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Abstract

The automorphisms group of the 3-dimensional Reeb component
with complex leaves is computed in the case where the component is
obtained by the Hopf construction and the holonomy of the boundary
leaf is not tangent to the identity to the infinite order. Combined
with a previous work, for 3-dimensional Reeb components obtained
by the Hopf construction, we have an almost complete description of
the groups of leafwise holomorphic smooth automorphisms.

0 Introduction

This is a sequel to the series of works [HM] and [Ho] in which the groups of
leafwise holomorphic smooth automorphisms of Reeb complexes with com-
plex leaves are studied. In this paper we compute the automorpshism groups
for three dimensional Reeb components (i.e., with complex one dimensional
leaves) obtained by the Hopf construction, in [HM] we computed the auto-
morphism groups in the case where the holonomy φ ∈ Diff ∞([0,∞)) of the
boundary leaf is infinitely tangent to the identity at x = 0, while the case
where the holonomy is tangent to the identity only to a finite degree is left.
In this paper we settle down this case, including the case where the holonomy
has non-tirivial linear term.

The principal tools in this paper are, Sternberg’s linearization [St], Tak-
ens’ normal forms [Ta], and a classical theory on Fourier expansion of smooth
periodic functions. These solve the functional equation β ◦ φ = λ · β that
we treated in [HM] with φ of different type. The result on this equation is
identical to that in [HM] while the arguments are quite different and each of
them is independent of the other.

After we reviewed the Hopf construction and the basic properties of the
automorphism groups in Section 1, we proceed to solving the functional equa-
tion in Section 2, which is the main part of the present paper.

In [Ho] the first author computed the automorphism groups of Leafwise
complex Reeb component of real dimension 5 with holonomy infinitely tan-
gent to the identity, based on the Kodaira’s classification of Hopf surfaces.
Basically it must be possible to obtain similar results for the case where the
holonomy only finitely tangent to the identity, while the classification and
computations might be much more complicated.

1The second author was partially supported by Grant-in-Aid for Scientific Research
(B) No. 22340015.
2010 Mathematics Subject Classification. Primary 57R30, 58D19; Secondary 58D05.
Key Words and Phrases. Reeb component, diffeomorphisms.
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In this paper we follow the notations and the basic arguments in [HM].
The authors are very grateful to the members of Saturday Seminar at TIT,

especially to Takashi Inaba and to Kazuo Masuda for valuable suggestions.

1 Hopf construction and automorphism groups

In this section we review the basic and relevant notions and results mainly
from [HM] and also set up the situation which is particular for this paper.
Most of basic results in [HM] are valid also under the situation in this paper.

A 3-dimensional Reeb component is a compact 3-manifold R = D2 × S1

with a (smooth) foliation of codimension one, where the boundary torus is a
compact leaf and the interior is foliated by planes and they spiral around the
boundary leaf in a simple way. In this paper we deal with Reeb components
obtained by the Hopf construction which gives leafwise complex structure as
well. From only the differentiable view point every Reeb component comes
from the Hopf construction. If we take the leafwise complex structure into
account it is not plausible.

Let R̃ be C×R≥0\{(0, 0)}, take λ ∈ C with |λ| > 1, and φ ∈ Diff ∞(R≥0)
be a diffeomorphism of the half line R≥0 = [0,+∞) satisfying φ(x) − x > 0
for x > 0. The origin is the unique and hyperbolic fixed point of φ.

Let G : C → C be the multiplication by λ and T : R̃ → R̃ be T =
G × φ. Then we obtain a Reeb component (R,F , J) = (R̃, F̃ , Jstd)/T Z as
the quotient, as well as the boundary elliptic curve H = C \ {0}/GZ. Here,
on the upstairs the leaves of the foliation F̃ = {C×{x}|x > 0}⊔{C∗×{0} }
are equipped with the natural complex structure Jstd which is inherited by
those of F . The usual modulus of H is (−2πi)−1log λ.

Now we treat the case where the holonomy φ is tangent to the identity
only to a finite order. Namely, we assume

(i) φ′(0) = µ > 1
or

(ii) φ′(0) = 1, φ′′(0) = · · · = φ(n−1)(0) = 0, φ(n)(0) > 0 for some n > 1.

Sternberg for the case (i) and Takens for (ii) showed (see Theorem 2.1 and
2.2) φ is the time one map of the flow generated by a smooth vector field X
on [0,∞) and therefore the centralizer Zφ of φ in Diff ∞([0,∞)) is the set of
exponential maps, namely Zφ = {exp(tX) ; t ∈ R} ∼= R.

Let AutR = Aut(R,F , J) be the group of automorphisms of (R,F , J),
namely, the set of diffeomorphisms ofR which preserve the foliation F and are
holomorphic on each leaves. Also let AutH denote the group of holomorphic
automorphisms of the boundary elliptic curve H and Aut0H its connected
component including the identity. Aut0H consists exactly of the translations
as two dimensional torus.

Propoition 1.1 (Proposition 4.1, [HM]) The image of the restriction map
AutR → AutH is Aut0H.
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The proof in [HM] holds. The kernel of the restriction map is denoted by
Aut(R,H). Then, as remarked above, in our case the centralizer Zφ of the
holonomy φ in Diff ∞([0,∞)) consists of the smooth one parameter family
Zφ = {exp(tX) ; t ∈ R} and it implies the following.

Theorem 1.2 (Theorem 4.8, [HM]) The restriction map AutR ↠ Aut0H
splits smoothly. Namely, it has a natural right inverseAut0H → Aut(R,F , J)
which is a homomorphism and is continuous in the smooth sense.

The kernel is denoted by Aut(R,H). We have the following split exact se-
quence

1 → Aut(R,H) → AutR → AutH → 1 .

Therefore AutR is the semi-direct product AutR ∼= Aut(R,H)⋊ Aut0H.
Also the group AutR is naturally isomorphic to the quotient groupAut(R̃ ;T )/T Z,

where Aut(R̃) = Aut(R̃, F̃ , Jstd) denotes the group of automorphims of the
universal covering (R̃, F̃ , Jstd) and Aut(R̃ ;T ) the centralizer of T in AutR̃,
while the subgroup Aut(R,H) is isomorphic to the stabilizer Aut(R̃, H̃;T )
of the boundary H̃ = C \ {O} in Aut(R̃ ;T ) (we do not have to take the
quotient) through this correspondence.

An element f ∈ Aut(R̃, H̃;T ) admits a presentation f(z, x) = (z +
b(x), η(x)) (b(0) = 0). Note that the first component is an isomorphism
from C to C so that it is a linear function depending on x, while the as-
sumption that it is identical on the boundary implies that the linear term is
identical regardless to x. Therefore taking the vertical component η ∈ Zφ

of f , we obtain a surjective homomorphism Aut(R̃, H̃;T ) ↠ Zφ
∼= R. Ap-

parently η → f = (idC, η) is a right inverse of this surjection. Aut(R̃, H̃;T )
is again a semi-direct product. Let K denote the kernel. K consists of
f(z, x) = (z + β(x), x) such that β is a smooth C-valued function on [0,∞)
satisfying the equation

(I) : β(φ(x)) = λβ(x).

This equation is nothing but the condition for f to commute with T . Then
the the groups Aut(R,H) ∼= Aut(R̃, H̃;T ) is presented as

Aut(R,H) ∼= K ⋊ Zφ .

The right component η acts on the left β’s as β 7→ β ◦ η. The space K is a
complex vector space and is quite different between the case (i) and (ii).

Summarizing above all, we have the next.

Theorem 1.3 (Theorem 4.7 and 4.8 in [HM]) The automorphism group
AutR admits the following description;

AutR ∼= (K ⋊ Zφ)⋊ Aut0H ∼= K ⋊ {(Zφ × C∗)/T Z}
∼= (K ⋊R) ⋊ R2/Z2 ∼= K ⋊ ((R× C∗)/T Z)
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where C∗ acts on K by multiplication of the inverse on the value. In an
abstract sense it is also presented as follows.

AutR ∼= K ⋊ (R2/Z2 × R) ∼= {K ⋊ (R/Z× R)} × R/Z
Now the principal aim of this paper is to detrmine the space K of solutions

to (I). It will be done in the next sections.

2 Functional equations and ordinary equations

The goal of this section is to determine the space of solutions to the equation
(I) under the condition (i) or (ii). We also pay attention to the system of
equations (II) on β1, β2 ∈ C∞([0,∞);C), which is needed for the symmetries
of 5 or higher-dimensional Reeb components with complex leaves.

Equation (I) : β(φ(x)) = λβ(x).

Equation (II) : β1(φ(x)) = λβ1(x) + β2(x), β2(φ(x)) = λβ2(x).

We review the works by Sternberg and by Takens which play crucial roles
in solving the equation. In fact it enables us to reduce the problem into a
linear homogeneous first order ordinary differential equation.

2.1 Normal forms due to Sternberg and Takens

Theorem 2.1 (Sternberg, [St]) Under the condition (i) there exists a dif-
feomorphism h ∈ Diff ∞([0,∞)) which conjugates φ into a linear diffeomor-
phism ψ(x) = µx where µ = φ′(0). Namely,

ψ = h−1 ◦ φ ◦ h
holds.

Theorem 2.2 (Takens, [Ta]) Under the condition (ii) there exists a dif-
feomorphism h ∈ Diff ∞([0,∞)) which conjugates φ into a diffeomorphism
ψ ∈ Diff ∞([0,∞)) of the following polynomial type on [0, x1] (∃x1 > 0)

ψ(x) = x+ xn + αx2n−1 and ψ = h−1 ◦ φ ◦ h
where the coefficient α ∈ R is determined by the (2n− 1)-jet of φ at x = 0.
As the time one map of the flow generated by a vector field

X = ρ(x)
d

dx
, ρ(x) = xn + ax2n−1 on [0, x2] (∃x2 > 0)

for a ∈ R is conjugated to x 7→ x + xn + (a + n/2)x2n−1 near x = 0, there
also exists a diffeomorphism k ∈ Diff ∞([0,∞)) which conjugates φ into such
an exponential for a = α− n/2, namely

expX = k−1 ◦ φ ◦ k .

In both cases of (i) and (ii) we can assume that our φ is in such normal
forms. The results in two cases are quite different.
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2.2 Case (i): Linearizable holonomy

In the case (i) we have very few solutions to the equation (I).

Propoition 2.3 1) (Resonant case) If λ = µn is satisfied for some n ∈ N,
then the solution β to the equation (I) is a monomial of order n. Namely we
have the 1-dimensional space K = {c · xn ; c ∈ C} of solutions.
2)(Non-resonant case) If no positive integer n ∈ N satisfies λ = µn, then
there exists no solution to (I) but β(x) ≡ 0, and we have K = {0}.

Corollary 2.4 If the holonomy φ has the non-trivial linear part, the auto-
morphism group AutR is a solvable Lie group of dimension 3 or 5, depending
on the resonance condition, log λ/ log µ /∈ N or ∈ N.

Proof. From Sternberg’s linearization theorem, we are allowed to assume
‘φ(x) = µx’ for some real number µ > 1. Therefore the equation (I) takes
the following form.

β(µx) = λβ(x) for x ∈ [0,∞) .

Differentiating this equation for arbitrary many times at x = 0, we see that
the Taylor expansion at x = 0 can be non-trivial only at the degree n =
log λ/ log µ. Therefore in the resonant case, the possibity is β(x) = c·xn+f(x)
where f(x) is a flat function. Then, as c · xn is a solution to (I), so is f(x).
In the non-resonant case, only flat functions are not yet excluded.

However, in both cases, if we had a nontrivial flat solution f(x), it
would contradict as follows. Take x0 ∈ (0,∞) with f(x0) ̸= 0 and look
at f(µ−kx0) = λ−kf(x0) for k ∈ N. On the other hand, as f is flat we have
limx→0 f(x)/x

l = 0 for any l ∈ N. So large enough l (≥ | log λ/ log µ|) gives
rise to a contradiction. □

Remark 2.5 1) Above argument is nothing but the well-known proof
for the fact that weighted homogeneous functions wich are smooth at the
origin is an monomial.
2) For the equation (II), of course in the non-resonant case we only have
(0, 0) as a solution. In the resonant case, only (β1, β2) = (c ·xn, 0) is possible.
So the space of solution is of dimension one.

2.3 Case (ii) : Higher order tangency

Let us consider the case (ii). Thanks to Takens’ theorem, it is allowed to
assume the holonomy φ is of the form

φ = expXn,a , Xn,a = ρn,a(x)
d

dx
, ρn,a(x) = xn + ax2n−1 on [0, x0]

for some n ≥ 2, a ∈ R, and x0 > 0 .
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The method employed in [HM] seems not to work in this case. So we
adopt a different way which consists of two steps.

First we modify the functional equation (I) into an ordinary differential
equation for each choice of log λ ∈ C. Of course we have the ambiguity of
2πiZ (i =

√
−1) in fixing log λ ∈ C so that we have countably many ODE’s

for each of which the space of solutions is of dimC = 1.
Next we take the some of these solutions for a λ and obtain the complete

space of solutions to (I). This process is nothing but the Fourier expansion
of the solution of (I).

After all the result is the same as in the case treated in [HM]. Let us
first state it before proving. Recall we are considering the equation (I) for
φ ∈ Diff ∞(R≥0) which is tangent to the identity exactly to the (n − 1)-th
order at x = 0 and satisfies φ(x) − x > 0 for x > 0 and a complex num-
ber λ with |λ| > 1. Let us also recall the equations(s) on on β, β1 and β2
∈ C∞(R≥0;C).
Equation (I) : β(φ(x)) = λβ(x).

Equation (II) : β1(φ(x)) = λβ1(x) + β2(x), β2(φ(x)) = λβ2(x).

First consider these equations on (0,∞). We fix any non-zero solution
β∗(x) ∈ C∞((0,∞);C∗) to (I). (Later in Step 2, we will make a more specific
choice of β∗. ) Then each solution corresponds to a smooth function on
S1 = (0,∞)/φZ by taking β 7→ β/β∗. This gives a bijective correspondence
between the space Z = Zφ,λ of solutions to (I) considered on (0,∞) and
C∞(S1;C) as vector spaces.

Also take the space S = Sφ,λ of solutions to Equation (II) on (0,∞).
The kernel of the projection P2 : S → Z assigning β2 to a solution (β1, β2)
coincides with Z. The projection P2 is surjective because for any β2 ∈ Z

β1(x) =
1

λ log λ
β2(x) log β

∗(x)

gives a solution (β1, β2) ∈ S, where for log β∗(x) any smooth branch can be
taken. Therefore S admits a the short exact sequence of vector spaces;

0 → Z → S → Z → 0 .

Theorem 2.6 1) Any solution β ∈ Z extends to R≥0 so as to be a smooth
function which is flat at x = 0, i.e., k-th jet satisfies jkβ(0) = 0 for any
k = 0, 1, 2, · · · .
2) The same applies to any solution (β1, β2) ∈ S.

In particular, the space Z = Zφ,λ is nothing but the kernel K in Theorem
1.3, where it is taken that the solutions β is extended to x = 0.

Step 1. Let Λ be one of the values of log λ so that eΛ = λ. We consider
the following ordinary equation on (0,∞) instead of (I).

(I− Λ) : β′(x) =
Λ

ρ(x)
β(x)
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This is of course equivalent to the following ODE in the variable t.

d

dt

∣∣∣∣
t=0

β(exp(tX)(x)) = Λ · β(x)

Therefore any solution β is presented as β(exp(tX)(x0)) = eΛt ·β(x0) = C ·eΛt
for a constant C ∈ C. It is also clear that β satisfies the equation (I) on

(0,∞). In the variable x, β(x) is presented as β(x) = C · exp
(
Λ
∫ x

x0

1
ρ(x)

)
dx.

In particular on (0, x0), we have

β(x) = C · exp
(
(R + iθl)

∫ x

x0

1

xn(1 + axn−1)
dx

)
where we choose and fix a branch of log λ to be R + iθ0 where the real
part R = | log λ| is positive. Then other general branches Λ are given as
Λ = R + iθl, θl = θ0 + 2lπ for l ∈ Z. It is easy to compute the integration
but we only need to remark that for some δ > 0 and any x ∈ (0, δ) we have∣∣∣∣∫ x

x0

1

xn(1 + axn−1)
dx

∣∣∣∣ ≥ ∣∣∣∣ 12x
∣∣∣∣ .

Propoition 2.7 The solution β(x) to (I-Λ) is extended to [0,∞) as β(0) =
0, and then β(x) is smooth and flat at x = 0.

Proof. The derivative of β of any order k is a multiplication of β and some
rational function in the variable x. Therefore for any k ∈ N we have

|β(k)(x)| ≤ |a rational function| × exp(− 1

2x
) → 0 (x→ 0)

which suffices to show the smoothness and flatness of β at x = 0. □
In the next step we will need to take a slightly closer look at those rational

functions.
Now for each l ∈ Z, let β⟨l⟩ denote the solution to the homogeneous linear

ODE (I-(R + iθl)) of the first order which satisfies β⟨l⟩(x0) = 1 and it is
taken that β⟨l⟩ is extended to [0,∞) as above. So far we have obtained the
followings.

Propoition 2.8 The vector space over C spanned by β⟨l⟩’s (l ∈ Z) is
contained in the space of smooth solutions of the functional equation (I) for
λ. It is also contained in Zφ,λ.

Step 2. By taking appropriate completion of the span of β⟨l⟩’s (l ∈ Z), we
show that Zφ,λ coincides with the space of all solutions to (I) (Theorem 2.6).

First we make the correspondence between Zφ,λ and C∞(S1;C) clearer.
Take β⟨0⟩ as β

∗ in defining the correspondence. Also take t-coordinate instead

of x ∈ (0,∞) by putting x = exp(tX)(x0) (t ∈ R) and regard β̌(t) =

7



β(exp(tX)(x0))/β⟨0⟩(exp(tX)(x0)) as the element of C∞(S1;C) where S1 is
regarded as R/Z. From direct computations we see

β̌⟨l⟩(t) = e2πlt·i for l ∈ Z

so that β̌⟨l⟩’s (l ∈ Z) form a Fourier basis for C∞(S1;C). The following
well-known fact well fits into our situation.

Theorem 2.9 (see e.g., [Ka]) The infinite sum with coefficients cl ∈ C

∞∑
l=−∞

cl · eiθ

defines a smooth function on θ ∈ S1 = R/2πZ if and only if the sequence
of coefficients {ck}k∈Z is rapidly decreasing, namely it satisfies

∞∑
l=−∞

|l|d|cl| <∞ for any d ∈ N .

Therefore any β̌ ∈ Zφ,λ is given as an infinite sum

β̌ =
∞∑

l=−∞

cl · β̌⟨l⟩

with a rapidly decreasing sequence of coefficients {ck}k∈Z. Our main theorem
is stated as follows.

Theorem 2.10 The infinite sum

β(x) =
∞∑

l=−∞

cl · β⟨l⟩(x)

with a rapidly decreasing sequence of coefficients {ck}k∈Z is smooth and flat
at x = 0.

Now we investigate the derivatives of β⟨l⟩(x) in slightly more detail. Recall
that n, a, and λ are already fixed.

Lemma 2.11 For k ∈ N and j = 1, · · · , k, there exists a fixed polynomial
Qk,j(x) which satisfies on (0, x0)

β
(k)
⟨l⟩ (x) =

{
1

P (x)k

k∑
j=1

Qk,j(x)(R + iθl)
j

}
β⟨l⟩(x), P (x) = xn + ax2n−1

and Qk,j(x) is a linear combination of multiplications of (k−j)-many of P (x),
P ′(x), · · · , P (k−j)(x), with total degree of differentiation (k − j).
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For example, Qk,k(x) = 1, Qk,k−1(x) = (1− k)P ′(x), and so on. The lemma
is easily proved by induction on k.

Let us develop (R + iθl)
j into a polynomial of l as follows.

(R + iθl)
j = (R + i(θ0 + 2πl))j =

j∑
d=0

Rj,dl
d

Here the constants Rj,d (j ∈ N, d = 0, · · · , j) are determined by R and θ0.

Proof of Theorem 2.10. For a rapidly decreasing sequence

{ck}k∈Z with
∞∑

l=−∞

|l|d|cl| =Md <∞ for ∀d ∈ N ∪ {0}

take β(x) =
∑∞

l=−∞ cl · β⟨l⟩(x). Then we have the following estimate;

|β(k)(x)| =

∣∣∣∣∣
∞∑

l=−∞

cl · β(k)
⟨l⟩ (x)

∣∣∣∣∣
=

∣∣∣∣∣
∞∑

l=−∞

cl ·

{
1

P (x)k

k∑
j=1

Qk,j(x)(R + iθl)
j

}
β⟨l⟩(x)

∣∣∣∣∣
≤

∣∣∣∣ 1

P (x)k

∣∣∣∣
∣∣∣∣∣

k∑
j=1

Qk,j(x)
∞∑

l=−∞

cl

(
j∑

d=0

Rj,dl
d

)
β⟨l⟩(x)

∣∣∣∣∣
=

∣∣∣∣ 1

P (x)k

∣∣∣∣
{

k∑
j=1

j∑
d=0

Qk,j(x)Rj,d

(
∞∑

l=−∞

cl · ld
)
β⟨l⟩(x)

∣∣∣∣∣
≤

{∣∣∣∣ 1

P (x)k

∣∣∣∣ k∑
j=1

j∑
d=0

|Qk,j(x)||Rj,d|Md

}
|β⟨0⟩(x)| → 0 (x→ 0 + 0)

because the last {· · · } is a rational function when x is close to 0. Also this
computation shows the validity of the first equality. □

Remark 2.12 For the equation (II), the smoothness and flatness of β log β⟨0⟩
for a solution β to (I) follow from more or less the same arguments, because
log β⟨0⟩ = (R + iθ0)

∫ x

x0

1
P (x)

dx.
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