meZd

<C(d, ) {0 3w DL, + (1 +w

d
2

MLz Fixeum ez

1
L o
w:( L, ) 6,
I LNl (220

we obtain the required estimate (5=23). The proof of Lemma B is complete. [

Finally, taking

NG

Lemma 3.10. Let ¢ € L (R). Suppose that the potential V' satisfies assumption
A. Then for any a > 0 the following assertions hold:

(1) The operator ¢(0Hy ) belongs to <, for any 0 < 6 < 1. Furthermore, there
exist a constant C > 0 such that

llo(0Hw)ll, < Co% (3.43)
forany 0 <6 < 1.

(ii) If V_ further satisfies assumption C given in section Z3, then the same
conclusion as in the assertion (i) holds for any 6 > 0.

Proof. To begin with, we prove the assertion (i). Let 0 < 6 <1 and M be a real
number such that
M > max{—inf o(Hy),0}. (3.44)

We may assume that supp ¢ C [—M, 0o) without loss of generality. Let us choose
¥ € C§°(R) such that

() = x(p)o(p — M),

where y is a smooth function on R such that

1 for0<pu< +1,
=H=0 it
X(n) = D dﬂi o(iv)| , (3.45)
TS A e ()
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When we consider the operator §Hy for 0 < # < 1, it is possible to take, indepen-
dently of 6, the real number M satisfying (B24). Then we write

U(Ryp) =V((0Hy + M)™") = ¢(0Hy).

In order to prove the estimate (823), it suffices to show that

oo

le(Rvo)ll, < CO% / (1 + ) b(0)) dt, (3.46)

where @/3 is the Fourier transform of ¢ on R and the integral on the right is abso-
lutely convergent, since ¢ € .(R). The proof is based on the formula:

o0

wlfve) = (n)t [ ety dr (3.47)

[e.9]

Applying the formula (821), we obtain

L
¥ (Bvo)ll, = sup, I+ =02n|*¢(Ryo)xcym)
ne

B(LA()
_1 > L o —i 7
< (2m)"2 sup/ |H-—62n] e tRV’QXcg(n) @(LQ(Q))W(t)’dt-
n€zZd J —oco

Let N be a positive integer. Thanks to the formula (BI8) with A = B = z;—0'/?n;
and L = e~ "#ve we find from the assertion (i) in Proposition B4 that

1 "N —itR
I =07n ¥ e ey | g2

N
— 1 —
< > CNB)IAL @) [z Il - =001 xcum | g2y

Now, it follows from Calderén-Lions interpolation theorem (see Theorem IX.20 in
Reed and Simon [66]) that

L oo —i B «
[l - =02n|%e "0 x oy ) S OO+ 1)

B(L2(Q)
for any @ > 0 and t € R. Thus we conclude (B48), which proves (B43).

As to the assertion (ii), noting that inf o(#Hy ) > 0, we can prove the estimate
(823) for any 6 > 0 in the same way as assertion (i) by using the assertion (ii) in
Proposition B4 instead of assertion (i) in Proposition B4. The proof of Lemma
B0 is finished. O]
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Proof of Lemma [38. We prove only the assertion (i), since the proof of (ii) is the
same as that of (i). Let 0 < 6§ < 1. By Lemma B0, the operator ¢(6Hy ) belongs
to 7, for any a > 0. Choosing o > d/2, and applying Lemma B to ¢(6Hy ), we
have

_d d 1- 2
|60 sz < C(I60H awa@y + 0 Nl NOOH) iy )

Hence, combining the above estimate with (823) in Lemma B0, we conclude
(8234). Thus the proof of Lemma B3R is finished. O

3.5 LP-Li-estimates for spectral multipliers

In this section we prove Theorem B, uniform LP-Li-estimates for ¢(60Hy ) with
respect to a parameter 6.

For this purpose, we prove the following uniform LP-estimates.

Theorem 3.11. Let ¢ € S(R) and 1 < p < oo. Suppose that the potential V
satisfies assumption A. Then ¢(Hy) is extended to a bounded linear operator on
LP(Q2). Furthermore, the following assertions hold:

(i) There ezists a constant C > 0 such that

|p(OHV)|| z(Lr )y < C (3.48)
forany 0 <6 < 1.

(ii) If V_ further satisfies assumption B, then the estimate (B4R) holds for any
6 > 0.

Proof. First we prove the assertion (i). Let 0 < 6 < 1. It suffices to show L'-
estimate for ¢(0Hy). In fact, if L'-estimate is proved, then L*-estimate is also
obtained by duality argument, and hence, the Riesz-Thorin interpolation theorem
allows us to conclude LP-estimates (B48) for 1 < p < oc.

Let us proceed the proof of L'-estimate. Let f € L'(2) N L*(Q). By (84) for
p=1and g = 2, we estimate

|p(OH V) fllLr ) < ﬁ”(b(@?-[v)fuzl(m)@- (3.49)
Here, given a real number § > d/4, we choose ¢ € .7 (R) as

d(N) = A+ M)Pp(\) for A € o(Hy), (3.50)
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where M is a real number such that M > max{w, 0}, where w is the constant in
Proposition Z4. Then, by Lemma B and Proposition B3, we obtain

[(OHV) fllir 22y, = |0(OHV) (OHy + M)P(0Hy + M) fllin 12,
= [|p(0Hy ) (OHy + M) fllnre,
< Cll(OHy + M) fllnwe,
< 0075 o).

Therefore, combining (B29) with the above estimate, we conclude that

[o(OHv) fllr) < Cllf e

for any 0 < # <1 and f € L'(Q), where the constant C' is independent of 6.

The assertion (ii) is proved in the same way as assertion (i) by using assertions
(ii) in Proposition B33 and Lemma B0 instead of assertions (i) in Proposition B3
and Lemma B0, respectively. The proof of Theorem BT is complete. O

Proof of Theorem @1. We prove only the assertion (i), since the assertion (ii) is
proved in the same way as assertion (i). Let 0 < § < 1 and M be a real number
such that M > max{w,0}, where w is the constant in Proposition Z4. Given a
positive real number 3 satisfying 5 > (d/2)(1/p — 1/q), we choose ¢ € .#(R) as

d(N) = AN+ M)Pp(N) for X € o(Hy).
By using Proposition B3 and Theorem BT, we estimate

16(OHy )| (v @), La(0)) = |G(OHY)(OHy + M) (0Hy + M) ™| 510 (), 190
< N (OHV) |z | (0Hy + M) || z10(),29(0)
<o G

for any 1 < p < ¢ < 0o. The proof of Theorem BT is complete. O]

3.6 Gradient estimates for spectral multipliers

In this section we prove Theorem B™; LP-L%-estimates for Vo(0Hy ).

For this purpose, we prove the following lemma.

Lemma 3.12. Let ¢ € L (R). Suppose that the potential V' satisfies assumption
A. Then the following assertions hold:

(i) There exists a constant C' > 0 such that
IVO(OHY )| za1(£2)s) < co> (3.51)
forany 0 < 6 < 1.
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(ii) If V_ further satisfies assumption B, then the estimate (B31) holds for any
6> 0.

Lemma B2 follows from the following lemma in the same way as the proof of
Lemma B8.

Lemma 3.13. Let ¢ € L (R). Suppose that the potential V' satisfies assumption
A. Then for any a > 0, the following assertions hold:

(i) The operator Vp(0Hy ) belongs to <, for any 0 < 0 < 1. Furthermore, there
exist a constant C' > 0 such that

IVS(0HY) | a(z20y) < CO72, (3.52)

IV, < Co™ (3.53)
for any 0 <6 < 1.

(ii) If V_ further satisfies assumption C given in section Z-3, then the same
conclusion as in the assertion (i) holds for any 6 > 0.

Proof. First we prove the assertion (i). Let 0 < 6 < 1. We prove the estimate
(B52). Since ¢(0Hy)f € D(Hy) for any f € L*(), we estimate

IV6690) ) = (bl . 0670 Py — [ V1ol 2o
< (M d(0H0) . 603y + [ V-16(0H0) P
=T+ 1I.
Then, applying Theorem B to Hy ¢(0Hy ) f and ¢(0Hv)f, we estimate I as
I <|[Hvo(0Hv)fll 2@ l9(0Hy) fll 2y < COTH Fl172(0)-
As to the second term I1, by using the inequality (223) from Lemma P73, we have

1T < el[Vo(OHy) flI72() + bello(0Hy) FlI 720
< ellVo(OHy) flIZ2 () + COO07 1 FlI72(q)

for any € > 0. Here we choose € as 0 < ¢ < 1. Then, combining the above three
estimates, we conclude the estimate (B252).
Next we prove the estimate (B53). Let M be a real number such that

M > max{—inf o(Hy),0}.
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We may assume that supp ¢ C [—M, 0o) without loss of generality. Let us choose
¥ € C§°(R) such that

U(p) = x(wp " o(u™" = M), (3.54)
where x is a smooth function on R satisfying (823). Then we write
Vo(0Hy) = VRyg(Ryy).
Hence we have only to show that there exists a constant C' > 0 such that
IV Rvav(Ryo)ll, < CO°2 (3.55)

for any 0 < 6 < 1.

It suffices to show the estimate (B23) for positive integers v by using Calderén-
Lions interpolation theorem. We prove (B53) only for o = 1, since the cases o > 2
are proved by the induction with Lemmas B8 and B™0. Let j € {1,2,...,d} be
fixed. By the formula (B27), we have

102; Ry 01 (Rl

1
= sup |- =030 9, Rvot (Rv)xcool| raqen) (3.56)
_1 o 1 —q 7
< sup (2m)~2 / H| - —02n| 0., Ry pe tRGXOG(n)||%(Lz(9))|¢(t)| dt.
nez —00

If we show that
L —i
Il - —02n| 9, Rvge tReXCg(”)H%‘(LQ(Q)) < CO(1+[t]) (3.57)

for any t € R and n € Z%, then we conclude from (B358) that

1 [ R i
H’aijvﬁw(RV,G)ml < 0(271') 2 / (1 + |t‘)|1/1(t)| dt( — (00 = )
for j =1,2,...,d, which is the estimate (B355) for & = 1. Hence we pay attention
to prove (Bh7). We write
(xg — H%nk)amj Ry ge~Hve
— axj [(xk — Hénk)Rvﬁe—z‘th,e] _ 5ijV,6€_itRV’9
= 8ijV,9(33k — génk)e—ith,e + aijdl (Rvﬁ)e—ith,e _ 5ijv796_itRV’9
=0y, Rype ™ (z, — 02ny,) + Oy, RypAd! (e~ )
+ 836]. Adl(RVﬁ)e_itRVv" — 5ijV,9€_itRV’G
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for k = 1,2,...,d, where we choose A and B in the operators Ad'(Ry,) and
Ad'(e7Fve) as A = B = x5, — 0/?n, and §j;, is Kronecker’s delta. Then we
estimate

||(xk — Q%nk)ﬁijV’ge_itRGXCg(n) B(L2(9)
< ||0x, Rv,ge™ v (2, — 02 n1) Xy ()
+ |0z, RvoAd' (67 ) X0y (m)
+ H@IjAdl(Rvﬁg)e_itRVﬁXCg(n)

= I+ 1T +1I1+1V

|%(L2(Q))

B(L2(Q))
y T H5ijV,9€_ZtRV’9XCG(n)

B(L2(Q 2(L*(Q))

for k=1,2,...,d. Noting that there exists a constant C' > 0 such that

for any # > 0 and n € Z¢, we use the estimate (822) from Lemma B3 to deduce
that

I S Ha:rj RV,G

- 1
azaplle” Nswao 1@ = 02m)x0,m lsu2@) < C.

As to the second term [I, by using (B20) for & = 1 from Proposition B4 and
(B22) from Lemma B, we estimate

1< HaijVﬁ %(LQ(Q))HAdl(e_itRVﬁ)||%’(L2(Q))”XC€(”)||5€(L2(Q))
<CO7-05(1+Jt]) = C(1+ Jt]).
As to the third term /1, we use the formula (B28) from Lemma B8:
Ad'(Ryg) = —20Ry 0., Ry

Then, by using (B22) from Lemma B, we estimate

11T = 26||0,, Ry,00., Rv,oe "™ X ¢y ()

= 20||an Ry H,@(m(g)) Haxk Rvg
<CH-072-672 =C.

As to the fourth term 'V, we readily see that

1V < HRWH,@(B(Q))He_itRV’G

B(L2(Q))
—itRy,g

syl XCom) | (12 ()

%(LQ(Q))||XCG(")||33(L2(Q)) <C.

Combining all the above estimates, we arrive at

1 —i
H(xk - 02nk)aijV,96 tReXCg(n) Q) S C(]‘ + ‘t’)

B(L?

for k =1,2,...,d, which imply the estimate (B54). The assertion (ii) is proved in
the similar way to assertion (i). In fact, we have only to use the inequality (24)
instead of (233), and assertions (ii) instead of assertions (i) from Lemmas B3 and
BTd. Thus the proof of Lemma B3 is finished. O
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Proof of Theorem B2. We prove only the assertion (i), since the assertion (ii) is
proved in the same way as assertion (i). Let 0 < 6 < 1. It suffices to show L!-
estimate for Vo(0Hy ). In fact, L?-estimate has been already proved in (B53Z).
If L'-estimate are proved, then LP-estimates are obtained by the Riesz-Thorin
interpolation theorem. Hence we conclude the required LP-Li-estimates (B2) in a
similar way to the proof of Theorem Bl

Let us turn to the proof of the L'-estimate. By (Bd) for p =1 and ¢ = 2, we
estimate

IVo(OHY) fll ey < 05V SOHY) i 1),

Let M > max{w,0} and 8 > d/4, where w is the constant in Proposition 2. Here
we choose ¢ € .7 (R) as

d(N) = AN+ M)Pp(\) for X € o(Hy).

By Lemma B2 and Proposition B33, we estimate

| /\

IVO(OHY) fllinr2), = || G(OHy)(OHy + M) fllure),
03 .0 %|

|fHL1(Q)-

Thus, combining the estimates obtained now, we conclude the required L!-estimate

IVo(OHY) [l < CQ—éHfHLl(Q)

for any 0 < # <1 and f € L*(Q). The proof of Theorem B2 is complete. O

3.7 A remark on smoothness of symbols

In this section we show to weaken the assumption that ¢ € .#(R) in Theorems
BT and B2

We can improve the assumption that ¢ € (R) in Theorem BT, and even
Theorem B2. Namely, the function ¢ in Theorem BTl can be taken from the
weighted Sobolev spaces. In fact, let m be an integer with m > (d + 1)/2, and
f a real number with 5 > d/4 + (d/2)(1/p — 1/q). If the measurable potential
V' satisfies assumption A, then there exists a constant Cy > 0, independent of ¢,
such that

oM aqurian ooy < Col |1+ 1-) 5] (3.59)

for any 0 < 6 < 1. Needless to say, once the estimate (B19) is established for
0 < 0 < 1, after some trivial changes, if we further suppose assumption B on V|
then the estimate (B5d) holds for any 6 > 0. We prove this estimate only for
0 < 6 < 1. To begin with, we show (B59) for p = ¢. Let us define ¢ as in (B30):

o(N) = (A+ M) (X)) for X € a(Hy),
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where 3 > d/4. We note that
l60HV) | 2z2@) < 9]l

for any 0 < 6 < 1. Indeed, we have:

o0

16(60H) f 11720 =/ [(ON) [ dl| Eryy (N f 1220

info(Hy)
<10l 11720

for any 0 < # < 1. Then, following the proof of Theorem BT, we estimate

6OH aren < C (16l +6 2 I0EHNIE 16135 (3.60)

for any o > d/2 and 0 < § < 1. To estimate the quantity [|¢(0Hy)]|,, let us
choose 1 such that

U(p) = x(p)d(u™" — M), (3.61)

where x is a smooth function on R satisfying (843). Then we write

G(OHy) = ¥(Rvyp).

From the estimate (B48) in the proof of Theorem BT, we get, by using Schwarz’
inequality and Plancherel’s identity,

o0

|Wwwmms0%/‘u+MWW@Ma

—00

< CG%H(l + | ’ Da_mHLz(R)”(l + ‘ ' Dm&HLz(R)
= CO% ¢ || amm),
provided that the integer m satisfies

- +1>d+1
m « - _—.
2 2

Hence, noting from the definition (B&) of 1 that

1400 Frm
2
~(M‘l—M)} dp
0o . m. . poo k 2
SC{LM(HV)|¢()\)|2()\+M)2d>\+;/mfamv d‘ik{(HM) aﬁ(/\)} d)\}
<cfosr-pod,,
<cllaxi “”*4\
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we obtain

~ a B+m
60, < CO% [t -5 (3.62)
Furthermore, by using Sobolev’s inequality, we have
10l = [+ MYy < CNA+1- D 0l - (369

Therefore, applying (862) and (BH53) to (860), we conclude that

[6OH ) zoay < Co || (1 +1-]

H™(R)

which implies (B9) for p = q.

In the case when p < ¢, we can also prove (B229) by the same way as above, if
¢ in the above argument is replaced by (A + M)*¢ for 3’ > (d/2)(1/p —1/q).
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Chapter 4

Besov spaces on open sets

In 1959-61 Besov introduced the Besov spaces in his papers [2,8]. Besov spaces
play an important role in studying approximation and regularity of functions,
and have many applications to partial differential equations. There are a lot of
literatures on characterization of Besov spaces, and we refer to the books of Triebel
[81,82,84] and Sawano [[71] for the details. We are concerned with Besov spaces
characterized by differential operators via the spectral approach (see [ll,8,9, 18,28,
14,79] and references therein).

If Q is the half space Ri, a bounded domain or an exterior domain in R¢ with
smooth boundary, then the theory of Besov spaces is well established by extending
functions on € to R? or restricting functions on R? to € (see [59,68,69,80-85]). In
this thesis we adopt a direct way, namely, we shall define Besov spaces on an open
set () as subspaces of the collection of distributions on {2 via explicit norms. In
the formulation we will face on the problem how to determine test function spaces
over 2 corresponding to the Schwartz space and the Lizorkin test function space on
R?. Recently, Bui, Duong and Yan introduced some test function spaces to define
the Besov spaces B;vq on an arbitrary open set, where s,p and ¢ satisfy |s| < 1
and 1 < p,qg < oo (see [B]). They also proved the equivalence relation among
the Besov spaces generated by the Laplacian and some operators, including the
Schrodinger operators, on the whole space R? with some additional conditions
such as Holder continuity for the kernel of semigroup generated by them. As to
the results on the Besov spaces generated by the elliptic operators on manifolds
or Hermite operators, we refer to [1,6-9,19,49] and the references therein.

To the best of our knowledge, it is necessary to impose some smoothness as-
sumptions on the boundary 92 in order to define the Besov spaces B, , and B;q
with all indices s, p, ¢ satisfying s € R and 1 < p,q < oco. In this chapter we
shall define the Besov spaces B, , and B;’?q generated by the Schrodinger opera-
tor —A + V with the Dirichlet boundary condition for all indices s, p, q without
any geometrical and smoothness assumption on the boundary OS2, and shall prove
the fundamental properties such as completeness, duality and embedding rela-
tions, etc. Furthermore, regarding the Besov spaces generated by the Dirichlet

53



Laplacian as the standard one, and adopting the potential V' that belongs to the
Lorentz space L%"’O(Q), we shall establish the equivalence relation between the
Besov spaces generated by the Dirichlet Laplacian and the Schrodinger operators.
The motivation of the study of such properties and equivalence relations comes
from their applications to partial differential equations, and one can consult the
papers of Jensen and Nakamura [44, 45], Georgiev and Visciglia [28], D’Ancona
and Pierfelice [I8] and Iwabuchi [40].

The arguments in this chapter are based on ones in Iwabuchi, Matsuyama,
and Taniguchi [41]. Due to the spectral decomposition of Hy, we can define the
Sobolev spaces H*(Hy ) by letting

={feL’(Q):(I+Hy)2f e L*Q)} fors>0. (4.1)

Then, the regularity and boundary value of functions in H*(Hy ) are determined
by Hy. In particular case @ = R? and V =0, i.e., Hy = —A on L*(R?), H*(-A)
coincide with the standard Sobolev spaces defined via the Fourier transform (also
called the Bessel-potential spaces). We shall apply the above characterization of
H?*(Hy) to those of the inhomogeneous and homogeneous Besov spaces.

Let us recall the definition of test function spaces on R? and the classical Besov
spaces, i.e., spaces when Q@ = R? and V = 0. It is well known that the inhomo-
geneous Besov spaces and homogeneous ones are characterized as subspaces of
S'(R?) and .§(RY) by the Littlewood-Paley dyadic decomposition of the spec-
trum of v/—A, namely, Bs (R%) and B (R?) consist of all f € .7/(R%) and .7 (R?)
such that

1185,y ty = 1 F 0 UEDF £ o ey
+ {29077 6;(1€DZ Fll e }yepllingy < 000 (4:2)

11 ey = {2717 65 (1EDF fllio@e } seplloz) < 00 (4.3)
respectively, where {1} U {¢;}, is the Littlewood-Paley dyadic decomposition (see
(B12)-(E1d) below). Here .#/(RY) is the space of the tempered distributions on

R¢, which is the topological dual of the Schwartz space .7 (R?). The space .7 (R?)
consists of rapidly decreasing functions equipped with the family of semi-norms

sup (1 + |z|*) 2 Z 02 f( M=1,2---. (4.4)

d

Z3(R?) is the topological dual of the Lizorkin test function space .#,(R?), which
is the subspace of .(R?) defined by

Fo(RY) = {f € S (RY) : /R 2 f(z)dr = 0 for any a € Ng} (4.5)
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endowed with the induced topology of .%(R%). It is known that .7 (R?) is charac-
terized by the quotient space of .#”(R¢) modulo polynomials, i.e.,

SH(RY) = 7' (RY)/P(R), (4.6)

where P(R?) is the space of all polynomials of d real variables (see, e.g., Proposition
1.1.3 in Grafakos [30]).

When Q # R?, the following question naturally arises in the formulation:
Question. What are spaces on Q corresponding to . (R?) and #,(R%)?

An answer will be given in section BT, we shall introduce the spaces Xy (€2) and
Zy(Q) corresponding to . (R?) and .%,(R?), respectively. There we will encounter
with two problems in the formulations:

(a) To handle the neighborhood of zero spectrum in the definition of the homo-
geneous Besov spaces;

(b) To develop the dyadic resolution of identity operators on our spaces X, (2)
and Z{,(Q); dyadic resolution lifted from L?(€2).

Let us explain the problem (a). Looking at the definition (ZH) of .%,(R%), one
understands that the low frequency part of f is treated by

/ 2 f(z)dr =0 for any o € N, (4.7)
Rd

However, when Q # R? it seems difficult to get an idea corresponding to (E=7). To
overcome this difficulty, instead of (EZ7), we propose

sup 2Ml| i (v/Hv) fllory < 00, M =1,2,--- (4.8)
J>

in semi-norms gy, () of a test function space Zy (€2) (see (B18) and Proposition
A9 below). This is probably a main novelty in our work. The condition (E=R)
seems one of important ingredients to introduce test function spaces not only for
Besov spaces but also for other spaces of homogeneous type. We note that the
problem of zero spectrum does not appear in the inhomogeneous Besov spaces,
and hence, our spaces Xy (€2) and A7, (€2) may be analogous to the test function
spaces and their duals introduced by Kerkyacharian and Petrushev [49] (see also
Ruzhansky and Tokmagambetov [67] who treat H*(Hy ) on a bounded open set,
and the operator Hy does not have to be self-adjoint).

We turn to explain the problem (b). For the sake of simplicity, let us consider

the case when V = 0. As is well known, the identity operator is resolved by the
dyadic decomposition of the spectrum for Hy in L?(2), namely,

I =(Ho) + Z i (v/Ho), (4.9)
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which is assured by the spectral theorem. Initially, the resolution (E9) holds in
L?(2), and then, it is lifted to the space X}(€2). This argument is accomplished in
Lemma B3 below. When one considers Z{(12), (E9) is replaced by

I=" ¢;(VHo). (4.10)

j=—00

Thanks to these resolutions (B9) and (E10), the well known methods in the clas-
sical Besov spaces on R? work well also in the present case. The starting point
of this argument is to extend the spectral restriction operators ¢;(v/Ho) on L*(2)
to those on L*(Q). There, the uniform boundedness on L'(2) of {¢;(v/Ho)}52

j:—oo?
1.e.,

sup 165 (v/Ho) L)) < 00 (4.11)
VIS

plays a crucial role in proving (E9) in A}(Q2) and (E0) in Z|(Q2), respectively.
This uniform boundedness follows from Theorem BTl in chapter @ (see Lemma
A1 below). Furthermore, (EI0) guarantees the independence of the choice of
{v}U{¢,};, when we define spaces Xy(2), A5(£2), Zo(€2), Z{(£2) and Besov spaces
defined in subsections BT and E=2Z1. We should also note that our argument
can be applied not only to the Schrodinger operator Hy but also to more general
self-adjoint operators £ such that the Gaussian upper bounds for e~** hold.

This chapter is organized as follow. In section B-l we define test function and
distribution spaces on {2 and prove their fundamental properties. In section E2
we give definitions of Besov spaces generated by Hy and prove their fundamental
properties.

4.1 Test functions and distribution spaces

In this section we give definitions and show fundamental properties of test function
and distribution spaces on €2, which provide the basis for the study of our Besov
spaces.

4.1.1 Definitions and notations

To define and investigate test functions and distribution spaces, let us introduce
the Littlewood-Paley dyadic decomposition. Let ¢y be a non-negative and smooth
function on R such that

suppdo C{ANER: 27" <A<2} and > (27N =1 for A>0, (412)

j=—00
and {¢;}52_, is defined by letting
d;j(N) = (277N) for A € R. (4.13)
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Let ¢ € C5°(R) be a non-negative function on R such that

P(A) =1 for A€ [=X,0] and (X*)+ ) ¢;(\)=1 forA>0, (4.14)
j=1

where )\ is a positive constant such that Ay > —inf o(Hy).

Definition (Spaces of test functions and distributions on ). Suppose that
the potential V' satisfies assumption A.

(i) (Linear topological spaces Xy (€2) and &7,(€2)). A linear topological space
Xy (€2) is defined by letting

Xv(Q):={f e LY(Q)NDHy): Hi/ f € L'(Q) ND(Hy) for any M € N}
(4.15)
equipped with the family of semi-norms {py. /() }37_; given by

pvar(f) = | fllore + sug2Mj||¢va>f||u<m-
jE

X{, () denotes the topological dual of Ay ().

(ii) (Linear topological spaces Zy(€2) and Z{,(£2)). Suppose that V_ satisfies
assumption B. A linear topological space Zy/(2) is defined by letting

Zy(Q) = {f € Ay (Q): Sli%)QM|j|Hqﬁj(\/}[v)fHLl(Q) < oo for any M € N}
S
equipped with the family of semi-norms {qv(-)}37_; given by
avar () = 1l +sup 265 (VA ) fllLiiey. (4.16)
JE€

Z{,(2) denotes the topological dual of Zy(£2).

Let us recall the notation y/(-,-)x for the duality pair of a topological vector
space X and its dual X’. It is proved in Proposition B2 below that Ay (§2) and
2y (Q) are Fréchet spaces, and in Proposition B8 below that

X (Q) = LP(Q) = XL (Q), (4.17)

Zyv(Q) = LP(Q) = Z,(Q) (4.18)
for any 1 < p < oco. The embedding relation (EI7) ((EIR) resp.) assures that

/Q}f(x)m’dx < 00

for any f € LP(2), 1 < p < o0, and g € Xy () (9 € Z¢(Q) resp.). Hence we
can regard functions in the Lebesgue spaces as elements in X{,(2) and Z{,(Q2) as
follows:
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Definition. For f € L'(Q)+L>(Q), we identify f as an element in X{,(Q) (Z{,(Q)
resp.) by letting

X0

)<f=9>Xv(Q):/Qf<x)md$ (z{,(ﬂ)<f,g>zv(ﬂ)I/Qf(m)mdx resp.)

for any g € Xy () (g € Zv () resp.).

For a mapping ¢(Hy) on Xy (§2) (2v(Q2) resp.), we define the dual operator of
d(Hy) on X{(Q) (Z{,(22) resp.) induced naturally from that on L*(Q).

Definition. Let ¢ be a real-valued Borel measurable function on R.

(i)

(i)

For a mapping ¢(Hy ) : Xy () — Xy (Q), we define ¢(Hy ) : A (2) — AL ()
by letting
0 (D(HV) ], 9 ay = a, (f, 0(HV)9) 2y (4.19)

for any g € Ay (Q).

For a mapping ¢(Hy) : Zv(Q) — Zv(Q), we define ¢(Hy) : Zi(2) —
Z{,(Q) by letting

2z (Hv) [ 9)z = 2z, ([, 0(Hv)9) 2, (4.20)
for any g € Zy(92).

Let us give a few remarks on Xp(§2) and Zy(€2) as follows:

When 2 = R? and V' = 0, the Schwartz space .#(R?) is contained in Xy(R?),
and the inclusion for tempered distributions are just opposite. Namely, it
can be readily checked that

L (RY) = X(RY) — XY(RY) — 7' (RY),

SR = ZH(RY) — ZH(RY) — S (RY),

Co*(RY) € X(R7),  C3°(RT) & Zo(R7).
When © = R? and V = 0, the restriction of low frequency in the definition
(EI8) of g ar(f) is natural, since one can show that any element f € .%(R?)

belongs to #(R?) if and only if goa(f) < oo for M =1,2,... (see Propo-
sition B9 below).

When Q # R? and 99 is smooth, any f € Xy(Q) or Zy(Q) satisfies
f=0 on 09,

since f € H(Q). Hence, the condition pg(f) < oo not only determines
smoothness and integrability of f but also assures the Dirichlet boundary
condition. Also, such an f contacts with 02 of order infinity in the following
way:

HY'f=0 ono), M=0,1,2---.

The same assertion holds for Ay (Q2), 2/ (€2) and Hy .
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e In order to simplify the argument, instead of the polynomial weights appear-
ing in semi-norms (£4) of .(R?), we adopted the integrability condition on

f.

4.1.2 Properties of test functions and distribution spaces

In this section we prove the fundamental properties of Xy (Q2), Z1(€2) and their
dual spaces. For this purpose, we prepare a lemma on LP-estimates for operators

Y(Hy) and ¢j(v/Hy) for 1 < p < oo.
Based on Theorem BT, we have the following.

Lemma 4.1. Let 1 <r < p < oo. Suppose that the potential V' satisfies assump-
tion A. Then we have the following assertions:

(i) For any ¢ € C3°(R) and m € Ny there exists a constant C > 0 such that
#2604 ) fllmiey < Clf (4.21)
for any f € L™(Q).
(ii) For any ¢ € C§°((0,00)) and a € R there exists a constant C' > 0 such that

1_1

IHE 627 Hy ) fll oy < C2°0 57729 £l 1y (4.22)
forany j € N and f € L"(Q).

(iii) Suppose that V satisfies assumption B. Then for any ¢ € C5°((0,00)) and
a € R there exists a constant C > 0 such that

IS 2V Hy) fllsi) < C21CT0T52| £ () (4.23)
for any j € Z and f € L™(2).

Proof. Let m € Ny. Since
A"p(A) € O (R),

the estimate (EZ21) is an immediate consequence of (i) in Theorem BTl As to the
estimate (B=22), we deduce from (i) in Theorem BT that

IHS (277 Hy) flloge) = 22127 Hy)* 6277V Hv) fll oo
< 2T £ g
for any o € R and j € N since
N*(A) € C5°((0,00)).

Hence (E=22) is proved. The estimate (E=23) is also proved in the analogous way
to the above argument by applying (ii) in Theorem B instead of (i) in Theorem
B. The proof of Lemma 271 is finished. O
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Let us discuss the fundamental properties of &y (Q2), Z(€2) and their dual
spaces. The first result is the following.

Proposition 4.2. Suppose that the potential V satisfies assumption A. Then
Xy (Q) is complete. Furthermore, if V' satisfies assumption B, then Zy(Q) is com-
plete.

Proof. We first show the completeness of Xy (€2). We start by proving that for any
M € Ny there exists a constant C' > 0 such that

IHY flliaze < Cpvar(f) (4.24)
provided that f € L*(Q) N L*(Q) with pyar(f) < oo, where we put

d
2M+§—|—1 if d is even,

1
2M+d%+1 if d is odd.

M =

Put
Pri=tp+d1+ ¢ and PQj:=¢; 1+ ¢+ ¢jy4q for j =2,3,---

It follows from the dyadic resolution in L*(2), identities ¢; = ®,¢; and estimate
(22) for « = M in Lemma BT that

1HY fllpiaee < |HY O (Hv) fllpine + Z IHY @5 (v/Hv )i (VHY) fll ez

7=1

< Cllflpe +C D 227976, (vHy) fll o)

=1
< Cpvo(f) + Covar (f 22 J
7=1

< Cpvar(f),

which proves (B224)). We turn to prove the completeness of Xy (Q). Let {fn}3_;
be a Cauchy sequence in Xy (€2). Then, for any M € N, there exists C; > 0 such
that

pvar(fy) <Cuy forall N € N. (4.25)

Since {fy} is a Cauchy sequence in L'(f2), there exists a function f € L'(Q) such
that
fv — f in L'(Q) as N — oo.

Combining this convergence with the boundedness of 2M7¢;(\/Hy ) from L'(Q) to
itself, which is assured by (E=22) for a = 0 and (E=Z3), we have

2" i (VM) fllr = i 2" s (v M) vl o
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and hence,
pvm(f) < Cu (4.26)

for any M € N. Here, noting that the Sobolev spaces H*(Hy ) defined in (B-T) are
complete and that {fy}x is also a Cauchy sequence in H* (Hy) for M € Ny by
the estimate (224, we deduce from the inequalities (=24) and (E=28) that

HYf e LNQ)NL*Q) for any M € N.

Hence we obtain f € Xy (£2). We next show the convergence of fy to f in Xy (Q2).
For each M, let us take a subsequence { fn )}z, such that

pvr(fvgy — fvge—ny) <278,

where we put fy () = 0. Hence we have

ZpV,M(fN(k) — fNg-1)) < 0. (4.27)
k=1

Since { fn ) }o, is a Cauchy sequence in L'(Q), f is written by

L
f=lim fyy = lim Y (fygy = fyg-n) in LHQ). (4.28)

k=1

Then (B222) and (B=28) yield the convergence of py,ar(fn(r) — f) to zero as L — oo,
and hence,
pvm(fy—f)—0 as N — oo forany M €N.

Therefore Xy (Q2) is complete.

We next show the completeness of Zy (). Let {fy}3_; be a Cauchy sequence
in Zy(2). Since Zy(Q) is a subspace of A} (Q2) and Xy () is complete, {fn}F_;
is also a Cauchy sequence in &y (€2) and there exists an element f € Xy (Q2) such
that fy converges to f in Ay (2) as N — oo. In order to prove f € Zy (), we
show that

sup 21| (v/Hy ) fll 1) < 00 for any M € N. (4.29)
<0
Since fy converges to f in L'(Q2) as N — oo and ¢;(v/Hy) is bounded on L'()
for each j € Z by (E=23) for aw = 0, it follows that

A Al (VH) vl = [[0;(VHV) flli)  for any j € Z.

Since {fn}%_; is a Cauchy sequence in Zy (), {qv.a(fn)}F-; is a bounded se-
quence for each M and there exists a constant C'y; > 0 depending only on M such
that

M 6, (V=) fivll iy < Cas forall j <0 and N =1,2,--- .
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By taking the limit as N — oo in the above inequality, we conclude that f satisfies
(E=29), and hence, f € Zy(2). Finally, the convergence of fy to f in Zy(Q) follows
from the analogous argument to (=27) and (E=2R):

ZQV,M<fN(k) — fng-1)) < 00,
=1

L

f=Jm Y (fvg = fyg-n) i L9,

k=1

where fn() = 0, which imply that
qvm(fy —f)—0 as N — oo forany M € N.

Thus we conclude that Zy(£2) is complete. The proof of Proposition B2 is now
finished. Il

Proposition 4.3. Suppose that the potential V' satisfies assumption A. Then the
following assertions hold:

(i) For any f € &, (Q), there exist a number My € N and a constant Cy > 0
such that

2, (f, @) | < Croving(g)  for any g € Xy (Q).

(ii) Furthermore, if V' satisfies assumption B, then for any f € Z{,(Q0), there
exist a number My € N and a constant C; > 0 such that

2, {f, 9)zv| < Cravn (9)  for any g € Zv().

Proof. Suppose that (i) is not true. Then, for any m € N, there exists g, € Xy ()
such that

|X{, <f7 gm)Xv ’ > MPv,m (gm> (4’30)
Put
Jm = _Im
mpV,m(gm)
Noting that py(gm) is monotonically increasing in k € {1,2,...,m}, we have

~ - 1
pV,k(gm) S pV,m(gm) = E for k = ]-727 e, M.
Hence it follows that for any fixed £ € N
pvi(gm) — 0 as m — oc;

thus we find that
gm — 0 in Ay (Q) as m — oo.
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The above convergence yields that

|2 (fs Gm) x| = 0 as m — oo, (4.31)
However, the assumption (E=30) implies that

|2y (fs Gm)x | > 1 for all m € N;

therefore this inequality contradicts (E=31). Thus the assertion (i) holds. The
assertion (ii) follows analogously. This ends the proof of Proposition B=3. O

Proposition 4.4. Suppose that the potential V' satisfies assumption A. Then the
following assertions hold:

(i) For any ¢ € C§°(R), ¢p(Hy) maps continuously from Xy () into itself, and
maps continuously from X, () into itself.

(ii) Furthermore, if V satisfies assumption B, then for any ¢ € C§°((0,00)),
d(Hy) maps continuously from Zy(QQ) into itself, and maps continuously
from Z{,(Q) into itself.

Proof. First we prove the assertion (i). Let f € &y (Q). It follows from (E=Z1) in
Lemma BT that

Hyo(Hv)f € D(Hv), pvu(o(Hv)f) < Cpva(f) (4.32)

for any m € Ny and M € N. This proves that ¢(Hy ) is continuous from Xy (€2) into
itself. The continuity of ¢p(Hy ) from X{ (§2) into itself follows from the definition

As to the assertion (ii), since V' satisfies assumption A, ¢(Hy) enjoys the
assertion (i), and hence, we conclude that

d(Hy)f € Xy (Q) for any f € Zy(Q).

We show that
qvu(9(Hv)f) < Cava(f) (4.33)
for any M € N. Indeed, recalling the definition (EI8) of gy (f) and noting that

qvar(6(Hv) f) < pvar(@(Hv) f) + sup 2YV1)| 6 (VHy ) d (o) 1l 00,

<0
we apply (B=32) to the first term to obtain
pvr(o(Hv)f) < Covar(f) < Cavae(f).
For the second term in gy p (¢(Hy ) f), again applying (E220) for m = 0, we estimate
sup 2'V1[lg; (v Hy )6 (Hv) fllia@) < Csup 2706 (vH) flluser < Cavar(f)
j<

Jj<0
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for any M € N. Therefore, the above two estimates imply (E=33), which concludes
the continuity of ¢(Hy ) from 2y () into itself. Finally, the continuity of ¢(Hy )
from Z{,(€2) into itself follows from the definition (E=20). The proof of Lemma B4
is finished. ]

The approximation of identity is established by the following lemma.

Proposition 4.5. Suppose that the potential V' satisfies assumption A. Then the
following assertions hold:

(i) For any f € Xy (), we have
f=0vH) [+ 6i(VHV)S in X (9). (4.34)
j=1
Furthermore, for any f € X,(2), we have also the identity (B234) in X, (§2),
and Y(Hy)f and ¢;(v/Hy)f are regarded as elements in L>(€2).
(ii) Furthermore, if V' satisfies assumption B, then for any f € Zy(Q2), we have
f=Y &i(VHv)f in Zv(9). (4.35)

j=—o00

Furthermore, for f € Z{,(?), we have also the identity (E=33) in Z{,(Q), and
oj(VHy)f are regarded as elements in L*>(€2).

Proof. First we prove the assertion (i). Let f € Xy(Q2). Then we have f € L*(Q),
and f is written as

f=vHv)f + Z o;(VHy)f in L*(Q). (4.36)

It is sufficient to verify that the series in the right member is absolutely convergent
in Xy(Q). Let M € N be arbitrarily fixed. Applying (B22) for « = 0,1 from
Lemma B, we have

Pv,M (@D(Hv)f) < Cpvm(f),

pv (65 (VHV) ) < C27 % puni (Hv i (VHY) ) < C2 7 pyaisa(f),
which imply that

ZpV,M (¢j(\/7'[_\/)f) < Cpvm+2(f) Z 27% < oo. (4.37)
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Hence (E234) holds for f € Xy (£2). As to the expansion (E234) for f € &Y, (Q),
applying the identity (B=34) for g € Xy (£2), we have formally the following identity:

x () = (LO(H) ) a + > & (VHv)g)x,
! (4.38)
= X <¢(HV)JC7 g>Xv + Z X <¢J(\/H_V)f7 g>Xv7

where the second equality is valid due to the definition (E=T9). We must prove the
absolute convergence of the series in (2238). By Lemma A3 (i), there exist My € N
and C' > 0 such that

| (05 (VHV) o 9) x| = Ly, (F, 05 (VHV)9) e | < Crpvias, (05(VHY)g).

Then, the above estimate and (B=31) yield the absolute convergence of the series
in (A=33).
For the proof of ¥(Hy)f € L>(R), we begin by proving that

‘X"/ <w(HV)f, g>xv‘ S CHgHLl(Q) for all qg € Xv(Q) (439)

By the definition (B19), Lemma B3 (i) and (B=20) for m = 0, there exist My € N
and Cy,Cy, > 0 such that

|y (O(HV) f, @)y | = e, (f, 0 (Hv) 9) 2, |
<Cypvm, (Y (Hv)g)
<Crullgllre:

which proves (B239). Thanks to (E239), the Hahn-Banach theorem allows us to
deduce that the mapping

xp (W(Hy) fs ), - () = C

is extended as a mapping from L*(Q2) to C. Since L'(Q)* = L>(Q), there exists a
function F' € L>°(£2) such that

x, (W HY)f, 9 xy = /QF(:C)g(:c) dx for all g € Ay ().

Then we conclude that ¥(Hy ) f € L>(£2). In a similar way, it is possible to prove
that ¢,;(vVHy)f € L>(). The proof of (i) is now complete.

As to the assertion (ii), noting that any f € Zy(Q) is in L*(Q2), we first prove
that

F=> ¢;(VHv)f inL*Q) (4.40)

j==oc
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for any f € L*(Q). Put

ar ;:/_ (1—2@ )dEHV( ). (4.41)

It is readily checked that {gr} 1 is a Cauchy sequence in L*((2), so we put

g:= lim gy in L*(Q).

L——o00

Noting that Hy is non-negative on L?(Q2) and that the support of 1 - ¢; (V)
is contained in the interval (—oo, 22, we find that

1 o
vl = [ (1= ) [l B O
e —~
§024L||f||%2(Q)J—> 0 as L — —o0.
Hence we deduce that
gE€DHy) and Hyg=0 in L*(Q)

by the fact that g;, € D(Hy ), the definition of g, and the closeness of Hy on L?(12).
Since zero is not an eigenvalue of Hy by the assertion (ii) in Proposition B, we
conclude that g = 0, which proves (B20) for any f € L?(1).

Now, as in the previous argument, it is sufficient to show that the series in the
right member of (E40) is absolutely convergent in Zy(§2). For the series (E220)
with 7 > 1, the absolute convergence is obtained by the same argument as (E=37).
For the case j <0, it follows from (B=23) for v = £1 that

qvn (05 (VHV) ) < C2%qua (Hy ' o;(VHY) f) < C2% qynisa(f),

which imply that

0
Z qv,m ¢J )f) < Cqvms2(f) Z 227 < 00

j=—o00 j=—00

for all M € N. Therefore, (£233) is verified for f € Z(Q).

Finally, as to the identity (B=33) for f € Z{,(£2), we proceed the analogous
argument to that with replacing the assertion (i) for py s and Lemma B=3 (i) by
qv.s and Lemma A3 (ii), respectively. The proof of ¢;(v/Hy)f € L>®(Q) also
follows from the analogous argument to that of the assertion (i) as above. So we
may omit the details. The proof of Lemma B3 is complete. O

The spaces Xy (Q2) and 2y () are subspaces of LP(€2). More precisely, we have:
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Proposition 4.6. Suppose that the potential V' satisfies assumption A. Then
Xy (Q) = LP(Q) — X{(Q) (4.42)
for any 1 < p < oco. Furthermore, if V further satisfies assumption B, we have
Zy(Q) = LP(Q) = Z,(Q) (4.43)
for any 1 < p < 0.

Proof. Let f € Xy (). Then it follows from the definition of semi-norms py p(-)
that

I fllLr @) < pvolf)-

Put
Q)j = gbj_l + ij + ¢j+1 for j € Z.

As to the L*™-norm, we deduce from the identities (E534), ¢; = ®;¢; and the
estimate (E=22) for a = 0 that

1 @) < 10 Hv) il + D 125V H) o5 (v Hv) [l
j=1

<C|fllpe +C Y277 - 229)|¢,(VHV) @)

j=1
< Cpyo(f) +C Y 27 sup 2o (VHY) f i)
j=1 <

< Cpvaw(f)-
Summarizing L' and L*-estimates for f € Xy/(€), we conclude that
Xy (Q) — LYQ) N L>®(Q) < LP(Q) for any 1 < p < oo,
and hence, we have
LP(Q) — X, () forany 1 <p < oo

by duality argument. Thus we get the embedding (E-42).
The embedding (B=23) follows from (E42) and embeddings

Zu(Q) = X (Q) and  XL(Q) = ZL(Q).

The proof of Proposition B3 is complete. Il

67



Next we shall characterize the space Z{,(€2) by the quotient space of A7, (€2).
Let us define a space Py (£2) by

Pv(Q) == {f € X(Q) : 2@ (J(f): 9)zp (@) = 0 for any g € Zy(Q)},  (4.44)

where J(f) is the restriction of f on the subspace Zy (£2) of Xy (). It is readily
checked that Py (Q2) is a closed subspace of &7,(2), and hence, the quotient space
X{(Q) /Py (£2) is a linear topological space endowed with the quotient topology.

Then we have the following:

Proposition 4.7. Suppose that the potential V' satisfies assumptions A and B.
Then Z{,() is isomorphic to X}, (Q)/Py(Q):

Zy () = X, () /Pr ().

Proposition B0 corresponds to the isomorphism (B8). The proof is done by
using Theorem in p.126 from Schaefer [72] and Propositions 35.5 and 35.6 from
Tréves [I79] (see also Theorem 1.1 in Sawano [70]).

The space Py (£2) enjoys the following;:
Proposition 4.8. Suppose that the potential V' satisfies assumptions A and B.

(i) Let f € X[, (). Then the following assertions are equivalent:
(a) [ €Pv();
(b) ¢;(vVHy)f =0 in X{(Q) for any j € Z;
(c) HfHng(HV) =0 foranyse€R and 1 <p,q < oco.

(ii) Py () is a subspace of L>(2).

Proof. We prove the assertion (i). It is readily seen from the definition of B;q("Hv)
that (c) implies (b), since

6;(VHV)f =0 in L(Q)

for any j € Z, and since LP(Q2) — X{,(Q2). Conversely, we suppose that (b) holds.
Since f € XY, (), it follows from part (i) of Proposition B3 that

6;(VHv)f € L¥(Q)

for any j € Z. Hence, thanks to fundamental lemma of the calculus of variations,
we deduce that

¢;(VHy)f(z) =0 ae ze€Q
for any 7 € Z, which implies that (c) holds true.
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We have to prove that (a) and (b) are equivalent. Suppose that (a) holds, i.e.,
f € Py(Q). We note that if g € Xy (), then

o;(vVHv)g € Zv(Q) for any j € Z. (4.45)
In fact, fixing j € Z, we have

du(VH)b;(VH)g # 0

only if k =45 —1,7,7 + 1. Then, we deduce from Lemma BT that

iligTMkH(?k(vHv)%(vHV)QHLI <C Hax 2 MR 65 (VHYV) gl

k=j5—1,5,7+
<C2M ||¢j(v Hv)gll o
<C27"|\gll L1y

<00

for any M € N, which implies (A43). Since f € Py (2), thanks to (E43), it follows

that

Q)<¢j(VHV)f7g>Xv(Q) = Z{(Q) <f7¢](\/ ) >ZV(Q) =0
for any j € Z and g € Xy (£2), which implies (b). Conversely, let us suppose that
(b) holds. Since Zy(2) C Xy (), it follows that

(b (VHV) I, 9) zv0) = an@ (0 (VHV) G av@) =0 (4.46)

for any j € Z and g € Zy(Q2). Here, we recall part (ii) of Proposition B3 that

f= &(VHv)f i Z(Q),

j=—o0

Then, by using this identity and (A28), we have

o(f, 9z Z e VHV)E.9) 200 =0

jf—OO

for any g € Zy(€2), which implies that f € Py (£2). Hence (a) holds true. Thus we
conclude the assertion (i).

Next we prove the assertion (ii). Let f € Py(Q). It follows from (E=34) in
Proposition B23 that

f=vHy)f+ Zcbj(m_v)f in A (Q).

Applying (b) in the assertion (i) to the second term in the right member, we get
f=vMy)f in X5(Q).

Since Y(Hy)f € L>(2) by the assertion (i) in Proposition B3, we conclude that
f € L>®(Q). Therefore the assertion (ii) is proved. The proof of Proposition B8 is
now finished. O
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When Q = R% and V = 0, we observe that Zy(R?) corresponds to .#,(R%). In
fact, the following proposition assures this fact.

Proposition 4.9. Let f € .#(R%). Then the following assertions are equivalent:
(i) sup 2M!)|p; (V=A) f|| priray < 00 for any M € N;

J<0
(ii) /Rd z*f(x)dz =0 for any o € N.
Now, let f € .Z(R%)(C Ay(RY)). Then we conclude from Proposition I9 that
f € Zo(RY) if and only if f € .7(R?).
We have to prove the proposition.
Proof of Proposition f-9. Let f € . (R?). We divide the proof into two steps.

First step. We prove that the assertion (ii) is equivalent to the following:

sup 2M11 (| - )Z fllLoo(rey < 00 for any M € N. (4.47)
J<0
Indeed, the assertion (ii) implies that
I(F f)(0) = /d r°f(z)dr =0 for any o € NZ. (4.48)
R

Hence, it follows that
(ZHEOI<CleM, [¢] <2 (4.49)

for any M € N. Here, since
supp ¢; C {2771 < [¢] < 271},

it follows that ‘
(g1 < C2" on supp ¢,
for any j < 0 and M € N. Therefore, we deduce from (E29) that

[6;(IEN(F )] < 02", € e RY

for any 7 < 0 and M € N, which implies (B24). Conversely, we suppose (E47).
Then

[6;(1EN(F F)(§)] < C2" < CI¢I™ on supp ¢

for any j < 0 and M € N, which implies (B29) for any M € N. Since Z f is
C>=(R%), we conclude from (E29) that (E28) holds. Hence, the assertion (ii) is
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true. Thus the equivalence between (ii) and (B27) is proved.

Second step. Thanks to the result in the first step, it is sufficient to show that
the assertion (i) is equivalent to (E=27). Suppose that (i) holds. Then, by using
L'-L*-boundedness of the Fourier transform .%, we find that

1651 - D Fll ety = | 165 (V=B ey < 2) 2165 (V=2) L1

for any j < 0. Hence, multiplying the both sides by 2! and taking the supremum
with respect to j <0, we get (E247).
Conversely, we suppose that (E27) holds. We estimate

165 (vV=2) fllzrway = | Z 50 DF | 1 gy

<||F ;|- )Ff 12 46;(1- D2 A7,

]HE‘X’(Rd) Lg (R%)

Since supp ¢; C {|¢| < 2} for j < 0, by using L'-L*-boundedness of %!, the
first factor in the right member is estimated as

1271651 D2 Ay < @0E05(1 - DE S lurga

< (2m)72 - 2%y)|¢5 (| - [)F fl oo re)

for any j < 0, where v, is the volume of the unit ball in R?. Therefore, by using
(221), we deduce that

d d
1.9229

1
vg 8 up?Mm||¢y(| |)ffHLoo(Rd) < 00
J<

< (2m)712

Ul =114 (1. 2
s1p 2112, 1-) 7 1 e e

As to the second factor, applying Theorem 1.5.2 from Triebel [81], and noting that
¢j = ¢j(¢ +¢1) for j <0,
we find that there exists a constant C' > 0, independent of j, such that
[ (- DF AN g ey = 177031 DFF @+ ) DZ A b gy
< Cl|F @+ 000 DF Al
for any j < 0. Since f € 7(R%), it follows that
S [ F 71051 DF ll s gy < CIF @+ 6001 DF AN 3 gy < 00

2 (R9)
Thus, combining the estimates obtained now, we conclude that

sup 2Ml| 6 (V=2A) f|| 11 may
S

<O 20| DF |77 04 o)1 DE S, < oo

L} (ra)
which implies the assertion (i). The proof of Proposition B9 is finished. O]
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4.2 Besov spaces generated by Schrodinger op-
erators

4.2.1 Definition of Besov spaces

In this section we give definition of Besov spaces generated by Hy . Throughout

this section we always impose assumption A on the potential V. We recall the
Littilewood-Paley dyadic decomposition {¢} U {¢,}; defined by (E12), (E13) and

Let us define Besov spaces generated by Hy .

Definition (Besov spaces). Let s €¢ R and 1 < p,¢q < oc.

(i) The inhomogeneous Besov spaces By (Hy) are defined by letting

B, (Hy) = {f € X7(Q) - |||

Bg,q(HV) < OO}’

where

1 135,,0000 = 1) ooy + {27165 (VF) F v } e

(4.50)

‘zq(N)'

(ii) Suppose further that V' satisfies assumption B. Then the homogeneous Besov
spaces By (Hy) are defined by letting

By ,(Hyv) = {f € Z{(Q) : | /]

By y(Hy) < 0%

where

/]

o = 2216V AN o}

. 4.51
) (4.51)

When Q@ = R? and V = 0, i.e., Hy = —A on L*(R?Y), the norms (E50) and
(E251) are equivalent to the classical ones (E4) and (E=3), respectively, since spectral
multiplies ¢)(—A) and ¢;(v/—A) coincide with the Fourier multipliers:

Y(=A8)=F (|- P)F] and ¢;(vV=2)=F g;(l- )F].

Furthermore, By (—A) are isomorphic to the classical Besov spaces B;Q(Rd) de-
fined as subspaces of .%/(R%), since .7 (R%) is a subspace of Xy(R?) and dense in
B;Q(Rd) for s € Rand 1 < p,¢ < oco. Similarly, B;q(—A) are isomorphic to
B;q(Rd) defined as subspaces of .7j(R%). We also mention an abstract theory
to characterize the Besov spaces by means of the real interpolation between two
spaces, which are L?(Q2) and the domain of the operator D(Ay ) for instance (see
papers by Lions [64,55] and also Mayeli [68]). The real interpolation also works
for our Besov spaces (see [20]).
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4.2.2 Completeness, duality, lifting properties and embed-
ding relations

In this subsection we prove the fundamental properties such as completeness, du-
ality, lifting properties and embedding relations.

Theorem 4.10. Assume that the potential V' satisfies assumption A. Let s € R
and 1 < p,q < oo. Then the following assertions hold:

(i) (Inhomogeneous Besov spaces)

(a) B, ,(Hv) is independent of the choice of {1 }U{®;}jen satisfying (B12),
(A13) and (ET4), and enjoys the following:

Xy (Q) — B, (Hy) — X (Q). (4.52)
(b) B, (Hv) is a Banach space.
(ii) (Homogeneous Besov spaces) Suppose further that V' satisfies assumption B.

(a) B;q(”;‘—lv) is independent of the choice of {¢;};ezn satisfying (E12) and
(B13), and enjoys the following:

Zy(Q) = B (Hv) = Z,,(Q). (4.53)
(b) B;’q(Hv) is a Banach space.

The following result states the fundamental properties of the Besov spaces such
as duality, lifting properties, and embedding relations.

Theorem 4.11. Suppose that V' satisfies the same assumptions as in Theorem
F.10. Let s,s0 € R and 1 < p,q,qo,r < 00. Then the following assertions hold:

(i) f1<pg<oo, 1/p+1/p'=1and 1/q+1/q =1, then the dual spaces of
B, (Hv) and B, (Hy) are B, (Hy) and B%,(Hv), respectively.

(ii) (a) The inhomogeneous Besov spaces enjoy the following properties:
(I + "Hv)%of € By *(Hy) forany f € B, (Hy);
Bytf(Mv) = By (Hy) for any e > 0;

P,q0
std(7—3) s .
Brg "V (Hy) = B, (Hy) if1<r<p<ooandq< q.

p,q0

(b) The homogeneous Besov spaces enjoy the following properties:

Hgf € B;;ISO (Hy) forany f € B;q(”}—lv);

Ls4d(i—1 .
BT () o BE (Hy) if1<r <p<ooandq< g

psq0
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(iii) We have '
LP(Q) = By, (Hy),B),(Hy) if 1 <p<2;

BY,(Hy), BY,y(Hy) = LP() if2<p < 0.

Proof of Theorem [.10. We divide the proof into three parts: Independence of
choice of ¢ and {¢;}; embedding relations (E5Z) and (E23); completeness of

B3, (Hy) and B3 (Hy).

Proof of independence of the choice of ¢y and {¢;}. The proof of the
independence in (i-a) and (ii-a) is similar to that of Triebel [R1]. As to (i-a), let
us take ¢ = ¥, ¢; = ¢ (k = 1,2) satistying (ET2), (ET3) and (ET). Since
™M and ¢§-1) satisfy

{w“) =@ +017), o = (v + 6" + ),
o) = 0 (@2 + 07 +07)  forj=2.3.---,
it follows from (E=21) and (E22) in Lemma BT that

[0 Hv) fllo +|!¢§1’(\/Hv)fHLp<m
< {12 Hv) fllsia +Z||¢k VIl

(4.54)

164" (VHV) fll oy < C Z 16\ (VHY) flliny  for j=2,3,--,

k=-—1

which imply that

19 () fllocey + {27165 (VI Fllr@ } el
<@ 30 fllove + {27168 (VI fllv@ }yeslli

This proves the independence in (i-1) for the inhomogeneous Besov spaces.
As to (ii-a), we use the identity (E554) for all j € Z and apply (223) for o = 0
in Lemma BT to get

H{2Sj‘|¢§‘1)( \ HV)fHLp(Q)}jEZqu(Z) = C{“{QSj"¢§'2)( Vv HV)fHL”(Q)}jGZqu(Z)}'
This ends the proof of the required independence of the choice of ¢ and {¢;}.

Proof of embedding relations (52) and (E53). Let p’ and ¢ be such that
I/p+1/p'=1and 1/q+ 1/¢' = 1. First we prove the embedding (552), namely,

Xy (Q) < B (Hy) < X} ().
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Take ¥ and ®; such that

UV:=v+a¢, D :=v+ p1+ @9, @j2:¢j_1+¢j+¢j+1fOl"jIQ,?),'”

Let M € N be such that M > s+d(1—1/p). Then, for any f € Xy (Q), we deduce
from the identities ¢; = ®;¢, and the estimate (I222) for o = 0 in Lemma BT that

1

S (2910, )5 () o)

J=1

/]

——

Bi g (Hv) — [ (Hv ) fllze@) +

1

9sigd 1,,)32 Mj 2MJH¢](«/7-[v)fHL1 >q}a

Mg

< Ol + O}

1

<.
Il

M2

Sva,M(f)JrC{ (23J2d 13- M”) };pV,M<f)

1

J

< Cpvu(f)
for any f € Ay (£2). Thus we obtain the first embedding
Xy (Q) = B, (Hy). (4.55)
To prove the second embedding
By, (Hy) = (), (4.56)

we take M’ € N such that M" > —s+d(1 —1/p’). Applying (i) in Proposition &3,
the identities ¢ = Wb, ¢; = ®,¢;, Holder’s inequality and the embedding (E53)
for s, p, q replaced by —s,p', ¢, i.e.,

Xv(Q) — B, (Hy),

we have

’X’ <f> >XV’
= [ () £, 0 (g, +Z 3 (VA 1,25 (VH)g) o, |

< ||¢(Hv)f||m(mII‘I’(Hv)gHLp'(Q)

+ (1429165 (v H) Al }senllioge 1427195 (VA9 vy
<c|f

<C|f]

P L] P

BIL;’q(Hv)pM/ (g)

for any f € B; (Hy) and g € Xy (Q2). Therefore, (E58) is proved, and as a result,
we get the embedding (E-52).
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Next we show the embedding (A553), namely,
Zy(Q) = B (Hv) = Z(,(Q).
Put
CI)j = ¢j_1 + ¢j + ¢j+1 for all j €.

Let L € N be such that L > |s| +d(1 —1/p). For any f € Z(Q), we deduce from
the identity ¢; = ®,¢; and the estimate (=23) for a = 0 that

1

1025 ) = { i (27119, (VA )65 (V) fll o)
<o{( 2 +3) (Yl lnw)'}
j=—o0  j=1

< C((sup270,(v/Hv ) lren) { 3 (2otpin'y

n C(i?; 2Lj||¢j(\/H_v)f||L1(Q)> { g <Qsj2d(1;)j2—Lj)q};
< Cqvr(f),

which implies that
Zy(Q) = B (Hv). (4.57)

To prove the second embedding
B;,q(%\/) — Z(/<Q)7

we take L' € N such that L' > |s| +d(1 — 1/p’). For any f € B;q(’;'-[v) and
g € Zy(92), using the identities ¢; = ®;¢;, Holder’s inequality and the embedding
(Bx2) for s, p, q replaced by —s,p/, ¢, i.e.,

we estimate

|Z{/<f7 g>2v|
:‘ Z g{/<¢](\/7'[_v>fa (I)j(\/rH_V)g>Zv‘

< H{28j||gz5j(\/ Hv)fHLP(Q)}jeZ”lq(Z)H{Q_Sjnq)j( V HV)gHLP'(Q)}jeZ‘
<Ol 0 Il
<Ol 202 (9):

1 (2)
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Thus we conclude (B52).

Proof of the completeness of B; (Hy) and B;q(?-lv). We have only to prove
the completeness of the homogeneous Besov spaces B;jq(’;'-[v), since the inhomo-
geneous case is similar. The proof is done by the analogous argument to that by
Triebel [81]. Indeed, let {fn}%_; be a Cauchy sequence in B;jq(’HV). We may
assume that

x4 — Il

without loss of generality. Then {fy}%_; is also a Cauchy sequence in Z{,(2) by
the embedding relation (B252), and hence, there exists an element f € Z{,(£2) with
the property that

By (y) S 2N (4.58)

fnv = f in Z{(2) as N — oo,
since Z{,(Q2) is complete. This together with the boundedness of ¢;(v/Hy) on
Z{,(€2) imply that
¢j(\/ Hv)fN — ¢j(\/ Hv)f in Z{/(Q) as N — oo, (459)

and we have ¢;(vHy)f € L*(Q) by Lemma B3 (ii). Furthermore, fixing j € Z,
we see that {¢;(vHy ) fn}F-; is also a Cauchy sequence in LP(£2), and there exists
F; € L?(2) such that

oi(VHy ) fy = F; in LP(Q) as N — oo,
which implies that

Fij(x) = ¢j(v/Hyv) f(z) almost every = € €,
and the convergence (E59) also holds in the topology of LP(Q2).
It remains to show that f € By (Hy) and fy tends to f in By (Hy) for the
above f € Z{,(Q). Since {{299]l¢;(v/Hv)fnl Lo }jez} -, 15 @ Cauchy sequence
in [9(Z) and

291 (v Hv ) fvllzrie) = 29065(VHY) fllirie)  as N = oo,
we get
1135, 340y < 00,
and hence,
f € By (Hy).

For the convergence of fy to f, writing

f=2_(fi—fim) = lim fy in Z{(Q),

k=1

where fo = 0, we conclude from (E1R) that the above series converges absolutely
in the topology of By (Hy). Thus the completeness of By (Hy) is proved. The
proof of Theorem B0 is now finished. O]
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Next we prove Theorem BT, namely, results on duality, embedding relations
and lifting properties.

Proof of the assertion (i) in Theorem [[-T1. We treat only the homogeneous Besov
spaces B;yq(HV), since the inhomogeneous case follows analogously. We prove that

By (Hv)" = B, (Hy) (4.60)
for any s € R and 1 < p,q < co. Let us first show that
B};fq/(,Hv) — B;q(%v)*. (461)

Put
(bj = ij—l + ¢j + ¢j+1 fOI" ] € Z

For any f € B;fq, (Hy ), we define an operator T as

’D9ﬁ=§§LL(&KVW;V)éﬂV%§m¢rfmgelﬁAHv)

j=—00

Then
Trgl < {27065 (VHV) Fll 1 (0 } ez

< C”fHB;,fq/(Hv) HgHst?,q(HV)7

19 (2) ”{25jHq;j(\/Hv)g||LP(Q)}j€Zqu(Z)

which implies that the operator norm ||77|

This proves the embedding (E7G1).
We prove the converse embedding:

Bf,,q(Hv)* iS bounded by C||f||Bp_/sq/(HV)

Bs (Hy)" = BS,(Hy). (4.62)
Let F € B;,q(’HV)*. We define an operator
T:19Z;LP(Q)) = C

as follows. For G = {G,};ez € lU(Z; L*(R2)), we put

7(6)i= F( Y 296,(/AnG, ).

j=—o0
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Here we estimate

oo ‘ By (Hv)
© k+1 . . %
={k:2_joo (2 V) 3 2o/ RG; o))
o 1 .
:{ Z (25k ¢k(\/H_V) Z 2*8(k+r)¢k+r(\/H_V)Gk+r Lp(g))‘l}q
k:;°0 N r=—1 )
<3 2 3 G0
r=—1 k=—00

< C|G sz ;L0 @)

where we used the estimate (B223) for o = 0 in Lemma B0 Hence we deduce that

Z 2790,;(\/Hv)G,

j=—00

T(G)] <||F]

B;»Q(HV)* Bg,q(HV)

<C|F|

B ,(Hv)* Gqu(Z;LP(Q)).

Since (1%(Z; LP(Q)))* = 19(Z; L¥'(2)), there exists {F}}jez € 19(Z; LY (Q)) such
that

T(G) =) LFj(I)Gj(x)dx7 I{F;Yiezllw @ @) < ClIF

j==o0

B;,q(Hv)*' (463)

Then for any g € B;yq(/Hv), let us take G' = {G,} ez as

Gj = QSjCI)j(\/ Hv)g

It follows from g € Z{,(€2), (ii) in Lemma A-3 and the identities ¢; = ¢;®; that

Flg)=F( 30 276,(VA) (299,(VH)g) )

1)

_ i /Q F(2)C, (@) d

= Y [ B
_ i /Q(zsjq>j(\/ﬂ_v)ﬁy(x>)gdx.
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Taking f as

o0

= Z 2qu)j(\/fH_V)FJ

j==o0

we deduce from (E63) that

152 00y < ClRE Y jezlliw @inw @) = ClIF]

By (Hy)*

which implies that f € B;fq, (Hy). Hence F'is regarded as an element in B;fq, (Hvy),
and we get the inclusion (E562); thus we conclude the isomorphism (E60). This
ends the proof of the assertion (i) in Theorem AT O

Proof of the assertion (ii) in Theorem [-11. The embedding relations are immedi-
ate consequences of Lemma B-1 and of the embedding in the sequence spaces. The
main point is to prove the lifting properties.

First we prove the homogeneous case, namely,

S0 . .
Hy fe By *(Hy) forany fe B, (Hy).
To begin with, we show that

30

H? is a continuous operator from Z{,(Q2) to itself. (4.64)

By the definition (E=20), it is sufficient to verify that HSO/ is the continuous op-
erator from Zy (Q2) to itself. Let us take My € N such that My > |so|. It follows
from (B223) for a = s5¢/2 and (B=33) that

S0
qv,m (/fo g) < Cavvr+m,(9)

for any g € Zy(Q2), which implies that 7—[80/ g € Zy(Q). This proves (A5d). Hence,
all we have to do is to prove that f € p’q(’Hv) satisfies

s0
H,Hv2 fHB;;SO(HV) S O||f|

In fact, let
;=i + @5+ Dy
We note that ®;(A)A* € C§°((0,00)). Writing

(AN = 2909 - B (\) - (27909 \),
we get
165 (VHV)H fllzeiey =277 [{ @5 (v Hv) 27 H }6,(VHv ) f|| ooy
<O\ (v/Hv ) fll Lo
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Hence, multiplying 2(7°0)7 to the above inequality and taking the 1%(Z)-norm, we
obtain the required inequality (E5H).
As to inhomogeneous case, we have to consider the operators

A2+ 1+ Hy) 7o (VHy).

The only different point from the homogeneous case is to show the following esti-
mates:

1O + 1+ H0) % 65 (VA | 1oy < C2 )65 (VH) | e (4.66)

for any 7 € N. We write

(/\g +14+ Hv)%o — [2503'{2‘23'(/\?) +1)+ Q_Qij}STO
s0
2

— 9003 (27 7‘)} + 9007 (272, )
=. T1 + TQ.

As to Top;(v/Hv) f, it follows from (B27) for ov = s(/2 in Lemma B that

1265 (VH) fllrie) < C2°%7 s (V/Hv ) fll o (o)-
Writing
2727 (A3+1)
/ Oy(n+ 27y ) dn
02*27(/\3+1) s
/

S (27 Hy) 3,

Ty = 2%

— 950]
we estimate T1¢;(vHy)[f as

S P27 (A3 ' .
||Tl¢j< V HV)fHLp(Q) < 027 /0 H(U + 2_2JHV)70_1¢]'( V HV)fHLP(Q) dn.
When p = 2, we use the spectral theorem on the Hilbert space L*(€2) to obtain

16+ 27 10) 2705 (V) | 12

92(j+1)
= [ 2N B 05 (VR

92(j+1)

<C /22(“) (2727 )02 dHEHV(/\)gbj(\/’}-L_V)ﬂEQ(Q)
<Clos AN
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since j € Nand 0 < 1 < 27%(\2+1). When p # 2, we have to obtain the following
estimate:

[+ 27240) 27 05 (VH) ] gy < Cllos(VH) S|y (4.67)

Since 7 is small compared with the spectrum of 27%Hy¢;(v/Hy), 1 is able to
be neglected. Hence, the proof of estimate (E67) is done by the argument of
chapter B. So, we may omit the details. Summarizing the estimates obtained now,
we conclude the estimate (B60). The proof of the assertion (ii) in Theorem ETT
is finished. O]

Next we prove the assertion (iii) in Theorem B—T. For this purpose, we prepare
the following two lemmas

Lemma 4.12 (The Khintchine inequality [30,50]). Let {r;(t)}32, be a sequence
of Rademacher functions, i.e.,
2J
ri(t) = (=1 X (w2 pe-n(t)  fort €0,1],
k=1

where x1 denotes the characteristic function on the interval I. Then for any p
with 1 < p < oo, there exists a constant C' > 0 such that

CHalleay < H > am o = Cllallrq) (4.68)
=1 ’

Lr(

for all a = {a;}jez € *(N).

We also utilize the Hormander type spectral multiplier theorem from Theorem
3.1 in Duong, Ouhabaz and Sikora [20]. This idea of applying such a kind of
theorem can be found in several papers (see, e.g., Ivanovici and Planchon [38]). The
following proposition states the spectral multiplier theorem under the assumption
stronger than Theorem 3.1 in [20], which is sufficient for our operators.

Proposition 4.13. Suppose that L is a non-negative self-adjoint operator on
L%(Q) such that the kernel e7**(x,y) of semigroup generated by L enjoys the Gaus-
stan upper bound

2
- _d T —
le (2, y)| < Ct™2 exp ( - %) (4.69)

for any t > 0 and almost every x,y € Q. For s >n/2 and n € C§°((0,00)), let F
be a bounded Borel function on R such that

sup || F(60-)||ws.omy = sup || (1 = (9/2\)5(7]17(9)) ||LOO(R) < 00. (4.70)
0>0 0>0

Then the operator F(L) is bounded on LP(Q2) for any 1 < p < oo.
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Proof of the assertion (iii) in Theorem [-11. First we consider the homogeneous
case. We prove the embedding

LP(Q) = BYy(Hy) forl<p<2. (4.71)

Let {r;(t)} be the sequence of Rademacher functions. If we show that there
exists a constant C' > 0 such that

D06 (VHV)

-1

D e (VHY) f

Lr(Q) j=—N

< Ollf e (472)
LP(Q)

for any ¢t € [0,1] and N € N, then (EZ70) is verified. Indeed, by using (E68) and
(A=2), we estimate

1 N p %
(% momr) ], <el( ] [Snwawmif a)
Lr(Q =1 Lr(Q)
1) N P N
<c( [ [Zroncmad, )
L7(Q)

<o [ w )

= C| fller -

Similarly, we get

< C|f e,

Lr(Q)

I( % fotvamur)

and hence,

)

By taking the limit as N — oo in the above inequality and Minkowski’s inequality,
we obtain

< C|fllery for any N € N.
Lr(Q)

gm0 < | [V el | < Nl

ol
Thus, we get the embedding (E=71).

We have to show (E272). Let Fix(t,A\), N € N, be functions on [0, 1] x R defined
by

-1

F(tA) = er(t)%()\)a Fy(t,A) = > ri()e;(0),

j=—N
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respectively. Let mg € N with my > n/2 and n € C5°((0,00)). If we can prove
that
sup sup F (t,0) || i .00y < OO, 4.73
NE oo ”77 HW 0+5(R) (4.73)
then we get (A272). Indeed, we have the Gaussian upper bound for the kernel of
semigroup e~V from the assertion (iv) in Proposition P4 and the bound (EZ73),
which are just assumptions in Proposition B-I3. Hence all we have to do is to prove
(E=73) and it is sufficient to handle only Fy, since the proof of the case of Fy is
similar to Fy.
The bound (B=73) is equivalent to the following:

sup H@T{nFﬁ(t,G-)}HLm(R) < 00 (4.74)
6>0

for all m € {0,1,...,mg}, and for any t € [0,1] and N € N. Obviously, we see
that

sup Hnlﬁw(t,@-)HLoo <C sup ng)o 2770\ < 01 < o0 (4.75)
>0 A>0,6>0 %
for any ¢ € [0,1] and N € N, which proves (EZ74) for m = 0. Now, as to (E=74) for
m € {1,...,mg}, since the support of n(\) is away from the origin, we find from
(A=73) that

o5 (00 ey < 00 gy + 2 () I 0K 0.09) e
k=1

m m - B
<€ Y ()N IO 00
k=1

for any N € N, 0 > 0 and ¢ € [0, 1]. Here, taking a real M satisfying M > mg, we
have the uniform bound for A*0¥Fy (t,0\) with respect to A > 0, § > 0, N € N
and t € [0,1], i.e

N

N[5 F ,00)] < 320N [(0hén) (26N

=1

.

<CY @701 +27990) M
j=1

o0

C Y @+

j=—o0

IN

We note here that in the last step of the above estimate, before summing up with
respect to j € Z, for fixed # > 0 and X\ > 0, we regarded 277\ as some number
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near dyadic number or 0. Hence, combining the estimates obtained now, we get

|35 FN (8 00 | ey SCHC D D 271 +27) M <0

k=1 j=—o00

for any N € N, t € [0,1] and 6 > 0. Therefore (B=74) is proved. Thus the proof of
(BZ7T) is finished.

Next we prove the embedding
32’2(7—[V) — LP(Q) for 2 <p < . (4.76)

Let p’ be such that 1/p + 1/p" = 1. Then the embedding (E7G) is an imme-
diate consequence of 1 < p' < 2, LF(Q) < BY ,(Hy), L¥(Q)* = LP(Q) and

Finally we prove the inhomogeneous case. By Proposition P, there exists a
real number M > —inf o(Hy ) such that Hy + M is a non-negative and self-adjoint
operator on L*(Q) satisfying Gaussian upper bound (E69). Hence we can apply a
similar argument to (EZ71) in the homogeneous case to obtain

1150 a0y < Cll sy for any f € (), (4.77)
provided that 1 < p < 2. If we show that
HfHBgQ(HV) < CHfHBg’Q(Hv+M) for any f € C5°(Q), (4.78)
then, by combining (-77) and (EZ78) with density argument, we obtain
LP(Q) = Byy(Hv)
for any 1 < p < 2. By duality argument, we have
BY,(Hy) = /()

for any 2 < p < co. Thus we conclude the inhomogeneous case. Hence all we have
to do is to show (EZ73).

For a real M, let Xy 5/(€2) be a test function space Xy (£2) for Hy replaced by
Hy + M. Then we find that

Xy (Q) = Ay (Q), (4.79)

'D(HV + M) = D(Hv)
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by the Kato-Rellich theorem. Let f € C§°(£2). Since f € Xy (), it follows from
Proposition B3 and (A=79) that the identity

f=vMy+M)f+> e/ Hy +M)f
k=1

holds true in Xy (2). Hence we can write

11150 20y < NE(HV)S(Hy + M) fll ooy + D 10 (Hy)@r(Hy + M) f || rio)
k=1

n (Z 6 (Hv )0 (Hy + M)f||%p(m)

o

{3

Jj=1

( 3 Hqﬁj(7't’w/)¢l~c(7"lvJrf\/f)f\|m(m>2}é

k=1
=T+ 11+ 1IT+1V.

By (E=21) in Lemma B, we estimate the first term as
I < Cllyp(Hv + M) fllee(e)-
As to the second term, writing
V(Hy)pp(Hv + M) f = (Hy + M)y(Hv)(Hy + M) op(Hy + M) f,

we see from (EZZ0) and (B22) in Lemma BT that

[O(Hy ) (Hy + M) fllzr) < Cll(Hy + M) op(Hy + M) fll e ()
< C27M||ge(Hy + M) f | r(e)

which implies that
I1<CY 27 gn(Hy + M) f o) < CllFlB 00 +00)-
k=1

Similarly, we get
IIT < C[f1 B9, (34 +0)-

As to the fourth term, putting
Oy := Pp—1 + Op + Oy,
we write

O (Hy)ou(Hy + M) f =My oj(Hv){(Hy + M) — M} &p(Hy + M)dp(Hy + M) f,
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5 (Hv)de(Hy + M) f = (Hy + M)d;(Hv ) (Hv + M) @ (Hy + M) (Hy + M) f.
Then we see from (E222) in Lemma B that

|0 (Hv)oe(Hy + M) fl|Lr ()
="y (M) {(Hy + M) — M}®(Hy + M)gp(Hy + M) fl o)
<C27H|{(Hy + M) — M}Op(Hy + M)dp(Hy + M) f||1o()
< C220 9|y (Hy + M) f oo,

|05 (Hv)or(Hv + M) fl 1o (@)
=|(Hy + M)p;(Hy)(Hy + M) p(Hy + M)dp(Hy + M) f| o)
< C2Y||(Hy + M) "' p(Hy + M)dp(Hy + M) fl o)
<C20 | g(Hy + M) f o),

for any j,k € Nand 1 < p < co. Combining the above inequalities, we obtain
65 (Hv )k (Hy + M) fll o) < C272H |l (Hy + M) f| o0 (4.80)

for any j,k € N and 1 < p < co. Then we deduce from (A=R0) that

w <ol 3 (St + ilbw)

j=1 \ k=1

<of (5 gy + Mliw) |

Jj=1 “k'=—j+1

e8] o0 2
<032 (S foyuutre + 30l ) |
k=1 =1

ey {0y ||¢j+k'(Hv+M)f||LP(Q))2}

k'=—o00 j=—k'+1

[N

1

2

1

2

1
2

< CHfHBgyz(’HV-&-M)'

Hence, combining the estimates obtained now, we conclude (B=78). The proof of
the assertion (iii) in Theorem EIT is finished. O

4.2.3 Equivalence relations

In this subsection we prove two results on isomorphisms. The homogeneous Besov
spaces By (Hy) are defined as subspaces of Zi(§2). The first result states that

B;”q(”;‘-lv) are also regarded as subspaces of X{,(€2) if indices s, p and g are restricted.
Such characterization is known when Q = R? (see, e.g., Kozono and Yamazaki

52)).
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Theorem 4.14. Suppose that the potential V' satisfies assumptions A and B. Let
s € Rand 1 < p,g < oo. If either s < d/p or (s,q) = (d/p,1), then the
homogeneous Besov spaces B;’q(HV) are regarded as subspaces of X{,(€2) according
to the following isomorphism:

5a(H) = {f € 20(Q) 1 1]

b <50 F= S (/AN in 2@

]_—OO

Proof. Putting

X (M) = {1 € 20@) |11

5 oy <00 f= S G(V/H)f in X},

j=—00

we see that _
X;yq(’Hv) . B;q(?{v).

Hence it is sufficient to prove that
Bs(Hy) = X3, (Hy). (4.81)

Let f € B;q(Hv). Then f € Z{,(2), and thanks to Lemma B3 (ii), f is written
as

f= Z@ va+2¢] v)f in Z,(9Q)

j=—00

= I+1I.

(4.82)

For the low frequency part, it follows from (E=23) for a = 0 that

|| 00y < Z 65 (v/Hv ) fll o0y < C Z 257l (\/H ) f | v

j=—00 j=—00

where the right member is finite when (s, ¢) = (d/p, 1). In the case when s < d/p,
we estimate

[ ][ e () <C Z 2y Sgg?kﬂébk(vHv)fHLp(ﬂ)

]_—OO

</l
<C||f|

B;S),oo(HV)

B;S),q(HV) ’

where we used the embedding in Proposition BT (ii-b) in the last step. Hence the
above two estimates and Lemma B8 imply that I belongs to A7, (€2). Asto 11, since
the high frequency part of gy.a/(-) is equivalent to that of py a/(-), it follows that
IT € X{,(12). Hence the identity (E=82) holds in the topology of A7, (€2). Therefore,
we get [ € X;q(Hv). Thus we conclude the embedding (E=8T). This completes
the proof of Theorem E—T4. O
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The second result states the eq}ilivalence relation among the Besov spaces gen-
erated by Ho and Hy with V' € L2°°(€2). For the definition of the Lorentz space
L5°(9), see (E=4) below.

Theorem 4.15. Suppose the same assumption on V as in Theorem [.10. Let
s,p,q be such that

1 d
—min{2,d<1——>} <s<min{—,2} ifd>3,
1 <p,q < o0, 2 2]? b
o4 fcs<” ifd=1,2.
p p

(i) If V satisfies
Ve Le®(Q)+ L) ifd> 3,
Ve Kq4(Q) ifd=1,2,

then
B;yq(’HV) =~ B;VQ(HO).

(ii) IfV satisfies

(4.83)

VeLe®Q) ifd>3,
Ve LY(Q) ifd=2,

then

B: (Hv) = B (Ho).
Let us give some remarks on Theorem E_T3.

e Theorem E-T3 implies not only the equivalence of norms, but also that of the
following two approximations of the identity

f= 20 6i(VHo)f i Z(Q),  f= D 6(VHV)f in Z(Q),

for f belonging to the homogeneous Besov spaces. Analogous approximations
in A(Q2) and A, (§2) are also equivalent for the inhomogeneous Besov spaces.

e By considering the Lorentz spaces, it is possible to treat the potential V' like
V(z)=clz[?, >0,

which, in fact, V € L%’OO(Q). On the other hand, if V' is more singular, the
range of the regularity s for the isomorphism becomes smaller, since |z|~2~¢
(¢ > 0) can not be controlled locally by the Laplacian for instance.
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e [f V is smooth more and more, then, s can be taken bigger and bigger so that
the isomorphism holds. For instance, this comes from the following identity:

(“A+ V) f = (AP + (=D)(V )+ V(=A)f+ VS

when we consider the case s = 4. In fact, the term (—A)(V f) requires the
differentiability of V.

We use the theory of Lorentz spaces and introduce the following notations (see,
e.g., [30,89]). Let f be a measurable function on §2. We define the non-increasing
rearrangement of f as

fr(t) :=inf{c > 0:ds(c) < t},

where d(c) is the distribution function of f which is defined by the Lebesgue
measure of the set {x € Q :|f(z)| > ¢}. We define a function f**(¢) on (0,00) as

Fr) = /0 P d

Lorentz spaces LP4((2) are defined by letting

LP(Q) := {f : measurable on Q : || f||zre < o0}, (4.84)
where
1
e dt )«
{/ (tzlaf**(t))q—} if 1 <p,q< o0,
[fllzra) = 0, t
suptr f**(t) if 1 <p<ooandq= 0.
>0
Note that
LPHQ) — LP(Q) if 1 <p,q < oo, (4.85)

LP(Q) = LP(Q) if p = 1,00,
LPYQ) < LP(Q) = LPP(Q) < LP(Q) if 1 < p < oo

Let 1 < p < oo. We have the Holder inequality and Young inequality in the
Lorentz spaces:
1 1 1 1 1 1

fallra) < C|fllprra@llgllzrze@ if —=—+—, —-—=—+4+—, (4.86
1fgllray < Cll fllLrva@)llgllzra e @) ot Tata (4.86)

) 1 1 1 1
1fallzr < I fllema@llgllirman@ fl=s—4+—=—+—, (4.87)
D1 D2 q1 q2

1
||f * gHLP,q(Rd) S CHfHLpl*ql(]Rd)||g||LP2,q2(Rd) lfg = — 4+ — — ]_7 - = — 4+ —,
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where 1 < py1,p2,q,q1,q2 < 0co. We often use the estimates in the Lorentz spaces
on R? for functions on €2 extending them by zero extension to the outside of €2
when the necessity arises. Recalling that the quasi-norm of LP*°((2) is given by

1
£l zre @) = sup td(t) 7,
t>0

we have the following:

Lemma 4.16. Let f be a measurable and nonnegative function on Q. If f €
LPo>2(Q) for some 1 < py < 0o, then

||f||L1 {f>1}) Lpooo

Proof. Let f € LPo>(2). Since

de(t) ift>1,
dX{f>1}f(t) - {df(l) if0<t<1,

it follows that

[ xn@ e = [~ sy a+ 4y
Q 1

:/100 e {edp(t) " e+ {1-dg(1) )"

1 ey + 1 e

p
which proves the lemma. Il

We prove Theorem B3 only for the homogeneous Besov spaces B; ,(Hv), since
the inhomogeneous case is proved in an analogous way.

We prepare the following four lemmas.

Lemma 4.17. Let 1 <py <p < oo and 1 < g < 0o. Suppose that the potential V
satisfies assumptions A and B. Then there exists a constant C' > 0 such that

65V fll ey < €275 27 fl ooy
for any j € Z and f € LP(Q).

Proof. 1t is sufficient to consider the case ¢ = 1 due to the embedding (E=83). Let
p1 be such that 1/p = 1/py + 1/p1 — 1. Then it follows from the assertion (iv) in
Proposition 24 and the Young inequality (E=88) that

16;(V/H) Fllvagy = le™ 7 e ™ 0 (VHV) | s
< Ko (27, Y lma@a | {e” ™ &5 (VA H || e
< C(p1)2d(%_%)ju{6272jHV¢j( /HV)}fHLPO(Q)

11y,
< Cp1)2" % 2| £ oo,
91



where Ky(t,x) is the function in the right member of (218), i.e.,

d _|z—y|?

Ky(t,x) =Ct 2¢” s , t>0, z€&R%
and we used the fact that
1Ko(27%, || s = C(p1)2%F 2 for py > 1.

Here we note that the above constant C'(p;) is finite if and only if p; > 1 (i.e.
po < p). Thus the proof of of Lemma BT7 is complete. O

Lemma 4.18. Let 1 < p < oo. Suppose that the potential V' satisfies assumptions
A and B. Then

Mo (VHO S € Z(Q) and HF¢;(vHy)f € Z5()
for any j,m € Z and f € LP(Q).

Proof. Let j € Z be fixed. Since ¢;(v/Ho)f € LP(Q) for any f € LP(Q) by (E=23) in
Lemma BT, it follows from Proposition 8 that ¢;(v/Ho)f € Z;-(Q2). Hence, since
H{} is a mapping from Z{,(€2) to itself by (E64), the first assertion is proved. In the
same way, the second assertion holds. The proof of Lemma B8 is complete. [

Lemma 4.19. Suppose that the potential V' satisfies assumptions A, B and (E=53).
Then the following assertions hold:

(i) Letp=1 ford=2 and 1 <p < d/2 ford > 3. Then

16 (v/Hv ) @u(v/Ho) fll o) < C2720 9 £l 1oe). (4.89)

16(v/Ho) @5 (v Hy ) fll o) < €225 fll oo (4.90)
for any f € LP(Q), where ©; := ¢p;_1 + ¢; + ¢j11 for j € Z.

(ii) Let p=o0 ford=2 and d/(d —2) < p < oo for d > 3. Then

165 (v HV ) (v Ho) fll oy < €272 fll oy, (4.91)

16k (v/Ho) @5 (VHv ) fllzoie) < €272 fl 1oy (4.92)

for any f € LP(Q2).
Proof. We prove only the assertion (i), since the estimates (291) and (2292) are
obtained by the duality argument of (A=89) and (E790), respectively. Let us con-

centrate on the proof of (E89) and (E=90) . We divide the proof into two cases:
d>3and d=2.
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The case d > 3. Let 1 <p < d/2and f € C5°(2). By the estimate (223) for
a =1, we have

165 (v/Ho ) @i (v/Ho) fll o) = 65 (v Hv )Y Hy Hy @i/ Ho) fll ooy
< C27¥ | Hy @i(v/Ho) fll oo

for any j, k € Z. Here, we note that

Or(v/Ho) f € Hy(Q).

Furthermore, applying Lemma B4 for po = d/2 to V., we see from (EZ23) in
Lemma BT that

IV Vi @i (v Ho) fll 2 <||V+||L1({V+>1} 1@k (v Ho) f | () + [[Pr(vVHo) Fll 2 (@)

d da
C (22k\/ 1_9o ||V+Hzg,oo + 1) £l 22

for any k € Z. As a consequence, we find that

VVili(VHo)f € LP(9). (4.94)
Hence it follows from (E794) that
o (V) 9oy = [ (VOUVFS -V +V (@l Ho) ) 5) do
— [ (e + VLl ) ) 7o
for any g € D(Hy). Therefore, since D(Hy) is dense in L2(Q2), we get

Hyi(v/Ho) () = Ho®u(v/Ho) f(z) + V(v Ho) f () (4.95)

for almost every x € 2, which implies that

[Hy@(v/Ho) fll oy < Ho®rk(v/Ho) flloy + 1|V EL(VHo) fllzry  (4.96)

for any k € Z. As to the first term, we estimate, by using (E=23) from Lemma BT,

(4.93)

[Ho®x (v Ho) fllzr@) < CQ2ka”LP(Q) (4.97)

for any k € Z. As to the second term, we use the following estimate: For any
1 <p<py<ooand 1 <q< oo, there exists a constant C' > 0 such that

1P (v Ho) fllLrowa() < CQd(E_%)kaHLP(Q) (4.98)

93



for any k € Z and f € LP(Q) (see Lemma AT7). Thanks to (A-9R), we estimate

V@i (v Ho) fllzr@) IV .00 ) |22V Ho) fll 2020

(4.99)
SCPHIVI g o | 1000

for any k € Z, where py is a real number with 1/p = 2/d+1/pg. Hence, combining
the estimates obtained now, we get

16;(v/Hv ) @r(v/Ho) fll ooy < C27207)| fll oo

for any j, k € Z. Therefore (E=89) is obtained by the density argument. In a similar
way, we get (A790). The proof of the case d > 3 is finished.

The case d = 2. We consider the case d = 2 and p = 1. We note from Lemma
TR that

O/ Ho)f = Hi Hy Pu(v/Ho)f  in ZL(Q).

Thanks to the estimate (B=23) for « = 1 and the assumption (E=83) on V, a formal
calculation implies that

65 (v/Hy ) @r(v/Ho) fll 11 (o)
=||¢; (v HV)H\;lﬂvq)k(\/ﬁO)f“Ll(ﬂ)
< 2 { | Ho®u(V/Ho) flaoy + IV OV Ho) s}
< 02‘2j{22k!|f||u(9) + ||V||L1(Q)||¢k(\/H_O)f||L°°(Q)}
<O27%2%| fll 1

which proves (E=89). As to the estimate (E90), again by using (E223) and the
assumption (I83) on V, we estimate

(Vo) 2, (v/Fo) |30
= [l (v/Ho)Ho ' (Hy = V)®;(vVHv) fll @)
< C2 {1y @y (VA s + IV (V) fllsiey |
<022 fllaey + IV Il 10 (VH) F i |
<C27% 2% fll 1)

This proves (A90). Thus the estimate (i) for d = 2 and p = 1 is obtained. The
proof of Lemma B7T9 is complete. O]

Lemma 4.20. Under the same assumptions as Lemma [[.19, the following asser-
tions hold:
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(i) Let 1 <p < oo and 0 < a <min{2,d/p}. Then

16, (v Hv ) Pr(vV/Ho) fll oy < C27U™0|| £l o (4.100)
||¢k(\/7'f_0)q)j(\/ Hv) fllzr) < C27FD| £l oo (4.101)

for any j, k € Z and f € LP(12).

(i) Let 1 <p<oo and 0 < a <min{2,d(1 —1/p)}. Then

(v Hv)‘l)k(\/%_o)fHLp(Q) < 027" £l ooy (4.102)
16 (v/Ho)®; (v/Hv) fll oy < C2709| £ 1oy (4.103)

for any j,k € Z and f € LP(Q).

Proof. The strategy of the proof is to apply the Riesz-Thorin interpolation theorem
to the estimates in Lemma B-T9 and the following uniform estimates:

165 (\/Hv ) @i (v/Ho) fll oy < Cllf Il oo, (4.104)
H¢k(\/7‘[_0)q)j(v Hyv) fllza) < Cllf]lLag (4.105)

for any j, k € Z, which are proved by (E223) for o = 0.
Let 0 < a < min{2,d/p}. Then the proof of (EI00) for 1 < p < d/2 is
performed by combining (A=89) and (E104) with ¢ = p. In fact, we estimate

5 (v/Hv )P (v/Ho) fll oo

= 116,V H) B (v Ho) F | 0 165 (V) BV Ho) f 1y (4106)
<C{27207 9} fl| ey

=020 N ooy,

This proves (BI00). In a similar way, by using (E-90) and (EI03), we get the
estimate (EI00). When d/2 < p < oo, we apply the Riesz-Thorin interpolation
theorem to (EI0H) with ¢ = oo and the estimate (E=89) together with the argument

Finally, estimates (B102) and (B-103) are proved in analogous way as in (E-100)
and (BI0T), if we divide the cases into d/(d —2) <p < ocand 1 <p < d/(d—2).
The proof of Lemma is complete. ]

In what follows, we prove the isomorphism between B‘;’q(}{o) and B;q('Hv)
under the assumption on V' in Theorem E_TA.
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Proof of Theorem [-13. First we prove the assertion (ii), i.e.,
B: (Hy) = B (Ho). (4.107)
The case s > 0. First we prove that

B; (Ho) — By (Hv) (4.108)

for any s > 0. To be more precise, for any f € Bf,’q(’Ho), we will regard f as an
element of Z{,(2) by

o0

z(,(f,g>zvz Z z@(ﬁbj(\/?'l_o)f,@z‘/

j=—o0

and we will prove that

0= | . a(/H

To begin with, for any f € Bf,,q(’}—[o), we show that

< /]

Bg ,(Hy)

1113

Bs q('Ho

F=Y" 6;(VHv)f in Z,(Q) (4.109)

j=—o00

To see (A1), we consider the formal identity

o [e.e]

29z = Y, 2o (VHV9)z, = D 2 (6;(VHV) f9)z,,  (4.110)

j:—oo jzfoo

where the first identity is deduced from Lemma B=3 (ii). Note that

o0

F=Y 6 Ho)f in Z(Q) (4.111)
by Lemma B3 (ii). Plugging (E111) into (A110), we can write formally

z,(f.9) Z Z 2, (Ee(VHo) £, 05 (N Hy ) g) 2,

j=—00 k=—00

Then it is sufficient to show that for any g € Zy(Q)

o0 o

SN |z eV H) fL 65 (VHY)9) 2, | < Cllfllgy o9l 550 30y (4112)

j=—00 k=—00
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since

Zy(Q) = BS, (Hy).
Let ®; := ¢;_1+¢;+¢;+1. By using ¢; = ¢;®,; and Holder’s inequality we estimate

(e 9] o0

Yo D |V Ho £ 65(VHY)g) 2 |

Jj=—00 k=—00
0o oo

= 3 S | (V)0 Ho) £, (g 2 |

j=—00 k=—o00

. (4.113)

{3 (@S 6B AN )}

Jj=—00 k=—o00

A (2o A, )

j=—o0

=:1(s, f) x I1(s,g).

The estimate of the second factor I (s g) is an immediate consequence of the
definition of norm of Besov spaces B 5/ (Hv), that is, we have

=

11(5,9) < Clgll i+ 00 (4.114)

As to the first factor I(s, f), applying (E100), we have, for any j € Z

270 o (VHo) flle(y i k<,
VHY)PL(VH VH <C
|65V H )21 (v Ho) o (v Ho) | 1) < {||¢k(\/7'l_o)f||m(m itk = J,

where « is a fixed constant such that s < o < min{2,d/p}. For the sake of

simplicity, we put
arp -— ||¢k(\/ Ho)fHLp(Q). (4.115)

When k < j, by using the above estimate, we estimate the first factor I(s, f) in
(A1T3) as

Q=

{3

165,20 3
22 a=s)kgsi=kg, k’)q} (4.116)

o 1
oy Y (20 )Y
k'=0

j=—o00

Q=

j=—o00

<CJlf]

Bf,,q(HO)’
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and when k£ > j, we have

Q=

C{ Z ( Z 28k’25(j—k’)aj_k,>q}

j=—00 k'=—0

(4.117)

[e.e]

<C i 25k’{ Z (25071{/)&]-,,9/)(]}

k'=—o00 j=—00

<C|f|

Q=

Bzﬁyq(HO)'

Summarizing (E114)—(E1T7), we conclude that the series (EI10) is absolutely
convergent, and hence, the identity (A—109) is justified. Also, as a consequence of
(A116G) and (EIT4), we obtain

Pl <{ 3 (27 S [o0/FaVH 10y))

j=—00 k=—o00

<Cllf s, 10

Therefore, the embedding (AI0R) holds.
It is also possible to show the embedding

Q=

stv,q (HV) — B;,q (HO)

by the same argument as above, if we apply (E101) instead of (E10d). The proof
of isomorphism (E107) for s > 0 is complete.

The case s < 0. In this case, the argument for s > 0 works well. The only
difference is to obtain estimates corresponding to (A118) and (BI17), so that we
concentrate on proving that

{ i (25] Z H¢J HV )Py, \/%Wk(\/ﬂ_o)fHLp(Q))q}; < | fl

j=—00 k=—o00

Bg,q(HO).

(4.118)
It follows from (E100) that for any j € Z

ST |on(vVHo) | e @) if k <7,
6/ M 0l MV H L < C{2a<’“j>u¢k<m—o>f\|mm itk j

where « is a fixed constant such that |s| < @ < min{2,d(1—1/p)}. Then, by using
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the above estimate and recalling the definition (EI13) of ay, we have for k < j,

J

(3 (27 Y [o/mot/ Mo/ ,,0) )

j=—00 k=—o00
J N ) q )
(5 (5 w))
Jj=—00 k=—0o0
ol (Y aj_k,)Q}é
j:—oo k'=0
—of 3 (o))
j=—00
<C i 28’“{ i <gs(j—k’>aj_k,)q}3
k'=0 j=—00
<C|f Bg ,(Ho)

and in the case when k > 7, we estimate

(2 <ZS]Z”¢J )2V )0 ) )

j=—00
of 2 vy r ey

Jj=—00 k=j
QO‘klaJ k/) }g

C{ i (28]
(E (5w )

Q=

IN

-

Mo

Jj=

Qe

j=—00 k'=—o0
0 o q 1
<C Z 2(a+s)k’{ Z (25(j_k/)aj—k/> }q
k'=—o00 Jj=—o0
<l (210

Therefore, the estimate (B-I1R) is verified, and the proof of the isomorphism (A-I02)
for s < 0 is finished.

The case s = 0. In this case we have only to show the corresponding estimates
to (BIIX). Since 1 < p < 0o, Lemma implies that

65 (v/Hy ) @i (v Ho) fll oy < C27 M| fl Lo,

ok (V/Ho) (v Hy ) fll o) < C27 ) £l 1oy,
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where 0 < a < min{2,d/p,d(1 — 1/p)}. Then it follows from Young’s inequality
that

[e.9]

{ Z ( Z Hﬁbg HV Dy \/H_O)d)k(\/H_O)fHLp(Q))q}E

j*—oo k=—o0

Jun

1

<o 3 (X 2 H oty lg) '}

j=—00 k=—00

<c( i 27l Z [0 (v/Ho) £ |7 }

j=—00 k=—00

<Ol sy, (340

Therefore, the case s = 0 also holds. Thus the proof of isomorphism (E107) for
homogeneous case is finished. O

Finally, let us prove the assertion (i), i.e.,
B, ,(Mv) = B, ,(Ho). (4.119)

When assumption B is not imposed on V', which is the assumption on the inho-
mogeneous Besov spaces, the same estimates in Lemmas ET73-220 also hold for
J,k € N, since the proof is done analogously by applying (Z13) and (E=22) instead
of (EIG) and (E=23), respectively. The proof of (B1T9) is similar to the homoge-
neous case. The only difference is to handle potentials V' to get the estimates as
in Lemma AT9. Hence let us prove only the estimates (A=89) in Lemma BT9. We
divide the proof into the two cases: d > 3 and d =1, 2.

The case d > 3. We write
V=Vi+Vs, WeL™Q), Ve L)

To prove the estimates (289), it is sufficient to show that

IVi®k(v/Ho) fllzeiey < C2 VAl 500 g | Fll o0 (4.120)
IVai(v/Ho) fll ooy < C2¥ [ Vallzoe(@ [/ 1o (4.121)

for any k& € N. The estimates (E120) are obtained in the same way as (E299). As
to the estimates (AIZ1), we deduce from Lemma B0 that

1Va®i(v/Ho) fll o0y < 221 Vall Lo (o) | @i (v Ho) f || o)
< C2%M||Va| e (| f || o)

for any k € N. The proof of the estimates (E=89) in the case d > 3 is finished.
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The case d = 1,2. Under the assumption that V' € K4(Q2), we prove the
estimate (E=89) for p =1, i.e.,

¢ (v HV><I)k(\/7TO)f”L1(Q) < O2_2(j_k)”f||Ll(Q) (4.122)

for any j, k € N. Noting that V' € K4(Q2), we see from (i) in Proposition 271 and
(i) in Lemma 223 that

D(Hy) ={f € Hy(Q) : Hy f € L*(Q)}.

Hence we obtain the identity (E294) by the same argument as Lemma BET9. By the
same argument as (293), (296) and (E=97) in the proof of Lemma BT9, we have

165 (v/Ho ) @i (v Ho) fll @) < C272 {22 fllaey + IV @R(vV/Ho) fll 1oy }-

The second term in the right hand side of the above is estimated as

IVO,(vVHo) [l <1V + Ho) ol + Ho)Pu(v/Ho) fll 1)
<OV +Ho) Mol flle-

for any k£ € N. If
V(I + Ho) | @) < oo, (4.123)

then (BI22) is obtained, Hence let us concentrate on the proof of (EI1Z3). We
utilize (Z13) in Proposition 24, i.e., there exist C' > 0 and w > —inf o(Hy ) such
that

d _lz—yl?

0 < e ™(z,y) < Ce¥'e®(z,y) = Ce*'(8nt) " 2¢” st ae. x,y €,
for any t > 0. Let M > w and f € L'(Q) N L*(2). We see that
O+ 1) @] < [ e e (o)
<C /OO e Mt 2R £ ()| dt
20(1\04 —w—24)7"|f(x)]
for almost every x € (), where f is the zero extension of f to R We also
denote by V the zero extension of V to R%. Since V € Ky(R%), it follows from
Proposition A.2.3 by Simon [[76] that
V(M +Ho) " fllzey < O (M —w = 2A) Y flllpiey < Cllflliagay = Cllf e

which implies that (B123). Therefore (A-122) is proved under the assumption that
V e Kq4(Q) with d = 1,2. Thus we conclude (E119). O
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4.2.4 A lemma on convergence in Besov spaces

In this subsection, we discuss the convergence in Besov spaces, which is used in
the latter part of proof of Theorem BT in chapter B.

Lemma 4.21. Let s € R and 1 < p,q < oo. Suppose that the potential V' satisfies

assumptions A and B. Assume that {fn}nen is a bounded sequence in B;q("Hv),
and that there exists an f € X{,(Q2) such that

fn = f in X, (Q) as N — . (4.124)
Then f € B;q(Hv) and

/1

By 00y < mnE [ fllge ,)- (4.125)

Before going to the proof, let us give a remark on the idea of proof of the
lemma. When 1 < p,q < oo, B;q(’Hv) are reflexive for any s € R. This fact
and the limiting properties of the weak convergence imply the inequality (E-TZ3).
Otherwise, we need the pointwise convergence of ¢;(v/Hy)fx, which is obtained
directly with a property of the kernel ¢(Hy)(z,y) of the operator ¢(Hy ). Let us
investigate the property of the kernel.

Lemma 4.22. Let 1 < p < oo and T be a bounded linear operator from LP(2) to
L>(Q), and T(x,y) the kernel of T. Then

1T (Lr (), () = sup 1T (@, ) e )

where p’ is the conjugate exponent of p.

Proof. We have:
1T\ (e, () < sup 1T ()l o () (4.126)

for any 1 < p < oco. In fact, let f € LP(2). Then it follows from Holder’s inequality

that
Tf(x)] = ’/ z,y)f
<[ T(z, ) oy 1 | 2o ()

for a.e.z € ). Hence we obtain

ITfl L) < SUP 1T (@, ) o 1 fl 2202

which implies (E128). Therefore it suffices to prove the converse:

17, ')HLOO(Q;LP’(Q)) < T z(zr ),z (4.127)
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for any 1 < p < o0o. When 1 < p < 0o, we estimate

TN = s | [ Twusw)d]
FELP(Q), I fllLr()=1"JQ
= sup T f(z)|

FeLP(Q), IfllLroy=1

< sup T\l (e ), L0 @) || fll 2o ()
FeLP(Q), |IfllLray=1

< ||| z(zr(),.29))

for any z € Q. This proves (EIZ1) for 1 < p < co. When p = oo, fixing z( € €2,
we estimate

||T 'Z‘CH ||L1 / |T Zo,Y |dy
—/T(l’o,y) —iarg {T( xoy}dy
Q

Ssup‘ / T(w,y)e oot} dy‘
e

= sup |T€ zarg{T(mo,-)}(xH
€]
—iarg {T(xo,
< NTlazoe (o [l B )}HLOO(Q)
= [Tz =),
which proves (BTZ1) for p = co. The proof of Lemma B27 is finished. [

The following lemma states that the kernel of ¢(Hy ) belongs to Ay (2). More
precisely, we have:

Lemma 4.23. Let Q be an open set of R%. Suppose that the potential V satisfies
assumption A. Then for any ¢ € S (R), we have

d(Hv)(x, ) = o(Hv)(-,z) € Ay (Q)  for each x € Q. (4.128)
Proof. Note from Lemma =22 that
Sup [ 9(Hv) (2, )l (@) = 16y )llowr@ 1)
for any 1 < p < 0o, where p’ is the conjugate exponent of p. Hence, since
lo(Hv )l zwr (), oo () < 00
for any 1 < p < oo by Lemma BT, we have

o(Hy)(z,-) € LF(Q) for each z € Q. (4.129)
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In particular, we have
HY (6(Hv)(x,-)) € X (Q)

for any M € N, since L¥ (Q) — X},(Q) and H}¥ maps X}(Q) to itself. We denote
by K310,y (2, y) the kernel of HY $(Hy). Then, for any f € Xy (Q2), we have

a0 (HY (0(Hv) (2,4)), Pav@) = ap@@(Hy) (@, ), By Fay@
= ¢(Hy)Hy
=HY

(
- X{/(Q)<KH{‘/”¢>(7-[V)($7 s f>XV(Q)
for any x € 2, which implies that
H\]\//I(Cb(}[v)(% Ny) = KH{&%(HV)(% y) a.e.y €

for any z € Q. Since AM¢(\) € S(R) for any M € N, it follows from (ET29) for
p' =1 and p’ =2 that

KH]‘&[(b(rHv)(l‘? ') G LI(Q> ﬂ L2(Q)
for any M € N and x € €). Hence we obtain
Hi (p(Hv)(z,-) € LH(Q) N L* ()

for any M € N and z € Q. Thus we conclude (EIZ8). The proof of Lemma B23
is finished. 0

We are now in a position to prove Lemma B2,

Proof of Lemma [.Z]. First, we show that

O, (VH ) fn (@) = ¢, (VHY ) f(z) ae.zeQas N — oo (4.130)

for each j € Z. Put ®; = ¢,_1 + ¢; + ¢;41 for j € Z. Then, noting from the
assertion (i) in Lemma B3 that

;(v/Hy) fv € L2(9),

and from Lemma B=23 that

o;(VHv)(z,-) € Xy(Q) for each z € (,

we write

i (VHy) v (@) = 65 (v Hy) @ (v Hy) fu ()
= 2@ (@ (VHV) fv, 0 (VHY) (@, ) v (@)
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for each j € Z and x € ). In a similar way, we have

& (v HV) (@) = 2 @)@ (v Hv ) 2 65 (VHV) (@, ) (4.132)

for each j € Z and x € €). Since

®;(vVHv)fy = ©;(VHy)f i A (Q) as N — o0

for each j € Z by assumption (A124) and the continuity of ®;(v/Hy ) from A7, (Q2)
into itself, we deduce that

@ (@5 (VHY) v 65 (VY (@) e )
— @@ (VHY) f, 65 (VHY) (3, )@ (4.133)

for each j € Z and = € 2 as N — oco. Hence, combining (B-I3T) and (E132) with
(A133), we get the pointwise convergence (E-130).

Let us turn to the proof of the inequality (EIZ3F). To begin with, given 1 <
p < oo, we claim that

|0;(VHV) fllzr) < 1iNHLiOI<1)f |65 (vVHv) Il e (4.134)

for each j € Z. When 1 < p < oo, the inequality (EI34) is a consequence of
(A130) and Fatou’s lemma. We have to prove the case when p = co. In this case,
thanks to (E-130), the inequality (E-134) is true for p = oo, since {¢;(vHv) [} ven
is a bounded sequence in L>(2). Finally, multiplying by 2% to the both sides of
(AT33), we conclude the required inequality (BT24). The proof of Lemma E=Z1 is
finished. O
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Chapter 5

Bilinear estimates

The bilinear estimates in Sobolev spaces or Besov spaces are of great importance to
study the well-posedness for the Cauchy problem to nonlinear partial differential
equations. In this chapter we study the bilinear estimates in Besov spaces, which
were proved in Iwabuchi, Matsuyama and Taniguchi [42]. These estimates are
also called the fractional Leibniz rule or the Kato-Ponce inequality. The basis of
proving the bilinear estimates is to use frequency decomposition called the Bony
paraproduct formula (see Bony [4]) and the boundedness of Fourier multipliers (see
Bourgain and Li [6], D’Ancona [I7], Fujiwara, Georgiev and Ozawa [24], Grafakos
and Oh [37] and references therein).

Our goal is to prove the bilinear estimates in Besov spaces generated by the
Dirichlet Laplacian Hy. It will be revealed that the bilinear estimates hold in
the Besov spaces generated by H, for small regularity number, and it is possible
to construct a counter-example for high regularity. These estimates are proved
by using the gradient estimates for heat semigroup together with the Bony para-
product formula and the boundedness of spectral multipliers. As a by-product,
we obtain these estimates in Besov spaces generated by Schrodinger operators Hy
with potentials such that

B:,(Hy) = Bs (Ho) or B (Hv)= B: (Ho).

In this chapter we always assume that €2 is a domain of R? for the technical reason.

5.1 Bilinear estimates in Besov spaces
Let 2 be a domain such that the following gradient estimate
_ 1
||V€ t’HOHL@(Loo(Q)) S Ct™ 2 (51)

holds either for any ¢ € (0,1] or for any ¢ > 0, where {e "t} is the semigroup
generated by H,.

We shall prove here the following:
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Theorem 5.1. Let 0 < s < 2 and p, p1, p2, p3, P4 and q be such that
1 1 1 1 1

L <p.p1,p2,p3,p1,¢ <00 and —=—+—=—+ —.

P pP1 P2 P3 P4

Then the following assertions hold:

(i) Let Q be a domain of R? such that (621) holds for any t € (0,1]. Then there
exists a constant C' > 0 such that
8;, (o) 191l Lr2) + 1 fll e[l

1 fall s, 0y < C (I £llBs, By, o)) (5:2)

forany f € By (Ho) N LP*(Q) and g € By, (Ho) N LP(9).

1,4

(i) Let Q be a domain of R? such that (50) holds for any t > 0. Then there
exists a constant C' > 0 such that

1591l 55,340 < C (Il ] By, ,000)  (5:3)

(Ho) N LP*(Q) and g € B3, (Ho) N LP2().

Bﬁl,q(Ho)”gHLPQ(Q) + [ £l rs o)l 9]

for any f € B;hq

Let us give two remarks; the first one is concerned with the regularity number
s such that the bilinear estimates hold, and the second is about necessity of the
assumption on the gradient estimate (B1). As is well known, in the case when € is
the whole space RY, one does not need to impose any restriction on the regularity
number s > 0 of Besov spaces. However, when we consider these estimates for
functions whose regularity is measured by the Dirichlet Laplacian Hy on domains,
a restriction is required on the regularity. In fact, it is possible to construct a
counter-example for high regularity (see section 6b2). This is because Ho(fg) does
not necessarily belong to D(H,) even if f and g belong to D(HZ). This can be
seen from the following observation: Let €2 be a domain with smooth boundary.
Applying the Leibniz rule to Ho(fg), we are confronted with the term V f-V¢g which
does not belong to D(H,), since it does not in general vanish on the boundary.
Here, we refer to Iwabuchi [89] in which the one dimensional differential operator
0, maps functions involved with the Dirichlet boundary condition into those with
the Neumann one, and vice versa. Hence, in general, it is impossible to get the
estimates in high regularity.

As to the second remark, as far as our proof of main theorem is concerned, we
need to estimate the derivative of functions. Therefore, the gradient estimates for
heat semigroup in L*° or even LP are required.

When € is the whole space R? or the half space Ri with d > 1, we observe
from the explicit representation formula of the heat kernels that the estimate (1)
holds for any ¢ > 0. Let us give examples of domains such that (1) holds, and
other examples of domains where the bilinear estimates still hold for p in some
restricted ranges.
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(i)

When (2 is a domain with uniform C**-boundary for some « € (0, 1), (51)
holds for any ¢ € (0,1] (see Fornaro, Metafune and Priola [22]). Hence, the
bilinear estimate (52) in Theorem b5 holds in such a domain. In particular,
when 2 is bounded, (B) holds for any ¢ > 0, since the infimum of the
spectrum is strictly positive. Hence, the bilinear estimate (633) in Theorem
61 holds.

Let © be an open set in R?. Then there exists an exponent py = po(2) €
2, 0] depending on 2 such that if p € [1, po|, then

||V€_tHO||@(Lp(Q)) < Ct_%, t>0. (5.4)

Here we note that (54) was proved for p € [1,2] in Theorem B3. In this
case, it should be mentioned that we can prove the estimates (b2) and (B=3)
for 1 < p,p1,p2,p3, P < po by performing some trivial modifications of the
proof of Theorem Bl

Finally, let us mention some domains and the range of p such that (52) holds.

(a)

Let d > 3. Assume that € is the exterior domain of a compact set with C''!-
boundary. Then (b4) holds for any p € [1,d] (see Theorem B in chapter B).
In this case we may take pg = po(€2) = d.

We are able to take domains and p such that the Riesz transform is bounded,
1

namely, LP-boundedness of VH, ? implies the gradient estimate:

_ _1 -1 1 _1
V™0 fl| oy = £72 | VHy ? (o) 2™ f| o) < C 2| fl| ooy

for t > 0. Hence, the following results are immediate consequences of (E4) with
p =1 and LP-boundedness of the Riesz transform for some p = py in [[5,46] (see
also (74, 175,87]).

(b)

(c)

Let d > 2. If © is a bounded domain with C''-boundary, then (64) holds for
any p € [1,00). In this case we may take py as any finite number.

Let d > 2. If Q is a bounded and Lipschitz domain, then (54) holds for any
p € [1, po], where pg = 3 for d > 3 and py = 4 for d = 2.

As a consequence of Theorems BT and b, we have the bilinear estimates in
the case of Schrodinger operators.

Corollary 5.2. Let p, p1, ps, p3, ps and q be such that

1 1 1 1 1
1§pap1ap2ap3ap4aqgoo and - =—+ —=—+—,
P P1 P2 Pz P4
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and let s be such that

d d 2 2
O<s<min{—,—,2} if d > 3; 0<s<m1n{— —} ifd=1,2.
P1 P4 P1 P4

Then, under the same assumption on V' in Theorem [[1], the assertions (i) and
(ii) in Theorem B hold for By (Hv) and By (Hy), respectively.

In the rest of this section, let us give a proof of Theorem bBl. For this purpose,
we prepare five lemmas.

Based on Lemma BEZ1, we have:

Lemma 5.3. Let Q be an open set of RY. Then for any 1 < p < oo and o > 0
there exists a constant C' > 0 such that

g > o7
k=—o00

< 022 (5.5)
B(LP(2))

for any j € 7.

Proof. When a > 0, the estimate (53) follows from the estimate (E=23). In fact,
we estimate

I 3 ov)|,

k=—o00

< Z 115 dr(V Ho) lz(zr ()

B(LP(Q))

Let us now prove the case when a = 0. It follows from the identities (£238) and
(20) that

Z Sr(VHo)f = V(2 M) f in L*(Q)

k=—0o0

for any j € Z and f € L*(Q), which implies that

H 2 ¢k(‘/H_°)g“Lp(n> = 0@ Ho)gl| () < Clgllzreey

k=—00

for any j € Z and g € LP(Q) N L*(2). Thus, when 1 < p < oo, the estimate (B3)
for = 0 is proved by the density argument, and the case p = oo is obtained from

L'-estimate by the duality argument. Thus the estimate (53) for a = 0 is proved.
The proof of Lemma b33 is finished. O]
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Based on Theorem B2 and the gradient estimate (5), we have:
Lemma 5.4. Let 1 < p < oco. Then the following assertions hold:

(i) Assume that 0 is an open set of R such that (51) holds for any t € (0,1].
Then for any m € Ny and o € R there exists a constant C' > 0 such that

IVHG Y275 Ho) || ey < C2B3m+i (5.6)
IVHG 65 (v Ho) | aiwoy < C220F17 (5.7)

for any 7 € N.

(ii) Assume that Q2 is an open set of R such that () holds for any t > 0.
Then the estimates (58) and (620) hold for any j € Z. Furthermore, for any
a > 0 there exists a constant C > 0 such that

[V 3 (/70

k=—00

< 02t (5.8)

(1P ()

for any j € 7.

Proof. We prove the assertion (i). The case p = 1 is an immediate consequence of
Theorem B2 for § = 27% | since

AMp(N) € CE°(R),  A*¢o(VA) € C°((0,00)).

Hence it suffices to show the case p = oo. In fact, once the case p = oo is proved,
the Riesz-Thorin interpolation theorem allows us to conclude the estimates (58)
and (B21) for any 1 < p < 0.

Let f € L*>(Q2). Then it follows from the estimate (B) for 0 < ¢ < 1 that

IVHG @5 H) ]| ey = [V 706 HOUT D25 H) ]
< C2j||62‘21”0H3%/;(2*2j7{o)f||LOO(Q) (5.9)
_ 02(2m+1)jHBZ—QJ'HO(2—2jH0)m¢(2—2jH0)fHLOO(Q)

for any 5 € N. Since
e A"P(N) € G (R),
it follows from the estimate (B for p = oo in Theorem B that

62770 (22 1) (22 ) ]|y < CNF (0 (5.10)

Thus the required estimate (68) for p = oo is an immediate consequence of (59)
and (B10). In a similar way, we get (54). Thus the assertion (i) is proved.

Next we prove the assertion (ii). We can prove the estimates (58) and (b72)
for any j € Z in the same way as (i). Furthermore, the estimate (538) is proved by
using (B4) in the same way as the proof of (53) for @ > 0 in Lemma 53. Hence
we may omit the details. The proof of Lemma b4 is finished. O
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The following lemma is about the approximation of the identity for functions
in LP(Q).

Lemma 5.5. Let 1 < p < oco. Then for any f € LP(QY), we have
F= " o(VHo) [ in X9). (5.11)
j=—00

Proof. Since L?(Q) < X}(2), the identity (52I) holds for any f € LP(Q2) N L*(Q).
Then the identity (BI) holds for any f € LP(2) by the density argument, since
1 < p < 00. The proof of Lemma B3 is finished. ]

The following lemma states the Leibniz rule for the Dirichlet Laplacian.

Lemma 5.6. Assume that ) is an open set of R? such that (5) holds for any
t €(0,1]. Let ®,¥ € C3°(R). Then for any f,g € X[(2), we have

Ho(P(Ho)f - U(Ho)g) = Ho®(Ho) f - T(Ho)g

—2VO(Ho)f - VU (Ho)g + P(Ho)f - HoW(Ho)g in Xy(Q2). (5.12)

Proof. To begin with, we note from Lemma B3 that ®(Hy)f and U(Hg)g are
regarded as elements in L>():

O(Ho)f, ¥(Ho)g € L=(Q). (5.13)

Noting that the assumption (5) is necessary for Lemma b4, we apply Lemmas
b3 and b4 for p = co. Then we see that

Ho®(Ho)f, HoW(Ho)g, VE(Ho)f, VU (Ho)g € L=(9). (5.14)

Hence, all terms on the right hand side of (B12) belong to L>(2). Therefore, it
suffices to show that (BT2) holds in 2'(2), where 2'(2) is the space consisting of
distributions on €2, i.e., the dual space of Z(2). In fact, if (512) holds in 2'(Q2),
then (B12) holds almost everywhere on €. Thus we conclude that (512) holds in
X4(9).
Since
Hoh = —Ah  for h € 2(Q),

we write, by using (BL3),

@’(Q)<H0(¢(7{0)f : @(H0)9)7h>@(9) =reo () (W (Ho)g, P(Ho) f(—AL)) 1) (5.15)
for any h € 2(2). Here, noting that

—AQ(Ho) f = Ho®(Ho)f in Z'(Q),
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we observe from the Leibniz rule that

CD(”Ho)f(—Ah)

Since all the terms in (58) belong to L'(Q2) by (513) and (514), multiplying
(618) by ¥(Ho)g, and using (AI3), we write

Ho(®(Ho)f - ¥(Ho)g), k) oo
(Ho)g, —A(@(Ho) f - h)) 11 (o) (5.17)
(Ho®(Ho) [)W(Ho)g, h) i) + 2100) (¥ (Ho)g, VE(Ho) f - VR) 110

As to the first term in the right member of (5I7), integrating by parts, we get

<

T L)

LW(Q)<\I](HO)ga —A(®(Ho) f - h)>L1(Q) = Lw(Q)<—A\I’(Ho)g> D(Ho)f - h)Ll(Q)-
Here, we note that

Since HoW(Ho)g belongs to L>*(Q2) by (5L3) and Lemma B3 for p = oo, the
identity (5IX) holds almost everywhere on ). Hence we have

L) (=AY (Ho)g, 2(Ho) f - h)pre) = L) (®(Ho) f - Ho¥ (Ho)g, h) L1,
since ®(Ho)f - h € LY(Q). Therefore, the first term is written as
LOO(Q)<‘II<HO>Q7 _A(CI)(HO)JC ’ h))Ll(Q) = LOO(Q)<(I)(H(]>JC : HQ\I’(H())Q, h)Ll(Q)

In a similar way, the third term in the right member of (517) is written as

L@ {P(Ho)g, VO(Ho) f - VR) 1)
= — (AP (Ho)f - ¥(Ho)g, h) o) — o) (VP(Ho) [ - VU (Ho)g, h) gy (5.19)
=g (Hod(Ho) f - ¥ (Ho)g, ) o) — o) (VO(Ho) f - VU(Ho)g, h) o(q)-

Therefore, summarizing (514) and (519), we conclude that (B12) holds in 27(12).
The proof of Lemma B is finished. ]

The space Py(€2) in (B24) for V' = 0 is explicitly written. More precisely, we
have the following:

Lemma 5.7. If Q is a domain such that (B0) holds for any t > 0, then

Po(Q) = either {0} or {f=conQ:ceC}.
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Proof. Let f € Py(2). Then we prove that
f=v@2 7 Ho)f in X5(Q) (5.20)

for any k € Z. Indeed, replacing ) in the identity (EId) by 27%\, we see that

2—2k)\2 Z e +Z¢] k)\ =1

j=k+1

for A > 0 and k € Z. Hence, we deduce from the identity (£234) in Proposition B3
that

F=v@ P Ho)f+ > 6;,(vHo)f in X)(Q) (5.21)

j=k+1

for any k € Z. Here, it follows from part (i-b) in Proposition B8 that

&;(VHo)f =0

for any j € Z. Hence, we conclude from these equations and (A=21) that (5=20)
holds true.

Since the gradient estimate (51) holds for ¢t = 272* applying (58) from Lemma
64 to (b=20), we get

IV fllzeo@) = [V 27 Ho) fll 1) < C2°| fll o)

for any k € 7Z, which implies that Vf = 0 in 2. Since {2 is connected, f is a
constant in 2. Summarizing the above argument, we deduce that

{0} CPo(2) C{f=conQ:ceC}.

Since Py(€2) is a linear space, we conclude that if Py(€2) # {0}, then Py(Q2) is the
space of all constant functions on €. This proves (iii). The proof of Lemma 57 is
finished. O

We are now in a position to prove Theorem BTl

Proof of Theorem B. It is sufficient to prove the homogeneous case (ii), since
one can reduce the argument of the proof of (i) to that of (ii). Therefore, we shall
concentrate on proving the case (ii).

For the sake of simplicity, we use the following notations:

fi=0i(VHof Sif) = Si(VH)(f) = D (v Ho)f, JEL.

k=—00
We have to divide the proof into two cases:

2

“1 < po,p3 < 00” and “py = 00 or p3 = 007,
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since the approximation by the Littlewood-Paley dyadic decomposition is available
only for pe,ps < oo (see Lemma B3H) and a constant function in Py(£2) appears

only in the case when ps = 00 or p3 = oco.

The case: 1 < po,p3 < co. Let f € B;l’q(’ﬂo) N LP3(Q) and g € 3547(1(7-[0) N

LP2(Q)). Referring to the Bony paraproduct formula (see [4]), we write fg formally

as
o0 00 ) k+2
fo=">_ ISes(@)+ D SealHge+ D D fugre
k=—o00 k=—o00 k=—o00 l=k—2

Then we shall estimate B;,q(”;'-[o)—norm of each term in the right member as

/9]

Bs gy ST H I+ I+ 1V +V 4+ VI,

where we put

¢;(v/Ho) (kak—s(g)) ‘ LP(Q))q} :

¢j(\/70) (fk5k73(9)>

i (2”' > eV (Sia(hrar)

V= {]:f: (gsa‘kz ‘Qsj(\//H—O)( ki% fk9l>‘ LP(Q))Q};,

—j>—4 I=k—2

VI = {i (w‘k ’qu(\/?'l_o)( ki% fkg;) LP(Q))Q}Q.

—j<—4 I=k—2

We note that when € = R?, the terms /7, IV and VI vanish. Indeed, observing
that

65 (V=0 (fiSi-s(9)) = Z7 (1N { (1D Z £)  (Si-s(1€)F9) } .

and that
supp ¢; Nsupp ((or(|€])F f) * (Sk=s(|€])Fg)) =0
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for |k — j| > 2, we deduce that

65(V=2)(fiSi-s(9)) =0,

provided |k — j| > 2. Thus we get 11 = 0. In a similar way we find that IV also
vanishes. As to the term VI, observing that

k+2

Supp ¢; M supp <Z DRI (¢z(|§|)ffg)> =0

I=k—2
for k — j < —4, we deduce that

k+2

\/7'[_0)< Z fkgl> =0,

I=k—2

provided k£ — 7 < —4, which implies that VI = 0.

However, when ) # R?, the situation is different. In fact, if 17, IV and VI
vanish, the bilinear estimates hold for all positive regularity s by the argument
of Case A below. However it contradicts the counter-example constructed in sec-
tion B2. It should be noted that the assumption (B) on the gradient estimate
plays an essential role in the estimation of these terms I1, IV and VI.

Thus we estimate separately as follows:
Case A: Estimates for I, 111 and V/,

Case B: Estimates for 11, IV and V1.

Case A: Estimates for [,//] and V. These terms can be estimated in
the same way as in the case when 2 = R¢. Since similar arguments also appear
for 11,1V and VI, we give the proof in a self-contained way. First we estimate
the term /. Noting from the assertion (ii) in Lemma B3 that f, € LP*(Q) and
Sk_3(g) € LP2(Q) for each k € Z, we deduce from Hélder’s inequality and the
estimate (B3) for & = 0 in Lemma B33 that

|

6 (VH) (fi53(0)) ||, o < Clellims o 1Sks(6) 10200

< Ol fellrr @119 Lr2 )
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since 1/p = 1/p; + 1/ps. Thus we conclude from the above estimate that

2 N
ISC{ Z (283 Z kaHLpl(Q)) } gl Lr2 )

j=—o0 [k—j|<2

1
00 q) a
- C{ > ( > 2k '2S(j+k)||fj+k'\|m(ﬂ)) } 19| r2(0)

j=—c0 N |k|<2

00 1

/ s(i ’ q q
<o o 30 (2 feslin) | ol

k| <2 j=—c0

< Cllflls;, i llollzrme,

where we used Minkowski’s inequality in the third step. As to the term 1117,
interchanging the role of f and g in the above argument, we get

111 < C| fllzs@ ol 35, a0y

where 1/p = 1/p3 + 1/ps. As to the term V', we estimate

1

{fj (27 % [eutvi kfifkgl)um)q}q

j=—o00 |k—j|<4 I=k—
gc{ 3 (253 A (Z ngumm)) }
Jj=—00 |k—j|<4 I=k—
1
o0 ) q
SC{ > (2” 1 fiellzon ) } 191l (0
j=—00 |k ]|<4

Here, by applying Minkowski’s inequality to the right member in the above in-
equality, we find that

{i (2 & Ikamm))q};

j=—c0 N k—jl<d

> ! - / q %
=< ( D ACR Rl /e <m)
j=—co N |k|<4

) 1

2 . ’ q q
<C Z 2—sk{ Z <2s(y+k)|‘fj+k,||m(g)> }

|k|<4 j=—o0

<Clfllas, 0
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Hence, combining the above two estimates, we conclude that

V< Clfllgy, oullolm.

Case B: Estimates for I/, IV and VI. First let us estimate the term I1.
When k — j > 2, we deduce from the same argument as in [ that

(> (x|

j=—o00 k—j>2

B;Lq(HO) ||g||Lp2(Q)

(/o) ($:Sis(9)) Hm)q}q < cllf

Hence all we have to do is to prove the case when k — j < —2, i.e.,

oA (1s0)],,,) |

<C|fl

(S (> 5

k—j<—2

Bgl’q(’Hg)”gHLIQ(Q). (5.22)

In fact, noting from Lemma B3 that fi, Sx_3(g9) € L>*(Q) and from (BIX) that
L>(Q) — X5(Q2), we have
fuSi-3(g) € X5(2).

Then we write
65 (v/Ho) (f1Sk-3(9)) = Ho '0;(vV/Ho)Ho(frSi-s(g)) in XH(Q).  (5.23)

Here it should be noted that the operator Hy' in (6223) is well-defined, since

Ho'6;(v/Ho)h € X5(Q)

for any h € X[(2). Hence, applying the Leibniz rule in Lemma B to the identities
(EZ3), we have:

0;(v/Ho) (fuSk-3(9))

5.24
H 6,V (Ho)Sucals) — 29 - TSuao) + Fe(HaSa()}

in A(Q2). Thanks to (B) from Lemma A1 and (E3) from Lemma B33, the first
term in the right member in (B224) is estimated as

Hﬂal%(\/H_O) { (Hofk>sk—3<g)} <C2¥ H (Hof)Sk-3(9) ”LP(Q)

< 0272j‘|7-[0fk||y>1 () “Skf?)(g)HLpQ(Q)
< 0272(]'%)kaHLpl(Q)HgHLP?(Q)‘

[
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In a similar way, we estimate the third term as

|30 (VA { firoSios(9)}

< 0220k .
HLP(Q) <2 | fllze @) gl e (o)

As to the second, thanks to (571) and (B) from Lemma 54, we estimate

|15 0 VH [V i ISis) ]| < 02| i VS (0)] |
< C27HNV fillwor @ |V Se=3(9) | > )

< 02_2(j_k)||fk||LP1(Q)||g||Lp2(Q)‘

[

Hence, combining the identity (5-24) with the above three estimates, we get

|6 (v/Ho0) (feSis(9))

for any j, k € Z. Therefore, we conclude from this estimate that

< —2(j—k)
S C2 | feller @)l 9] 2 )

{ i (2sj Z ’¢j(\/770)<fk5k—3(9)>‘LP(Q))q}q

j=—00
1
> . . q] 4
SC{ Z (253 Z 2_2(3—/‘3)”kaLp1(Q)> } ”gHLPQ(Q)
j=—00 k—j<—2
1
00 q) 7
:O{ Z < Z 2(2—S)k '28(]+k)’|fj+k’”LP1(Q)> } ||g||Lp2(Q)
j=—00 Mk/<-2
<Clfll sy, o) lgllze2 ()5

since s < 2, which proves (5222). Thus we conclude that

1T < C||f]

Bgl,q(HO) ||g|| LP2(Q)-
Similarly, we estimate

1V < C[fllers@ 9]

Bfqu(’HO)’

VI <O f]

Bél,q(?{o) HgHLP2(Q).

Summarizing cases A and B, we arrive at the required estimate (B23). The
proof of the case when 1 < py, p3 < 00 is finished.

It remains to prove the case when ps = 0o or p3 = oc.
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The case: p; = 0o or p3 = co. We may prove only the case when p; = p3 =
o0, since the other cases are proved in a similar way. In this case, we note that
p1=ps=p. Let f,g € By (Ho) N L>(€2). Then it follows from Lemma B3 that

IS
j=k

for any k € Z. Hence there exist a subsequence

(>},

Jj=k

< C|f]| 1o 5.25
L = [ f1 oo () (5.25)

and a function F' € L>°(Q2) such that
Z fi = F weakly™® in L>(Q) (5.26)
J=ki
as [ — 0o, which also yields the convergence in A}(£2) and Z{(€2) by the embedding
L>®(Q) = X5(Q2) — Z5(Q).
On the other hand, it follows from Lemma B3 that
S fi—f i ZH(Q)
J=ki
as | — co. Hence we see that F' = f in Z[(£2), which implies that
Pf =f—F¢ P()(Q)
Therefore we conclude from (A=28) that
> fi = f— Py weakly* in L®(Q) (5.27)
Jj=ki
as [ — oco. In a similar way, there exist a subsequence
{2,
o ven

and P, € Py(£2) such that

Z g; — g — P, weakly™ in L>(Q) (5.28)

j:kl/
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as I’ — oo. Hence, by (E2Z1) and (E2R), there exists a subsequence {l'({)};°, of
{U'}92, such that

(> 5) (X %) = (F=Plg—P) weakly* in L™(%)
Jj=ki j:kl'(l)
as [ — oco. Hence we have
(X6) (X o) = (F-Plg—P) in () (5.29)
Jj=ki j:kz/(l)

as [ — oo, since L>®(Q2) — X}(2). Now, the estimate of B;,q—norm of the left
member in (529) is obtained by the argument as in the previous case 1 < po, p3 <
0o. Hence, there exists a constant C' > 0 such that

(S50

Jj=ki J Eyr B;»Q(HO) (530)

<C(If11 55, g9l i@ + 1F =@l 55, 40

for any [ € N. Here, we note that Py and P, are constants by Lemma b7. As a
consequence of (A29) and (h=30), we conclude from Lemma EZ1 that

(ij)( > 0)

i=kvq

1f9g]

B (o) < l1m1nf

B:g’q('Ho)

+ 1/ Poll s o) T I1Pr9N 85 30y + 1Pr Pl 55 300
<Ol oy gl + F =@ ll9ll ;. 300))
+ I/ Bg7q(H0)’Pg| + |Pf|H9‘ Bj ,(Ho) + ||PfP9| Bs ,(Ho)
Here, we deduce from part (c) in (i) from Proposition B8 that
HPngHB;,,q(HO) = 0.
Noting (527), and using (625), we estimate
IPrl < ey +timin [ 3255 < Cllfllemeey
—00 R L ()

In a similar way, we have
1Pyl < Cligllze=o

Combining the last four inequalities, we conclude the required estimate (B=33) in
the case when py, = p3 = 0o. The proof of Theorem bl is finished. O]
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5.2 A remark on high regularity case

In this section we show that the bilinear estimates do not necessarily hold for some
s > 2. For the sake of simplicity, let us consider the case when

Q={rcR®:|z| > 1}

and 3
]9257 pL=p2=p3=p1=3, ¢=2, [f=ug,

namely,

1]

for any f € B?f’z(’l-[o) N L3(2). We note that the estimate (5230) is already proved
for any 0 < s < 2 (see the case (ii-a) in section Bl). We shall show that the
estimate (B=3T) holds for s = 2 and does not hold for s > 2. In the proof we use
the following facts:

332(%0) < Cf B§Y2(H0)Hf||L3(Q) (5.31)

(a) The following gradient estimates hold for any 1 < p < 3:
Ve flln@) < CE 2 vy, ¢ >0
for any f € LP(§2) (see Theorem B below).
(b) The gradient estimate

Ve f|| oo ) < Ct71| £ t>1, felL3(Q)

L3

with pg > 3 is sharp in the sense that it is not possible to replace the time
decay rate t~1 with t7177 for any v > 0 (see Theorem B below).

5.2.1 The case s =2

In this subsection we show the following:

Proposition 5.8. The estimate (5231) holds for s = 2, namely,
||f2||32%’2m0) < Cllfll sz, 40y | F Nl 23 ) (5.32)

for any f € Bg’z('Ho) N L3(Q).

Proof. The proof is based on the method of proof of Proposition 3.6 in [I4]. Let
f € B3 ,(Ho) N L*(Q). Using the formula

V(0H, + 1) = / eVt gy
0
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we estimate

||V(9H() + I)_lfHLB(Q) < / €_t||V6_t9H0f||L3(Q) dt
0

< OO M ey [ bt
0

<O fllrseey

for any 6 > 0, where we used the fact (a) in the second step. Hence we have
1 1
IV fllza@) < CO™2[(0Ho + 1) fllra) < CO2 (0 Hof o) + 1fll o))
Taking 0 = || f|| 3 [|[Ho f sz,l(m, we obtain the interpolation inequality
IV fllZs0) < ClH sl fll e (5.33)
Noting from the Leibniz rule that
Ho(f?) =2(Hof) - f —2|Vf]? in 2'(Q),

we deduce from (ii-b) and (iii) in Theorem BT, Holder’s inequality and the esti-
mate (B=33) that

Hf2HBQ%’2(”HO) < ClHo () 3 gy < CUNHS) - £l 3 ) + IV FIlZs()
< C(IHofla@llf @) < Clfllsz 00 I 22 )-

This proves Proposition bS. O

5.2.2 The case s > 2

We can show the following claim.

Claim 5.9. Let ¢ > 0 and ¢ < ¢ < 2. If the estimate (B=31) holds for s =
240 —¢e,24 0+ ¢, then there exists a constant C' > 0 such that

&—

Ve fllzro(@y < Ct7
for any f € L%(Q), where the exponent py > 3 is given by § = 2(1 — 3/po).

However (6234) contradicts the fact (b). Hence, if Claim 5.9 is proved, then we
conclude the bilinear estimate (E231) does not hold for s > 2.

Let us concentrate on the proof of Claim 5.9. Let f € C3°(€2). By the Leibniz
rule, we have

Ho(e™ ™0 f)2 = 2(Hoe %0 f) (™0 f) — 2V P f P in 7/(Q),
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and hence,

Ve ) < ol 21,3, + | (a1} 0 )]
= I+11I.

L2 @ (5.35)

As to the term 7, we see from Holder’s inequality and LP-Li-estimates for e~t*o

(see Lemma B2 of chapter B) that
T < [[Hoe™™ ooy lle=™ llmiey < OE> 712

where we recall that 6 = 2(1 — 3/py). As to the term I, applying the estimate
(6330) for s =2+ —&,2+ J + ¢, and again using Lemma B2, we obtain

]— S C(”(eftHOf)Q”Bé-k;—s(rHO) + H(eit’Hof)2HB%+§+s(H0))
2 2

< C(He‘%fHBg;é—a(Ho)H@‘mofllmm) + He_mof“B??;“E(Ho)He_mofﬂm(g))
(5.36)

By Lemma B2, we have
—tH -1
e fllisa < CE Sl
Noting from Theorem B and Lemma B2 that
[H5e™ 005 (v Ho) fllosey < 72l ds(v Ho)fll 30y T€Z
we deduce from (ii-b) and (iii) in Theorem BT that

le=" £

_s_q —5-1
By ,(Ho) = Ci2 ||f||B%’2(H0) < Ct > ||f||L%(Q)

for s =246 —e,2+ 9§ — . Hence, by combining the estimates obtained now, we
get

5—

A2y gy 12

d+e
2=

_9_d—¢ _ 2 —2—
[<CO@t 5 +t NUM%mSCt

Therefore we find from (538) and the above estimate that

S—

Ve || ooy < Ot

Thus we conclude Claim 5.9.
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Chapter 6

Gradient estimates for heat
equation

In this chapter we consider the gradient estimates for the Dirichlet problem of heat
equation in an exterior domain € of R%:

Owu(t,z) — Au(t,z) =0, t€ (0,00), z€9Q,
u(t,z) =0, t € (0,00), z€0, (6.1)
u(0,2) = f(x), x € .

When (2 is the whole space R? or a half space Ri, the following gradient estimates

_1
||Vu(t)||Lp(Q) < Ct 2||f||Lp(Q), t>0 (6.2)

hold for any 1 < p < oo. The estimates (62) follow immediately from the explicit
representation formula of solution u to the problem (61). These estimates are also
true when Q is a bounded domain. In this case we can replace the decay rate ¢t=1/2
of (E2) by an exponential decay rate.

We are concerned with the question whether the estimates (B2) in exterior
domains are true for any 1 < p < oo or not. These estimates are always true for
any 1 < p < 2 (see Theorem B2). On the other hand, the situation of the case
p > 2 is more complicated (see [26,87,88,43,51]). In this case, the question seems
to remain without complete answer due to our knowledge.

Surprisingly, an answer to this question and more information can be found
in the case of Stokes equations. Maremonti and Solonnikov revealed that the
following estimates hold for solutions to the Dirichlet problem of Stokes equations
in exterior domain of R?, d > 3, with sufficiently smooth boundary:

Ct_%HfHLP(Q) for 0 <t <1,

(6.3)
C’t7“||f||Lp(Q) fort > 1,

IVu()]| o) < {

where



(see [67]). The case d = 2 is studied in Dan and Shibata [I6]. The optimality of
the estimate (B33) is discussed in [67], where the authors show that the estimate

||Vu(t)||Lp(Q) < Ot_“_(stHLp(Q), t>1, 6>0 (6.4)

is not true for d > 3 and p > d.

The first purpose is to prove the gradient estimate (E23) for solutions to the
problem (B in exterior domains. The second purpose is to show that (632) is
not fulfilled when (2 is the exterior of a ball. In this case, denoting by u(t; f) the
solution to (BI) with initial data f, we can show that

0< sup tIVult; £l e < oo
>0, fELP(Q), || fllLp()=1

for any 1 < p < oo. The right inequality follows from the gradient estimate
(633). The left inequality, i.e., the positivity of the supremum, gives variational
characterization of the best constant in (633) and implies the optimality of (B33)

(see Definition 68 and Theorem B4 below). The results in this chapter are based
on Georgiev and Taniguchi [27].

6.1 Gradient estimates for the Dirichlet problem

In this section we shall prove the following:

Theorem 6.1. Let d > 2 and S be the exterior domain in RY of a compact set
with CYt-boundary. Then, for any 1 < p < oo, there exists a constant C' > 0 such
that the solution u of (B) satisfies

Ct || fllpry for0<t<1,
IVu@ @ <9 5 er (6.5)
Ct7 | fllry fort>1
for any f € LP(QY), where the exponent p is given by
;3 if1<p<d,
=N iy (6.6)
% ifd < p < 0.

Let us give a few remarks on the theorem.

e Since we consider boundary with weak regularity, it is not clear whether the
gradient estimate (63) with p = oo is true for any f € L*(£2) due to our
knowledge. However the gradient estimate is true for classical solutions. In
fact, the classical bounded solutions to Dirichlet problem of parabolic equa-
tions in bounded or unbounded domains with sufficiently smooth boundary
satisfy the local (in time) gradient estimate

_1
||Vu(t)||Loo(Q) S Ct 2||f||Loo(Q), 0<t S 1
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(see [22,56], and references therein). One can establish the global estimate
IVu()]|zoe@) < Cllflloe@, > 1,

by combining the above local gradient estimate with L*°-estimate for u in
Lemma G2 below.

e In the case of Neumann boundary condition, the estimate (E2) holds in
exterior domains. We note that (62) is stronger than the estimate (BX)
(see, e.g., [36,78]).

e The supremum

sup IV ult; f)ller @)
t>0, feLP(Q), || fllLp()=1

is a well-defined positive number (see Definition B8 and Theorem 624 below).
This gives an optimality of (633) and a variational characterization of the best
constant C' = C'(§2, p) in (E33).

e The estimate (B3) is sharp in the context discussed in [67]. In other words,
(632) is not true for any 6 > 0. This is weaker than the above optimality,
i.e., the optimality of Definition G8.

For the purpose, we prepare key estimates for solutions of heat equations (51).
The first one is the result on LP-L%estimates which is an immediate consequence
of (iii) in Proposition 24,

Lemma 6.2. Let Q be an open set in R? and 1 < p < ¢ < co. Then there exists
a constant C > 0 such that

_d(1_1
()| o) < O 25| f[| oo
for anyt >0 and f € LP(2).

The second one is the result on the gradient estimates for 1 < p < 2 which is
an immediate consequence of (ii) in Theorem B2

Lemma 6.3. Let Q be an open set in R and 1 < p < 2. Then
IVu(@)lr@) < CE2 (| f ]l e
for any t >0 and f € LP(9).

Furthermore, we prepare two fundamental inequalities. The first one is the
special case of the Gagliardo-Nirenberg inequality (see [25,61]).
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Lemma 6.4. Let Q be a bounded domain in R? having the cone property. Then,
for any 1 < p < oo, there exist constants Cy,Cy > 0 such that

IV £ vy < 01( 3 ||0§f\lip(m> 11y + Coll Fllzocey
|ar|=2
for any f € WP(Q).
The second one is the global W*?-estimate (see Theorem 9.13 in [29]).

Lemma 6.5. Let Q be a domain in R with OV boundary. Then, for any 1 <
p < 00, there exists a constant C' > 0 such that

[ fllwzey < CUIAS o) + 1l r@r)

for any f € W*P(Q) N W,y (Q), where Q' and Q" are bounded domains in R? such
that
A cCcQ"CcQ and dist(9092,Q"\ Q) > 0.

Proof of Theorem E1. The case p = 1 is proved in Lemma BEZ3. Hence, in order to
obtain (B3) for any 1 < p < o0, it suffices to prove the case d < p < oco by density
and interpolation argument: For any d < p < oo, there exists a constant C' > 0
such that

Ct72 || fllir@ for 0 <t <1,

IVu()lr@) <9 ., —a
D=0 fll fort>1
for any f € C5°(9). Let us choose L > 0 such that R\ Q C {|z| < L}. Putting
Qrio =N {|z| < L+2},

(6.7)

we estimate
[Vu)l|lzr@) < IVu®)|lr@y,) + IVl || Lo((a>L12y)- (6.8)
As to the first term, we can obtain

Ct72|| fllw for 0 <t <1,

_d (6.9)
Ct 2| f||r fort>1

IVu)lzr@y.) < {

by using Lemmas 64 and E3. In fact, noting that
u(t) € WP(Q) N W, P (Q)
for any ¢t > 0 and f € C§°(£2), we can apply Lemmas 64 and B3 to estimate

IVu(®)ll e @)

1 1
<1 X 1Oy ) 1O, o+ Ol (510

|a|=2

< C(”AUG)HEP(Q) Hu(t) HEP(Q) + Hu(t) ||L”(QL+4))'
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Since . . .
[ AU 7o w75y < C 2]l o)

and ]
lu()||lzr@py) < Cllut)]| o) < Ct 2 || fl| o

for any ¢ > 0 by Lemma B2, the right hand side in (EI0) is estimated as

1 1 _1 _d
[Au) Lo o 1u®) | Loy + u@) ey 0y < Cmax(t™2, 272 [ o)

for any ¢ > 0. Therefore we obtain the required estimates (6:9). Thus all we have
to do is to estimate the second term in (ER) as follows:

Ct7z|| fllw for 0 <t <1,

i, (6.11)
Ct 2PHfHLp(Q) for t > 1.

VU)o (gap>r42y) < {

We divide the proof of (BI) into two cases: 0 <t <1 and ¢t > 1.

The case 0 < t < 1. We denote by y; a smooth function on R? such that

1 for |z| > L+1,
Tr) = - 6.12
xi(@) {0 for |z| < L, (6.12)

and have
u(t,z) = xp(z)u(t,x), |z|>L+2.

Let us decompose xpu(t) into
xru(t) = vy (t) — va(t) (6.13)
for 0 < ¢ < 1. Here v(t) is the solution to the Cauchy problem of heat equation
in R%:
O (t,x) — Avy(t,z) =0, te (0,1, =zeR%
v1(0,2) = xr(z) f(2), x € RY,

and vy(t) is the solution to the Cauchy problem of heat equation in R¢:

Opa(t, ) — Awo(t,x) = F(t,x), t€ (0,1, =z € RY
U2(07$) = 07 xr € Rd,

where

F(t,z) = =2Vxr(x) - Vu(t, z) + (Axr(z))u(t, x). (6.14)
It is easily proved that

VUL ()| o (o> Lr2y) < CL 2| fllo () (6.15)
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for any 0 < ¢t < 1. Hence it is sufficient to show that

_1
Ve (t) || o (o> 142 < CE 2| fl| o () (6.16)

for any 0 < t < 1. Letting e’ be the semigroup generated by —A on R?, we write
vy(t) as

t
UQ(t,.T):/ A (s, x) ds
0

for 0 <t <1 and z € R% Recalling that

2
e (x,y) = (47rt)_%e_|z4ty‘ :
we estimate

| Vua ()] Lo (flaf>L+2})

t
< (tfs)AF . D
_/O Ve (8, Mo (o> L+2y ds (6.17)

t
z// IV2e2 (2, ) oo | F (5, 9) | dy ds
L<|y|<L+1

Here we note that

n+1 |:L’ - y| _ =y
4t

‘Vxem(:c,y)‘ <Ct =z 2\/_
n41

—_ 2\ T2
ot (1)

= C(t+ |z -y~

for any ¢ > 0 and z € R?. In particular, if |z| > L + 2 and |y| < L +1, then

L+1

— > _ > _
|z —y| > |z| = |y| > || )

3ol = sl

and hence,
d+1

Voe" ™2 (2, y)] < C{(t — ) + |2}
for any 0 < s < t. Therefore we deduce that
_d4l,d
IV2e" 2 (@, ) || oo (afs a2y < C{L+ (E—9)} = T2 (6.18)
for any 0 < s <t and L < |y| < L + 1. Combining (611) and (EIR), we obtain

t _dtl, d
Vo2 ()] 2o (gla)>1+23) < / / {1+ (t—s)} 2 "2|F(s,y)|dyds
0 L<|y|<L+1 (619)

t _d+1 d
=/{Luww» P (s, ) o (netensy 5.
0
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Recalling the definition (B4) of F'(s,z), and using (69) and Lemma B3, we
estimate

1E (s, M rrrepi<zrny < CUVul)oqrepi<oiy + ) lowe<rii)
< O(IVu(s)| egr<iyi<z+1y + 1uls) |l rr<iyi<rtn)
1
< COs7 2| fl e

for any 0 < s < 1. Combining the above two estimates, we deduce that
¢ _ap 4 1
Vo) o (qapsrrony < C | {1+ =s)} 2 s 2ds - [|flo()
0

t

<c / sHds Il
0

< O f oy

for any 0 < t < 1, which proves (E18). Therefore the estimate (B58) for any
0 <t <1is proved by (613) and (B18).

The case ¢t > 1. In a similar way to (B213) in the previous case, we decompose
xru(t) into
xru(t) = wi(t) — wa(t)

for ¢ > 1. Here wy(¢) is the solution to the Cauchy problem of heat equation in
R¢:

Oy (t,2) — Awy(t,r) =0, te€ (1,00), x€RY,
wi(1,z) = xp(z)u(l, z), x € R,

and wy(t) is the solution to the Cauchy problem of heat equation in R¢:

Owy(t, x) — Awy(t, ) = F(t,z), t€ (1,00), z€RY,
U)Q(].,I) = 07 x € Rd7

where we recall (B12) and (614). It is easily proved that

_1
Vw1 ()| e (qlei> 42y < CE2 || fll o) (6.20)

for any ¢ > 1. Hence it is sufficient to show that

_d
[Vws ()] Lo (fa)> 423 < Ot 22 || fll e () (6.21)

for any ¢ > 1. Writing ws(t) as
t
wy(t, x) = / e =)AF(s,x)ds
1
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for t > 1 and z € R, we estimate, in a similar way to (619),

t
IVwa ()| o (fep>r42y) < C/l {14 (t =)} 55| F(s, ) |1 (nepi<riny ds.
Recalling the definition (BI4) of F(s,z), and using (69) and Lemma B3, we
estimate
1E (s ) retyi<rny < CUIVuls) o<y + lu(s) o rapi<in)
< C(IVul®)llzr(qr<iyi<rrny + ()l qr<iyi<1y)
< O™ 5| flln)
for any s > 1. Combining the above two estimates, we deduce that

a1

t _ d _d
HWW@MWMMHDSCK{LHVWH s ds || f| oo,

for any ¢ > 1. For 1 <t < 2 we use the inequality
t 2
/ {1+ (t—- s)}_%Jr%s_% ds < / s ds < Ot
1 1

For t > 2 and p > n, we have

o

t t
/2{1 + (t— s)}_%J“%s_% ds < Ct™ 5+ /2 s ds < Ot 2
1
d

1
all

t
/ (1+(t—s)) T Hos Bds <Ot %+t ") < Ct 5.
t

2

Hence we obtain the estimate (6220) for any ¢ > 1. Therefore the estimate (E250Q)
for any ¢ > 1 is proved by (6220) and (6=2T).

Thus, combining (68) with (69) and (E-58), we conclude the estimates (B22).
The proof of Theorem Bl is complete. ]

6.2 A remark on optimality of time decay rates

To state the result, let us give the definition of optimality of time decay rates.

Definition 6.6. We say that the gradient estimate (63) is optimal if there exist
sequences { fin tmen C LP(Q) and {t,, }men such that

tp, >0 formeN, t, —>00 asm — o0

and

: £ |Vt () || Lr (2)
lim sup

> 0,
m—o0 ||fm||LP(Q)

where u,, is a solution to (E) with initial data f,, and the exponent p is given
by (E3).
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Our result on the optimality is the following. To simplify the proof, we shall
fix the space dimension d = 3.

Theorem 6.7. Let d = 3 and ) be the exterior domain of a ball. Then, for any
1 < p < o0, the gradient estimate (B3) is optimal in the sense of Definition G0.

Proof. Let f be a radial function on . Since u(t) is also radial, we write
F(r):= f(z), U(t,r):=u(t, x)

for t > 0 and r = |z|. We rewrite the problem (B1) to the following problem by
the polar coordinates and making change v(t,r) = (r + 1)U(t,r + 1):

ow(t,r) — d*v(t,r) =0, te€(0,00), 7€ (0,00),
v(t,r) =0, t € (0,00), r=0, (6.22)
v(0,7) = g(r), r € (0,00),

where g(r) = (r + 1)F(r + 1) and r = |z|. Then solutions v to (622) and the
derivative 0,v can be represented as

1 o0 r—s)2 rts)?
v(t,r) = (47rt)2/ {e’( T e bg(s)ds, (6.23)
0

Bu(t,r) = (4rt)"3 / {— Lo S-tgps (I8 e }g(s) ds  (6.24)
; 2 2

for t > 0 and r > 0. Furthermore, noting that u(t,x) = U(t,r) = r—o(t,r — 1),
we write

IVu(t)|| oy = @m)7 || — (r + )7 po(t) + (r + 1)*1+56rv(t)\\Lp(0700). (6.25)

In order to prove the optimality, we choose appropriate initial data f,,, and estimate
from below the quantity from Definition B8:

t%|yvum(tm>‘|L”(Q)
| frnllLr ()

for m € N, where the exponent  is defined in (68). We divide the proof into two
cases: 1 <p <3 and 3 <p<oo.

The case 1 < p < 3. We take t,, = m? for m € N, and define the initial data as
follows

(6.26)

Culz|™, re(m+1,2m+1],
fula) = ol T S |
0, otherwise.
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Here we choose the constant C,, such that

Cm >0 and ”meLp(Q) =1. (627)
Then we have
Cr, 1€ (m,2m],
() = 6.28
g (1) {O, otherwise, ( )
and ,
Cop ~m' ™7 (6.29)

as m — oo. Here the notation A,, ~ B,, as m — oo means that there exist
constants C7, Cy > 0 such that

s

C; <

<0y, asm — oo.
B

Let us denote by u,, and v, the solutions to (6) and (6222) with initial data f,,
and g¢,,, respectively. By the equality (6223), we write

IVt ()l o) = (A7) 7 || = (r+ 1) o) + (0 + 1) 2 00m0)]| o .00

Letting ¢ > 0 and s > 0 be fixed, we see that the function

_(7"73)2 _(r+s)2
e & —e @, r>0,

is monotonically decreasing with respect to r € [v/2t + s, 00). Hence, noting from
(6228) that g, > 0 and m < s < 2m, we have

U (t,7) >0 and O, (t,7) <0

for any r € [v/2t + 2m, 00). Thanks to this observation, we estimate from below

912
Vel zo) 2 |+ D)7 2 0n )] Lo a7 am.o0
Taking t = t,, = m?, we write
_912
IVt () 2oy 2 [0+ 1) 720 ()| Ly ey (6.30)

where ¢y = 2+ v/2. From the representation (623) and definition (E28) of g,,, the
right hand side is estimated as

10+ 17 20 (m2)]| o

2m 2 2
—942 _(r=s) _(r+s)
(r—|—1) L / {e im2 — ¢ 4m?2 }ds

m

(6.31)

>C-C,mt

LP(com,00)
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Since

2

_(r=s)? _(r+s)? _(r=5)2 rs s

2
e am2 — e am2 — e  4am2 (1 — efm) > (1 — 6760)67%0674“12

for any r > com and m < s < 2m, the integral in the right hand side in (E230) is
estimated from below as

2m (r—s)2 (r+5)2 2m 2 2 2
/ {@_ am? — e am? }ds > C’/ e am? ds = C’m/ e~ T ds. (6.32)
m 1

m

Hence, by combining (6230)—(6232), we estimate from below

10+ D)7 50| eamey = C - Conll 0+ D7 sy (6:33)
Hence, noting from (6229) that
Coll 1) gy ~ 0P = =
as m — 00, we deduce from (6230)—(6-33) that
IVt (t) |y > Clin (6.34)

for sufficiently large m € N, where the constant C' > 0 is independent of m. By
combining (624) and (B6234), we conclude that

1
t2 IV, (t,
lim sup | (tm)llLr ()

> 0.
m—»00 ||fm||LP(Q)

Thus the optimality for 1 < p < 3 is proved.

The case 3 < p < oo. Recalling the equality (6223) and representations (6=23)
and (6224), we write

IVu®)llr@ = || =+ D)7 () + (r+ 1) 2000 1o o)

1 , o 6.3
= (4nt)"2 (7"—1—1)1+P/0 K(t,r,s)g(s)ds (6:33)

)
LP(0,00)

where

4t

K(t;T,S) = [{ —(T—f—l)_l— T_S}e_(TZ:)Q +{(T—|—1)_1+

r+s _(7"-!—3)2
Lo .
2t

Again we take t = t,, = m? and denote by u,, and v,, the solutions to (E1) and
(E222) with initial data f,, in (628) and g, in (6=28), respectively.

To begin with, we prove the following: For sufficiently large m € N, there exists
a constant C' > 0, independent of m, such that

31Q

K(m?,r,s) > (6.36)

135



for any 10 < r < mY* and m < s < 2m. Writing

(rfs)2 r2 2

e 4t —=e j+2m m?Z — e {1+_+O

(r+s)2 s2 r r2

e w = e am? Zm am? = e am? {1——+O }
2

we calculate

2m?

By
:eﬁjz{mi—(r—l—l) E—J—ﬂ;+0(;—2)}

zel{ﬁO(;—Z)};

where we used in the last step

K(m?,7,5) = i H —(r+1)‘1—r_8}{1+—+0

(6.37)

S ( +1) LIS 1 10 > 1
m2 " m — m 1lm — 11lm

for 10 < r < m'* and m < s < 2m. Since we can neglect the remainder terms in
(6231) if m is sufficiently large, we obtain (B238).

Let us turn to estimate form below of LP-norm of Vu,,(t,). By combining
(E333) and (E338), we estimate

2m
(r+1)""% / Cnds

m LP(10,m7)
_1+%|| (638)

1
LP(10,m%)

||Vum(tm) ||LP(Q) > COm™2

=C-Coym™||(r+1)
>C-C,m™*
for sufficiently large m € N. Noting from (E229) that

-1 1-2 1 -2

Cmm ~Mm Pm = m P

as m — 00, we conclude from (6238) that

3

|Vttt @) = O > = Ot

for sufficiently large m € N, where the constant C' > 0 is independent of m. This
proves that

3
tay ||Vum(tm)||Lp(Q)

lim sup > 0,
m—o0 “meLP(Q)
since || fllzr@) = 1 by (6228). Thus the optimality for 3 < p < oo is proved. The
proof of Theorem B is finished. m

136



Chapter 7

The case of the Neumann
Laplacian

The purpose in this chapter is to give definitions of Besov spaces generated by the
Neumann Laplacian on a domain, and prove their fundamental properties, which
were proved in Taniguchi [78]. The results in this chapter would be applicable to
the study of the Neumann problem to partial differential equations.

We assume that  is a Lipschitz domain in R? with d > 1. Namely, it can
be represented, locally near the boundary, as the region above the graph of a
Lipschitz function. We consider the Neumann Laplacian Hy = —A on L?*(Q).
More precisely, Hy is the non-negative self-adjoint operator on L?(€2) associated
with the following quadratic form:

Q(f. g) = / Vf(z) - V(o) de

for any f,g € H'(Q). It follows from Lemma P2 in section 22 that the domain
D(Hy) can be written as

D(Hy) = {f € H'(Q) : Ih; € L*(Q) such that
Q(f,9) = (hfvg)LQ(Q) for any g € HI(Q)}'

Thanks to the spectral theorem, there exists a spectral resolution { Ey, (\)}rer of
the identity for Hy, and we write

Hn z/ AdE3 (N).
0
For a Borel measurable function ¢ on R, an operator ¢(Hy) is defined by
o) = [ 00N dEw, (V).
0
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When vol(§2) = oo, the situation is similar to that of the Dirichlet Laplacian, since
zero is not an eigenvalue of H . However, if vol(Q2) < oo, the situation is different.
In particular case when 2 is a bounded and Lipschitz domain, the spectrum of
Hy is discrete and zero is an eigenvalue of H . Thus, in this case, let {\;}32, be
the eigenvalues of Hy such that

D= < N<---< A <-- and lim )\, = 0. (7.1)

k—o00

We denote by £ the eigenspace associated with zero eigenvalue. It is well known
that £ is the space consisting of all constant functions on (2. Its orthogonal com-
plement £ is the space

£t = {fGLQ(Q) :/f(x)dx:O}.
Q
Then the space L?(€2) is decomposed as the direct sum of £ and £+:
L*(Q)=Ep &

Let us define test function spaces on 2 and Besov spaces generated by Hy in
a similar way to the Dirichlet case (see sections B0 and B=271)

Definition (Test functions and distributions on Q).

(i) (Linear topological spaces Xn(€2) and Xy (€2)). A linear topological space
XN (Q) is defined by letting

Xn(Q) == {f € L") ND(Hy) : HN [ € L' () ND(Hy) for any M € N}
equipped with the family of semi-norms {py(-)}37—; given by
pu(f) = I fllr@) + sup 2" (VHN) Fll (@)
je

Furthermore, X'}, (€2) denotes the topological dual of Xn(€2).

(ii) (Linear topological spaces Zx(€2) and Z)(€2)). A linear topological space
Zn(Q) is defined by letting

Zn ()
={fe€XN(Q):qu(f) < oo for any M € N}

= {f € XN Q) NEL: sup2M|j|quj(\/HN)fHLl(Q) < oo for any M € N}
J<0
equipped with the family of semi-norms {qa/(-)}37_; given by
qu(f) = [ fllr@) + Sup oMl (|fo\ + | #5(v/ HN)f“D(Q)) :
j

where f = fy+ fi- with fo € € and f;- € £+, Furthermore, Z4(£2) denotes
the topological dual of Zy ().
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Definition 7.1 (Besov space). Let s € R and 1 < p,q < oo. Then the Besov
spaces are defined as follows:

(i) The inhomogeneous Besov spaces By (Hy) are defined by letting

By (H) = {f € X() 1 |1 f]

B;),q(HN) < OO} )

where
19130000 7= W) sy + [ {2005V Hm) v by - (72
(ii) The homogeneous Besov spaces B;q(’}-[ ~) are defined by letting
By () 1= {f € Z4(9) + 11l ) < 0}
where '
1711550000 = [ {2705V o0} s - (7.3)

This chapter is organized as follows. In section [l we prove LP-L9%-estimates
for spectral multipliers for Hy, which play a crucial role in studying the Besov
spaces. In section [ we prove fundamental properties of the test function spaces
and the spaces of distributions on €2. In section 23 some results on Besov spaces
generated by Hy are introduced. In section [4 we discuss the bilinear estimates
in Besov spaces generated by Hy.

7.1 Boundedness of spectral multipliers

This section is devoted to proving LP-L%-estimates for spectral multipliers for H .
Introducing the characteristic function x(g,cc)(A) of (0,00), we write for brevity a
projection as

P = X(O,oo) (HN) (7.4)

Throughout this section, we assume that € is a Lipschitz domain in R? with a
compact boundary, where d > 3 if € is unbounded, and d > 1 if € is bounded.
This assumption is necessary for developing functional calculus.

Then we have the following:

Proposition 7.2. Let 1 < p < g < oo, and let {} U{p;}; be functions given by
(A12), (E13) and (BI4). Then for any m € Ny, there exists a constant C' > 0
such that

IHR Oz @) Lo2) < C (7.5)
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and for any o € R there exists a constant C > 0 such that

1H% 05 (VAN 100,100y < C21G 73729 (7.6)

for any 7 € Z. In particular, if Q2 s bounded, then for any m € Ny and o« € R
there exist two constants > 0 and C' > 0 such that

. CQd(f_*)]'i‘Qm] fO,,,j >1
m —2j - 1,
[ HN Y2 HN) | 210 9),10(0) < {CQd()J”mﬂe—lﬂ 5 i <0, (7.7)
o 245 —3)it20i forj >1,
1505 (VHN ) 20,20 () < {CQd(_ 2002 o i < () (7.8)

Proposition [Z2 is an immediate consequence of the following.

Lemma 7.3. Let ¢ € #(R). Then ¢(Hy) is extended to a bounded linear operator
from LP(Q) to LYQ) provided that 1 < p < q < oo. Furthermore, we have the
uniform estimates:

(i) If Q is unbounded, then there exists a constant C' > 0 such that

p(OHN) || azr@) Loy < CO 26— (7.9)
for any 6 > 0.

(ii) If Q is bounded, then the estimate (L) holds for any 0 < 0 < 1. In particu-
lar, if ¢ € C3°((0,00)), then there exist two constants pn > 0 and C' > 0 such
that

1 (OHN) | a(zre, Loy < CO 2670 (7.10)
for any 6 > 0.

To prove Lemma [3, we need the Gaussian upper bounds for semigroup
{e=n 1}, generated by Hy.

Lemma T7.4. Let e "N (x,y) be the kernel of the semigroup e=""~. Then the
following assertions hold:

(i) If Q is unbounded, then there exist two constants Cy > 0 and Cy > 0 such
that

d |z —y|?

0<e™N(z,y) <Ot 2e O (7.11)

foranyt >0 and z,y € Q.
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(ii) If Q is bounded, then there exist two constants C3 > 0 and Cy > 0 such that

|z —y|?

0 < e V(z,y) < C3max {t_g, 1}e (7.12)

for any t >0 and z,y € Q. Furthermore, let (Pe=""N)(z,y) be the kernel of
Pe="™Mn - Then there exist three constants p > 0, Cs > 0 and Cg > 0 such
that

|z —yl|?

|(Pe=%) (2, )| < Cst e e (7.13)
foranyt >0 and z,y € Q.

Proof. The estimate (1) is proved by Chen, Williams and Zhao (see [I1]), and
the estimate (Z12) is proved by Choulli, Kayser and Ouhabaz (see [12]). Hence it
suffices to prove the estimate ([ZL3).

Since the spectrum of H satisfies (), it follows that
[Pe™ fll 7200y = /A e 22 d|| By (N fl1720) < €22 f 1720 (7.14)
2

for any ¢ > 0 and f € L*(Q2). Next, we claim that

Ct7i||fll 2@ for0<t<1,

7.15
Cti||fll2@ —fort>1 (7.15)

e fll Loy < {

for any f € L*(Q). In fact, put

2
=]

Ki(x):=e &F,

Letting f be the zero extension of f from Q to R?, we estimate, by using (12),
Young’s inequality,

j— _i F
le™ fll o0y < Cymax {72, T} Ky # | F]| oo ey

_d ~
S 03 max {t 2, 1}||Kt||L2(Rd)||f||L2(]R’1)

d
Com\ 4 _d d
:Cg(%) max {t~%, 15| £ 20,

which proves (13). Hence, when t > 1, combining (Z14) and ([IH), we find that

_ _t _t
|[Pe™N fll ooy = [le™ 2V Pe™ 2™ f|| oo (g
S Ct%HPG_%HNfHLQ(Q)

< Ctie 2| f|l 20
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for any f € L*(Q), which implies that by duality argument,

_ d Ao
||P€ tHNf||L2(Q) S Ct4€ 22t||f||L1(Q)

for any ¢ > 1 and f € L'(Q). Hence, combining the estimates obtained now, we
get

[P fllzooy = | Pe™3% Pe™ 3% fll1x()
< Ctie  #1||Pe "N f|| 12gq (7.16)
< C(t%e_)%t)QHfHLl(Q)
for any ¢t > 1 and f € L'(Q). Here we note from the standard argument that
sup || Pe™ (2, )| =y = [Pe™™ llawr @.c=(e)

Then, putting L = diam({2), we deduce from (I8) that

Ao _Jz—y|?

‘Pe‘mN (x,y)’ < Ctse= 3! < Ctie3le

for any ¢t > 1 and =,y € . Thus we conclude the estimate (ZI3). The proof of
Lemma [ is finished. O

Proof of Lemma [7-3. We prove only the estimates (I0) for any # > 1 in the
assertion (ii), since the proof of other assertions is similar to that of Theorem B.

Since the support of ¢ is away from the origin, we write

O(0HN) = Po(0HN).

Let f € L*(Q2)NL?(Q2). Then, by using the estimate (Id) and the above identity,
we deduce that

[o(OHN) fllr) < Q2 ||#(OHN) fl 22
= |Qz || Pe N 20HN (9 \ e OHN fllzz@ (7.17)
< C|QJze20 || 2N G(0H e N [l 12

Since the support of ¢ is compact, it follows that
e?*p(N) € L¥(R),

and hence,
127X p(0H N )e™ "™ fl2() < Clle™ £l 2(0y- (7.18)

Therefore, we deduce from (CI7) and (I8) that
|6OHN) Fll@) < ClIZe e f| 2. (7.19)
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On the other hand, it follows from the estimate (I3) for t = 6 > 1 that

_ d
™5 f[| ooy < COF| fll 20
and hence, by duality argument we deduce that
_ d
le™ fll120) < COT[|fl 10 (7.20)

Hence, combining (Z19) and ([Z20), we obtain

[@(0H )

L.d _
Ay < ClO203e7

for any € > 1. Thus, performing the previous argument, we conclude the estimate
(1M) in the assertion (ii). The proof of Theorem [3 is finished. O

7.2 Fundamental properties of test function and
distribution spaces

In this section we discuss the fundamental properties of Xn(€2), Z5(Q2) and their
dual spaces. The results in this section form the basis for the proofs of the theorems
in the next section.

The first result is the following.

Proposition 7.5. Let 2 be as in section [T4. Then Xn(2) and Zx5(S2) are com-
plete.

Proof. We can prove the completeness of Xy (£2) in a similar way as in Proposition
A2, regardless of unboundedness or boundedness of €. Also, when €2 is unbounded,
the proof of completeness of Zy(£2) is similar to that lemma. So we omit the details
in these cases. Based on this consideration, we prove the completeness of Zy(2)
in the case when 2 is the bounded domain.

Let {fn}°_, be a Cauchy sequence in Zx(2). Since Zy(£2) is a subspace
of Xn(€2), and since Xn(2) is complete, {f,,}00_, is also a Cauchy sequence in
Xy (£2), and hence, there exists an element f € Xy(2) such that f,, converges to
fin Xn(Q) as m — oo. Then we can check that f satisfies

supQMU'||¢j(\/7-[N)fHL1(Q) < oo for any M € N
J<0

in the same way as in the latter part of proof of Proposition B2. Furthermore,
since £1 is a closed subspace of L%(Q) and f,, converges to f in L?(Q) as m — oo,
we have f € £+, Hence f € Zx(Q2). Thus we conclude that Zx(f2) is complete.
The proof of Proposition [3 is finished. O
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The following propositions are proved in the completely same arguments as
Propositions B3 and B4 in subsection B2, respectively. So we may omit the
proofs.

Proposition 7.6. Let 2 be as in section [7.1. Then we have the following asser-
tions:

(i) For any f € X\ (), there exist a number My € N and a constant Cy > 0
such that

e @ (s D aw@] < Crpay(9)
for any g € Xn(Q).

(ii) For any f € Z5(QY), there exist a number M; € N and a constant Cy > 0
such that

|ZEV(Q)<fa g>ZN(Q)| < Cprl (g)
for any g € Zn(Q).

Proposition 7.7. Let ) be as in section [7_1. Then we have the following asser-
tions:

(i) For any ¢ € CP(R), ¢(Hn) maps continuously from Xy (2) into itself, and
from X} () into itself.

(ii) For any ¢ € C5°((0,00)), ¢(Hn) maps continuously from Zn(Q2) into itself,
and from Z5(Q2) into itself.

Next we introduce approximations of identity in Xy (2) and Zy5(£2). More
precisely, we have the following.

Proposition 7.8. Let Q be as in section [7.1. Then we have the following asser-
tions:

(i) For any f € Xn(Q2), we have
F=0MN)+D 0 (VHN) S in Xn(9). (7.21)
j=1
Furthermore, for any f € X4 (), the identity (=) holds in X (Q2), and
Y(HN)f and ¢;(VHN)f are regarded as elements of L>(€2).
(ii) For any f € Zn(Q2), we have

F=" ¢;(VHN)f in Zx(Q). (7.22)

j=—o00

Furthermore, for any f € Z\(Q), the identity (C2ZA) holds in Z1 (), and
oj(VHN)f are regarded as elements of L>(£2).
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Proof. We prove the assertion (ii) in the case when (2 is the bounded domain, since
the unbounded case are proved in the same way as in Proposition B=3 in subsection
ET32 Let f € Zy(Q). Since Zx(Q2) C &L, it follows that f € &4, and hence, we
have

f= 22 6i(VHNf in L3(Q). (7.23)

On the other hand, we find from the estimates (CB) for p = ¢ = 1 in Proposition
[2 that

0 (6;(VHN)F) < C2%qu My 65 (VHN) ) < C2% qarsa(f),

which implies that

0

S a6 (VHN ) < Caarga(f) Y 27 < o0

j=—o0 j=—o0

for any M € N. This means that the series in the right member of ("Z3) converges
absolutely in Zy(2). Thus (Z22) is proved. The latter part is proved by combining
the Hahn-Banach theorem with

2@ (0 (VHN) ], h>ZN(Q)‘ < C|\ ||

for any f € Z3(2) and h € Z5(2). For more details, see the proof of Proposition
B in subsection BT

Similarly, the assertion (i) is proved by using the estimate (3) instead of (7).
The proof of Proposition [ is finished. O]

The following result states the relations among Lebesgue spaces and the spaces
of test functions and distributions on ).

Proposition 7.9. Let Q) be as in section [71. Then
ZN(Q) = Xy (Q) — LP(Q) — Xy(Q) — Z4(9Q) (7.24)
for any 1 < p < oco. Furthermore, we have
Zn(2) C Xn(Q) C C(Q). (7.25)

Proof. For the proof of (24), see Proposition @ in subsection T2, The inclu-
sion (Z3) is an immediate consequence of the interior elliptic regularity. In fact,
it follows from the interior elliptic regularity that

() D(HR) € C=(9).
m=1
The proof of Proposition [9 is complete. O]
145



In the rest of this section we shall characterize the space Z(£2) by the quotient
space of X3 (Q). Let us recall that X% (Q) and Z4 () correspond to ./ (R¢) and
S (RY), respectively. Let us define a space Py () by

Py(Q) = {f € X(Q) : 2y, @(J(f), 9)zy(@ = 0 for any g € Zn(Q)},  (7.26)

where J(f) is the restriction of f on the subspace Zy(§2) of Xy (). It is readily
checked that Py (€2) is a closed subspace of X} (£2), and hence, the quotient space
X4 (2)/Pn(Q) is a linear topological space endowed with the quotient topology.

Proposition 7.10. Let Q) be as in section [7.]. Then
Zy(Q) = Xy (Q)/Pn ().

The proof of Proposition [I0 is done by using Theorem in p.126 from Schaefer
(2] and Propositions 35.5 and 35.6 from Tréves [[/9] (see also Theorem 1.1 in
Sawano [[70]).

The space Py (2) enjoys the following.

Proposition 7.11. Let Q2 be as in section [7]. Then the following assertions hold:

(i) Let f € Xy (). Then the following assertions are equivalent:

(a) fe€Pn();
(b) ¢;(VHN)f =0 in X(Q) for any j € Z;
(c) [If]

(ii) If we further assume that Q is a domain such that the gradient estimate
(I231) in section [7-3 holds for any t > 0, then

By (Hn) = 0 forany s € R and 1 < p,q < 0.

Py () = either {0} or {f=conQ:ceC}. (7.27)
In addition, if Q0 is a bounded domain, then

P(Q) = &. (7.28)

Proof. The proof of the assertion (i) is the same as that of Proposition B8 in
subsection BT Hence it is sufficient to prove the assertion (ii).

Let f € Py(£2). We claim that f € L>(f2). In fact, by the same argument
as the proof of (A=21), we find from the identity (ZZT) in Proposition '8 and the
assertion (i-b) that

F=0@PHN)f+ Y ou(VHNF =02 THN)f in XL (Q) (7.29)

k=j+1
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for any j € Z. Hence it follows from the latter part of the assertion (i) in Propo-
sition 8 that f € L>°(Q2). Then, thanks to (C29), recalling that € is a smooth
domain, we find from (Z33) in Proposition I8 below that

IV fllzo@) = V027 Hy) fllze@) < C2 | fllze(@)

for any j € Z, which implies that Vf = 0 in 2. Then f is a constant on §2. Hence
we have the inclusion

{0} CPy(2) C{f=conQ:ceC}. (7.30)

Since Py () is a linear space, we conclude that if Py () # {0}, then Py () is
the space of all constant functions on €. This proves ([CZ27).
Finally, we consider the case when {2 is a bounded domain. Then it follows
from ([=30) that
Pn(2) C €.

To prove the converse, since Zy(2) C £+ by the definition of Zx (), we see from
the definition (Z28) of Py (12) that

E=(EH Cc Zy()* Cc Pn(Q).

This proves (ZZR). The proof of Proposition 11 is finished. [

7.3 Fundamental properties of Besov spaces gen-
erated by the Neumann Laplacian

In this section we state results on fundamental properties of Besov spaces generated
by Hy. The proofs are similar to those of the Dirichlet case. So we may omit the
details.

The first result is concerned with completeness of Besov spaces and the relations
among Besov spaces, test function spaces and the spaces of distributions.

Theorem 7.12. Assume that ) is as in section[71. Let s € R and 1 < p,q < oo.
Then the following assertions hold:

(i) (Inhomogeneous Besov spaces)

(a) By ,(Hn) is independent of the choice of {1} U{¢;}jen satisfying (E12),
(B13) and (EI4), and enjoys the following:

An(Q) = By (Hn) — Xy ().

(b) B, (M) is a Banach space.
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(ii) (Homogeneous Besov spaces)

(a) B;’q(HN) is independent of the choice of {¢;},ez satisfying (EI2) and
(E13), and enjoys the following:

Zn(Q) = By (H) = Z3(9).
(b) B;’Q(HN) is a Banach space.

The following result states the fundamental properties of the Besov spaces such
as duality, lifting properties, and embedding relations.

Theorem 7.13. Assume that Q) is as in section [7.]. Let s,s9 € R and 1 <
D,q,qo, T < 00. Then the following assertions hold:

(i) If1<p,g<oo, I/p+1/p'=1and 1/q+1/q =1, then the dual spaces of
B, (Hn) and B, (Hy) are B,",(Hy) and B, (Hx), respectively.

(ii) (a) The inhomogeneous Besov spaces enjoy the following properties:
(I+Hn)2f e B (Hy) for any f € BS (Hn);

Byre(Mn) — By, (Hn) for any e > 0;

P.q0
By (Hn) = B (Hy) if s > so;

std(1-1
By " p)(HN)‘%BS (Hy) if1<r<p<ooandq< q.

p,q0

(b) The homogeneous Besov spaces enjoy the following properties:

He f e B;;ZSO (Hn) for any f € B;Q(HN);

sqd(l_1 .
BT () < B, (My) if 1< 7 <p< oo andq < g

p,q0

(iii) We have '
LP(Q) <= By y(Hn), Bpo(Hn) if 1 <p <2

B, (M), BYy(Hy) = LP(Q) if2<p < 0.

The homogeneous Besov spaces Bpf’q(HN) are the subspaces of Z} () by the

definition. When  is unbounded, B;q(HN) are also regarded as subspaces of
X (2) if indices s, p and ¢ are appropriately restricted. On the other hand, when
Q) is bounded, B;q (Hy) are always regarded as subspaces of X} (€2). Summarizing
the above considerations, we have the following.

Theorem 7.14. Let 1 < p,q < oo. Then we have the following:
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(i) Let Q be an unbounded Lipschitz domain in R® with compact boundary, where
d > 3. If either s < d/p or (s,q) = (d/p,1), then

B: (Hy)

~ {f € X(Q) | f]

By (Hy) < O f= Z o;(VHwn)f in XJ/\,(Q)}

j=—o0

(i) Let Q be a bounded Lipschitz domain in R? with d > 1. Then the isomorphism
in (1) holds also for any s € R.

7.4 Bilinear estimates in Besov spaces generated
by the Neumann Laplacian

In this section, we discuss the bilinear estimates in Besov spaces generated by
the Neumann Laplacian. Following the argument in chapter B, we see that the
gradient estimates play an important role in proving the bilinear estimates.

Let us consider the domain €2 such that the following estimate holds:
Ve | oo < C72 (731)

either for any 0 < ¢ < 1, or for any ¢t > 0, where C' > 0 is the constant independent
of t. When € is an exterior domain in R% with compact and smooth boundary,
the estimate ([31) for ¢ > 0 is proved by Ishige (see [36]). As to the case when ()
is a bounded domain, we have the following:

Proposition 7.15. Let Q be a bounded and smooth domain in R? with d > 1.
Then the estimate (Z30) holds for any t > 0.

Proof. When () is bounded and smooth, the estimate (ZZ31) for 0 < ¢ < 1 holds
(see, e.g., section 1 in [36]). Hence it is sufficient to prove (IZ31) for ¢t > 1. We
recall the definition (IZ4) of P:

P = X(0,00)(HN)-

We note that
Ve g = Ve gt = Ve py (7.32)

where g = go + gy with go € £ and g5 € E*. Then, writing
Ve f|| ooy = ([ Ve 2P em 2Py pe=U=DRN £l .
and applying (ZZ31) for ¢ = 1/2 to the right member of the above equation, we get
IV e f]| ooy < Clle™ 2 Pe=0=DRN £l 1.
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Hence, applying (I3) to the right member of the above estimate, we find that
IVe™ % fl| ey < Cl|[Pe™ V™Y £l 12q)

for any ¢ > 1 and f € L>(Q). Here, thanks to L*-estimate (Z1d) and Holder’s
inequality, there exists a constant p > 0 such that
1Pe V%N | 20 < Ce™ || ]| 20y
1
< ClQze | fllz=

for any ¢ > 1 and f € L*>(Q2). Hence, combining two estimates obtained now, we
get the estimate ([Z31) for any ¢ > 1. O

We shall prove here the following.

Proposition 7.16. Assume that Q is a Lipschitz domain in R? with compact
boundary, where d > 3 if € is unbounded, and d > 1 if Q) is bounded. Let 1 < p <
00, and let {1} U{¢;}; be functions given by (E12), (E13) and (EId). Then the

following assertions hold:

(i) Assume further that Q is a domain such that the gradient estimate ([Z31)
holds for any 0 <t < 1. Then there exists a constant C' > 0 such that

IV 2™ M) | vy < C2, (7.33)
IVé; (VHN) | 2r@) < C2 (7.34)

for any 5 € N.

(ii) Assume further that Q is a domain such that the gradient estimate ([Z31)
holds for any t > 0. Then the estimates ([C33) and (IZ34) hold for any
Jj € L.

For the proof of Proposition [Z18, we need the following.

Lemma 7.17. Assume that Q) is a Lipschitz domain in R? with compact boundary,
where d > 3 if Q is unbounded, and d > 1 if Q is bounded. Let ¢ € C§°(R). Then
&(Hy) is extended to a bounded linear operator from LP(Q) to W'P(Q) provided
that 1 < p < 2. Furthermore, there exists a constant C' > 0 such that

IV (OHN) || (10 () < CO 2

for any 6 > 0.
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Proof. Since

IVO(OHN) fll720) = (Hao(OHN)f, ¢(0HN) )2 (o)
<N HNo(OHN) fll 2@ l|P(OHN) fl 220,

by using
Hno(OHN) [ = / AG(ON) By (M) f,
we readily see that 1
IVO(OHN)| 2@y < CO 2

for any 6 > 0. Hence, taking account of the Riesz-Thorin theorem, we have only
to prove that )
IVO(OHN)| 21 ) < CO 2. (7.35)

When €2 is unbounded, the estimate (=33) for any 6 > 0 is proved in a similar
way to the proof of Theorem B2. When  is bounded, the estimate ([=33) for
0 < # <1 is obtained in a similar way to the unbounded case. Hence all we have
to do is to prove ([Z33) for # > 1 in the case when € is bounded.

By the same argument as in ([Z32), we deduce from ([ZI4) that

Ve "% g2 1) = Ve " Pyl g
< |Hue " Pyl 2y lle™ Pyl 120 (7.36)

<07 g)172q)
for any g € L*(). Now we estimate

IVS(OHN) fllr 0y < [QUFIVSOHN) f 120

— 10 1 —0HN 4 (0 20H Ny —OHN (7‘37)
= [|Q[z[|Ve P(OHN)e™ Ve fllz2

for any f € L*(Q) N L*(Q). Then, by using (Z38), we estimate the right member
of (IZ37) as
Ve~ ()2 = ) < 0|6 (OHN)X N e f
< 097270 £ 12
< 072052 fl 1o
(7.38)

for any f € L'(Q)NL?(£2), where we used (20) in the last step. Thus, combining
(=37) and (=38), we conclude the desired L'-estimate by density argument. The
proof of Lemma [T7 is finished. O]

We are now in a position to prove Proposition [I8.
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Proof of Proposition [[I8. We prove only the assertion (ii), since the proof of as-
sertion (i) is similar to that of (ii). Thanks to Lemma [CT7 for p = 1 and the
Riesz-Thorin interpolation theorem, it suffice to show that

IV Q2 HN) =)y < C2, (7.39)
IV (VHN) |l z(r= () < C2 (7.40)

for any j € Z.

When €2 is unbounded, these estimates are immediate consequences of the
gradient estimate ([Z31) for ¢ > 0 and the assertion (i) in Lemma 3. In a similar
way, when €2 is bounded, the estimate (20) is proved by combining the estimate
(23M) with the latter part of the assertion (i) in Lemma 3. We have to prove

(=39) for bounded domain case. Let f € L>*(2). Then we see that f € L*(9),
and hence, following the idea of derivation of ([Z33), we write

VY2 Hy) f = V(2T HN)F(27 Hy) f
for any j € Z, where F' is a smooth and non-negative function on R such that

1 for A > )\2,

0 for)\g%.

F()) =

Then, combining the estimate (Z31) with the estimate (I0) in Lemma 3, we
deduce that

IV HN) [l o) = ||V€_272jHN6272jHN¢(2_2j,HN>F(2_2jIHN)fHLOO(Q)
< V|2 ) P27 HN) f (o)
< C2| fllze
for any j € Z and f € L>(Q), since
PN F(N) € C3((0,00)).

Thus we obtain the estimate (Z33) for p = co. The proof of Proposition 18 is
now finished. L

Our final result is as follows.

Theorem 7.18. Assume that Q is a Lipschitz domain in R? with compact bound-
ary, where d > 3 if Q is unbounded, and d > 1 if Q is bounded. Let 0 < s < 2 and

D, D1, D2, P3,Pa and q be such that
1 1 1 1 1
1<p,p1,p2,p3,p1, g <00 and —=—+ — = —+ —.
p P1 D2 pP3 D4

Then the following assertions hold:
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(i) Assume further that Q is a domain such that the gradient estimate ([Z31)
holds for any 0 <t < 1. Then there exists a constant C' > 0 such that

1/9]

forany f € By (Hn)NLP(Q) and g €

B (Hy) < C<

g, e llgll o) + 1 s 9], 0 )

Hy) N LP2(Q).

By, q

(ii) Assume further that Q is a domain such that the gradient estimate ([Z31)
holds for any t > 0. Then there exists a constant C > 0 such that

/9]

g0 < C (1 g, N9l rsc@n + 1 s o9l )

for-any f € By (Hn)NLP(Q) and g € Hy) N LP2(Q).

B,

Proof. Since the gradient estimates are established in Proposition [CI8, the proof is
performed by a similar argument as in chapter B. So we may omit the details. [
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