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Chapter 1

Introduction

1.1 Research Background

Electromagnetic scattering describes and explains the field behavior in the object when
an incident electromagnetic wave illuminates an object. The electromagnetic scattering
can be found from the solutions of Maxwell’s equations, however the exact solutions
of Maxwell’s equations only exist for a limited number of canonical shapes. In which,
electromagnetic scattering by edged objects is one of the important problems, and these
analyses can be applied for the propagation and diffraction estimation.

There are some exact solutions available to estimate the scattering field [1]-[5]. Al-
though these methods are only possible for a simply shaped object composed of a simple
material constitution, they are important for electromagnetic scattering estimation. The
solutions of some idealized objects are used for calibration of measurement facilities, like
metal sphere. Also, exact solutions can be used for validation of numerical solutions or
evaluated approximately or asymptotically to give a simple analytic expressions for the
scattering fields.

Electromagnetic scattering solutions can sometimes be very complex even for simple
geometries when exact solutions are available. Therefore, some numerical methods are
developed to estimated the scattering by the objects of small size compared with wave-
length [6]-[13]. However, these numerical methods may have a problem to apply for the
scattering by electrically large objects because of unrealistic execution time and heavy
memory requirement. Additionally, the numerical solutions cannot provide a qualitative,

physical insight into the basic mechanisms of scattering and diffraction.



Hence, an approximate approach, that can provide the fast and acceptably accurate
scattering by a large object, is necessary. Several asymptotic techniques can be efficiently
used for high frequency scattering problems as long as the object is made of conduct-
ing materials, such as the geometrical optics (GO), the geometrical theory of diffraction
(GTD), the physical optics (PO), the physical theory of diffraction (PTD).

GO is a classical ray-based technique for describing the scattering by an object illumi-
nated by an electromagnetic wave [14]-[17]. The basic tenet of GO consists in assuming
that an incident ray is reflected by the scattering objects as if the latter’s surface were
plane at the reflection point. The GO fields can be calculated by using the laws of their
propagation and reflection at material interfaces. In GO, the fields in the shadowed regions
of the scattering bodies are not described.

GTD is an extension of the classical GO, which is designed to account for the penetration
of the GO field in the shadow region, by adding the diffracted field which are generated
at edges, conical points and shadow boundaries on the scattering surface [18]-[22]. Then,
the scattering fields by a objects can be expressed as the sum of two parts: the GO field
and the diffracted field.

PO is a current-based approach which can be efficiently used for high frequency scat-
tering problems as long as the object is made of non-penetrable metal materials [23]-[27].
Here, the scattering field by an object is considered as the radiation from the equiva-
lent currents induced by the magnetic incident wave on the illuminated surfaces. Since
PO formulation involves the information of the incident wave and the scattering object’s
surface, it is easy to construct the equivalent currents for scattering field. When the ob-
servation point is located far from the body, the kernel of the integral can be simplified,
known as the radiation integral which is widely used in a great many of applications, such
as antenna design, wave propagation, scattering estimation. When an exact solution is
available, the PO method provides accurate estimations of scattering fields.

PTD is a high frequency asymptotic technique which the diffracted field is considered as
the radiation of the scattering sources. The basic idea of PTD is that the scattering sources
are separated into uniform and nonuniform components. While the uniform component
is defined as sources induced on the infinite plane tangent to the object at the source
point, the nonuniform component is caused by any deviation of the scattering surface

from the tangent plane. Then PTD is an extension of PO method and takes into account



the additional field generated by the nonuniform component [28]-[31].

So far, these methods are clear for the scattering by metal objects. However, when
scattering objects are composed of dielectric materials, the problem becomes difficult
to solve, since there is no reliable solution available for estimating the diffraction by
dielectric/magnetic objects [32]-[36]. This question is just a motivation of our present
study, in which equivalent electric and magnetic currents to the scattering problems have
been discussed.

In this thesis, equivalent current method which is based on the surface equivalence
theorem [37] has been used to solve the scattering by conducting edged objects. According
to the surface equivalence theorem, the scattering field from a conducting body may be
formulated as the corresponding radiation from equivalent currents on a postulated surface
enclosing the scattering body. When the equivalent electric and magnetic currents on the
surface of the scattering object are obtained from the reflected /incident GO waves, and
the radiation integrals due to these equivalent currents are evaluated asymptotically, the
results are found to coincide with those by the PO formulation. Since our formulation
matches with PO for the impenetrable conducting case, and can be extended to the cases
when the scattering objects are penetrable, this method may be called as extended PO
method, in which the equivalent currents are obtained from the reflected /transmitted and
incident GO waves.

Since the incident wave impinges on the dielectric body, it excites the reflected and
transmitted waves. Then the transmitted wave excites the internal reflected and trans-
mitted waves due to the multiple bouncing effects, and they radiate again from the body.
The effect of these internal bouncing waves can also be considered in our formulation.
While equivalent current formulation in terms of reflected fields from the dielectric ob-
jects has already been utilized to obtain the specular reflected field for estimating their
dielectric constants [38], the accuracy of the scattering field in non-specular reflection
direction has not been discussed fully yet. The numerical results by the dielectric rect-
angular cylinders are calculated and compared with those HFSS simulation. A good

agreement has been observed to confirm the validity of this method.



1.2 Thesis Contents

This thesis consists of five chapters.

In Chapter 2, surface equivalence theorem is explained. This method is based on the
assumption that scattering far field is generated by the equivalent electric and magnetic
currents flow on a virtual surface enclosed the scattering object. This equivalent currents
may be approximated from the reflected and minus incident waves for the conducting
objects, and from the reflected /transmitted GO waves for the dielectric objects.

In Chapter 3, the PO approximation are applied to estimate electromagnetic scattering
from the conducting wedge and rectangular cylinder. According to the PO approximation,
if the scattering objects are large compared with the wavelength, the PO currents are
approximated from the magnetic incident field and flow on the physically illuminated
surfaces. Then, the scattering field from this object may be derived by integrating these
PO currents with the free-space Green’s function. This chapter starts by applying the
PO method to derive diffraction field from a conducting wedge in Section 3.1. Here, the
scattering field is obtained from only one PO current flowing on the illuminated surface.
The results include the edge diffracted field and the GO field which gives a reflected field
in the illuminated region or a field to cancel the incident field in the shadow region. In
Section 3.2, the conducting rectangular cylinder has been considered. In this case, the
incident wave impinges on the cylinder at two surfaces and excites two PO currents on
these illuminated surfaces. Then, the total scattering fields are given by summing up the
fields radiated from these PO currents.

In Chapter 4, the electromagnetic scattering fields by the wedges and rectangular cylin-
ders are approximated from the surface equivalent current method. Firstly, the scattering
fields by the conducting wedges and rectangular cylinders are derived. Here, the equiv-
alent electric and magnetic currents are calculated from the reflected GO wave at the
illuminated surface and the minus incident wave at the shadowed surface. Then the scat-
tering fields radiated from these currents are derived using the saddle point method. The
results are found to match with those obtained from the PO approximation in Chapter
3. After that, the scattering fields by the dielectric wedges and rectangular cylinders are
derived. Due to the multiple bouncing effect inside the objects, the equivalent currents

are calculated by the reflected /transmitted waves on the illuminated surfaces and the inci-



dent/transmitted GO waves on the shadowed surfaces. The expressions of the equivalent
currents and the radiation field formulations due to the multiply bouncing transmitted
waves are derived for the dielectric wedge, but those for the dielectric rectangular cylinder
are omitted, except the main results, due to the complicated formulations. Also some nu-
merical results for the dielectric rectangular cylinder are calculated to compare with those
by HFSS simulation. Here, a limitation of the effect of the high order transmitted waves
are used to estimate the total scattering filed. Good agreements between the analytical
results and HF'SS simulation to confirm the accuracy of our method.

Finally, Chapter 5 shows some conclusions and discussions on our research. In the
following discussion, the time-harmonic factor e~ is assumed and suppressed throughout

the text.



Chapter 2

Surface Equivalence Theorem

The surface equivalence theorem is a principle by which actual sources, such as an antenna
and transmitter, are replaced by equivalent sources. The fictitious sources are said to be
equivalent within a region because they produce within that region the same fields as the
actual sources. The formulations of scattering and diffraction problems by the surface
equivalence theorem are more suggestive of approximations.

By the surface equivalence theorem, the fields outside an imaginary closed surface
are obtained by placing, over the closed surface, suitable electric and magnetic current
densities that satisfy the boundary conditions. The current densities are selected so that
the fields inside the closed surface are zero and outside are equal to the radiation produced
by the actual sources.

Let us now consider electromagnetic fields E, H; excited by electric and/or magnetic
current sources Ji, M as shown in Fig. 2.1(a). If one encloses the sources J;1, M by
a virtual closed surface S, then the exact fields outside S can be excited by equivalent

electric surface currents and magnetic surface currents as in Fig. 2.1(b) [37]

JSZﬂXHl, (2]_)

M, = E; x 7. (2.2)

Here n denotes a normal unit vector on S toward the exterior. This field expression in
terms of equivalent currents may be sometimes called as surface equivalence theorem.
This field equivalence holds as long as the fields E,, H; are exact on the virtual surface
S, but it is sometimes difficult to know exact fields, and the approximated fields may be

used to evaluate the radiation and scattering analyses.
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Figure 2.1: Field equivalence principle model. (a) Fields E;, H; excited by original
sources by Jy, M;. (b) Fields E;, H; excited by the equivalence surface currents Jy,
M, on S. (c) Scattering fields E*, H® by an object due to the incident wave E', H'.

(d) Scattering fields E°, H® by the equivalence surface currents J,, M on S.

Let us now consider scattering field E°, H®, excited by an object upon which incident
fields E', H' impinge from the exterior region as in Fig. 2.1(c). The total field may be

written as a summation of the incident and scattering fields as

E=FE'+ E° (2.3)
H=H'+H". (2.4)

If one regards the scattering fields E*, H® as the fields generated by the secondary sources

due to the object, then the outside scattering fields can be determined from the surface



current sources:

Js=nx H?, (2.5)

M, =FE°’xn, (2.6)

on the virtual surface S in Fig. 2.1(d). Then the radiation field due to these surface

currents can be derived from [22]
E%ﬁz/{wmhww%dwwﬂXVC+J%LwaWC}w, (2.7)
S weo
H*(r) = / {iwsoMs(r’)G +J(r') X VG + —— M(r') - V’V’G} ds, (2.8)
s W

wau:iﬂﬂww—rm. (2.9)

Here, Hél)(x) denotes the zero-th order Hankel function of the first kind, w is the angular
frequency, and V' indicates differentiation with respect to the prime source coordinates.

Since the virtual surface S can be chosen arbitrary as long as the surface is outside the
scattering object, we now choose S be just on the scattering body. By choosing so, the
scattering fields E®, H® can be obtained from the local feature of the scattering body
surface on the high frequency basis. If one assumes that the radius of curvature of the
surface is large compared with the wavelength, then the scattering fields E°, H® may
be given by the reflected GO fields E”, H" of the original incident fields E*, H* for the
illuminated surface of the object. For the shadowed surface of the non-penetrable object,
one could expect that the total fields E, H would be almost null, therefore the scattering
fields must behave to cancel the original incident fields E?, H'. Then, one shall assume

E’ = —FE' and H® = —H". Accordingly, equivalent currents may be approximated as

nx H" on illuminated .S,
J,=nx H ~ (2.10)

n x (—H") on shadowed S,

E" xn on illuminated S,
M,=E°xf~ (2.11)

(-E") x 1 on shadowed S.

Again, this is the high frequency approximation, since the scattering fields should have
a diffracted field in addition to GO fields E", H" (or —E', —H"). This diffraction
contribution would be weaker than the GO fields by O(k~'/2). As will be seen in the next

section, we shall show that the scattering field derived asymptotically from the equivalent
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currents J,, M, excite the same field by the PO current J7, no matter how one chooses
the virtual surface S in the shadowed region.

For the dielectric objects, the situation becomes more complicated than the conducting
case in Egs. (2.10) and (2.11). When the incident wave impinges on the illuminated
surfaces, it excites the reflected wave (E”, H") and the transmitted waves (E', H").
Therefore, the scattering fields (E°, H®) on the illuminated region are given by the
reflected waves (E”, H") and the transmitted waves' (E*, H'), if any. On the shadowed
region, one has to consider the transmitted waves (E’, H'), then the scattering fields
would be E* = —E'+ E', H* = —H' + H'.

Accordingly, the equivalent current may be approximated as

nx (H" + H")  on illuminated S,
J, =i x H ~ (2.12)

n x (—H'+ H") on shadowed S,

(E"+ E") xn  on illuminated S,
M, =E*x i~ (2.13)

(-E'+ E") x 7 on shadowed S.

In this chapter, the surface equivalence theorem based on the assumption that scattering
far field is generated by the equivalent electric and magnetic currents flow on a virtual
surface enclosed the scattering object. These equivalent currents may be approximated
from the reflected and minus incident waves for the conducting objects, and from the

reflected /transmitted GO waves for the dielectric objects.

'Tf one traces the transmitted wave through the dielectric body, some waves with multiply internal

bouncing may emanate finally from the illuminated surface S too.



Chapter 3

High Frequency Scattering Analysis
by Physical Optics Approximation

In this chapter, the physical optics (PO) approximation are applied to estimate electro-
magnetic scattering from the conducting wedge and rectangular cylinder. Physical optics
(PO) approximation is a method which is known to have pretty accurate and can be ef-
ficiently used for high frequency scattering problems from the object made of conducting
materials. According to the PO approximation, if the scattering objects are large com-
pared with the wavelength, the PO currents J7¢ are approximated from the magnetic

incident field as

2n x H' on illuminated surface,
JPO = (3.1)

0 on shadowed surface,

and flow on the physically illuminated surfaces. This PO current J¥© is exact when
the scattering body is made by an infinitely wide and flat electrical conductor, and J*©
could be a good approximation for a smoothly curved electric conducting surface whose
radius of curvature is large compared with the wavelength. Then, the scattering field from
this object may be derived by integrating these PO currents with the free-space Green’s
function. Since PO formulation involves the information of the incident wave and the
scattering object’s surface, it is easy to construct the equivalent currents for scattering
field. This chapter starts by applying the PO method to derive diffraction field from a

conducting wedge in Section 3.1. Here, the scattering field is obtained from only one PO

current flowing on the illuminated surface. In Section 3.2, the conducting rectangular
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cylinder has been considered. In this case, the incident wave impinges on the cylinder at
two surfaces and excites two PO currents on these illuminated surfaces. Then, the total

scattering fields are given by summing up the fields radiated from these PO currents.

3.1 Diffraction by a Conducting Wedge

P .
y E. H y
p //égﬁo
b (L0 ] ST B I
"0 A O ~_ A
’/,i \\\\
B B

(a) (b)

Figure 3.1: Diffraction by a conducting wedge. (a) Wedge diffraction by plane waves E’,
H'. (b) PO current J"° due to the incident field on the illuminated surface OA.

Figure 3.1(a) shows a two-dimensional conducting wedge of the wedge angle ¢,, illumi-
nated by a plane wave.

The scattering formulation may be separated into two polarizations.

3.1.1 E Polarization

An E polarized incident plane wave can be written as

Ei — Eoefik(:r cos ¢o+ysin ¢0)27 (32>
H' = Eo,/ £0 k(@ cos do-+y sin o) (— sin go& + cos ¢oY), (3.3)
Ho

where k = w,/gopip denotes the free space wave number. For simplicity, let us assume

that the incident plane wave illuminates surface OA only (0 < ¢9 < ¢, — ) and the
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Figure 3.2: Integration contour in the complex & plane.

observation angle is taken as 0 < |¢| < 7. The PO current J”? on the illuminated wedge

surface OA can be found from incident wave as Eq. (3.1)

= 2Ey, [0 sin e e ooz (x> 0). (3.4)
y=0 Ho

The scattering field can be obtained by integrating J©© with the two-dimensional Green’s

JO(r) =29 x H

function G as

EPO = —/ WZOJPO k\/ (x =22+ (y—v)?) s, (3.5)
S y'=0

where Hgl) (k;\/ (x—2)?+ (y — y’)2> denotes the zero-th order Hankel function of the

first kind. Spectral representation of this Hankel function is given by

1)(/{7\/

- de, (3.6)

1 [ eif(x*w/)ﬂ\/mlyfy’\
(y — y)) —/_OO o
where the integration in the complex £ plane is shown in Fig. 3.2. From Egs. (3.4) and
(3.6), we have

0o ) 0o i&(z—a')+iy/k2—E2y]
EFO = —/ [%Eo 29 sin e~k cos do ¢ d{] dz’
o L2 TV o oo VE2—¢€2

. 0o oo i€xti/k2—£2
—= —Eoﬁ SlIl ¢0 / / e—’iiﬂ/(kCOS ¢0+£) dx/ € 5 £ Y dé—
2m oo \Jo k2 — &2

. ik 0 ei&xii\/l@f&?y g _— .
— 027T81n¢0/00 (k‘COSQﬁO—}—g)\/m 57 (y< ) ( : )

Since the integral in Eq. (3.7) cannot be analytically evaluated, the saddle point method

is used. Converting to complex angle w plane using the transformation & = ksinw, with

12
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Figure 3.3: Integration contour C' and Cspp in the complex angular w plane.

the cylindrical coordinates (p, ) with x = pcos @,y = psin ¢, we have

ik 6ikp(cos ¢ sin wsin ¢ cos w)
EfO:EO—singzﬁo/ - k cos w dw
27 o k(cos ¢g + sinw)k cosw

etkp sin(w=¢)

i
:Eogsmgbo/c—dw, (3.8)

COS ¢g + sinw

where contour C' is given in Fig. 3.3.

One finds the saddle point from the following equation:

% likpsin(w £ ¢)] = ikpcos(w £ ¢) =0, (3.9)

we obtain ws = m/2 F ¢ as a possible saddle point on the contour. At the saddle point,

we have

sinwg = sin(m/2 F ¢) = cos ¢, (3.10)

coswy = cos(m/2 F ¢) = tsin ¢, (3.11)

ikpsin(ws + ¢) = ikpsin(mw/2) = ikp, (3.12)
62

Er [ikpsin(w £ ¢)] . —ikpsin(w + ¢) o, —ikp. (3.13)

Then, by deforming the integration contour C' to SDP in Fig. 3.3, Eq. (3.8) can be

13



approximated as
etkp sin(w=t¢)

EPO = Eoism%/ dw

¢ COS g + sinw

1 sin ¢ , (102
~ EO_ : ezkp / e tkp(w—ws)?/2 dw
2T €os g + sin wy Cspp

By 00 ik [P _ 25T L gitwrin/t (314)
2 cos ¢g + cos @ 1kp cos ¢g + cos ¢ \ 8mkp

There are some cases where the pole w, = ¢y — 7/2 included in the integral. When

0 < |¢p| < ™ — ¢o, it is necessary to add the contribution of the pole. With sinw, =
sin(¢g — m/2) = — cos ¢y, cosw, = cos(Py — 7/2) = sin ¢y, then

. - " . .
EPO Y ZE() - ¢O P p(sin wy, cos ¢pEcos wp sin @) _ —EO Sin d)() efikp(cos o cos ¢tsin ¢g sin @)
P COS Wy, sin ¢y
— _FE —ikx cos ¢Fiky sin g >0 3.15
= 0€ ) (y < ) ' ( ' )

Therefore, the diffraction from the conducting wedge becomes

EfO — E(I;O + EZI:O

— 2sin Cbo —ikx cos pFiky sin ¢g >
N Eocos ¢o + cos ¢C’(k:p) Eqe U(r —¢o —|¢]), (y 2 0), (3.16)

where C(y) = S—eiX””/ 4 is the asymptotic form of the two-dimensional free space
X
1 >0
Green’s function for large x, and U(z) = is a step function.
0 <0

3.1.2 H Polarization

A H polarization incident plane wave is given by

Hi _ Hoe—ik(zr cos <¢>o—i-ysinq$0)27 (317>
E' = H, @e”'k(“"w““m%)(sm PoZ — oS Gy ). (3.18)
€0

The PO current J¥© on the illuminated wedge surface OA can be found from incident

wave as Eq. (3.1)

JPO(x) =29 x HY| =2Hye**s%g (x> 0). (3.19)

y=0
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The scattering field can be obtained by integrating J©© with the two-dimensional Green’s

function G as

HPO / JPO k\/ I . m/ y _ y/)2)

ds, (3.20)

y'=0

k a 1 o eif(x—l‘/)'i‘i\/ k2_§2‘y_y,| d
Vil = a_y'(%/ e W
_ :F%/ a1 ENEE W) ge (g 3 o). (3.21)
HPO _ /OO |::|: &e_ikxlcosqﬁo /OO ei§($—x’)ii\/k2_§2y d§:| dx/
# 0 21 o
_ & /OO /OO efix’(k cos ¢o+£€) dllf/ eifﬂﬁii\/ k2—£2y dé‘
2m —o0 0
iH() 0o z{xiz\/kz —£2y
= = 0). 3.22
JEQW/_ el SCEL) (3.22)

Since the integral in Eq. (3.22) cannot be analytically evaluated, the saddle point
method is used. Converting to complex angle w plane using the transformation £ =
k sinw, with the cylindrical coordinates (p, ) with z = pcos ¢,y = psin ¢, we have

Z'HO / eikp(cos ¢ sin wsin ¢ cos w)
C

k d
2m k cos ¢g + ksinw coswan

HPO ==

i H ikpsin(wte)
_ q:’l 0 / coswe ' dw. (323)
2m Jo cos¢p + sinw

We obtain ws; = 7/2 F ¢ as a possible saddle point on the contour. At the saddle point,
Eq. (3.23) becomes [22]

HCI;O _ :FiHO / cosw pikpsin(wte) g
c

2m cos ¢ + sin w
:FZ'HO CoS wf eik’)/ e~ ikp(w—ws)?/2 g,
27 cos ¢0 + SInwsg Cspp
Hy s b 2si
_ :FZ 0 sin ¢ ke _7T — _H, sin ¢ C(kp). (3.24)
27 cos ¢ + cos ¢ ikp cos ¢ + cos d

There are some cases where the pole w, = ¢y — 7/2 included in the integral. When
0 < |¢] < 7 — ¢y, it is necessary to add the contribution of the pole. With sinw, =

sin(¢g — m/2) = — cos ¢g, cosw, = cos(py — m/2) = sin ¢y, then

HPO = 2m F — ZHO M ikp(sin wy cos pEcos wp sin ¢)
2T cosw,
= :EHOe_ZkP(COS $o cos pFsin o sin ¢)
= EHpe s sERE - (y 2 0). (3.25)
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Therefore, the diffraction from the conducting wedge becomes
HIC = HyO + H)°

2sin ¢
%cos ¢o + cos ¢

C(kp) £ Hoe™Feeoso=thusindo 7 (m — gy — |¢]), (y 2 0§3.26)

with U is a step function.

3.2 Scattering by a Rectangular Cylinder

E H

(a) (b)

Figure 3.4: Scattering by a conducting wedge. (a) Scattering by plane waves E*, H'. (b)

PO current JY© due to the incident field on the illuminated surfaces.

Let us consider that a plane wave impinges upon a surface of a conducting rectangular
cylinder whose dimensions are 2a x 2b as shown in Fig. 3.4(a). Because of the symmetry
of the scattering object, the incident angle ¢q is assumed as 0 < ¢y < 90° without losing
the generality.

The scattering formulation may be separated into two polarizations.

16



3.2.1 E Polarization

An E polarized incident plane wave can be written as

Ei _ Eoe—ik(:r: cos ¢o—+y sin ¢0)2 (327)
H'=Ey,|— £0 o ik(z cos o-+y sin do) )(— sin o + cos go¥), (3.28)
Ho

where k = w,/gop1p denotes the free space wave number.
The PO current J7© on the illuminated cylinder surface AB can be found from incident

wave as Eq. (3.1)

JPOYz) =2y x H'

= 2Fy, [0 sin goeH@eosdotbsingo) 5 (g 3 < g),(3.29)
y=b Ho

and on surface AC,

JP?(y) =2& x H'

=2E, /—COSQﬁOe zk(acos¢o+ysm¢0)z ( b < y < b)(330)
r=a Mo

JPOI’ JP02

The scattering field can be obtained by integrating with the two-dimensional

Green’s function G as
prot = [ O e = = )
s
wi
EfOQ — _/ 40JP02H k’\/ y y) )
S

From Egs. (3.29), (3.30) and (3.6), we have

@ 0o if(x—ax')+iy/k2—E2|y—b
EPOl = - [Eoﬁ Sln¢ (& —ik(z' cos ¢o+bsin ¢o) € Y dé—] dl‘/
z —a 2m e ,—k2 — 52
. i€xti/k2—€2(y—b
e~/ (kcosdo+&) 1./ € (y=b) i
e Vi -
(e—z’a(k cos po+&) __ eia(kcos ‘7’0"'5))61'513:‘:1'\/@(1/—@
(kcos ¢o + &)\/k2 — €2
. oo z (z—a)t: 2_¢g2
ik ikbsin¢o€—ikacos¢o/ )EiN/ k2 =€2(y—b) "
(

= _F,— -
Yo sin goe —o (kcos ¢g + §)\/7§2

/oo eig(m—o—a):ti\/k?—@(y—b) p ;
, = 0)(3.33
oo (kcos.cﬁo+§)\//€27—$2 & =333

oo ik(z—a)t+in/k2—E2|y—y’
EP02 - [Eoﬁ COS(b e —ik(a cos ¢o+ysin ¢o) € ( ) i d£:| dy/
c L, L2 - /2 — €2

k ) e b L z{ z—a)tiy/k2—E%y
_ _EOQ_ COS ¢Oe—zkacos¢0 / (/ e~ W (ksin potr/k2—£2) dy/) d&334)
m / _ §2

ds, (3.31)

y'=b

ds. (3.32)

r'=a

— _Eoﬁ sin (boefikbsin ol
2m

ik ikbsi
_ _EO_ sin QZ5()€ ikbsin ¢o
2m

dg

[
[

ik e i
4 E02— ¢in ¢0€ ikbsin ¢go ezka €os ¢g
v

—00 —b
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For y > b, one gets
. ] i€(x—a)ti k2—§2 _b
EP02 = _Eoﬁ CcOS ¢0€—ikacos¢06—ikbsin¢o/ (& ( ) V (y—b)
) on —o0 (ksin¢0i\/k2_§2)\/k2_§

- d43.35)

and for y < —b

PO2 _ ﬁ —ika cos ¢ ,ikbsin ¢g > 6i€(z*a)iiv k2—£2(y+b)
E, 7% = Ey—— cos gge e
2m —o0 (ksingboi\/k2_§2)\/k2_fz

Converting to complex angle w plane using the transformation ¢ = ksinw, with the

dg. (3.36)

cylindrical coordinates (x—a = pa cos ¢4, y—b = pasinga), and (x+a = pg cos ¢, y—b =

ppsin ¢p) for surface AB, Eq. (3.33) becomes

eikpA (cos ¢ 4 sin w=sin ¢ 4 cos w)

EPOI — —FEn— <in e—zkbsm ¢oe—zkacos bo k cos w dw
N o %0 o (kcos g + ksinw)k cosw

eikpB (cos ¢ sin wtsin ¢ cos w)

+ FEy— sin ¢ge~kbsinéogikacos ¢o / k cos w dw
"o bo ¢ (kcos g + ksinw)k cosw

i b . etkpa sin(wteg )
— _EO_ <in ¢06—1 sin ¢ge—z a cos ¢o : dw
2m ¢ COS g + sinw

i : —ikbsin ¢g _ika cos ¢g eikpB sin(wtés)
+ Ey— sin ¢ge e ——dw. (3.37)
2m ¢ €OS Qg + sinw

Similarly, converting to complex angle w plane using the transformation £ = ksinw,
with the cylindrical coordinates (r —a = pacosda,y —b = pasinga), and (z —a =

pc cos ¢,y + b = posin¢e) for surface AC, Eq. (3.36) becomes

ik o ) eikpA(cos ¢4 sinw=sin ¢ 4 cos w)
EPO? — _Ey— cos e kbsindopmikacos o - k cos w dw
27 o (ksin g + k cosw)k cos w

eikpc (cos ¢ sin wtsin ¢ cos w)

+ Eg— cos ¢geFsinéop—ikacos do / . k cosw dw
Yo %o o (ksingg + kcosw)k cosw

i b . etkpa sin(wtega)
— _EO_ COoS (boefz sin d)oef’L a cos ¢o : dw
2m ¢ Sin ¢g & cosw

+ EOL coS d)oeikbsin ¢06—ikaCOS¢0 de (3 38)
o o singg +cosw '

We obtainws = /2 F ¢4 and ws = 7/2 F ¢p as a saddle point on the contour. At the
saddle point, Eq. (3.37) becomes

EPOl ~ _@e—ik‘b sin ¢0€—ika cos ¢o sin (b() ikpa / 6—ikpA(w—w5)2/2 dw
Z :
21 cos ¢ + Sln(ﬂ-/2 + (bA) Cspp
n @eﬂ'kb sin go , ika cos go sin gy ikpp / e~ tkpn(w=ws)*/2 gy,
or cos ¢ + sin(7/2 F ¢p) Cspp
S L —ikbsin ¢g ,—ika cos ¢g sin (b() ikpa 2_7T
= 0 e e € -
27 COS g + COS P 4 1kpa
+ Eoiefikb sin ¢g eika cos ¢o sin ¢0 eikPB 2_7T . (339)
2m cos @g + cos pp tkpg
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Figure 3.5: Observation point from surfaces AB (a) and AC (b).
At the saddle point ws = 7/2 F ¢4 and ws = 7/2 F ¢, Eq. (3.38) becomes
EP02 ~ _@efikbsinqﬁoefikacosd)o cos ¢0 ikpA/ efikpA(wfws)z/Z dw
? 27 sin ¢ = cos(m/2 F ¢a) Cspp
i iFo oikbsin o ,—ikacos go cos ¢o ikpc / e~ ikpo(w—ws)?/2 g,
2 sin ¢ £ cos(m/2 F ¢¢) Capp
— _Eoiefikbsin ol efika cos ¢o : COS ¢0 eikpA .27.‘-
2m sin ¢g + sin ¢4 1kpa
T . cos ¢p , 2m
En— ikbsin ¢ ,—ika cos ¢o ikpc ) 3.40
+ 09x° ‘ sin ¢y + sin (/ﬁce 1kpc ( )
For far-field (kp > 1), assuming that
A= =dc~ ¢ . L
for amplitude variations,
PA = pPB=pPc ~pP
.
pa=p—dcos(¢p— pag) =p— acosp — bsing (3.41)
pB=p— dcos(ﬂ' —¢— ¢A0) = p -+ acos ¢ — bsin ¢ for phase variations,
pc = p—dcos(¢p+ ¢ao) = p—acos + bsing
\
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then, Eqgs. (3.39) and (3.40) can be approximated as

EPOI ) i —ikb(sin ¢+sin ¢o) ,—ika(cos ¢p-+cos ¢o) sin ¢0 ikp 2m
. = 0—~€ e _— b
2T COS ¢g + COS ¢ 1kp
—|—E0 L e—z’kb(sin ¢+sin ¢o) 6ika(cos ¢+cos ¢o) sin ¢0 eikp 2_7T
2T oS ¢ + €os @ 1kp
sin ¢0

= 4i Eye G étsinéo) gin [ka(cos ¢ + cos qzﬁ)]mC’(k;p), (3.42)
cos ¢ + cos

EfOQ _ _Eoie—ika(cos P+cos ¢0)€—ikb(sin Po+sin ¢) COoS Qb() eik:p 2]{:_71-
V ikp

2T sin ¢g + sin ¢
+EO ie—ika(cos P+cos qbo)eikb(sin ¢o+sin @) : COS ¢0. 6ikp 2_7T
2T sin ¢g + sin ¢ V ikp

cos Qg

— 4iE —ika(cos ¢p+cos ¢o) kb(si :
iEge sin[kb(sin ¢g +sm¢)]—sm G0 s 0

C(kp). (3.43)
Then, the total scattering field is

EPO — EJPOI + EIJPO2
sin[ka(cos ¢o + cos @)] o~ ikb(sin gsin o)
oS g + Cos @
Sin[kb(Sin ¢0 + sin ¢)] —ika(cos ¢+cos ¢g)

41 F, : 44
+ 4i By cos ¢y S do + Sn o e C(kp) (3.44)

= 4iEy sin ¢g (kp)

3.2.2 H Polarization

An H polarized incident plane wave can be written as

I_Ii _ Hoe—ik(r cos ¢0+ysin¢o)27 (345>
E' = Hy, |2 emik(@eosdo+ysingo) (sin & — cos goiy). (3.46)
€0

The PO current J7© on the illuminated cylinder surface AB can be found from incident

wave as Eq. (3.1)

JPONz) =2¢ x HY| = 2Hje *@coseotbsingo)g (5 ), (3.47)
y=b
and on surface AC,
J'O%(y) =2&x H'| = —2Hpe Mecostorvsnilg (4> 0), (3.48)

JPOI’ JP02

The scattering field can be obtained by integrating with the two-dimensional
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Green’s function G as

HPOV = /S iJPOl aa/H(l) kv (x —a')2 + (y — y')?) ey B (3.49)
HPO2 /5 4JP02 O (1 /(@ (y—y))| _ds. (3.50)
a 1 ’l z—x’)+i\/m‘y—y,|
)k d
V@ v = ax%/ %
Sezf z—z') k2 52(?4 y') ,
L / = bz e

From Egs. (3.47), (3.48), (3.51) and (3.21) we have

HZPOl — :l:/a |:H02ieik(xcos¢0+bsin¢o) /OO eiﬁ(ﬂv*w')Jﬂ'\/kQ*gQ\y*b\ dg d.T/

—a —00

L, eikbsings / ” ( / " gmia!(hcos do+) dx’) TV =) ge
2 —o0 —a
i ikbsin o 00 (efia(k cos po+E) _ @i“(k cos ¢0+§))ez’§zﬂ:iv k2 =€ (y—b)
— 4+ H, e dg
o - kcos ¢o + &
. 0o if(z—a)tiy/k2—£2(y—b
_ :i:Hoiefikbsin(z)oefikacos N / € “ : s dé’
o - k cos g + &£
) 00 if(z+a)tin/k2—£2(y—b)
) . . . €
. — o~ ikbsin ¢o jika cos ¢ / d = b 3.52
F 027T€ e . kCOS¢0+§ éu (y< )7 ( )

b 00 ¢pib(z—a)tin/k2—€2y—y/|
1 _. .
HfOQ — [Ho_e*lk(CLCOS¢>O+ySIH¢>0) £6 dé] dy/
L, %% Y R
1 . 00 b — i€(z—a)tin/k2
= H0_6*1k11005¢0 e~ (ksin gpotr/k2—E€ )dy/ ge df
2n - \/k?ff2

[e'S) —b

_ Hoie_ikacos ¢06_z‘kbcos " /oo gelf(x—a):l:i\/w—{?(y—b) d€
o o (ksin gg & /K2 — €2)\/k? — €2
— ﬁ —ika cos ¢o ,ikb cos ¢o = feig(w_a)ii\/mw"'b)
Hy—¢ e . dg. (3.53)
2 oo (k81n¢0:|:\//€2—52)\/k2—§2

Converting to complex angle w plane using the transformation £ = £ sin w, with the cylin-

drical coordinates with (x—a = pa cos g, y—b = pasing,), and (z+a = pgcos ¢p,y—b =
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ppsin¢p) for surface AB, Eq. (3.52) becomes

P
HfOl — 4 [, — e~ tkbsingo ,—ikacos o k cos w dw

/ eikpA (cos @4 sinwsin ¢ 4 cos w)
C

s k cos ¢g + ksinw
ik o ) eikpB (cos ¢p sinw=tsin ¢pp cos w)
¥ Ho_efzkb sin ¢O€’Lka cos ¢g : k cos w dw
2 C k cos ¢g + ksinw
; ikpa sin(wtga)
T g . Ccos werrrA
— Z|:H0 e ikbsin ¢g e ika cos ¢o : dw
2 ¢ COS ¢+ sinw
: ikpp sin(wtép)
U kb » cos we'"PB B
¥ Ho—e ikbsin ¢0€zk‘a cos ¢o : dw, (354>
2 ¢ Cos@p+sinw

and (r —a = pacosoa,y —b = pasinga), (r —a = pccoséo,y +b = pesinge) for
surface AC, Eq. (3.53) becomes

ksin ,weikpA (cos ¢ 4 sinwsin ¢ 4 cosw)

—ikbsin ¢ —ika cos ¢g
e’ e - k cos w dw
/c (ksin ¢g + k cos w)k cos w

/ k sin weikpB (cos ¢ sin wtsin ¢ cos w)
C

(ksin ¢g + k cos w)k cos w
eikpA sin(wte¢ )

HPO? = HOﬁ
2m

ik
H()—G zkb51n¢oezkacos¢o

k cosw dw
21

(A ikbsi —
— HO_ sin gboe ikbsin (boe ika cos ¢g :
2 ¢ sin ¢y + cosw

4 : —ikbsin ¢g _ika cos ¢g eikpB sin(w£45)
— Hy— sin ¢pe e —dw. (3.55)
2m ¢ sin ¢y + cosw

We obtain wy = 7/2F ¢ as a possible saddle point on the contour. At the saddle point,
Eq. (3.54) becomes

HZPOl ~ :l:ZHO 67ikbsin d)oefikacos@) COS(TF/Q + ¢A) )eikpA / efikpA(wwa)2/2 dw
Cspp

27 cos ¢ + sin(7/2 F ¢4
¥ %e—ikbsin o eika cos ¢o COS(T(/2 + ¢B) eikpB / e—ikPB(’LU—ws)Q/2 dw
27 cos ¢g + sin(7/2 F ¢p) Copp
— Hoie—ikb sin ¢0€—ika cos ¢o sin ¢A eikpA 2m
21 COS Pp + COS P4 \ ikpa
o Hoiefikb sin ¢g eika cos ¢o sin ¢B eikPB 2T (356)
27 oS g + €os \ ikpp’

and ws = /2 F ¢4 and ws = 7/2 F ¢c, Eq. (3.55) becomes

Hf’OZ ~ ZHO efikbsindmefikacos b0 SlIl(7T/2 + ¢A) eikpA / efikpA(wfws)Q/Z dw
) Cspp

2T sin g + cos(m/2 F ¢4
@Gikb sin ¢o ,—ika cos do : Sin(ﬂ-/Q + ¢C) etkrB / efikpB(wwa)Q/Q dw
o sin @g + cos(m/2 F ¢¢) Cspp
_ Hoie—ikb sin qboe—ik:a cos ¢o cos (bA eikﬂA 2_7T
21 cos Pp + sin ¢4 V ikpa
. Hoieikb sin ¢067ika cos ¢g cos ¢C eikﬂc _2_7(’ (357)
o cos ¢ + sin oo V ikpp
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Using far-field approximation in Eq. (3.41), Egs. (3.56) and (3.57) can be approximated
as

HfOl — HO ie—ikb(sin ¢+sin ¢g) e—ika(sin ¢+sin ¢o) sin ¢ eikp 2_7T
2T cos ¢g + cos @ 1kp

_HD L e—ikb(sin ¢+sin ¢o) eika(sin ¢+sin ¢o) sin ¢ eikp 2_7T
2m cos ¢g + cos @ ikp

sin ¢ o~ ikb(sin ¢+sin¢0)c’(kjp), (3.58)

= —4iHy sin[ka(cos ¢g + cos ¢)] €08 ¢p & COS &
0

HZPOQ _ Hoie—ika(cos ¢+-cos qbo)e—ikb(sin ¢o+sin @) cos ¢ ikp | 2]€_W
tRp

: - €
2m sin ¢g + sin ¢
. HO iefika(cos ¢+cos ¢o) eikb(sin Po+sin ¢) cos ¢0 eikp 2_7T
2 sin ¢y + sin ¢ 1kp

cos ¢

— —4iH —ika(cos ¢p+cos ¢o) kb(si :
iHpe sin[kb(sin ¢g + sin gb)]—sin PR

C(kp). (3.59)
Then, the total scattering field is

HPO — HJPOI + HJP02
sin ¢
coS ¢ + cos @

cos ¢ —ika(cos ¢+cos do) 1
__cosgp . (3.60
sin ¢ + sin ¢e ko) ¢ )

= —4iHy sin[ka(cos ¢y + cos ¢)] e~ IRbsin@+sin do) (L )

— 4iHy sin[kb(sin ¢g + sin ¢)]

In this chapter, the PO approximation are applied to estimate electromagnetic scatter-
ing from the conducting wedge and rectangular cylinder. According to the PO approxi-

mation, if the scattering objects are large compared with the wavelength, the PO currents

JPO JPO

are approximated from the incident magnetic field as = 2n x H" and flow on
the physically illuminated surfaces. Then, the scattering field from this object may be
derived by integrating these PO currents with the free-space Green’s function. In Section
3.1, the scattering field by the conducting wedge is obtained from only one PO current
flowing on the illuminated surface OA. The results include the edge diffracted field and
the GO field which gives a reflected field in the illuminated region or a field to cancel the
incident field in the shadow region. In Section 3.2, when the incident wave impinges on
the cylinder at two surfaces AB and AC, it excites two PO currents on these illuminated

surfaces. Then, the total scattering fields are given by summing up the fields radiated

from these PO currents.
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Chapter 4

High Frequency Scattering Analysis
by Equivalent Current Method

In this chapter, the surface equivalence theorem is applied to derive the scattering fields
by the wedge and rectangular cylinder. According to the surface equivalence theorem in
Chapter 2, the scattering field by the scattering objects are approximated by the radiations
from the equivalent currents calculated by the reflected/transmitted GO waves. Firstly,
the scattering fields by the conducting wedge and rectangular cylinder are formulated
to compare with those obtained from the PO approximation in Chapter 3 (Section 4.1).
Then, the scattering fields by the dielectric wedge and rectangular cylinder are consider

in Section 4.2.

4.1 Scattering by a Conducting Edged Object

In this section, the scattering fields by a conducting wedge and rectangular cylinder are
formulated. According to the surface equivalence theorem, the corresponding equivalent
electric and magnetic currents J,, M, are calculated the GO rays on a postulated surface
enclosing the scattering object. While currents J,, M on the illuminated surface are

approximated by the GO reflected waves E", H", those on the shadow surface are obtained
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Figure 4.1: Diffraction by a conducting wedge. (a) Wedge diffraction by plane waves E’,
H'. (b) Equivalent currents J 4, M 4, Jg, Mg due to the scattering field on the wedge
surfaces OA and OB.

from the incident GO wave —E*, —H"

nx H" on illuminated .S,
Ji=nx H° ~ (4.1)

n x (—H") on shadowed S,

E" xn on illuminated S,
M,=FE°xn~ (4.2)

(~E") xn on shadowed S.
Then, the total scattering field are given by summing up the all contributions radiated
from these equivalent currents.
This section starts by formulating the diffraction by a conducting wedge. After that,

the scattering by a conducting rectangular cylinder is considered.

4.1.1 Diffraction by a Conducting Wedge

Figure 4.1(a) shows a two-dimensional conducting wedge of the wedge angle ¢,, illu-
minated by a plane wave. For simplicity, let us assume that the incident plane wave
illuminates surface OA only (0 < ¢9 < ¢, — m) and the observation angle is taken as
0<|p| <m.

The scattering formulation may be separated into two polarizations.
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E Polarization

An E polarized incident plane wave can be written as

Ei _ Eoe—ik(:r: cos ¢o—+y sin ¢0)27 (43)
H' = Ey, [ Lo kweosootysing) (_gin 6@ + cos dof). (4.4)
Ho

The reflected wave at OA surface can be written as

E = _Eoe—ik(z’cos $o—ysin qbo)%’ (45)
H" =FEy,|— =0 ¢~ k(@ cos do— ysm%)(— sin oo — cos Gy ). (4.6)
Ho

Then, the equivalent currents J,, M as in Fig. 4.1(b) can be derived from Egs. (4.1),
(4.2). On the illuminated surface OA, one finds

_ EO @ sin ¢067ikx cos gbo%’ (47)
y=0 V 1o

— Eoe—ikmcosm)ﬁ:? (48)

and on the shadowed surface OB,

JB :’fI,X(—Hl)

y=x tan ¢

= Eo, ;—0 sin(gg — ¢y, )etkalcosdottandusingo) 5 = (4 g)
0

= — Fye~thu(cos dottan g, sin éo) (€08 P + sin ¢,y ).(4.10)

y=x tan ¢,

Mp =(—-E')xn

The scattering field can be obtained by integrating J,, M, with the two-dimensional

Green’s function G as

EJA = —/ ”ZOJ HY (ky/(z — )2 + (y — ¥)2) OdS, (4.11)
e
EMA = / MAx—H(l) (ky/(z (y—y)2)|  ds, (4.12)
y'=0
EJB = _ C"—“OJBH (k\/(x (v —v)?) ds, (4.13)
S y' =z’ tan ¢q
B2 = [ L0aa — My (/T P asa)
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with

o 1 et E(z—a")+iry/k2—€2ly—y'|
D/ = o) = (%(W |

geitlr=a") V=€ (y—y') .
=——/ T Wz e

9 1 [ ella—a)tin/k>=&ly—y]

k — — (= d

=¢i/ el 5B ge | (y 2 o). (4.16)
™ —00

From Egs. (3.6), (4.7), (4.8) and (4.16), Eqgs. (4.12) and (4.11)can be expressed as
o0 , 0o gig(a—a')+in/k2 -2y
E;]A = —/ [%EO — sm¢ ke’ cos do ¢ df} dx’'
o Lam 7V po oo K2 €2

oS 00 i€xtiy/k2—£2
— —Fp ™ sin o / ( / i theos ot d:zc’) VT e
47 0 /12 — &

—00

. 00 i€xtin/k2—£2
e 4, (y20), (4.17)
4m —co (kcos gy + &)/ k* — &2

Ei‘“ - /OO |:E04ieikz’ cos ¢o /OO pif(a—a )ik =€y dé} d’

== :FE()—/ (/ —ia’ kCOS¢0+£ d‘,L‘> ei§$:|:i\/k2——§2y dé—

/oo zﬁx:I:Z\ k2 —¢2y

O4m kcos ¢g + &

¢, (y=20). (4.18)

From Egs. (3.6), (4.9), (4.10), (4.15) and (4.16), Eqgs. (4.13) and (4.14) can be expressed

as

E;]B _ /OO [%EO _SIH<¢)Q . ¢w) —ika’(cos po—+tan ¢, sin ¢o)
0 dm V to

oo if(z—a')tin/k2—E2(y—x' tan )
) / € N d§} V' 1+ tan? ¢, da’
ol k sin(¢o — ¢dw)

Y47 cos Ow

: N h —ia’ (k cos go-+h tan du, sin go+£2/k2—€2 tan du) ../ w
¢ dx d¢

—0o0 0 \/m

_ g,k [T sin(gn — g )eiErEV T .
O4rm —o0 COS Oy, (K cOs P + k tan ¢y, sin g + € £ \/mtangbw)\/m )

(y 2 2"tan¢y,), (4.19)
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z
AT oo

< F COS ¢y, + SN @y \/7> df] V' 1+ tan? ¢, da’
- 4+ 1 EO /OO </oo e—ix’(kcos¢o+ktan¢w sin gpo+€+4/k2—£2 tan ¢y) dl’l> ei&x:ti\/kQ—ny df
7

4
_i E, sin @y, / OO ( / > i (k cos go-+k tan ¢ sin go+€+4/k2—€2 tan ¢, da:’) 561'@1@’\/@;;
A Tcosdw J_oo N\ Jo \/]?27—52
_ i g sindy /°° gV ey 2
4m oS Py J_oo (K cos gg + ktan¢w sin g + € + 1/k2 — E2tan ¢,,) /K2 — €2
s (K cos ¢p + k tan gbw sin ¢y + € + \/mtan Ow) 4, (y 2 @ tan gu,).(4.20)

Since these integrals cannot be analytically evaluated, the saddle point method is used.

EMB _ /OO [iEoe—ikx'(cosqSo—i—tan(ﬁw sin ¢o) /OO eiﬁ(m—aj’):l:i\/kQ—g?(y—m/ tan ¢yw)
0

—00 0

dg

Converting to complex angle w plane using the transformation ¢ = ksinw, with the
cylindrical coordinates (p,#) with x = pcos¢,y = psing, Egs. (4.17)—(4.20) can be

expressed as

i ikp(cos ¢ sin wsin ¢ cos w)
E7A :Eoz—sinqﬁo/ € : k cos w dw
4 ¢ k(cos ¢g + sinw)k cos w
_ gl [ SO0 imptsintuto) gy, (4.21)
47r ¢ €OS ¢y + sinw
EMA 5 . eikp(cos ¢ sin wsin ¢ cos w) . J
+
= / Flcos oo T sim )k cos w dw
Ccosw i
. o tosw zkp(31n(w:|:¢) d 4.22
047T/Ccos¢o—|-smw o .

ik sin(6o — 6u)

4 COS ¢y
/ eikp(cos ¢ sin wsin ¢ cosw)

o (kcos¢g + ktan ¢, sin ¢ + ksinw + k cosw tan ¢y, )k cosw

i sin(do — d) e
- B ikp(sin(wt¢) d 4.23
Y47 J o cos(¢g — dy) + sin(w + gbw)e “ (4.23)

EJP = Ey

k cosw dw

6ik,o(cos ¢ sin w=sin ¢ cos w)

EMP = xE / k d
z TR (k cos ¢ + k tan ¢, sin ¢ + ksinw £ k cos w tan ¢y, ) oS

7 Ssin ¢w k sin weikp(cos ¢ sin w=sin ¢ cos w)
/C (k cos ¢g + k tan ¢, sin ¢ + k sinw £ k cos w tan ¢,, )

i cos(w £ ¢y,) —
= TF— ikp(sin(w=+e) d 4.94
=+ O4r o cos(¢g — @) + sin(w + gbw)e he ( )

k cos w dw

47 cos Ow

where contour C' is given in Fig. 3.3.
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We obtain ws = m/27F ¢ as a possible saddle point. At saddle point, Eqgs. (4.21)— (4.24)
become

B4~ B, 2 sin ¢o. piko(sin(wio) g
4r Jo cos @ + sinw

1 sin ¢ ; ikp(w—w,)?
= FEy— ' e kew=ws) /2 gy
47 cos ¢y + sin wy Cspp

sin ¢0
_ 4.2
0cos o + cos (bC(kp), (4.25)

Ec]l\/[A — :l:EOL cosw eikp(sin(w:luj)) dw

4 Jo cos ¢g + sinw
= iEoi e / e~ thew=we)®/2 gy
47 cos ¢y + sin w, Cspp
sin ¢
C(k 4.26
0cos¢0+cosq§ (kp). ( )
N sin(¢o — dw) ciko(sin(we) g,
d Y4 Jo cos(do — du) + sin(w F o)
_ EOL SiH((ﬁQ — wa) eikp/ e—ik:p(w—ws)2/2 dw
47 cos(po — Pw) + sin(ws F ¢y) Cspp
_ & sin(gg — ¢w)
cos(do — Pu) + cos(d — ¢u)
‘ + du)
o / cos(w £ ¢y,
d TR ¢ c08(Po — du) + sin(w F ¢y,)

s + w i —1 -
_ :FEOL COS(w (b ) elkp/ e ikp(w—ws)2/2 dw
) Cspp

C(kp), (4.27)

eikp(sin(w:l:¢) dw

47 cos(pg — Puw) + sin(ws F dw
Sin(¢ - (bw)
?cos(o — du) + cOS(B — )

The contribution of the pole w, = ¢y — /2 for surface OA with 0 < |¢| <7 — ¢ as

C(kp). (4.28)

EJA — 971 ZEO S §b0 eik(p sin wy, cos ¢tcos wyp, sin @)
P 41 cosw,

_ _Eo_—ikp(cos 6o cos gsin g0 sin M (m— o — |9])

2
— _7067zkx005¢0+1kys1n¢0U(ﬂ_ . (bO o ’(b‘), (429>
EMA — j:Qﬂ.i@COS Wp eik(psinwp cos ¢tcos wy, sin @)
P A coswy,

_ :F?Oefzkp(costﬁo cos ¢Fsin o sin d))U(ﬂ' - ¢0 - ’(b‘)

_ :F706—zkzcosd>o+lkysm¢0U(ﬂ- _ ¢0 _ |¢|) (430)
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For surface OB with w, = ¢g — /2, ¢pg — 7 < ¢ < ¢, — 2,

EJB — o7ri ZEO sm(gbo wa) zk(psinwp cos ¢p—cos wp, sin @)
Ar cos(w, — gbw)

_ _%e—zkp(coszz)ocos¢+sin¢>osin¢)U<¢ - ¢O)U(_¢ — o+ ¢w)

_ _%e—ikzcosq&o—ikysin(POU(gb + 7 — ¢0)U(_¢ — 27+ ¢w>7 (431)

EMB — o7i ZEO COS(wP wa; ik(p sin wp cos ¢p—cos wp sin ¢)
Ar cos(w, — Py,

— _%e—zkp(cosqbocos¢+sin¢osin¢)U<¢ +r— ¢0)U(—¢ T+ wa)
— _706*1’“00591’0*1’@5111(1)0[]((? - (bO)U(_(b — o + ¢w>7 (432>

and for w, = ¢g — 20 — /2, P — 27 < ¢ < 2¢, — Pp — 3T

EJB -9 lZEO Sln(¢0 — wa) ezk p sin wp cos ¢g+cos wy, sin @)
A cos(wy + ¢y)

_ _EOe—zkp(cos(quw —¢0) cos p—sin(2¢w, —po) 51n¢ (¢_{_ o — d)w) ( ¢ — 31+ 2¢w _ ¢0)

2
= e e ) RGO (64 9 — §u)U (—6 — 37+ 200, — ). (4.33)
EMB - _9 ZEO COS(U)p + ¢w> ezk psin wyp cos ¢+cos wp, sin @)

4r cos(w, + dy)

_ EO —zkp(COS(2¢w b0) cos p—sin(2¢w—Po) sm¢ (¢+2ﬂ__¢ ) ( ¢_3ﬂ_+2¢ _¢0)
2 w w

_ %eikxcos(%)w¢0)ikysin(2¢w¢>o)U(¢ + 27 — ) U (=0 — 37 + 2¢, — ). (4.34)

Then the scattering field from the surface OA is

EX* = EQM + EQM
sin ¢y + sin ¢

= B oo g () — By e sy (o — gy — 9)U(9), (1.35)

and from the surface OB is

EXP =EQ® + EJP
sin(¢o — ¢w) — sin(¢ — ¢u)
— FE C(k
O cos(do — du) + cos(¢ — bu) (p)
o Eoe—ikazcosqbo—ikysingboU(Qs LT — ¢O)U(_¢ — 27 4+ gbw) (436)

Then, the total scattering field £ is defined by the summation of the above contributions

30



in Eqs. (4.35), (4.36) as

E = EQ* + EQP
_ E0<sin ¢o + sin ¢ N sin(gg — @) — sin(¢p — ¢y,)
cos g+ cos@  cos(pg — Py,) + cos(p — dy,)
. Eoe—ikazcos¢o+ikysin¢0U(7T . ¢O . ¢)U(¢)

>C(kp)

. Eoe—ikxcos¢o—ikysin¢oU(¢ +r— QSO)U(_Cb — 927 + ¢w)

The term A in the big parentheses of the first line in Eq. (4.37) becomes

_ sin ¢ + sin ¢ N sin(¢gg — @) — sin(¢ — ¢y,) )
cos o +cos¢  cos(pg — Py) + cos(p — dy,)
(sin g + sin ¢)[cos(pg — ¢u) + cos(Pp — Py
+ [sin(¢o — ¢w) — sin(¢p — ¢y,)](cos ¢ + cos @)
(cos ¢g + cos @)[cos(pg — du) + cos(P — ¢u)]
sin[go + (¢o — ¢w)] +sin[do — (do — Puw)]
_ +sinfgo + (¢ — ¢w)] +sinfgo — (¢ — ¢w)]
~ (cos ¢y + cos B)[cos(pg — Puw) + cos(¢ — b))
2sin ¢p[cos(pg — Gu) + cos(P — ¢u)]

- (cos g + cos @)[cos(pg — Pu) + cos(p — dy,)]
2 sin ¢

- (cos ¢g + cos @)’

(4.37)

(4.38)

Therefore, this results matches exactly with the one by the PO approximation in Eq.

(3.16).

H Polarization

The same observation can be applied for the H polarization case when the incident plane

wave is given by

Hz‘ _ Hoe—ik(:c cos ¢o—+y sin ¢0)2

Y

E' = H, @e_ik(”jcowﬁym%)(sin o — cos Py ),
€0

and the reflected waves at illuminated surface OA can be expressed as

H' = Hoe—ik(a; cos ¢po—y sin ¢0)2

Y

E" = H, ?e_“"(z cos ¢o—y sin ¢°)(— sin g — cos Gy ).
0
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Then, the equivalent currents Jg, M, can be derived from Eqs. (4.1), (4.2). On the

illuminated surface OA, one finds

Jia =y x H"| = Hye tkwcosdog, (4.43)

y=0

— —Hy, |22 sin gyethocosto, (4.44)
y=0 €0

= Hoe_ikx(ws Po-ttan gu sin ‘z’(’)(cos G + sin ¢, Y), (4.45)

y=x tan ¢

— _H =y Slﬂ(¢0 o ¢w) —ikx(cos ¢po+tan ¢, sin ¢o) 2 (4 46)

y=z tan ¢ o

MA ZETX’.(:J

and on the shadowed surface OB,

JB :'fI,X(—Hl)

MB :(—EZ)X’fL

The scattering field can be obtained by integrating J,, M, with the two-dimensional

Green’s function G as

= [ e BT 9| ds (4.47)
g4 0y /=0
HM = — | Z2MAHO (/=P =y )| dS, (4.48)
S y'=0
JB __ 9 i (1) N2 _ N2
H;7 = (JBa: - — Jpy7)Hy (B (z — )2 + (y — /)?) dS,(4.49)
S a al’ y' =’ tan ¢,
HMY = —/ %MBZ (/@ (y—y')?) ds. (4.50)
S y' =z’ tan ¢q,

From Eqgs. (3.6), (4.43), (4.44) and (4.16), Eqgs. (4.47), (4.48) can be expressed as
i = / OO [ Hype e / T o= ein/By de] da’
: 0 4m .
— :EHO 1 /00 (/00 e_iz’(kcosd)o—i—i) dx’) €i§$ii’ /k2_g2y d§
0

4
H ! " gV =0 4.51
=+ Uy / W d¢, (y=0), (4.51)
00 1 [o° gibl@—a')tin/k>—&y|
HyA _ _/ |:(U5O Ho H(] SlIl(b ejk.'L‘ cos¢o — € d£i| dx’
0 4w T J)_oo k2 — €2
k oo o eiéxii\/kaﬁzy
_ I —ia’ (k cos ¢po+&) A
_H047Tsmq§0/_oo (/0 e 0 dx) \/7627—62 d§
ik oo eifx:l:i\/l@—gzy 4
= —Hy— sin / , 2 0). 4.52
4 P oo(k’COSd)()‘Fg)\/m & =0 (4.52)
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From Egs. (3.6), (4.45), (4.46), (4.15) and (4.16), Eqgs. (4.49) and (4.50)can be expressed

as

H;]B _ /OO [iHoeikx’(cos¢o+tan¢w sin ¢g) /OO eiﬁ(a:f:p’):ti\/szg(yfx’ tan ¢q)
0

AT oo

.<j: COS Py — Sinqbw\/%g? d{)] V 1+ tan? ¢, da’

_ j:HO /Oo (/oo i (k cos go-+h tan ¢y sin go-+¢£+/ k2—€2 tan d,) dx’) picotin/k?—€%y de
0

T T4

. & sin ¢w e > —ix’ (k cos ¢po+k tan ¢, sin po+E+4/k2—£2 tan ¢y, / geigm:ti it
e dx’ | >——— d¢
AT cos ¢y, J_ 0 /k2 — &2
B i Hy sin ¢w /oo é—eiﬁxii\/kagﬂy J
—oo (kcos g + ktan ¢, sin g + £ + \/ k% — 2 tan ¢, )/ k2 — &2
¢i H, /00 piéatin/k2—€%y i«
AT J_oo (k cos do + ktan ¢y, sin go + € £ /K% — Etan dy,)
(y 2 2'tang,), (4.53)

o0
HMB — _/ [W_EO #OHO sin(gbo _ gbw)ejkzz’(cosd)o-l-tanq&w sin ¢g)
0

z 47\ &
)
dg] V1 + tan2 ¢, da’

—00

o0

£

AT COS Oy

o eiﬁ(z—f)ﬂ\/W(y—x/tanm
' /_oo Vk2—¢2
— _Hoﬁw
AT COS ¢y,
b - irtin/k2—g2
/ (/ e—iz’(kcosqi)o—l—ktan(bw sin go+EE4/k2—€2 tan ¢y dx’) u dg
o NG
ALY sin(go — )<=V € i«
047T —00 COS¢w(/€COS¢o—i—ktan(ﬁwsin(bo—i—fj;\/mtan¢w)\/m )
(y 2 2'tan¢,). (4.54)

Since these integrals cannot be analytically evaluated, the saddle point method is used.
Converting to complex angle w plane using the transformation & = ksinw, with the
cylindrical coordinates (p,#) with x = pcos¢,y = psing, Egs. (4.51)—(4.54) can be

expressed as

HJA i i 6ikp(cos ¢ sin wsin ¢ cos w) " J
. =T O4r /c k(cos ¢ + sinw)k cos A
Copy [ S ikptsin(ute) gy, (4.55)

Am Jo cos ¢g + sinw

MA ik eikP(COS ¢ sin wsin ¢ cos w)
H " = —Hy— sin k cos w dw
’ Ydr Qbo/c k(cos ¢ + sinw)k cos w

OL Sln—gbo'eikp(sin(wi@ dw, (456)
A1 Jo cos ¢g + sinw
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H!? = +H,—

eikp(cos ¢ sin w=sin ¢ cos w)
/ k cosw dw
47 C (

k cos ¢ + k tan ¢y, sin ¢ + ksinw £ k cos w tan ¢,,)

7 Ssin ¢w k <in weikp(cosqbsin wsin ¢ cos w)
— Ho—— - - k cosw dw
A7 cos ¢y, Jo (K cos pg + k tan ¢y, sin ¢y + k sinw + k cos w tan ¢,,)
i cos(w %+ ¢y,) _—
=+ H,— ikp(sin(w=e) d 457
Ydr /c c05(Go — du) + si(w £ by) W (4.57)

ik sin(¢o — dw)
41 COoS ¢y
/ eikp(cos ¢ sin wsin ¢ cos w)
(

o (kcos ¢y + ktan ¢y, sin ¢ + ksinw £ k cos w tan ¢,,) k cos w

HMP = H,

k cosw dw

i sin(¢o — dw) ikp(sin(w+p)
— HRPSI WD) dap. 4.58
O4rm o cos(pg — ¢yy) + sin(w + qbw)e v ( )

we obtain ws = m/2 F ¢ as a possible saddle point on the contour. At the saddle point,
Egs. (4.55)— (4.58) becomes

1 cosw .
HJA — TH _/ ezkp(sm(w:td)) dw
d + 4r ¢ €Os g + sinw

g, b OSWs / o—ikp(w—1.)%/2 g,
41 cos ¢y + sin wy Cspp
sin ¢
—
COS ¢ + COs ¢
1 sin ¢0 ; ;
HC]l\/[A — _HO_ : ezkp(sm(wiqﬁ) dw
Am ) cos gp + sinw

1 sin ¢ ’ ()2
= —Hy— : ezkp e tkp(w—ws)*/2 dw
41 cos ¢y + sin wy Cspp

C(kp), (4.59)

sin ¢0

—Hi— 7 ok 4.
0 cos ¢ + cos gbc( P); (4.60)
HJB — L COS(U) w ikp(sin(w+te) d
d + O4rn o cos(pg — ¢y) + sin(w F qﬁw)e v
i cos(w, £ Py) ik / —ikp(w—ws)2/2
— T H, _ ¢ ihptw—ws)*/2 gy
4 cos(¢po — wa) + Sln(ws + §bw) Cspp
Sin(¢ - ¢w)
- _H C(kp), 4.61
" cos(o — duw) + cos(d — du,) (k) oy
HMB —H L/ Sln(% - (bw) tkp(sin(w=+e) d
d O4r o cos(Po — ¢y,) + sin(w F ¢w)e v
Oi Sil’l((ﬁo _gbw) eikp/ efikp(wfws)Q/Q dw
47 COS(¢0 — (brw) + Sln(ws + ¢w) Cspp

Sin(¢0 - gbw)

= 60— 6u) + cos(6 — 6] C P) (4.62)
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The contribution of the pole w, = ¢g — m/2 for surface OA with 0 < |¢| < ™ — ¢y as

. FuHy cos wy,

HI{A — o7ri ezk(p sin wyp cos ¢pEcos wyp sin @)

4dm  cosw,

— i%e—ikp(cosqbo cos ¢pFsin ¢ sin ¢)U(7T . ¢O . |¢|)

_ :l:Toefzk:rcosti)oﬂkyslnd)oU(W _ (b() _ |¢|), (463)
HIJ)VIA — o —iHy sin ¢O eik(psinwp cos ¢pt-cos wp, sin ¢)
4m  cosw,
_ o ptenincmsrann s gy )
Hy s
_ 70efzkzcos(;50Jr’Lkg,151n¢>0[j(ﬂ- _ ¢0 — |¢|) (464)

For surface OB with w, = ¢g — 7/2, ¢pg — 71 < ¢ < ¢, — 2,

HJB —9 lHO COS(wP — QSTU) eik(psinwp cos ¢p—cos wp sin ¢)
P A cos(wy — ¢u)

_ _706—zkp(cos¢ocos¢+sm¢osm¢)U(¢ 47— ¢0)U(—¢ — 97 + ¢w)

Hy . .
Mo pisetvicrininyy (g 4 x - go)U(~6 - 27 + 6,), (4.65)

HMB —9 ZHO Siﬂ<¢0 — ¢w) eik(psinwp oS ¢p—cos wp sin @)
P A1 cos(w, — Gu)

Hy _, in o s

= —eTrlcntendisind SOy (41— Go)U (=6 — 27 + Gu)
Hy _, oy

= Pemhre IR (L x— G)U (g~ 2m 4 bu),  (4.66)

and for w, = ¢g — 20, — /2, Py — 27 < ¢ < 2¢, — Pp — 37

B _ —2m‘iH0 cos(wy + bw)
P 47 cos(wy + ¢u)

tk(p sin wp cos ¢+cos wp sin ¢)

_ %eikp(cos@qﬁwzﬁo)cos ¢—sin(2¢w —¢o) sin ¢)U<¢ + o’ — wa)U(_Qb — 31 + 2¢w . ¢0)

= Sl ikres(2bu )ik (4 2 — 6,)U(~6 — 37 + 260 — o), (4.67)

HMB _ 9 1H Sin(¢0 — ¢w) eik(psinwp oS ¢+cos wp sin ¢)
P A cos(wy + du)

— _%eikp(cos@qbw¢0)cos¢sin(2¢w¢0)sin¢)U(¢ + o7 — ¢w)U(_¢ — 37+ 2¢w . ¢0)

= —70€_Zk$C05(2¢w_¢0)_Zk?151n(2¢w_¢0)U(¢ + 271 — ) U (= — 371 + 2y, — ). (4.68)

Then the scattering field from the surface OA is

HON = HiY + Hy' A + HA 4+ 1)
sin ¢g + sin ¢
Ocos ¢ + cos ¢

C(kp) + Hoe k= cosdotibusinengy (6 — 6)U($)(4.69)
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and from the surface OB is

H?P = HP + H)'P + H!P + 0P
sin(gbo — wa) - Sin(¢ - ¢w>
— H, k
" c05(0 = Bu) + con(6— fu) P
_ Hoe—ik:ccos¢o—ikysin¢0U(¢ 4+ — ¢0)U(_¢ — 2 + ¢w) (470)

Then, the total scattering field E? is defined by the summation of the above contribu-
tions in Egs. (4.69), (4.70) as

HO® = HPA + HO®
_ 7 (sin ¢otsing  sin(¢o — ¢u) — sin(¢
"\cosgo +cosd  cos(dg — ) + cos(¢
. Hoe—ik:ccoszz)o—i-ikysinqb()U(ﬂ_ . ¢0 . ¢)U(¢)

)
Sw)

)C(kp)

. Hoe—ikmcos¢o—ikysin¢oU<¢ 4+ — ¢0)U(_¢ — 21+ wa) (471)

The term B in the big parentheses of the first line in Eq. (4.71) becomes

_ singg+sing  sin(gg — dy) — sin(¢ — ¢y)
T cosgg+cosp cos(Pg — du) 4 cos(d — du)
(sin ¢ + sin @)[cos(pg — ¢u) + cos(P — ¢u)]
— [sin(¢g — Pw) — sin(¢ — ¢y, )] (cos ¢g + cos @)
(cos ¢g + cos @)[cos(pg — du) + cos(P — ¢u)]
sinfo + (o — ¢dw)] + sinfp — (do — dw)]
~ tsinfgp+ (¢ — ¢u)] +5in[d — (¢ — dy)]
~ (cos ¢ + cos B)[cos(g — Pu) + cos(¢ — b))
. 2sin ¢[cos(pg — du) + cos(P — @)
 (cos ¢ + cos P)[cos(dg — Pu) + cos(d — )]
B 2sin ¢
~ (cosgyg + cos p)’

(4.72)

This results is found to match with the one by the PO approximation in Eq. (3.26).

It is also interesting to observed that the reflected GO field is excited from the currents
J 4 and M 4 on the illuminated surface, while the negative incident field which cancels
the original incident field is from the currents Jp and M p on the shadowed surface.
Also the contributions J g, M g on the shadow surface yield the same results regardless
of the wedge angle. This matches the observation of PO approximation which assumes
zero surface current on the shadow side. According to the surface equivalence theorem,
the equivalent currents excite null field inside the enclosed surface as in Fig. 2.1(b). The

total field F? in Eqgs. (4.37) and (4.71) does not vanish inside the conducting wedge region
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Figure 4.2: Scattering by a conducting rectangular cylinder. (a) Scattering by plane waves

E', H'. (b) Equivalent currents J,, M on the cylinder surfaces.

(b — 2m < ¢ < 0), but it would be asymptotically O (k~'/2), since the all GO fields
cancel and the only edge diffracted fields from the edges exist. This is due to the fact
that the equivalent surface currents are derived from the incident and reflected GO fields
with ignoring the possible edge diffracted field.

One may also find that E/4 = E/B EMA = —EMB for a half-plane (¢, = 27).
Accordingly, one does not need magnetic currents M 4, and M g, and the electric current

J g on the shadow side contributes one half of the total scattering field.

4.1.2 Scattering by a Conducting Rectangular Cylinder

Let us consider that a plane wave impinges upon a surface of a conducting rectangular
cylinder whose dimensions are 2a x 2b as shown in Fig. 4.2(a). Because of the symmetry of
the scattering object, the incident angle ¢ is assumed as 0 < ¢y < 90° without losing the
generality. shows a two-dimensional conducting wedge of the wedge angle ¢,, illuminated
by a plane wave.

The scattering formulation may be separated into two polarizations.
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E Polarization

When an E polarized incident plane wave can be written as in Eqs. (4.3), (4.4) impinges
on the surfaces of the conducting rectangular cylinder, the reflected waves at the surface

AB can be obtained as

ET‘AB _ _Eoe—ik(fﬁ cos ¢o+(2b—y) sin ¢0)2’ (473)
HAP _ E, \/7_0 ¢=h(eono-H (=) sin o) (_ gin 4% cos doi), (4.74)
Ho

and at the surface AC,

ETAC _ _Eoe—ik((2a—m) cos ¢po+y sin ¢0)27 (475)
H™C = E,./ ie”'k(@“’x) cos ¢o+y sin ¢o) (sin po& + cos poy). (4.76)
Ho

Considering to the surfaces of the cylinder, the equivalent currents J, and M, can be

derived as
J =yxH" = Eo\/% sin e k(w cos dotbsingo) 5. (4.77)
M, = E™B x ¥ . _ Eoe—ik(xcosqﬁo-i-bsinzz)o)i’ (4.78)
Jy =ax HAY = EO\/% cos (e klacosdotysingo) 5 (4.79)
M, — EAC « 4 . _ _Eoe—ik(acosqbo-&-ysin(bo)@’ (4.80)
Jy = —§x (—HY L _ EO\/%SHI¢O€ik(xcos¢o+bsin¢0)2, (4.81)
M; = (_Ez) x (—%) . _ _Eoe—ik(mcos¢o+bsin¢0)ﬁ:7 (4.82)
Jy = (-2)x (-H') T Eo\/%COS poeHlacosdotysingo) 5 (4.83)
M, = (_Ez) « (—ﬁ:) o _ Eoe—ik(—acosqsoﬂsin%)g (4.84)

The scattering field can be obtained by integrating J; ~ M, with the two-dimensional
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Green’s function G as

E;fl / %JI (m — g;/)2 + <y _ y/)2) / de= (4.85)
y =
EMI / M1 HY (/G = 2+ = 9P| ds (4.86)
EP? = / %JQ (gg — )2+ (y—¢)?) N ds, (4.87)
E;f?» %J?) (x — 22+ (y — y)?) / bds’ (4.89)
y'=—
pMs _ / O k(@ G=vP)| _,ds (4.90)
Bt =~ / %le (k[ (y—y)?)|, ds. (4.91)
B = / M4 HY (ke =22+ (y—y)?)|  ds. (4.92)
From Eqs. (4.77)—(4.84), we have
@ 0o if(w—a')+iy/k2—E2|y—b
Ejl - _/ |:EO£Sin¢06_ik(zcos¢0+bsin¢0) € ( ) Iy |d£i| dI/
ot AT o VR E
1k I , 00 ib(z—a)tin/k2—€2(y—b)
— _EO_ sin gboefzkb sin gboefzka cos ¢o / df
Am (k cos g + &) /K2 — €2
1k . . 00 ib(ata)tin/k2—€2(y—b)
+ Ey— sin e—zkbsm ¢0€zkacos¢0 / > ’ 193
Y o oo (kcos gy + &)\ /k2 — &2 46, (y = 0), (493)
EMl =F /a [Hoie—ik(:ccos¢o+bsin¢0) /oo eiﬁ(x—x’)ﬂ‘\/mw—bl dg] dx'/
: —a 4m -
) oo if(z—a)Eiy/k2—E2(y—b
— :FEoie—ikbsindvoe—ikacosqﬁo/ € & ) Ey-b) dg
4m oo kcos ¢g + &
7 I , 00 i(zta)Ein/k2—€2(y—b)
+ F— —ikbsin ¢g zkacosd)o/ d > 104
“ar” ‘ s kcos ¢o + & & (v 20), (4.94)
b 00 _i€(x—a)tin/k2—€2|ly—q’
E7?2 — _/ [Eoﬁ Cos ¢Oe—ik(acos¢o+ysin¢o)/ ettt dd dﬁ} dy’
) o boAT o VR
1k . . 00 pié(z—a)+in/k2—€2(y—b)
— _EO_ Cos (boefzkacosdmefzkbcos@) / dé
Ar oo (kcos o + /K2 — £2)\/k2 — €2
k , , o0 i¢(z—a)tiy/k2—€2(y+b)
+ Eol_ COS (boefzka cos ¢ kb cos go / € n
Am —00 (kcosgb0+\/k2_g2)\/k2_§2
(v=9), (4.95)
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b 00 i&(x— i/ k2 —E2|y—a
M2 _/ [Eoie—ik(acosq&o—i-ysinqbo) e {(z—a)tin/k?=E2ly—y/|
Z 47T oo Vi =&

L dg} 4y

- —Eoie*ikacos%efikbcosqﬁo /OO 561‘5(““&"\/@(%&5) "
dm —0 (kcos¢0—|—\/k;2_§2)\/k2_ 2
+ Eoﬁ o—ika cos o ikbcos do / * {eig(x_a)ﬂ\/m(wb) .
am —co (kcos¢0+\/k;2_f2)\/k2_€2
(v 21y, (4.96)
oo i€(z—a')+iy/k2—E2
E;B = —/a []504ﬁ sin ¢gpe —ik(z cos ¢o+bsin ¢o) - e’ gly+bl d§] .

ik —_ ) 00 ZE x—a)tin/k2—£2(y+Db)
— _EOE qin ¢0€Zkbsm bo e—zka cos ¢p / ( é

—oo (kcos g + &)\ k% — &2
ik o 00 git(w+a)Ein/k2—€2(y+b)
+ Ey— sin ezkbsmdmezkacosd)o/ d 7 > _b)(4.97
MAm o oo (kcos g + €)/k% — €2 & (y 2 —b)A.97)
Eiwg = :i:/a |:H04ieik(mcos¢0+b5in¢0) /OO eis(z*ﬁ?/)+i\/k27f2|y7b| dé] dx/

a ™

. )i /BT (i
— 4y ¢kbsin o, —ikacos g / 00 git(z—a)tin/k—E2(y+b)
am —c0 k cos ¢ + &
. , N =T
T Eoieikbsinqboeikacos 0 /OO elf(x+a) l\/—f(y+ )
am —c0 kcos ¢g + &

b 00 pi(z—a)+in/k2—E2|y—y/|
k
EJ4 :/ [E 7 (acos¢o+y51n¢0)/ d :| d /
; » e cos ppe \/TSQ §| dy
0o zf(w a)+in/k2—&2(y—b)

dg

= —F.— cos e—zk‘acosd)oe—zkbcosd)o/ d
047‘{‘ ¢0 - kCOS¢0+\/k32 é‘Q)\/kg_ 3 é
ik . . 00 Z§ z—a)tiy/k2—£2(y+b)
+ EOZ_ cos ¢0€—zka cos ¢o 6zkbcos b0 / d£7
dn 0o kcos¢0+\/k2 52)\/k2_£2

y2y), (4.99)

1 i€(z—a)+in/ k2 —€2ly—y'|
Ef/[ 4 _ [Eo e~ tk(acos go+ysin go) & df} dy’
b 477 AV k2 — 62

) oo i&(v—a)tir/k2—£2(y—b
_ [, e ihacos o ,~ikbeos o / S A I
Am —oo (kcos go + /K2 — €2)\/k2 — &2
) S i€(x—a)tiy/k2—£2 b
_ Eoﬁe—ikaCOS%eikbcosdao/ Eetbl@—a)Eiy/k2—€2(y+b) i
dn —o00 (kcosgb0+\/k2_§2)\/k2_§2
(y2y). (4.100)

Similarly, converting to complex angle w plane using the transformation £ = £ sin w, with

the cylindrical coordinates (x—a = ps cospa,y—b = pasinga), (r+a = ppcos pc,y—b =
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ppsin ¢¢) for surface AB, then

N i b . etkpa sin(wteg )
Ez — _EO_ <in ¢Oe—z sin ¢Oe—z a cos ¢o —dw
2m ¢ COS ¢g + sinw

o —ikbsin ¢ ika cos do e““PB sin(wtép) N
+ Boggsingoe NN | g remw (W2 (410D
' ikpasin(wtea)
EMl — :FEOLefikb sin ¢>Oe—ika cos ¢g / cos wetrPASI(wLoa "
2m o

N cos ¢p + sinw

1 T .
+ E0—€ ikb sin ¢ ezka cos o

ikpp sin(wtop)
| dw, (y=b), (4102)
2m C

cos ¢p + sinw

and (r —a = pacosga,y —b = pasinga), (r —a = pccospc,y + b = pcsinéc) for
surface AC, then

b i - " eik:pA sin(wtea)
E7? = —Ey— cos gge Fbsindogikacosgo [ — gy
2m ¢ Sin ¢g & cosw

eikpc sin(wte¢c)

+ E()% COS ¢0€ikbsin¢oeikaCOS¢o / (y 2 y,)7 (4103)

¢ Sin ¢y £ cosw
sin wet*ra sin(wtea)

T g .
EéV[Z — —E()—@ ikbsin (;506 ika cos ¢g :
2m ¢ singy + cosw

. . ikpc sin(wtoc)
/A . Sin we
+E _ezkbsln¢o€—lkaCOS¢0/ . dw7 =/ s 4.104

091 o singg =+ cosw (y=29), ( )

and (x —a = pocosdco,y +b = pesinge), (x +a = ppcosép,y — b = ppsingp) for
surface CD,

3 i b . eikpc sin(wxe¢c)
Ez — _EO_ sin ¢06Z sin ¢06—z a cos ¢o :
2m ¢ €Os Qg + sinw

i ikbsin ¢g ika cos ¢ eika sin(wt¢p)
+ Eog_sin goe™ TR | o dw, - (y 2 —b), (4.105
o sin | e (2 =), (4105
] ikpc sin(wteoc)
EM3 — iEoieikbsinme—ikacos%/ cos wetkre | c .
2m ¢ Cos@y+ sinw

== EO L eikb sin ¢g eika cos ¢g

ikpp sin(wte¢p)
: | w, (52 -b), (4100
T c

cos ¢p + sinw

and (x +a = pgcosép,y —b = ppsindp), (r+a = ppcosée,y +b = ppsinge) for
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Figure 4.3: Observation point from surfaces CD (a) and BD (b).

surface BD,

J4 4 —ikbsin ¢g ika cos ¢g eikpB sin(w¢p)
E" = —Ey— cos ¢pe e ——dw
2m ¢ Sin ¢g £ cosw

eika sin(wt¢p)

+ Eo% cos ¢06ikbsm¢°6ikacos¢° / (y2v), (4.107)

¢ Sin ¢g & cosw
sin we'krs sin(wt¢p)

i .
Eé\ﬁl — E0—€ ikb sin ¢ 6zka cos ¢o :
2m ¢ singg £ cosw

- EO v eikb sin ¢g eika cos ¢g

2T

i / sin wetkrB sin(wt¢p)
C

sin ¢g £ cos w

Using saddle point method and far-field approximation
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$A = ¢p = Pc = ¢p ~ ¢

PA = pPB = pPc = PD ~ P

for amplitude variations,

(

pa=p—dcos(¢p— pag) =p— acosp — bsing
(4.100)

pp=p—dcos(m — ¢ — dag) = p+ acosd — bsin ¢
for phase variations,

pc=p—dcos(¢p+ pa9) = p—acos+ bsin ¢

oD =p—dcos(m+ ¢+ Ppag) = p+acos¢+ bsing

Eqgs. (4.101)-(4.108) can be approximated as

EN = i2 Eye~ikb(sin ¢-+sin ¢o) sin[ka(cos ¢o + cos ¢)]%C(k;}), (4.110)
Eim — (2 Fyekb(sin d-+sin do) sin[ka(cos ¢ + cos M%C(km, (4.111)
E? = §9 Ee~ka(cos g-cos ¢o) sin[kb(sin ¢g + sin ¢)] %C(k‘p), (4.112)
Ei‘“ _ Z-2E|Oefika(cos¢+cos $0) sin[kb(sin ¢g + sin ¢)] qu;;)%mc@p), (4.113)
Ef’ _ Z-QEoeikb(sin $-sin ¢o) sin[ka(cos ¢y + cos )] %C(l{p), (4.114)
Eiwg — D EyiM(sin g-tsin go) sin[ka(cos ¢o + cos ¢)]%C(kp), (4.115)
B = §2 Feikalcos ¢-+cos ¢o) sin[kb(sin ¢g + sin Qﬁ)]%o(l{p), (4.116)
coSs ¢

EMY — 9 Fyetkalcos oteosdo) gin[kb(sin ¢ + sin ¢)] C(kp). (4.117)

sin ¢g + sin ¢

Then, the total scattering field is
EE=E'+EM L E? L EM2 L B L EM3 L B/ EMY (4.118)

After some manipulation, this total result is found to match with the one obtained by

the PO approximation in Eq. (3.44) (see Appendix A).

sin[ka(cos ¢g + cos ¢)] ¢ Ikb(sin ¢-sin 90) (3 )
cos ¢ + cos ¢

+ i4Ep cos §b0 Sln[kb(SID ¢0 + sin Cb)] e—ika(cos ¢+cos (Z)O)O(kp).

sin ¢g + sin ¢

Ei == Z4EO sin ¢0

(4.119)
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H Polarization

When a H polarized incident plane wave as in Eqs. (4.39), (4.40) impinges on the cylinder

surfaces, the reflected waves at the surface AB can be obtained as

ET‘AB H

HT‘AB _ Hoe—ik:(x cos ¢o+(2b—y) sin ¢O)2,

€0

and at the surface AC,

HrAC _ Hoe—ik((Qa—:c) cos ¢ty sin qbo)%

ErAC H
€0

ILLO —zk(r cos ¢o+(2b—y) sin ¢) (

,uo —zk((2a x) cos ¢po+y sin ¢o) (

sin go — cos goY),

oS P& + sin ¢y ).

(4.120)

(4.121)

(4.122)

(4.123)

Considering to the surfaces of the cylinder, the equivalent currents J, and M, can be

derived as

Ji

:,g % HrAB

y=b

ETAB

Xy

= x H™°

r=a

E’I‘AC %

_ Hoe—zk(x cos ¢o+bsin ¢0).’i3

’

_ _HO @ smgb e —1 (a:cosd)o-i-bmnqﬁo) 2
y=>b €o

_ _Hoe—ik:(a cos ¢o—+y sin ¢0)@’

Ho — ; .
— _HO 29 cos ¢0€ ik(a cos ¢po+y smd)o)z,
r=a €0

_ Hoe—zk(m cos ¢o+bsin ¢o) P

Y

[Ho . —i i .
) _ HO 8_ sin ¢0€ ik(x cos ¢o+bsin d)o)z,
y=- 0

_ _Hoefik(fa cos ¢o+y sin (1)0)@’

Ho —ik(— i A
= Hy, /= cos ¢0€ ik( acos¢0+ys1n¢o)z.
T=—a €0

(4.124)
(4.125)
(4.126)
(4.127)
(4.128)
(4.129)
(4.130)

(4.131)

The scattering field can be obtained by integrating J, ~ M, with the two-dimensional

Green'’s function G as

P PRI e

HM' = _/S%Ml HYY (k/(«

J2 _ v
H? = - /4J28,H (ky/ (=

H¥2=—[9%M2 (ke (@
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ds,
y'=b
P+ y—y)?)|  dS,
y:
(y —v)?) . ds,
(y—y)2)| ,_ ds,

(4.132)
(4.133)
(4.134)

(4.135)



H? :/ Jg—H V(kr/(z (y —y')?) ds, (4.136)
17 oy S

HM3 = / WZOMgH(l) (k/(z — )2 + (y — v)?) 05, (4.137)
; _

= _/ 4J4FH (k/(z —y)?| s (4.138)

= [ = )| s (139)
S r’'=—a

From Egs. (4.124)—(4.131), we have

a 1 ‘ ) %)
H;Jl ::t/ [HQEQ_Zk($COS¢O+bSIH¢O)/ e

i€(x—a')+iy/k2—E2|y—b| d&} dr’

eif(:v—a):l:i\ /k2—€2(y—b)
kcos ¢o + &
%0 git(z+a)Ein/k?—E2(y—)
kaOS ¢O _'_5 d§7 (y 2 b), (4140)
“ oo if(x—z')+i\/k2—E2|y—Db
ffj\/[1 — [H ﬁ Sin¢ e—ik(mcos¢0+bsin¢0) 65( )+ &2|ly—b|
- —a 047T 0 o /k2 _ 52
ik b » 00 if(z—a)tin/k2—E2(y—b)
= Hy— sin (bOe Zkbsm¢06 ika cos ¢o
oo (kcos g+ &)\/k2 — &2
1 E(z+a)tin/k2—£2(y—b)
kcos ¢g + £)\/ k2 — &2

b i€(z—a)+in/k2—€2|y—y/|
1
HP2 = [ | Hy—emtacosontsinn) . ] dyf
. 471' k2 _ 52

7 R . o0
— :]:HO 6—zkbsm ¢oe—zka cos ¢o /
—o0

d
47 ¢

¥ HO L e—ikb sin ¢o eika cos ¢o
A7 _

dg] dz’

dg

ok L . o0
_HOZZL_ singzﬁoe_lkbsm‘z’oe’k“wwo/ ( d¢,(y 2 b), (4.141)
T

= Hy— ! ¢~ ika cos o ,—ikb cos do /Oo §€i£ (—a)Fi\/k?—£2(y—b) d¢

A 0o kcos¢0—|—\/k2 62)\/k2— 2
g,k ik o—tkacos go kb cos ¢y / 00 gezé (z—a)+in/k2—€2(y+b) i«
A 0 kcos¢0+\/k2 52)\/]‘72—52 ’

(yzy), (4142
b oo if(r—a)+iy/k2—E2|y—y’
HMQZ/ [Hoﬁ cos¢oe_ik(a605¢o+ysin¢o)/ et v df} dy'
0o if(z—a):l:i\/k2—§2(y—b)
o (K cos ¢y + \/k’2 52)\//@2 — &2
0 25 z—a) :tz\/m@-f—b)
dg,
oo (kcos gy + \/k2 — €2)\/k2 — &2 .
(yzy),  (4143)

ik y y
— H04—COS ¢06 zkacosqﬁOG zkbcosqb()/
7I

1k iy .
—H04— CoS ¢06 ika cos ¢0€zkbc0s bo /
T
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HJS 4 /a [Hoie—ik(mcos¢0+bsin¢0) /OO 6i§(m—x')+i\/k2_£2|y_b| d§i| d.ﬁU/
? A

—a —0o0

; 00 Li€(z—a)xin/k?—E2(y+b)
:iHOLeikbsin(boe—ikacosqﬁo/ el v dé—

an — kcos g+ &
T g . 00 6i§($+a):|:i« /k2—£2(y+b)
* Hoﬂelkbsmoemcmo/ k cos ¢g + & dg, (y = —b), (4.144)
ws _ _ [° L ik(zcosdotbsingo) [ eib(x—a’)+in/ k2 —€2|y+b] /
H™" = Hy— sin ¢pe d¢| de
S R
ik Kbsin o, o gitla)iy/B e (yt)
— _HO_ sin ¢Oelkb sin ¢0€—lka cos ¢o / df
Am —o0 (k’COSgbO—I—g)\/T_f?
ik o A e eig(x+a)i¢\/m(y+b)
g elkbsm%emwwo/ de, (y = —b),(4.145
Hin ' —o0 (kcos¢0+§)\/k27_§2 (y 2 —b),( )
o) ; — i 2 _ 200
Ja _ ' i —ik(a cos ¢o+ysin do) 567’5(3” a)+zvk Ely—y'| )
R de] dy
—b 47T oo \/m
J & i&(z—a)tin/k2—€2(y—b
— HOLeikaCOS¢0€ikbcos¢)0/ 56 &( ) &2 (y—b)
Am -0 (kCOSQSO—F\/kQ—g?)\/kQ_fQ
) S i€(x—a)ti\/k2—¢£2 b
—Hoﬁe_ikaCOS¢oeikbcos¢0 / e §(w—a)tiy &2 (y+b) .
am —c0 (kcos¢o+\/]g2_§2)\/k2_§2
w=zy), (4.146)
b 0o i&(x—a)tiv/k2—E2|y—y/|
HM4 — _/ [HO%COS qZ)Oe—ik(acosqbo—i-ysin<z>0) € Y=y J ] y/

? —b ™ o /k2—§2

dg

= _HO& cos ¢Oe—ikacos ¢06—ikbcos N /OO eiﬁ(x—a):l:z‘ V k2—£2(y—b) dg
in —0 (kcos¢0+\/k2_§2)\/k2_§2
_|-H0ﬁ CcoS ¢Oe—ika cos ¢p eikb cos ¢o /00 eiﬁ(ﬂc—a):ti\ /k2—€2(y+b) d&
in —o0 (kcos¢0+\/k2_52)\/k2_€2
(vzy). (4.147)

Similarly, converting to complex angle w plane using the transformation ¢ = ksinw,

and using saddle point method with far-filed approximation in Eq. (4.109), then Egs.
(4.140)—(4.147) becomes

HIL = i Hye=0sine+sinoo) itk (cos o -+ cos ¢)]Cos);mﬁj}0(kp), (4.148)

HMY — i e~ R0 o sintn) gin o (cos o + cos ¢)}%C(kp),(4149)

ng _ _Z.QHOe—ika(cos ¢—+cos ¢o) Sin[kb(sin Cbo + sin ¢)] COs ¢
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cos Qg
sin ¢g + sin ¢

sin ¢

sin ¢q

H* — _i9H ika(cos ¢+cos ¢g) kb(si . COSQb
; 12Hgpe sin[kb(sin ¢ + sin ¢)]—sin o T oind

cos Qg

HM?2 — _j2 Hekalcos dteoséo) gin [kh(sin ¢y + sin )] C(kp),(4.151)
H7? = —i2Hye*tGinotsinéo) gin [ka(cos ¢ + cos ¢)]
HM3 — 2 Hethbsiné+sindo) gin[ka(cos ¢o + cos ¢)]
C(kp), (4.154)
HM* = 2 {yethatcos dteosdo) i (kb (sin ¢ + sin ¢)]

Then, the total scattering field is

Hy = H' + H" + H? + HY? + B + B + B 1
sin[ka(cos ¢ + cos P)] iz
o8 ¢g + €OS @
sin[kb(sin ¢g + sin ¢)]
sin ¢g + sin ¢

— _i4H,sin é sin ¢-sin 90) () )

— i4H cos ¢y e ihalcosdteosdo) Ok p)  (4.156)

After some manipulation, this total result is found to match with the one obtained by the
PO approximation in Eq. (3.60) (see Appendix A).

In this section, the scattering fields by a conducting wedge and rectangular cylinder
are formulated. In case of the conducting wedge, the equivalent currents J,, M 4 at
surface OA are approximated by the GO reflected wave, and currents J g, M g at surface
OB are calculated from the minus incident wave. Then, the total scattering field is
given by summing up four contributions derived from these currents. While the diffracted
component of this result is found to match with the one obtained by the PO approximation
in Section 3.1, the internal field inside the wedge is found to be asymptotically zero due
to the virtue of the surface equivalent theorem. For the conducting rectangular cylinder,
eight equivalent currents J; ~ J, and My ~ M, are approximated by the GO reflected
and incident rays. When the resulting scattering fields radiating from these currents are
combined, the final result is found to be exactly the same as the result obtained by the PO
in Section 3.2. Therefore, from our derivation, one concludes that the results by surface
equivalence theorem match with those obtained by the PO in Chapter 3, which utilized
the induced electric currents on the illuminated physical surfaces. Then, when applying
this method to estimate the scattering by the dielectric objects, one expects that this

method could have the similar accuracy as PO formulation.
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4.2 Scattering by a Dielectric Edged Object

In this section, the outside scattering formulations for the dielectric wedge and rectangular
cylinder have been derived. Here, the situation becomes more complicated than the
conducting case in Section 4.1. When the incident wave impinges on the illuminated
surfaces, it excites the GO reflected wave (E", H"), the GO transmitted waves (E', H"),
and diffracted wave (Ed, H d). Since the diffracted wave is weaker than the GO ray fields,
the scattering wave (E°, H?®) on the illuminated region may be approximately given by
the GO reflected wave (E”, H") and the GO transmitted wave (E', H'), if any. On the
shadowed region, it is no incident wave observed, and the GO transmitted wave (E*, H")
and the diffracted wave (E?, H%). Then the scattering wave may be approximately given
by E*=—-E'+ E', H = -H'+ H'.
Accordingly, the equivalent current may be approximated as

nx (H + H")  on illuminated S,
J, = x H ~ (4.157)

n x (—H'+ H") on shadowed S,

(E"+ E') xfn  on illuminated S,
M,=E°x o~ (4.158)

(~E'+ E') x i on shadowed S,

where 1 denotes the outward normal unit vector.

4.2.1 Diffraction by a Dielectric Wedge

Figure 4.4 shows a two-dimensional dielectric wedge of the wedge angle ¢,, illuminated
by a plane wave. For simplicity, let us assume that the incident plane wave illuminates
surface OA only (0 < ¢g < ¢, — 7) and the observation angle is taken as 0 < ¢ < 2.
When the incident plane wave impinges on the illuminated surfaces of a dielectric cylinder,
it excites the reflected wave at the illuminated surfaces and transmitted waves inside the
wedge. In addition, the originally transmitted wave excites the internal reflected and
transmitted waves E', H' due to the multiple bouncing effects and they radiate again
from the body. Then, the contribution from the transmitted waves E', H' should be
treated carefully, since they propagate with multiple internal bouncing in the dielectric

body, then they depart from the body to all direction, as shown in Fig. 4.4. Then, the
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Figure 4.4: Ordinary rays traced in physical region.
total scattering field becomes

E? = E) + (cont. from (E', H")), (4.159)

H? = H) + (cont. from (E', H")), (4.160)

with E? and H? are the primary contribution derived from the reflected wave at the
illuminated surface and the minus incident wave at the shadowed surface.

The scattering formulation may be separated into two polarizations.

E Polarization

When a E polarized incident plane wave impinges on the wedge’s surface OA, it excites
the reflected waves at illuminated surface and the transmitted wave inside the wedge.
The original transmitted wave continues to experience the internal reflection and emit

the outgoing transmitted waves.
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At surface OA, the first reflected wave can be defined as

E" = IyEyett@cosdotysingp) 5 (4.161)
H" = I E, ﬂeik(“(’sd’gﬂ’sm‘1’5)(sin G — cos PpY), (4.162)
Ho

with ¢, @h, ¢1 are the incident and reflected /transmitted angles, and I is the reflected

coefficient as

oh = 7 + o, (4.163)
Go=7—do, (4.164)
é1 = cos! [%] (4.165)

: _ oo
I, sin ¢g — /€, — COS gbo‘ (4.166)
sin ¢g + /&, — cos? ¢y

Comparing the reflected waves in Eqs. (4.161), (4.162) with those by conducting case in

Egs. (4.5), (4.6), the formulas of the reflected waves from the dielectric wedge have only
a difference with those by conducting case at the reflection coefficient. Therefore, the
contribution of the reflected waves can be obtained from Eq. (4.35) as

sin ¢g + sin ¢

EY = - E
? 0 Ocosgbg—cosqb

Clkp) — DoEge* St vsndi i ( — g — §)U (9)(4.167)

Also, the contribution from the minus incident wave at the shadowed surface OB is the
same as the one in Eq. (4.36)

B — g, S0 — du) +5I(0 — du)

? cos(Ph — ) — cos(¢ — dy)

— Eoetreos T (¢ 4w — go)U(—¢p — 27 + ). (4.168)

C(kp)

The internal reflection inside the dielectric can be defined at two surfaces OA, OB, sepa-

rately.

Internal Reflection at Surface OB Figure 4.5 shows the internal reflection at the
surface OB. Here, ¢9, 1, ¢2, and ¢ ;| are the incident, reflected and outgoing trans-
mitted angles of the (2n — 1)-th internal reflection, respectively. Also ¢y, is the (2n)-th

internal reflection angle. These angles and the reflected/transmitted coefficients are de-
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fined as
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Figure 4.5: Internal reflection at surface OB.

¢2n = 2¢w - ¢2n71 — 2m,
b1 = Gu + cos! [ £,C0S( 21 — %)},

I o Sin(¢w - ¢2n—1) — \/67" — COSQ(¢w - ¢2n—1)
2n—1 — 9
Sln(qﬁ’w - ¢2n71> + \/57‘ - COS2(¢w - ¢2n71)

Then, the (2n — 1)-th outgoing transmitted wave is expressed as

_ i t i t ~
E(2n nt _ T2n71E0€zk(:p cos¢2n_1+ysm¢>2n_1)z’

en .
2n—1)t __ 0 _ik(x cos ¢t ~+y sin ¢k : t ~ t ~
H = = TQn_lEOH,u_e (703 Oan1 w5 O2n 1) (sin ¢h,,_ & — cos ¢, 1),
0

and the (2n)-th internal reflected wave is

E2n = Rop_1 E, ezkw (2 cos p2n+ysin ¢2,) 2,

E0Er ; . ~ ~
H? = Ry, 1E, _,U I gtk (@ cos dantysindan) (gin b & — cOS on)),
V' 1o

with k,, = k,/€,, and

Top1 =01+ To)1 - Topo(l+ Iny1),

Rop1 =1+ T0)1 - Iopoln, .

o1

(4.169)

(4.170)

(4.171)

(4.172)

(4.173)

(4.174)

(4.175)

(4.176)
(4.177)



Then, the (2n — 1)-th equivalent currents J(2,—1):, M (2,—1); generated can be derived

from from the (2n — 1)-th outgoing transmitted wave as

Jon-1y =N X HE

Y=x tan ¢,

= EO T2n—1 %Sln(¢én 1 (bw) iha( COS¢2” 1+tal’1¢w811’1¢2n l)za (4178>
\/ 0

M1y = En=Vt s qy

Y=x tan ¢

= By Tpy_q eF#(008 Oonrttandusindsn 1) (cog & + sin ¢y ). (4.179)

The scattering field can be obtained by integrating J(2n,—1);, M (2,—1); with the two-

dimensional Green’s function G

EJ(Qn 1)t /w/,zo (on— 1)tH l{\/ 33—.T y_yl)Z) ds
y' =z’ tan ¢y,

— _/ [WZO T2TL 1E0\/:s1n(¢2n 1 ¢w) ika' (cos @5, | +tan ¢y, sin 2n—1%)
0 Ho

1 oo eiﬁ(m—x')ii\/kQ—@(y—m’ tan ¢y,)

- dg} V1 tan g, da’
. /12— ¢2

k sin(¢h, 1 — ¢uw)

4 COS

itatin k2 €2
- - iz’ (k cos @b, 4k tan ¢ sin¢§n_1f£¥\/k2752tan¢>w)d / el &y d
. e X W f
0 _

™

= - TZn 1E0

—00

ik sin(¢h,_1 — ¢uw)
47 COS Oy

/oo eiéw:l:i\/lﬁf{zy
—oo (kcos @b, | + ktan ¢, singh, | — & F \/k? — E2tan ¢, )/ k% — &2

= _T2n lE

dg, (4.180)
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: ) )
EMEn-1t —/ (Mg 1yt~ — Mooy 1y ——
: 1 Menvig s = Men-wg ;)

HY (ky/(z — 22 + (y — v')?) ds
y'=x' tan ¢qy

00 00
_ / |:l Ton 1E06ikx’(cos @b, _+tan gy singl, ;) / ei&(mfx’)ii\/ k2—£2(y—x' tan ¢w)
dr 7
0 _

. ( F 08 by + Sin ¢w\/%_52 dg)] V17 tan? 6, da’

= Ton—1Eq /OO (/OO eix’(kcosgi)gn_lJrktan(j)w singl, | —EF/k?—€2 tan ¢uw) d.T/>
- 0

47

o0

. iExtia/k2—£2
.(eiéxii\/Qy d¢ F sin g, geléx ' &y
cos P (/2 — £2
i oo ei{xii\/ k2—£2y
_T2n—lE0/

4T —oo koS o1 + ktan gy, sin gl | — & F /K% — 2 tan ¢,

Sin ¢y, & ,
.(1 £ m) de,  (y =2’ tanoy). (4.181)

Converting to complex angle w plane using the transformation ¢ = ksinw, with the

)i

=7F

cylindrical coordinates (p,6) with x = pcos¢,y = psin¢, Egs. (4.180), (4.181) can be

expressed as

E;](Qn—l)t _ Tgn_lEO&Sin(gbg"_l — u)

47 COS Oy
eikp(cos¢sin wsin ¢ cos w)
. k d
/c (kcos @b, | + ktan g, sin ¢, | — ksinw F k cosw tan ¢, )k cos w costat
i Sln(qbé -1 ¢w> ik p(si
= ——Ty, 1E n ikp(sin(wto) g 4.182
o /c 0801 — ) — S(W £ G,) v s
EM(anl)t B i / 6ik:p(cosqﬁsinw:l:sin<i)c05w)
? T c (kcosdh, |+ ktan g, singh, | — ksinw 4 k cosw tan ¢,,)
in 6, ksi
-T2n_1E0<1 + sin ¢ Smw)kcoswdw
COS ¢, k cos w

; cos(w £ ¢y,)
yym Ton 1 Eg /C cos(h, 1 — ¢w) — sin(w + ¢y,)

Then, the contribution of the (2n — 1)-th transmitted wave is the summation of the

pikp(sin(w£e) . (4.183)

— 7

radiations from the currents J(o,_1);, M (2n—1)

E@n-Dt _ pJ@n-1)t | pM(2n-1)t

L‘ / Sin(gﬁénfl B ¢w> + COS(U) + ¢w)eikp(sin(w:|:q5) dw
AT Jo cos(Ph,_1 — ¢w) — sin(w £ ¢,) .

= —Ton_1Ey (4.184)

23



t
2n

i

¢2n+1 Lo ¢2n

Figure 4.6: Internal reflection at surface OA.

Using saddle point method with ws, = 7/2 F ¢, then Eq. (4.184) becomes

sin(@h, | — ¢w) + sin(¢p — ¢y,)
cos(@h,—1 — duw) — cos(¢ — Pu)
+ Tzn_lEoeik:pcos¢§n_1+ikysin¢§n_1 U(¢ - ¢O)U(_¢ — 27+ ¢w) (4185)

E£2n71)t = —TgnflEo C(/{Zp)

Internal Reflection at Surface OA Figure 4.6 shows the internal reflection at the
surface OA. Here, ¢oy,, da,11 and @b, are the incident, reflected and outgoing transmitted
angles of the (2n)-th internal reflection, respectively. Also ¢4 is the (2n+1)-th internal

reflection angle. These angles and the reflected /transmitted coefficients are defined as

Pan+1 = 2T — Pan, (4.186)
Py, = COS [\/Ecos ¢2n], (4.187)

: _ — o2
r, — Sin @9, — \/ €, — COS? oy, (4.188)

sin ¢2n + Er — COSQ ¢2n ’

Then, the (2n)-th outgoing transmitted wave is expressed as

E(2n)t _ TQnEoeik(xcos 5, +y sind)én)%’ (4189)

HC — Ton o, /%e’k(“” €08 02 +ysindn) (sin @, & — cos ¢h, 9), (4.190)
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and the (2n + 1)-th internal reflected wave is

ECmHIr — R B ethu(@eos danrtysingann) (4.191)
He O _ p g \/6;7? ek (@ o8 Gan i1ty s d2n i) (gin by, 1 & — €OS 1§ (4.192)

with
Ton = (14 To) 1 - -+ Doy 1 (1 + Do), (4.193)

Rop = (1+ o) I -+ Iop—1Don. (4.194)

Then, the (2n)-th equivalent currents J (a,), M (2,); generated can be derived from from

the (2n)-th outgoing transmitted wave as

= Ty Eoy /=2 sin gh, eheos by (4.195)
y=0 o
— Ty Ege™ s on g, (4.196)

y=0

Jonn =9 x H®

M,y =E®' x g

The scattering field can be obtained by integrating J(o,):, M (2,); With two-dimensional

Green’s function G as

Bl — — [ 2 o 1 =P =) as
y'=0

= / [0 7y, By [ i g %' o0 - TV de| da’
o L4 O\ g e ) R E

k o0 S ) pibrin/k2—€2y
_ —TnE A t ( ia’(k cos @b, —€) d /) d
2n 07— 81ngz$2n/ /o e T —\/m £
6i§z:|:i\/ k2—£2y

—00

ik oo
= — Ty, Ey—sin ¢}, / de, 4.197
" an (K cos db,, —5)\/T52 ¢ (4.197)
EM Qn)t / MQn)txa ,H(l) k}\/ y y) ) ds
y' =z tan ¢y,
_ :F/ LTQnE ezk‘x Cos¢2n/ e7,{:( k= \/Wy dg dl’l
o 4m e
= :FM /OO </OO eix’(kcos¢§n_§) dx’) eiﬁx:ti\/my df
A J_ \Jo
i oo ikwtin/k2—€2y
=F - Twbo | o dE, 20). 4.198
:F47T 2 O/Ookcos¢§n—§ S (y=0) ( )

Converting to complex angle w plane using the transformation ¢ = ksinw, with the

cylindrical coordinates (p,0) with z = pcos¢,y = psing, Egs. (4.197), (4.198) can be
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expressed as

J(2n)t ik . etkp(cos ¢ sin wtsin ¢ cos w)
B = =Ty, Ey— sin k cos w dw
z 2n 047T ¢2n/c (k) coS ngn — ksinw)kcosw

. . t
— — TonBo— / S Do iptsin(rto) gy, (4.199)
4dm )& cos @h, — sinw

i 6ikp(cos ¢ sin wsin ¢ cos w)

EYC = Ty, By— / k d
? b o (kcos@h, — ksinw) ot aw

— Ty By / CW  gikplsin(wte) gy, (4.200)
4t Jo cos @b, — sinw

Then, the contribution of the (2n)-th transmitted wave is the summation of the radiations

from the currents J(2,)¢, M (20t

. . t
Eet _ gt | pM@n)t TanoL/ sin ¢y, & Cosweikp(sin(wi¢>) dw.(4.201)
? z z A1 Jo cos @b, — sinw

Using saddle point method with wy, = 7/2 F ¢, Eq. (4.201) becomes

sin ¢, + sin ¢
cos @b, — cos ¢
+ Ty Egel cosSontikysindhn 17 (. — g0 — VU () (4.202)

EC™ = —Ty, Ey

z

C(kp)

Then, the scattering field outside the dielectric wedge is defined as in Eq. (4.159 )
N
E:=EY+E;"+Y EM (4.203)
1
with N is the number of internal reflections.

H Polarization

When a H polarized incident plane wave impinges on the wedge’s surface OA, it excites
the reflected waves at illuminated surface and the transmitted wave inside the wedge.
The original transmitted wave continues to experience the internal reflection and emit
the outgoing transmitted waves.

At surface OA, the first reflected wave can be defined as

H'" = T Hye*(@eosdotysineg) 5 (4.204)
E" = TyHy,/ €0 gik(a cos df-+ysin %0) (— sin @i + cos Phg). (4.205)
Ho
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with ¢, ¢, ¢1 are the incident and reflected /transmitted angles, and I is the reflected
0r Po

coeflicient as

Py =T + o, (4.206)
& =1 — do, (4.207)
1 = cos™! [%] (4.208)

Iy — —VErsindo Ve 7 o5t do (4.209)
VErsin gy + /&, — cos? ¢y

Comparing the reflected waves in Eqgs. (4.161), (4.162) with those by conducting case in
Eqgs. (4.41), (4.42), the formulas of the reflected waves from the dielectric wedge have
only a difference with those by conducting case at the reflection coefficient. Then, the

contribution of the reflected waves can be given as in Eq. (4.55),
sin ¢, + sin ¢

HY = I, H,
i 0 Ocosgbg—cosgb

C(kp) + Ty Hye*reoseotibysindo iy (r — gy — ¢ U () (4.210)

Also, the contribution from the minus incident wave at the shadowed surface OB is

Loy Sin(¢h — du) +sin(¢ — du)
Hz a _HO COS(¢6 - (bw) - COS((b - (bw) C(kp)

o Hoeikxcos¢6+ikysin¢6U(¢ +7— ¢0)U(_¢ — 27+ ¢w) (4211)

The internal reflection inside the dielectric can be defined at two surfaces OA, OB, sepa-

rately.

Internal Reflection at Surface OB Figure 4.5 shows the internal reflection at the
surface OB. Here, ¢9, 1, ¢2, and ¢, are the incident, reflected and outgoing trans-
mitted angles of the (2n — 1)-th internal reflection, respectively. Also ¢y, is the (2n)-th

internal reflection angle. These angles and the reflected/transmitted coefficients are de-

fined as
Pon = 200 — P2n—1 — 2, (4.212)
b1 = Guw + COS™" [ £rco8(¢an—1 — %)], (4.213)
_ P _ — £2g¢in? —
B = §1n(¢w Pon—1) + \/er — €2 81121 (Pw ¢2n—1>, (1.214)
SIN(Gw — P20-1) + Ver — £25in* (P — Pon1)
Then, the (2n — 1)-th outgoing transmitted wave is expressed as
H(Qn—l)t _ Tgnleoeik(x cos b, | +ysin ¢§n71)2, (4215>

E2n-1t _ Ty Hy //;_(t])eik(zcosqsgn1+ysm¢§n1)(_ sin ¢tgn_1i. + cos ¢§n—1@)7 (4.216)
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and the (2n)-th internal reflected wave is

H? = Ro,_1 Hoe'MwVer(reosomtysingan) (4.217)
B — R2n71H0 /&eikw(xcos ] Sin¢>2n)<_ Sin o, & + cos ¢2n@)7 (4.218)
E0r

with k, = ky/z, and

Tgn_l = (1 — Fo)fl cee FQn_Q(l — FQn_1>, (4219)

Rop1 = (1- Fo)/\/aﬂ coe Do ol 1. (4.220)

Then, the (2n — 1)-th equivalent currents J(2,—1):, M (2,—1); generated can be derived

from from the (2n — 1)-th outgoing transmitted wave as

Jon_1y =mnx HE !

Y= tan ¢,
— HOTZTL_:leka(COS d)én—l""t&n d)w sin d)gn—l) (COS ¢wi + SiIl ¢w@)7 (4.221>
M1y =EC Y xn
y=x tan ¢,

= — Ty |22 sin(h,y — gy e dhooranonsinshoz - (4.999)
0

The scattering field can be obtained by integrating J(n—1);, M (2,—1); with the two-

dimensional Green’s function G as

as

_ { 0
Hj(2n l)t:/sz_l(J(Qn—l)tza ; J(Qn ltya , k\/ y y) )

o0

0o
_ / [iTQn 1H06ikx’(cos @b, _1+tan gy singd, ;) / eig(m—x’):l:i\ /k2—E2(y—2' tan du)
4o =
0 —00

& dg)} V1 + tan? ¢, da’
/2 — 52
_ :tTZn—lHO /oo </oo eix’(kcosq%n_l—l-ktand)w sin¢5n_1—§¥\/mtan¢w) dZL'/>

A7 0

y'=z' tan ¢

-(ﬁ:cos¢w — Sin @y,

1 i€xtin/k2—£2
.(ei&”ii\/ k2—€2y dé ¥ S ¢w 56 ¢ £ y> df
COS Oy \/m
(- o0 pibrEin/k2—E2%y
=+—15, 1H0/
—o0 kCOS o1 + ktan ¢y, singh, | — EF \/mtan Ow

Sin ¢y, 19 ,
.(1 o \/m) de, (y = ' tan éy), (4.223)
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. we
HMen 1>t:_/TOM2n neHe! (ke (2 =) + (y = y/)?)
g y' =z’ tan ¢q,

00
N / [wio T2n 1y pj_ Sln(¢2n 1 ¢w)€ik1/(cos Bhp, 1 Htan gu sin g, ;)
0 \ o

1 oo 6i£(zfa:’):|:i\/k27£2(yfz’ tan ¢y, )
- dg} V1 + tan? ¢, da’
. /12— ¢2

s
k sin(é, 1 — ¢uw)
4 COS Oy

i¢xtin/k2—¢2

. /Oo </Oo ele(k COS¢§H_1+’€ tan¢w Sind’én—l*é? \/ k27£2 tan d)’LU) dx/> u dé‘
—0o0 0 /k»Z _ 62

ik sin(¢h, 1 — dw)

4 COS Oy
/oo eiéxii\/l@f@y
. —oo (kcos@h, | + ktan g, singh, | — & F /k? — 2 tan gy, )/ k2 — &2

Converting to complex angle w plane using the transformation & = ksinw, with the

ds

— T2n 1H0

- T2n 1H0

dg. (4.224)

cylindrical coordinates (p,6) with x = pcos¢,y = psin¢, Egs. (4.223), (4.224) can be
expressed as

eikp(cos ¢ sin wsin ¢ cos w)

HJ(?n—l) :i:—
? c (kcos @b, |+ ktan ¢y, singh, | — ksinw + k cos w tan ¢,,)
_ w Kk
Ty Ho (14 sin ¢ Smw)kcoswdw
COS ¢y, k cOS W
i - cos(w =+ ¢,) Keosi

=+—Th, 1 H, ikpsin(we) gy (4.225

42t O/C cos(@h, | — ¢y) — sin(w + (bw)e w, { )

. ik sin(¢t 1 — Puw
HéW(Q ].)t_Tn 1H0 ( 2 1 )

AT COS Oy
eikp(cosd)sinwisin(z)cosw)
. k d
/c (kcos @b, | + ktan ¢, sin @, | — ksinw F k cosw tan ¢, )k cos w costa
i Sin(¢h, 1 — du) p(sin(w
= — Ty, 1 H, ikp(sin(wEd) gy (4.226
oz °/ccos<¢2n_1 — bu) —sin(wE ) v 1220

Then, the contribution of the (2n — 1)-th transmitted wave is the summation of the

radiations from the currents J(o,—1);, M (2n—1)

H(2n—1)t _ HJ(?n—l)t + HM(Qn—l)t

— Ty Hy— / sin(¢h,_1 — duw) £ c?s(w + wa)eikp(sin(wi@ dw
4t Jo cos(@h, 4 — w) —sin(w £ ¢y,)
sin(¢y, 1 — ¢w) +sin(¢ — ¢u)
cos(¢h,—1 — Puw) — cos(¢ — du)
Ty Hoe™ 008 Oonatikysin b1 [7( 4 0 — o \U (= — 27 + ¢).  (4.227)

C(kp)

= T2n—1 0
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Internal Reflection at Surface OA Figure 4.6 shows the internal reflection at the
surface OA. Here, ¢o,, ¢a,11 and @b, are the incident, reflected and outgoing transmitted
angles of the (2n)-th internal reflection, respectively. Also ¢,,+1 is the (2n+1)-th internal

reflection angle. These angles and the reflected /transmitted coefficients are defined as

Pan+1 = 2T — Pan, (4.228)
Py, = COS ! [\/Zcos d)zn], (4.229)

—sin ¢2n—1 + \/51” - 672" cos? ¢2n

Iy = : 4.230
2 sin ¢, + \/& — £2 cos? ¢y, ( )
Then, the (2n)-th outgoing transmitted wave is expressed as
E(2n)t _ Tanoeik(x cos ¢b, +ysin d)%n)%’ (4231)

H®t = T Hy, /%eik(“” €08 ¢5n+ysm¢5n)(sin @, & — cos 5. 1Y), (4.232)

and the (2n + 1)-th internal reflected wave is

E(2n+1)r _ RQnHoeikw(:c COS P2p 411y sin ¢2n+1)2’ (4.233)
HOCM" = Ry, Hy |22 ek cos daneatysindanin) (sin gy 11 & — 008 o 419)(4.234)
Ho
with
Ton = (1= To)1 -+ Tonoa(1— Iy), (4.235)
Ryn = (1= To)/\/ETt -+ Ton1Don. (4.236)

Then, the (2n)-th equivalent currents J (an), M (2,); generated can be derived from from

the (2n)-th outgoing transmitted wave as

Jony =9 x H®Y =Ty, Hyehroosdbng, (4.237)
y=0

Moy, =E®)'x gl =Ty, Hy [ 2singl, eitreosthnz, (4.238)
y=0 Ho

The scattering field can be obtained by integrating J (2, M (2,); with the two-dimensional

Green’s function G as
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Hg(2n)t:/ J(2n) m(") -H k\/ (y —v")?) dsS
y'=z' tan ¢,
::I:/ iTQnHoeik:c’cosqﬁ’én\/ eié(x—a:’):ti\/kz—@y dgdl',
0 47T —00
_ :l:TQnHO /OO (/Oo ol (kcos b, —£) dx/> piatin/k2—€2y de
4 —00 0
gy, [T EVEE >0 4.239
—Ezno/m& (y 20), (4.239)
w
HE = —/ 22 Mgy HYY (k/ (& (y—y))| ds
S y'=0

_ / ) [0 Ho |22 sin g o 08 T de| da’
o L4 Vone ) K2

= k & © icxti/k2—g2y
= TQnHOE sin ngn/ (/ e (k cos ¢%n_£) d.ZE/) 6— df
oo 0

N
I ik 0 eigz:ti\/ k2—£2y y

= Ton sin n/ . 4.240

anHoposin g, | (red _OviE—o § (4.240)

Converting to complex angle w plane using the transformation ¢ = ksinw, with the

cylindrical coordinates (p,0) with z = pcos¢,y = psing, Egs. (4.239), (4.240) can be
expressed as

eikp(cos ¢ sin wsin ¢ cos w)

a7 = 2T, H ’/ k d
? et (k cos @b, — ksinw) costat

=T, Hy— / cosw elkp(sln(’wj:(b) dw, (4241)
At Jo cos @b, — sinw
HM(2n) T H ez'lsp(cos ¢ sin w=sin ¢ cos w) N ;
z antlo — Slngb / (lecos 6. — esin w)k cos w cos w dw

= TZnH04— / sin @), cos @b, — sin we*PEnWES) gy, (4.242)
TJc

Then, the contribution of the (2n)-th transmitted wave is the summation of the radiations

from the currents J(2,)¢, M (20

HEME = /et Mt
=Ty, Hy— | / sin ¢, £ cosw ethPlsin(wL0) oy,
P Ar ¢ €08 ¢, — sinw
sin @b, + sin ¢
cos @b, — cos ¢

C(kp)
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Then, the total scattering field is defined as in Eq. (4.159 )

N
H:=H"+H'+Y H"
1

with N is the number of internal reflections.

4.2.2 Scattering by a Dielectric Rectangular cylinder

P y )///(Qbo
P
b
B A
-a a
Z'O
D & C
-b

(a)

(4.244)
y
i
Ji M,
:—B——>—[—b ———»———A:
e 2
| Z10 | X
ﬁ<—?‘]4 M2 "
D M | 5
-b [ﬁ

(b)

Figure 4.7: Scattering by a rectangular cylinder. (a) An incident plane wave. (b) Radia-

tion from equivalent current sources J, M on the cylinder surface.

Let us consider that a transverse plane wave impinges upon a dielectric rectangular

cylinder whose dimensions are 2a x 2b, and its relative dielectric constant is ,., as shown

in Fig. 4.7(a).

62



o

- Inc. wave, E¢

- Refl. wave, E”

- Ist trans. wave, E*!

- 2nd trans. wave, E*
[ 3rd trans. wave, E?

|| 4th trans. wave, E#

- Inc. wave, E!

- Refl. wave, E”

- Ist trans. wave, EY

- 2nd trans. wave, E*?
- 3rd trans. wave, E®
i 4th trans. wave, E*

(b)

Figure 4.8: Scattering waves with multiply bouncing effect inside the dielectric rectangular
cylinder. (a) Only incident wave on the upper surface. (b) Ouly incident wave on the

side surface.
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- Inc. wave, E'!

- Refl. wave, E”

- Ist trans. wave, E*

| 2nd trans. wave, E?2
- 3rd trans. wave, E?
- 4th trans. wave, E*

Figure 4.9: Scattering waves with multiply bouncing effect inside the dielectric rectangular

cylinder. Incident wave on the upper and side surfaces.

E polarization

An E polarization incident plane wave can be written as

Ei — Eoe—ik(xcosqbo—i—ysin qﬁo)%, (4245)
Hi = By, | 2L emik@eosdotysingo) (_ gin pod + cos o). (4.246)
Ho

Then, the reflected waves at the illuminated surfaces are expressed for surface AB as

E™B = [, p Ege k(@ cos dot(2b—y)sindo) 5 (4.247)
HTAB _ FABEO ﬂe—ik(z cos ¢o~+(2b—y) sin ¢0)(Si1'1 Cboii’ + cos Cb()'g), (4248)
Ho

and for surface AC as

E™C = [y Ege~*((2a=) cos gotysindo) 5 (4.249)
H'C = [0 By |22 emih(Gams)cosdotysingo) (_gin gz — cos gogf),  (4.250)
Ho
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where I'yp and I'yc are the reflection coefficient at the surfaces AB and AC, and are

given by:

Fap = — , (4.251)

cos ¢y — v/, — sin® ¢y
cos ¢y + \/ e, — sin? ¢0.

The contribution from the transmitted waves E*, H" should be treated carefully, since

(4.252)

Lpc =

they propagate with multiple internal bouncing in the dielectric body, then they depart
from the body to all direction, as shown in Fig. 4.9. Then, the total scattering field

becomes
EZ = E} + (cont. from (E', H")), (4.253)
E? = EMP + BAY 4+ ESP 4 EBP. (4.254)

The primary scattering fields EAB, EAC FCPEBD in Eq. (4.254) are derived from the
reflected waves on surfaces AB, AC and the minus incident waves on surfaces CD, BD.
The radiation integrals due to the equivalent currents can be derived by saddle point
method as the same as the conducting case.

Considering four surfaces of the dielectric rectangular cylinder, the equivalent currents
Jy ~ Jyand M, ~ M, in Fig. 4.7(b) excited from the reflected and minus incident
waves can be obtained from Eqs. (2.12) and (2.13) as

€0

Jl — @ % HT‘AB — FABEO =% gin ¢0 e—ilmcos(;50—1'I€bsi1f1¢027 (4255>
y=b Ho
]\4’1 — E'rAB % ,g — FABEoe_ikaOS¢0_ikb5in¢0£, (4256)
y=b
Jo =2 x H™C| = DuoEo, [ cos gy eihacosdomikysingo s (4.257)
r=a o
‘2\4'2 — ETAC X @ B — _FACEoe—ikacosdm—ikysinqbo,g’ (4258)
JS —_ (_,g) x (_Hz) — EO @ sin ¢Oefikzcos¢o+ikbsin¢02’ (4.259>
y=-b Ho
M3 — (_Ez) % (_,g) — _Evoe—ikxcos<¢>0—i-ikbsinqSOaA:7 (4260)
y=—b
Ji=(-2) x (—H") = —FEy, /22 cos Py e'kecosdoikysingo 5 (4.261)
r=—a Ho
M4 — (_Ez) % (—QA',') N — Eoeikacosqﬁo—ikysin(ﬁo,g' (4262)

The radiation fields due to the above currents can be derived by integrating along the

cylinder surface S using the Green’s function as [22]
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% gitlo—e'yrin/FEly-b

a k? . .
J1 v —ik(x cos ¢po+bsin ¢g) ,
I'snE 1k é kb sin ¢ ” 8 /OO eié(z—a)tin/k2—£2(y—b) "
= — —sin 6—2 sin oe—z a cos ¢
T r i —oo (kcos gy + &)\ /K2 — &2

Zk . . . [e’e) e’if(x—i—a,):l:iM(y_b)
+ I'ypE —Singb e‘lkbsmqﬁoezkacos(;ﬁo/ p
BEO, - 0 —oo (kcos g + )\ /K2 — €2
EM1 = :F/a [FABEOie—ik(zcosqﬁo-&-bsinqﬁo) /Oo eig(z_ggl)_ﬂ.\/m'y_b' df} o
’ A

- —00

= FlapkE ie—ikbsin%@—ikacowo / o0 gib(z—a)Fiy/k2=€2(y—b)
BT — kcos gy + &
[y By ¢ ikbsin o sikacos o / % gib(zta)tiy/i>—¢2(y—b)
—e e
T o kcos ¢g + &
b ee] 3 — 1 2_ 20/
k . . ezg(x a)+in/k2—€2|y—y/|
J2 v —ik(a cos ¢po+ysin ¢o)
Ez - / [FACEO47T COS ¢06 /_OO \/m

—b

£, (y = b)(4.263)

dg

g, (y 2 b),  (4.264)

dg] &y

=—-I'4ycoE ﬁ —tka cos ¢g ,—1ikb cos g * eig(xia)ii\/mw*b) q
= —l'acEo-— cos ¢oe e .
4 —o (kcos gy + /2 — €2)\/k2 — €2
ok . ) 00 if(z—a):ti\/W(y_,'_b)
+ FACEOZ_ cos qboe—zk:a cos ¢o ezkzb cos ¢o / e dg’
o —oo (kcos gg + /K2 — €2)\ /K2 — €2

(v2y), (4.265)
b 00 ¢oif(z—a)ti\/k2—E2y—y'|
1 : e
M2 _— _—ik(acos ¢o+ysingg) /
£ = [ [rachoge |
oo gez’&(x—a):l:i\/kQ—ﬁ(y—b)

= —TirFE _e—zkacos¢0€—zkbcos¢0/ J
ACHO —o (kcos dg + /K2 — €2),/k? — €2 3
i E ik —ika cos ¢g ,ikb cos ¢o e geis(xfa)ii\/merb) d
+ Lacko—e e ¢
A —oo (kcos¢0+\/l{;2_§2)\/;€2_€2

(yz2v), (4.266)
¢ oo _it(z—x')+ir/k2—E2|y+b
B == / [Eoﬁ sin e (@ cos do+bsin o) it )i/t
z —a 47 . \/r_é"?
J oo €(x—a)te k2 _¢2 b
= —Eoﬁ sin ghpehbsin o ,—ikacos o / i (r—a)Ein/k?—€2(y+b) ]
i —oo (kcos g + €)\ /K2 — €2

ke - ) 00 i€ (z+a) i/ k2—€2 (y+b)
+ onl_ﬂ. sin ¢Oezka1n¢oezkacos¢o / € 57 (y 2 —b), (4267)

d
—o (kcos g + &)\ /k2 — €2

dg] do’

£
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Ei\/jg . /a |:H04i€—ik(zcos¢o+bsin¢o) /OO plbla—a")Fin/k?—&2[y—b| df] da’
_ ™

s L ks —ikacos /oo eiﬁ(r—a):ti\/k2—€2(y+b)
O4r oo kcos ¢g + &

- L AP — /oo pié(a+a)£in/k2—€2(y+b)
O4r oo k cos ¢g + &

b 0o if(r— i 2 ¢200 ot

k i&(z—a)+in/k2=E2y—y/|

B = [ By cos goeHecosotysing) [ 2 | dyf

b A7 /K2 — &2

oo U (z—a)tin/k2—£2(y—b)

dg

¢, (y 2 —=b), (4.268)

— _E 7 COS¢ e—zkacosd)oe—zkbcosqbo / dé
“dm ’ oo (kcos ¢g + \/k% — €2)\/k2 — &2
1k . . ] o0 zf (z—a)xiy/k2—E2(y+b)
+ EQZ— COS ¢06—1kaC05¢061kb005¢0 / d£’
Am 00 /{ZCOS¢0—|—\/]{;2 52)\/k2—§2

(y 2y, (4.269)

b ié(z—a)+in/k2—&2|y—y/|
1
EM = [Eo eiktocosgmtysinon) [~ ST Y df} dy'
-b 471- k2 - 52

J o0 i&(z—a)tiy/k2—£2(y—b
= Eoleikacostboeikbcosd)o/ 565 ) &2 (y—b) dg
Am —o0 (kcosq§0+\/k2_§2)\/k2_ 2
) oo i€(x—a)tir/k2—£2 b
— Eoﬁe*ikaCOS o0 o ikb cos do / e §(w—a)tiy £2(y+b) .
dm —0 (kcos¢0+\/k2_§2)\/k2_€2
=) (4.270)

While the above integral cannot evaluate analytically,the saddle point technique may be
used for the high frequency asymptotic evaluation for a large k [22] as in section [cond.cyl].

Then, the radiation fields from the equivalent currents J; ~ M, becomes

EJ' = §20  Ege~hb(sino+sin60) i [kq(cos ¢ + cos ¢)]%C(k;}), (4.271)
EMY = 21y p Eye (sinetsin o) gi [1q (cos ¢ + cos ¢)]%C(kp), (4.272)
E72 = j21 ¢ Ege~kalcos eos 60) gipy (b (sin ¢ + sin ¢)] %C(k/}), (4.273)
EM2 = 21, o Ege~ke(cos o+eos60) gin [kh(sin ¢y + sin ¢)] %C(lﬂp), (4.274)
E73 = 2 Byesnétsingo) ginTkq(cos ¢ + cos ¢)]%C(km, (4.275)
EM3 = 2 Fevsind+sindo) gin [1q (cos gy + cos @)] %C(kp), (4.276)
B = i2Eye* (s 940590) sin[kb(sin ¢ + sin ¢)] %C (kp), (4.277)
cos ¢

EMA — _j2 Bjetkalcos d+coséo) gin [lh(sin g + sin @)] Cl(kp). (4.278)

sin ¢g + sin ¢
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Then, the corresponding electric far fields of four surfaces AB, AC, CD, BD are given
by:

EAB — EJI +EM1
sin ¢y + sin ¢
COS ¢ + Cos ¢
EAC _ EJ2 + EM2
— Z'QFAC% sin[kb(sin ¢ + sin ¢)]e?kalcosdreoseo) Ok 5) - (4.280)
ECD — EJ3 +EM3
.. sin ¢y — sin ¢
=2—
COS ¢ + COS @
EBD — EJ4 + EM4
..COS (g — COS @
=12—
sin ¢g + sin ¢

=120 yp sin[ka(cos g + cos ¢)|e/FOEmotsineo) (5 - (4.279)

sin[ka(cos ¢g + cos ¢)|e IRbEmSTsnd) O py - (4.281)

sin[kb(sin ¢y + sin ¢)]e Irecoseteos) O (k) (4.282)

When the incident plane wave impinges on the illuminated surfaces of a dielectric
cylinder, it excites the reflected wave at the illuminated surfaces and transmitted waves
inside the cylinder. In addition, the originally transmitted wave excites the internal
reflected and transmitted waves due to the multiple bouncing effects and they radiate
again from the body. Because of the finite dimension, one may also notice that the
internal bouncing waves eventually experience the reflection at the side interfaces, and
depart from the scattering body as seen in Fig. 4.9. Then, the scattering field E" due
to the multiply bouncing effect can be calculated as the summation of the radiations
from the equivalent sources due to these n-th transmitted waves. One notes that these
equivalent currents flow a part of the surface, in accord to the incident angle, so that the
integration range varies.

The intensity of these internal reflected waves depends on the dielectric constant and the
dimension of scattering objects, and becomes weak when the number of internal reflections
increases. This bouncing process continues until all the incident energy dissipates or leaks
out. Accordingly, one needs to add these contributions E".

The effect of the multiple internal bouncing may be considered by using a collective
form, which is derived from the corresponding reflection/transmission coefficient for di-

electric slab geometry. For example, the reflection coefficient I'yp, I'sc in Egs. (4.251),
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(4.252) at the surfaces AB, AC may be modified by [39]

FAB(l . ei4kb\ /er—cos? ¢g )
Lapm = - =, (4.283)
1— FEXB (¢0)€z4kb\ / er—cos? ¢o

FAC ( 1 — ei4ka\ /er—sin? ¢g )

Tacon = . . (4.284)
1 — cm(qbo)ezllka\/sr—sinQ oo

However, the above collective coefficients I'4gm, ['apm is valid only around the normal

incident direction or for the case which the reflected surfaces are infinitely long. For
the oblique incident direction, the expressions of these contributions E become more
complex than the primary one, then these formulations are omitted here.

H polarization

A H polarization incident plane wave can be written as

Hi _ Hoe—ik(:ccos¢o+ysin¢o)2’ (4285)
E' =H, HO g ik(w cos goysin %0) (sin go@ — cos Po). (4.286)
€0

Then, the reflected waves at the illuminated surfaces are expressed for surface AB as

HTAB _ FABHoe—ik(x cos ¢o+(2b—y) sin ¢0)27 (4287)
E™P = I'ypH, HO o~ ik(a cos do+(2b-) sindo) (_sin o — cos goy),  (4.288)
€0
and for surface AC as
ET‘AC _ FACEoe—ik((Qa—x) cos ¢o+y sin ¢0)2’ (4289)

H™C = [',H, @e_ik(@“_”) C°S¢°+ysm‘z’°)(sin P + cos oY), (4.290)

€0

where I'yp and ['4¢ are the reflection coefficient at the surfaces AB and AC, and are

given by:
— 1 — — 2
FAB:_srsmgbo \/ &, — COs gbO’ (4.291)
g, 8in ¢g + /&, — cos? ¢y
J— — 3 2
Tae = — €y COS Qg — \/ €, — SIN” @y (4.292)

£, CO8 ¢ + \/2r — sinZ @y

The contribution from the transmitted waves E', H' should be treated carefully, since

they propagate with multiple internal bouncing in the dielectric body, then they depart
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Do

|| Inc. wave, H

D Refl. wave, H"

|| 1st trans. wave, H"!

I 2nd trans. wave, H”
B 3rd trans. wave, H?

B 4th trans. wave, H"*

Figure 4.10: Scattering waves with multiply bouncing effect inside the dielectric rectan-

gular cylinder. Incident wave on the upper surface is only shown here.

from the body to all direction, as shown in Fig. 4.9. Then, the total scattering field

becomes

H? = H? + (cont. from (E*, H')), (4.293)

H? = H?? + HAC + HEP + HEP. (4.294)

The primary scattering fields HAZ, HAC HEP HBP in Eq. (4.294) are derived from
the reflected waves on surfaces AB, AC and the minus incident waves on surfaces CD,
BD. The radiation integrals due to the equivalent currents can be derived by saddle point
method as the same as the conducting case.

Considering four surfaces of the dielectric rectangular cylinder, the equivalent currents

Jy ~ Jy and My ~ M, in Fig. 4.7(b) excited from the reflected and minus incident
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waves can be obtained from Egs. (2.12) and (2.13) without effect of transmitted waves as

Jl _ ,g % HT‘AB ) _ FABH0€_ik(zCOS¢O+bSin¢O)§3, (4295>
'y:

M, =E“*®xqg| =-TagHy, [HO sin pge k(@ cos dotbsingo) 5. (4.296)
y=b €0

Jy, =& x HA¢ = — [y Hye tHlacosdotysingo) g (4.297)

M, =E4°xz

= —TLacHo,/ 0 cos e tklacosdotysingo) 5 (4.298)
r=a o

J3 — _,g x (_Hz) _ Hoe—ik(:(;cosqbo—i-bsinqbo)

&, (4.299)

y=—b

M; =(-E') x (-y)

y=—

= Hy\ [E singoetreomenstindoz - (4.300)
0

— _I{[)e—z'l<:(—a(:os<;50-i-ysinqbo),g7 (4301)

= Hoy,/ H0 os Poe~k(-acosbotysingo) 5 (4.302)
€0

J, =(—2)x (-H"

M, =(-E')x(-)

r=—a

The radiation fields due to the above currents can be derived by integrating along the

cylinder surface S using the Green’s function as [22]

ds,

y'=b
i&(x—a)tin/k2—€2(y—b
= j:FABHOLe_ikb51n¢0€—ikac()s¢0 /°° pi€(e—a)xiy/k2 - (y-b)
" o k cos ¢ + &€
. J +in/k2—€2(y—b
+ TABHOLe—ikbsinqﬁoeikacos% /oo elﬁ(fﬂ—i-a) Z\/—ﬁ(y )
" o0 k cos ¢ + &€

" = /4J2?H 3 k?\/ (v —y')?) adS

. Sy i€(x—a)ti 2200
= FABHoﬁ sin goe~tkbsin o ,—ka cos do / ei€(a—a)Ein/k2—€2(y=b)
47T —oo (kcos gy + &)/ k2 — &2
_ ik I . 00 ig(xm)ﬂ\/m(y_b)
- FABHOZ— sin qboe_lkbsmd’oelkacos(bo / (&
47 (

—oo (kcos g+ &)\/k? — &2 a3

(y=b),  (4304)

1 = [ g B =2 = o)

dg

dg, (y 2 b), (4.303)

xlf

dg

szz—/4J2?H kf\/ y y) )x/:ads,
_ R geible—a)ziy/E—€ (1)
_ FACHO_e ika cos ¢o ,—ikb cos ¢o dé—
A oo (kcos gg + /K2 — €2)\ /K2 — &2
B FACHOﬁefzka cos o gikbeos /oo geiﬁ(xfa)ii\/k27§2(y+b) it
oo (kcosdp + /K2 — €2)\ /K2 — &2 ’

(yz2v), (4.305)
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w
R R Ve v—vp)|,

_ds,

oo o6 (z—a)£in/k2—£2(y—b)

= 1k , A
= I'ycHy— cos e‘lkacosqﬁoe—zkbcos%/ ;
AC 04//( ¢0 o ]{/’COSQS()—"\/II{:Q 52 \/k2—§2 5
) S eié(z—a +iv/k2—¢£2 b
- FACHOﬁ COs Cboe_ika cos ¢o pikb cos do / (e=a) &(y+0) .
dn oo k:cos<;§0+\/l<;2 52)\/k2—§2
vz, (4.306)
H;]3 = Jg—H(l) k;\/ (y—v')?) s ds,
) 0o _if(z—a)tir/k2—£2 b
= j:HOLeikaiﬂtﬁoe—ikacosd)O/ (& &( )Eiy &2(y+b) dg
An —o k cos g + &
U b . o0 eiﬁ(w+a):|:i\/k2—§2(y+b)
¥ H04_€zkbs1n %0 ezka cos ¢o / oo QSO n 6 dé, (y 2 —b), (4307)
Wi
Hi‘/lgz_/ 40 k\/ y y)) / dS,
s S
= —Hoﬁ sin hgetb sin do o —ika cos o / 00 git(e—a)kin/k2—€2(y+b) "
am (kcos go + €)\/k2 — €2
ik —_ , 0o g E(ata)tin/k2—€2(y+b)
H o ikbsin ¢g _ika cos ¢g - |
+ Ho—sin goe e hemm O @ d¢, (y = —b), (4.308)
H;]4:—/4J4FH(1 k\/SE—x y y) )L:_ads’
— Hoiefikacowoe—ikbcos% /OO §ei5(z*a)ii\/mwfb) i«
Am oo (kcos o + /K2 — £2)\/k2 — €2
— Hoﬁe‘“mCOS b0 gikbeos o / h geibl—a)Ein/k2—€(y+b) d¢
dm —00 (k?COS¢O—|—\/k;2_€2)\/k2_€2 )
v 2v), (4.309)
Hé\/l‘l:—/szMDMz; k‘\/x—x (y — y))x,:_ads
- — ﬁ —ika cos ¢g ,—ikb cos ¢pg & eié(x*a)ii V k2—£2(y—b)
= —Hoy—— cos goe e de
am —00 (kcos¢0+\/k2_§2)\/k2_§2
+ Hoﬁ COS ¢O€—ika cos qboeikchs %o /oo eif(x—a):ti\/kQ_g(y—i-b) df’
in —oo (kcos go + /K2 — €2)\ /K2 — &2

(y2y).

(4.310)

While the above integral cannot evaluate analytically,the saddle point technique may be

used for the high frequency asymptotic evaluation for a large k [22] as in section [cond.cyl].
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Then, the radiation fields from the equivalent currents J; ~ M, becomes

H' = =20 s Hoe M0+ sinka(cos gy + cos ¢)] ———— ;;nfzos SChp), (4311)

M = —i2FapHoe ™59 509 sinka(cos gy + cos ¢)] —————— ;:TCOS SC (ko) (4312)

H7? = —i2@ o Hyethateos dteoséo) i (kb (sin ¢ + sin QS)]%C(/{/)) (4.313)
z sin ¢ + sin ¢ ’

HM? = 2] Hye~ikalcos d+003s90) i [1h(sin ¢y + sin ¢)] — Q;Oi‘im ¢—C’(kp), (4.314)

H73 — _i9H tkb(sin ¢+sin ¢g) L sin @o C(k 4.315
! i2Hye sin[ka(cos ¢g + cos ¢)]—COS p— (kp), ( )

HM3 — 9 o Mem é5in o) i [ (cos g + cos 6)]—— ¢ C(kp), (4.316)

COS ¢g + COS @

HI* = —i2 Hyetkaleos o+e0s#0) gin[kb(sin ¢ + sin QS)]%C(W)’ (4.317)
HMA — 2 Fpekaleoss o5 00) i 1 (sin gy + sin 6)]—— >0 C(kp). (4.318)

sin ¢g + sin ¢
Then, the corresponding electric far fields of four surfaces AB, AC, CD, BD are given
by:

HAP = g7t 4 g
sin ¢g + sin ¢
cos ¢g + cos ¢
HAC = H? + gM?
cos Pp + cos ¢
sin ¢y + sin ¢
HEP = {73 4 M3
= —iQ% sin[ka(cos o 4 cos ¢)|eReEmetsindo) Ok 5), (4.321)
HPP = H* 4+ HM"
OS¢y — COS P
T sin ¢ + sin ¢

= —i204p sin[ka(cos ¢g + cos ¢)|e R STsine) (5 (4.319)

= —i2T ¢ sin[kb(sin @ 4 sin ¢)]e~Falcosoteos o) Ok ) (4.320)

sin[kb(sin ¢ + sin ¢)]eralcoseeosd0) O (k). (4.322)

The effect of the multiple internal bouncing may be considered by using a collective form,
which is derived from the corresponding reflection/transmission coefficient for dielectric
slab geometry. For example, the reflection coefficient I'yp, 'sc in Eqgs. (4.251), (4.252)
at the surfaces AB, AC may be modified by [39]

B FAB(l . ei4kb\ /e, —cos? qbo)

Lapm = — : , (4.323)
1— FiB (¢0)€l4k‘b\ /er—cos? ¢g
B j” 1— idkar/er—sin? ¢g
_ facll=e ) (4.324)

Laom = — : ——.
1 — lec(gbo)e%ka\/sr—st oo
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The expressions of these contributions H!™ are more complex than the primary one, then

these formulations are omitted here.

Numerical Results

Let us now discuss the effect of higher order transmitted waves E", H™ in Figs. 4.11.
Here, the incident angle ¢y = 45°, the relative permittivity ¢, = 6 and ka = kb = 15 are
chosen as an example. Since this example is lossless dielectric case, so that one can expect
relatively strong contribution from internal transmitted waves. In Fig. 4.11, the contri-
butions of each transmitted wave are plotted separately. It can be seen that the primary
contributions E? for E polarization incident wave and H? for H polarization incident wave
yield a maximum peak at the forward direction (¢ =—135°), and two secondary peaks at
the specular reflection directions (¢ =135°, —45°) from the reflected waves. While two
polarizations have the same contributions at the forward direction, the contributions for E
incidence case have much larger than those for H incidence case at the specular reflection
directions due to the larger reflection coefficient.

The effect of the first transmitted waves B!, H!! are strong at the transmission direc-
tion, and their values are smaller than the primary contributions but do contribute to
the total field. The second transmitted waves E?, H'? contribute at the specular reflec-
tion directions as shown in Fig. 4.9. The third transmitted waves E®3, H® affect at the
backscattering direction (¢ = 45°), and the fourth waves E, H contribute a little at
the forward scattering direction. While the fifth transmitted waves E, H' have small
contributions at the backscattering direction, the sixth waves F® H!S contribute weakly
to the total field and its value is mostly 40 dB below the primary contribution. Due to
the smaller transmitted coefficient, the values of the transmitted waves E™ are smaller
than those of H!". Therefore, the effects of the contributions of the transmitted waves
H!™ to the total scattering field are stronger than those of E™.

The partial summations of these contributions are shown in Fig. 4.12. It is easy to find
that the summation result converges by the sixth transmitted wave, so that we can omit
the effect of the subsequent transmitted waves. Also, due to the stronger bouncing effects,
the results for the H polarization case are more oscillative than those for E polarization
case. This discussion is true even for the lossy dielectric cases, since all transmitted waves

experience additional decay as they pass through the cylinder.
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Let us now discuss the accuracy of our formulation by comparing the numerical results
with those obtained from the HFSS simulation. Figures 4.13-4.15 show the far-field
scattering patterns from the dielectric rectangular cylinders for the nearly conducting case
g, = 6 + 1000:. One can easily observe that our results for nearly conducting case coincide
with those derived by the PEC case. Because of the high loss in the dielectric cylinders,
one needs only the primary contributions and those from the transmitted waves can be
omitted. These results calculated using the collective form are included in all figures as
EPO(c). This also matches with the PEC results. Additionally, one may observed that
the results for E and H polarizations have almost the same main reflection and forward
direction lobes, and a difference arises at the boundary direction owing to the difference
in the boundary condition.

The far-field scattering patterns from the dielectric rectangular cylinders for high lossy
case ¢, = 6 + 17 are shown in Figs. 4.16-4.18. As the loss of the dielectric material
decreases, the lobes in the specular reflection directions become smaller than PEC cases
due to the smaller reflection coefficient while the lobe at forward scattering direction is
still same as one by PEC case. Also because of high dielectric loss, the effect of multiple
bouncing is weak. Then, the contributions of the high order transmitted waves are small.
Therefore, we still only need the contributions from the primary ones and the results
by the collective approximation are still valid. Additionally, one may observed that the
results for E and H polarizations have almost the same main forward direction lobes, but
a difference arises at the reflection direction lobes due to the different reflection coefficient.

Figures 4.19-4.21 show the far-field scattering patterns from the dielectric rectangular
cylinders for almost lossless case €, = 6 + 0.1i. Also because of the slight dielectric
loss, the effect of multiple bouncing becomes stronger. Then, the lobes becomes more
oscillatory due to the interference between the multiply bouncing transmitted waves.
Also, the results by the collective approximation are not valid, except the normal incident
case, due to the fact that the effects of the multiply bouncing transmitted waves are
pretty strong and their phases should be taken into the calculation. The E polarization
scattering field patterns have a same beam-like radiation with the H polarization cases
at the forward direction because of the strong contribution of the minus incident wave,
but some differences arise at the specular reflection directions. Here, the results of E

polarization cases are somewhat stronger and less oscillatory than that of H polarization
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cases due to the stronger reflection coefficient.

The normal incidence (¢ = 90°) is shown Figs. 4.13, 4.16 and 4.19. A symmetric
pattern can be seen with respect to the vertical (y) axis due to the symmetry of the
problem. As the incident wave penetrates into the dielectric cylinder, the reflected wave
with multiply internal bouncing interfere with the primary surface-reflected wave to lower
the backscattering lobe. However, the level of the forward scattering lobe does not change
too much. One also observes that the main scattering lobes in the forward and the specular
reflection directions coincide the HFSS simulation results, while some differences can be
noticed at the minor lobes.

A different incidence (¢p = 45°) is selected in Figs. 4.14, 4.17 and 4.20. Again a
symmetric pattern with respect to the incident angle (¢g = 45°) can be seen. As the loss
of the dielectric material decreases, the lobes in the specular reflection directions become
smaller and more oscillatory. A different side ratio, ka = 15 and kb = 10 are shown in
Figs. 4.15, 4.18 and 4.21. Same observations can be found, except that the symmetric
pattern does not exist for this cylinder. Additionally, the beam-like radiations are smaller
than those in ka = kb = 15 cases. The beam width is inverse proportional to the length
of the transmission/reflection surfaces; namely, the wider the surface is, the sharper the
beam is. All of these results are good agreement with those by HFSS simulation.

Figures 4.22-4.24 show the far-field scattering patterns from the dielectric rectangular
cylinders for lossless case €, = 6. While the same observation with the almost lossless
case €, = 6 + 0.17 can be seen, the analytical results have some differences with those by
HE'SS simulation. Since the results by the HFSS simulation are obtained by the 3D to 2D
conversion, these results may also contain some error due to this conversion. Accordingly,
we need further comparison with other reference solution.

The case of the smaller size of the rectangular cylinder ka = kb = 8 are selected in
Figs. 4.25, 4.26. While the analytical results have a good agreement with HEF'SS simulation
results at the forward and specular reflection directions, some differences arise at other
directions. It is not clear so far for these differences. It may be from the HFSS simulation
or the size limit of the approximation. Then we may need some evaluations to verify the
accuracy of the approximation method for the smaller size rectangular cylinder.

We may need some evaluations to verify the accuracy of the approximation method
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Figure 4.11: Contribution of each internal multiple bouncing waves from a dielectric

cylinder. ka = kb = 15, ¢y = 45°, ¢, = 6.

polarization incident wave.
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Figure 4.12: Summation of the contributions of internal multiple bouncing waves from a
dielectric cylinder. ka = kb = 15, ¢y = 45°, ¢, = 6. (a) E polarization incident wave. (b)

H polarization incident wave.
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Figure 4.13: Radiation pattern of a dielectric rectangular cylinder. ka = kb = 15, ¢g =

90°. &, = 6 + 1000i. (a) E polarization incident wave. (b) H polarization incident wave.
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Figure 4.14: Radiation pattern of a dielectric rectangular cylinder. ka = kb = 15, ¢y =

45°. ¢, = 6 + 1000i. (a) E polarization incident wave. (b) H polarization incident wave.
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Figure 4.15: Radiation pattern of a dielectric rectangular cylinder. ka = 15, kb = 10, ¢y
= 45°. ¢, = 6 + 1000i. (a) E polarization incident wave. (b) H polarization incident

wave.
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Figure 4.16: Radiation pattern of a dielectric rectangular cylinder. ka = kb = 15, ¢g =

90°. ¢, = 6 + li. (a) E polarization incident wave. (b) H polarization incident wave.
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Figure 4.17: Radiation pattern of a dielectric rectangular cylinder. ka = kb = 15, ¢y =

45°. ¢, = 6 + 1i. (a) E polarization incident wave. (b) H polarization incident wave.
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Figure 4.18: Radiation pattern of a dielectric rectangular cylinder. ka = 15, kb = 10, ¢,

= 45° ¢, = 6 + 1i. (a) E polarization incident wave. (b) H polarization incident wave.
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Figure 4.19: Radiation pattern of a dielectric rectangular cylinder. ka = kb = 15, ¢g =

90°. ¢, = 6 + 0.17. (a) E polarization incident wave. (b) H polarization incident wave.
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Figure 4.20: Radiation pattern of a dielectric rectangular cylinder. ka = kb = 15, ¢y =

45°. ¢, = 6 + 0.1i. (a) E polarization incident wave. (b) H polarization incident wave.
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Figure 4.21: Radiation pattern of a dielectric rectangular cylinder. ka = 15, kb = 10, ¢q

= 45°. ¢, = 6 + 0.1i. (a) E polarization incident wave. (b) H polarization incident wave.
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Figure 4.22: Radiation pattern of a dielectric rectangular cylinder. ka = kb = 15, ¢g =

90°. ¢, = 6 . (a) E polarization incident wave. (b) H polarization incident wave.

88



EPO

4 EPO(c)
--=- EPO (PEC)
HFSS

90°

60°

30°

V30

900 EPO
4 EPO(c)
--=- EPO (PEC)
HFSS

V300

Figure 4.23: Radiation pattern of a dielectric rectangular cylinder. ka = kb = 15, ¢y =

45°. ¢, = 6. (a) E polarization incident wave. (b) H polarization incident wave.
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Figure 4.24: Radiation pattern of a dielectric rectangular cylinder. ka = 15, kb = 10, ¢y

= 45°. ¢, = 6. (a) E polarization incident wave. (b) H polarization incident wave.
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Figure 4.25: Radiation pattern of a dielectric rectangular cylinder. ka = kb = 8, ¢y =

45°. ¢, = 6+1i . (a) E polarization incident wave. (b) H polarization incident wave.
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Figure 4.26: Radiation pattern of a dielectric rectangular cylinder. ka = kb = 8, ¢y =

45°. ¢, = 6+0.1¢ . (a) E polarization incident wave. (b) H polarization incident wave.
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Chapter 5

Conclusion

A new high frequency approximation method to analyze the electromagnetic scattering by
edged objects has been proposed. This method is based on the assumption that scattering
far field is generated by the equivalent electric and magnetic currents calculated from
reflected /transmitted GO waves.

Firstly, the scattering fields from the conducting wedge and rectangular cylinder illu-
minated by a transverse incident plane wave are formulated by using the physical optics
approximation in Chapter 3. Here, the scattering fields are approximated by the radiation
fields from the physical optics currents induced by the magnetic incident waves. While
the result by the con ducting wedge includes the edge diffracted field and the GO field
which gives a reflected field in the illuminated region or a field to cancel the incident
field in the shadow region, the one by conducting rectangular cylinder only include the
diffracted field and no GO components are necessary.

In chapter 4, the scattering fields by a conducting wedge and rectangular cylinder
are approximated by using surface equivalence theorem and the results are compared
with those obtained from the physical optic approximation. According to the surface
equivalence theorem, the corresponding equivalent electric and magnetic currents J,, M
on the illuminated surfaces may be obtained from the GO reflected fields E", H" s, and
those on the shadow surfaces are obtained from the incident GO fields —E’, —H". The
total scattering fields given by summing up the contributions derived from these currents
are found to match with the those obtained by the PO approximation, excepted the GO
component from the conducting wedge due to the assumption of the surface equivalent

theorem. Therefore, from our derivation, one may include that the results by surface
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equivalence theorem are found to match with those obtained by the PO approximation
in Chapter 3, which utilizes the induced electric currents on the illuminated physical
surfaces. One may also expect that the field formulation as a radiation integral due to
these equivalent sources has the similar accuracy as PO formulation.

For the dielectric objects, due to the multiple bouncing effect, the equivalent currents
Js, M, on the illuminated surfaces may be obtained from the GO reflected /transmitted
fields E" + E', H" + H', and those on the shadow surface are obtained from the inci-
dent /transmitted GO fields —E'+ E', —H'+ H'. While the expressions of the equivalent
currents J,, M ¢ and the radiation field formulations due to the multiply bouncing trans-
mitted waves are derived for the dielectric wedge, those for the dielectric rectangular
cylinder are omitted, except the main results. Also some numerical results for the di-
electric rectangular cylinder are calculated to compare with those by HFSS simulation.
From our numerical results, it is found that the summation result by the lossless dielec-
tric rectangular cylinder converges by a limited transmitted wave, so that we can omit
the effect of the subsequent transmitted waves. For the nearly conducting case, one can
observe that our results coincide with those derived by the PEC case, then one needs only
the primary contributions due to the weak bouncing effect. As the loss of the dielectric
material decreases, the lobes in the specular reflection directions become smaller and more
oscillatory due to the stronger interference between the multiply bouncing transmitted
waves. Also the good agreements between our method and HFSS simulation have been
observed in the forward and specular reflection directions to verify the accuracy of our
method. It is also easy to extend our calculation to three dimensional scattering problems

and applicable for the scattering estimation from more general edged objects.
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Appendix A

sin ¢y
cos ¢g + cos @
sin ¢
coS ¢ + cos @
coS ¢
sin ¢g + sin ¢
cos @
sin ¢y + sin ¢
sin ¢
cos ¢g + cos @
sin ¢
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sin ¢g + sin ¢
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+ {cos[ka(cos ¢g + cos ¢)] — isin[ka(cos ¢g + cos @)} sin[kb(sin ¢g + sin ¢)]
(cos g + cos ¢)(cos ¢ + cos @)
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(sin ¢y — sin @) (sin ¢ + sin ¢y)
" (cos ¢ + cos @) (sin ¢ + sin ¢y
+ {cos[ka(cos ¢pg + cos ¢)] + i sin[ka(cos ¢g + cos @)} sin[kb(sin ¢g + sin ¢)]
(cos ¢g — cos ¢)(cos ¢y + cos @)
(cos ¢g + cos @) (sin ¢ + sin ¢y)

A — o~ ikb(sin ¢tsin éo) sin[ka(cos ¢g + cos ¢)]
e~ kb(siné+sindo) gin [k (cos ¢y + cos ¢)]
+ethalcos otcos @) i [kb(sin ¢y + sin )]
e ikalcos +eos do) gin[op(sin ¢y -+ sin @)]
+elkbsiné+sindo) gin [k (cos ¢ + cos ¢)]
—Rb(sinotsindo) i [k (cos dg + cos ¢)]
+ekalcos ocos o) gin [L(sin ¢ + sin )]
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B = e~ ikbsindtsindo) gin(q(cos ¢g + cos d)]

{ cos[kb(sin ¢ + sin ¢p)] sin[ka(cos ¢o + cos ¢)][(sin ¢ + sin ¢g)* + sin® ¢y — sin® ¢]
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(cos ¢g + cos @) (sin ¢ + sin ¢y)
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— i sin[kb(sin ¢ + sin ¢)] sin[ka(cos ¢y + cos ¢)][2sin ¢ sin ¢ + 2 sin® @)
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- sin[kb(sin ¢g + sin ¢)]2 cos go(cos ¢ + cos ¢p) }

= e tkblsingsindo) gin[ka(cos o 4 cos @)]
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2 sin ¢g
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+ g tkalcos g+cos go) sin[kb(sin ¢g + sin ¢)] %0
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oS g + cos ¢
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sin ¢g + sin ¢
cos ¢
sin ¢g + sin ¢
sin ¢
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e thbsindtsinéo) i [k (cos g + cos ¢)]
e ihalcos +eos o) gin kb (sin ¢ + sin )]
| ika(cos ¢tcos go) sin[kb(sin @o + sin @)]
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= {cos[kb(sin ¢ + sin ¢g)| — i sin[kb(sin ¢ + sin ¢g)]} sin[ka(cos ¢o + cos @)]
(sin ¢ + sin ¢y) (sin ¢ + sin ¢)
" (cos ¢y + cos ¢)(sin ¢ + sin ¢y
+ {cos|ka(cos ¢y + cos ¢)| — isin[ka(cos ¢y + cos ¢)]} sin[kb(sin ¢g + sin ¢)]
(cos ¢g + cos ¢)(cos ¢y + cos @)
(cos ¢g + cos ¢)(sin ¢ + sin ¢y)
+ {cos[kb(sin ¢ + sin ¢g)] + i sin[kb(sin ¢ + sin ¢g)]} sin[ka(cos g + cos ¢)]
(sin ¢ — sin ¢)(sin ¢ + sin ¢y)
. (cos ¢g + cos @) (sin ¢ + sin ¢y)
+ {cos[ka(cos ¢g + cos ¢)| + isin[ka(cos ¢g + cos ¢)]} sin[kb(sin ¢g + sin ¢)]
(cos ¢ — cos ¢g)(cos g + cos @)
(cos ¢y + cos @) (sin ¢ + sin ¢y)
{ cos[kb(sin ¢ + sin ¢p)] sin[ka(cos ¢o + cos ¢)][(sin ¢ + sin ¢g)* — sin® ¢y + sin® ¢]

— i sin[kb(sin ¢ + sin ¢ )] sin[ka(cos ¢g + cos @)][(sin ¢ + sin ¢p)* + sin® ¢y — sin® @)

+ cos|ka(cos ¢y + cos ¢)] sin[kb(sin ¢ + sin ¢)][(cos ¢g + cos ¢)? — cos? ¢y + cos® @]
—isin[ka(cos ¢g + cos ¢)] sin[kb(sin ¢o + sin ¢)][(cos o + cos ¢)? + cos? ¢y — cos® @] }
B (cos ¢y + cos @) (sin ¢ + sin ¢y)
{ cos[kb(sin ¢ + sin ¢p)] sin[ka(cos ¢o + cos ¢)][2sin ¢ sin g + 2 sin” ¢

— i sin[kb(sin ¢ + sin ¢g)] sin[ka(cos ¢y + cos ¢)][2sin ¢ sin ¢ + 2 sin? By

+ cos|ka(cos ¢o + cos ¢)] sin[kb(sin ¢ + sin ¢)][2 cos ¢g cos ¢ + 2 cos® ¢
—isin[ka(cos o + cos ¢)] sin[kb(sin ¢o + sin ¢)][2 cos ¢g cos ¢ + 2 cos? ¢y }
B (cos ¢ + cos @) (sin ¢ + sin ¢y)
{{cos[kb(sin ¢ + sin ¢)] — i sin[kb(sin ¢ + sin ¢)]}

- sin[ka(cos ¢y + cos ¢)]2 sin ¢(sin ¢g + sin @)

+ {cos|ka(cos ¢pg + cos )] — i sin[ka(cos ¢g + cos ¢)|}
- sin[kb(sin ¢g + sin ¢)]2 cos ¢(cos ¢ + cos ¢o) }
B (cos ¢g + cos ¢)(sin ¢ + sin ¢y)

— e tkb(siné+sindo) gin) [l (cos ¢ + cos B)]

2sin ¢
COS ¢ + COs ¢

| 2
+ e—zka(cos ¢+cos ¢p) Sin[kb(sin ¢0 + sin (b)] — ¢

oo (A.2)
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