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characteristics in the transverse spaces which may exhibit ellip-
tic, parabolic, or hyperbolic natures in typical cases.
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0 Introduction

This article is devoted to extending our basic understandings of Engel
structures from two points of view. As basic constructions, the Cartan
prolongation from the contact 3-manifolds and the Lorentz prolongation
from the Lorentzian 3-manifolds are known since Elie Cartan [C]. We re-
view these constructions and introduce a new one among several other
methods of basic constructions, which is called the pre-quantum prolonga-
tion. Not only review the formality of these constructions, we give many
examples of these constructions. One big class of examples are coming
from surfaces with metrics. The second aim is to discuss the nature of the
dynamics of the Cauchy characteristic acting on the even contact struc-
ture modulo the Cauchy characteristic. Kotschick and Vogel proposed the
notion of (weak-)hyperbolicity for this action and raised very illustrative
examples. We will develop slightly further this notion and formulate the
ellipticity, parabolicity, or hyperbolicity of this action.

The Cartan prolongation provides elliptic structures in this sense. Look-
ing at hyperbolic structures or negatively curved metrics on surfaces, the
Lorentz prolongation provides a bunch of hyperbolic ones. Therefore look-
ing for “parabolic” structures coming from to a certain degree canonical
constructions is one of the motivation and in fact a strong driving force of
this study.

Recently from the point of view of construction of Engel structures,
after the break through by Vogel [V], an h-principle oriented study has
been developed . However the notion of Engel structure has not yet been
widely common. So we start with the article with some standard defini-
tions and then proceed to provide basic constructions including classical
ones, i.e., the Cartan and Lorentz prolongations, as well as a new one. Then
in later sections after some basic notions on the dynamics of Engel struc-
tures have been introduced, more detailed observations are given to the
Lorentz prolongations coming from surfaces with definite or non-definite
Riemannian metrics and also to the new construction. In this article we
assume that manifolds, distributions, and any other objects are smooth
unless otherwise stated.

Acknowledgement The author is deeply grateful to the American In-
stitute of Mathematics and the organizers of the workshop “Engel Struc-
tures” held at the AIM from April 17 to 21, 2017. It gave the author an
opportunity that the Engel structure started to draw the author’s strong
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attention. Also he is grateful to Robert Bryant from whom the author
learned a lot. This note is a report to the workshop from the author. He
is also grateful to to Hajime Sato for introducing contact geometry of dif-
ferential equations and to Goo Ishikawa for knoticing concepts such as
Lorentz prolongation and Wünschmann invariants.

1 Basic concepts and constructions in the study
of Engel structures

1.1 Basic definitions

An Engel structure D on a 4-manifold M is a 2-dimensional distribution
which satisfies the following non-integrability condition on the derived
distributions;

(D1) : rank E ≡ 3 where E = [D,D],
and

(D2) : rank [E , E ] ≡ 4 , i.e., [E , E ] ≡ TM.

Here by abuse of notation, the distributions also denote the sheaves of
germs of their smooth sections. It is well-known and easy to show that
in general for any smooth distribution A of constant rank, A ⊂ [A,A]
and the Lie bracket [ , ] : A ⊗ A → [A,A]/A is skew symmetric and
tensorial. Therefore the surjectivity of [ , ] : E ⊗ E → [E , E ]/E = TM/E
implies the annihilator W ⊂ E is of constant rank one. Now we see that
W is contained in D becuase otherwise we have D ∼= E/W which implies
[ , ] : D ⊗D → TM/E is surjective while we have [D,D] = E .

This line field W is called the Cauchy characteristic of D, or character-
istic foliation, characteristic line field, etc... and plays a fundamental role in
the study of Engel structures. Let FW denote the 1 dimensional foliation
which W defines.

Let us take a flow box neighborhood U of any point P ∈ M, i.e., a co-
ordinate neighborhood U ≡ D4 with local coordinate (X, Y, Z, W) such
that the Cauchy characteristic foliation FW coincides with the local fo-
liation {X ≡ Y ≡ Z ≡ constant}. By definition E is invariant under
the flow along W and induces an invariant plane field on the transverse
spaces to this foliation. Therefore on the local 3-dimensional quotient
space U/FW = {(x, y, z)} a plane field ξ is induced. This plane field is
in fact a contact plane field because of (D2). For this reason, we call E the
even contact structure associated with the Engel structure D.

We can modify the local coordinate into (x, y, z, w) as follows. First if
we need we take U smaller such that ξ = ker [dy − zdx] on U/FW and
at the point P DP = ker dy ∩ ker dz hold, thanks to the conatct Darboux
theorem (See [G] for the fundamental theory for contact structures). If
necessary we take U further smaller and we can define the function w so
as to satisfy D = ker [dz − wdx] ∩ E . The condition (D1) implies dw never
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vanishes on U and dx, dy, dz, and dw are linearly independent. Therefore
we can take the local coordinate (x, y, z, w) such that E is defined by the
1-form dy − zdx and D is defined by the pair of 1-forms

dy − zdx , dz − wdx.

We call this coordinate neighborhood the Engel-Darboux coordinate neigh-
borhood (or ‘chart’ for short).

As the Engel-Darboux chart suggests, the most important and funda-
mental example of Engel manifolds is the space J2(1, 1) of 2-jets of smooth
functions of one variable. As a space J2(1, 1) is nothing but R4 = {(x, y, z, w)}.
Let us consider smooth functions y = f (x) and its derivatives z = f ′(x)
and w = f ′′(x). Then its 2-jet graph ΓJ2( f ) = {(x, y, z, w) = (x, f (x), f (x)′, f (x)′′)}
is tangent to the canonical plane field D = D0 defined by the pair of 1-
forms dy − zdx and dz − wdx. Let us fix a particular frame

[EF] : X =
∂

∂x
+ z

∂

∂y
+w

∂

∂z
, Y =

∂

∂y
, Z =

∂

∂z
, W =

∂

∂w

adapted to the Engel-Darboux coordinate. Of course the Cauchy cahrac-
teristic of this Engel structure is spanned by W and the even contact struc-
ture E is defined by the 1-form dy − zdx. Therefore the full flag associated
with the Engel stucture is indicated as follows.

0 ⊂ W ⊂ D ⊂ E ⊂ TR4

∥ ∥ ∥ ∥
⟨W⟩ W ⊕ ⟨X⟩ D ⊕ ⟨Z⟩ E ⊕ ⟨Y⟩

Remark 1.1 The vector field X looks just complementary, while in the
Lorentz prolongation it has a certain importance. See Subsection 1.3.

The coordinates (x, y, z, θ) with the pair of 1-forms

dy − zdx and cos θ dz − sin θ dx

also define an Engel structure Dl on R4. Its restriction Dl|R3×(−π/2,π/2) is
isomorphic to the standard Engel structure D0 through the identification
w = tan θ. In a Engel manifold we can take local coordinates as above.
Then we call them a long Engel-Darboux coordinate, no matter how long
we can take θ along W curves.

Once we have an Engel structure D on M, it gives rise to a full flag W ⊂
D ⊂ E ⊂ TM. We have four real line bundles none of which is necessarily
oriented, while their orientabilities are related to a certain degree. First
of all, TM/W is oriented because E/W is a contact structure on this 3-
dimensional space. W is not necessarily oriented, but if we give locally
an orientation to W , through the movement of D/W in E/W along W ,
it also defines an orientation of E/W locally. Now TM/E is spanned by
the Reeb vector field of the contact structure E/W on M/W . Therefore
the orientation sheaf of TM/E is also coherent to those of E/W and of W .
The orientability of D/W and hence that of E/D are quite independent of
others. Summarizing above all in other words, the two vector bundles of
rank three, i.e., E and TM/W , are oriented and there is no more constraint.
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1.2 Cartan prolongation

In this and the next subsection, we review two classical constructions of
Engel structures from certain geometric structures on 3-manifolds, both of
which Elie Cartan understood well ([C]).

The first procedure which we introduce here is called the prolongation
or Cartan prolongation. Let us take a contact plane field ξ on a 3-manifold N
and the projectification π : M = RP(ξ) → N of ξ which is an RP1-bundle
over N. Instead of taking RP1-bundle, also we can take the associated S1-
bundle or if ξ is a topologically trivial R2-bundle we can take its infinite
cyclic covering which is a principal R1-bundle. Let (n, ℓ) denote a point in
M, namely, n is a point in N and ℓ is a line in ξn. We define the plane field
D on M as D(n,ℓ) = (Dπ)−1(ℓ) ⊂ T(n,ℓ)M.

In this construction, it is straightforward to see from the definition that
the even contact structure E is the pull-back of the contact structure ξ on
N by the projection π and the Cauchy characteristic W is the line field
tangent to the fibres of π. All the characteristic lines are closed and the
(transverse) holonomy of the 1-dimensional foliation FW along any closed
leaf is trivial.

1.3 Lorentz prolongation

The Lorentz prolongation is reviewed here. Let us take a Lorentzian 3-
manifold (V, dg), i.e., a smooth three manifold N and a non-definite inner
product on TV. We assume dg has the signature (2, 1). A null line in TvV
is a line which is null with respect to dg. It is a line on the ‘light cone’ and
thus the set of all such lines is a circle, which we call the null circle and is
denoted by NC(TvV). It is worth noting that in RP(TvV) it is a priori not
a linear circle but a quadratic one. Then we consider the null-circle bundle
π : M = NC(TV) → V on which the Engel plane field D is defined to be
D(v,ℓ) = (Dπ)−1(ℓ) ⊂ T(v,ℓ)M. Here (v, ℓ) denotes the point in NC(TvV)
indicating the null line l ⊂ TvV.

Theorem 1.2 (Lorentz prolongation, E. Cartan [C]) 1) The first derived
distribution E = [D, D] is given as E(v,ℓ) = (Dπ)−1(ℓ⊥).
2) The second derived [E , E ] is TM.
3) Therefore D is an Engel structure on M = NC(TV).

The Cauchy characteristic of the Lorentz prolongation exhibits importance
in various senses.

Theorem 1.3 ( Cauchy characteristics and null-geodesics, E. Cartan [C])
The Cauchy characteristic W of the Engel structure D is the line field given
by the null-geodesic flow, namely, the natural lifts of null-geodesics on V
to NC(TV).

Corollary 1.4 Up to parametrization, the null-geodesics are invariant
under conformal change of Lorentzian metrics. Namely, if γ(t) is a null
geodesic of Lore tzian manifold (M3, dg), then for any smoooth positive
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function f on M γ(t(s)) is also a null-geodesic for the Lorentzian metric
f dg with some reparametrization t(s).

Remark 1.5 This fact is well-known even for Lorentzian manifolds of
any dimension. In our dimension, we can understand it from the process
of Lorentz prolongation, because it only depends on the conformal class.

For the sake of being self-contained and for understanding constructions
in this article, we give a proof of these theorems. For Theorem 1.2 another
proof is given in 3.3 which is based on a characterization of Cauchy char-
acteristic curves in terms of infinitesimal deformation whose formulation
is given in 3.2.

Proof.
The arguments can be done locally, so take a small open set U in V and
NC(TU) is considered. First take a light-like vector field, namely a smooth
vector field k satisfying dg(k, k) ≡ −1. Next take a smooth orthonormal
frame ⟨e, f ⟩ of the orthogonal complement ⟨k⟩⊥ which is positive definite
with respect to the Lorentzian metric dg. Then the null-line ℓ is indicated
as ℓ = ⟨cos θ e + sin θ f + k⟩. So the null circle at each point n ∈ N param-
eterized by θ ∈ S1. Therefore NC(TU) is now identified with U × S1 in
this sense. By definition, D is spanned by two vector fields F = ∂

∂θ and
L = cos θ e + sin θ f + k. Clearly we have Y = [F, L] = − sin θ e + cos θ f
which spans the orthonormal complement ⟨L⟩⊥ together with L. This ex-
plains 1). Now we have also [F, Y] = −(cos θ e + sin θ f ) = −X. As
X,Y,and k = L − X span TU, and T(NC(TU)) together with F, we see
that [E , E ] = TM. This proves 2) and thus 3).

To prove the second theorem we need more precise computation. On
a Lorentzian manifold, exactly the same in the case of Riemannian man-
ifolds, there exists a unique connection ∇, the (Lorentzian) Levi-Civita
connection, which is compatible with the Lorentzian metric dg and tor-
sion free,, namely, for any vector fields A, B, C, the two properties

A dg(B, C) = dg(∇AB, C) + dg(B, ∇AC),
∇AB −∇B A = [A, B]

are satisfied. A curve γ(t) on V is a geodesic iff ∇γ̇(t)γ̇(t) = 0. A geodesic
is a null-geodesic iff dg(γ̇(t), γ̇(t)) = 0. Of course dg(γ̇(t), γ̇(t)) = 0 for
some t implies the same holds for any t. We take a small neighborhood
U of point in V as above and prove the second the second theorem on
U × S1 ⊂ M.

Remark 1.6 For a null-geodesic γ(t) with γ̇(t) ̸= 0 γ(φ(t)) is again a
geodesic iff φ(t) is a constant. On the other hand, it is in general impossible
to normalize the velocity globally. In other words, even though a null
geodesic γ(t) comes back to an initial point on a closed trajectory, namely
γ(0) = γ(1) and γ̇(0) = cγ̇(1) for some c > 0, it does not imply γ̇(0) =
γ̇(1).
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Take every null-geodesics γ(t) which pass through a point in U and
consider their natural lift (γ̇(t), ⟨γ̇(t)⟩) to NC(TU). By taking a smaller
space-like disk D ∼= D2 and the orbits inside U which meet the disk D, we
can assume that such orbits fill up a neighborhood Ũ in NC(TU) of the fi-
bre π−1(v) of the center v of D and each orbit is a segment. Here U is also
modified to be the union of such orbits. Therefore we can smoothly assign
the parameterization of each geodesics in this neighborhood Ũ. Then we
have a local vector field Γ which generates the local null-geodesic flow on
Ũ. Using the local framing which we used for the above proof, Ũ can be re-
garded as the product U × S1. Then with respect to this product structure,
we have Γ(v, θ) = ΓV + f (v, θ)F where f is a smooth function.

According to this product structure, the connection ∇̃ on T(NC(TU))

is also defined as the product ∇̃ = ∇L ⊕∇S1
of the Levi-Civita connection

∇L on TŨ associated with the Lorentzian metric on U and the trivial con-
nection ∇S1

on TS1. The connection ∇̃ is a symmetric, i.e., torsion free, and
compatible with the product metric. It is also compatible with the partial
metric π∗dg.

In this formulation, the condition that Γ generates a local null-geodesic
flow is described that the V-component of ∇̃ΓΓV is trivial. This is equiva-
lent to that ∇̃ΓΓ has trivial V-component because F is a parallel field.

The statement 4) is nothing but [Γ, E ] ⊂ E , where E(v,ℓ) = (Dπ(v,ℓ))
−1(ℓ⊥).

As we have seen that [Γ, (Dπ)−1(ℓ)] ⊂ E , what we have to show is [Γ, Y] ⊂
E , namely, π∗dg(Γ, [Γ, Y]) = 0, which is computed as follows.

π∗dg(Γ, [Γ, Y]) = π∗dg(Γ, ∇̃ΓY − ∇̃YΓ)
= π∗dg(Γ, ∇̃ΓY)− π∗dg(Γ, ∇̃YΓ)

= Γπ∗dg(Γ, Y)− π∗dg(∇̃ΓΓ, Y)− 1
2

Yπ∗dg(Γ, Γ)

= −π∗dg(∇̃ΓΓ, Y) = 0.

Q.E.D. □

Remark 1.7 1) As the second theorem is very important, we give an
alternative proof in a later section, which is much shorter and relies on a
rigidity property of Cauchy characteristic. It is related to the causality of
the Lorentz structure.
2) An Engel structure obtained by Lorentz prolongation is equipped with
an extra line field ⟨F⟩ ⊂ D which is transverse to the Cauchy character-
istic W in D. It is not true even locally that an Engel structure with arbi-
trary line field inside D which is transverse in D is obtained by Lorentz
prolongation. This fact is studied by Chern in [Ch] along an equivalence
problem of 3rd order ODE’s. The author learned this from Robert Bryant.
The Chern’s work was initiated by Wünschmann in his thesis [W] un-
der the supervision by F. Engel. After Chern, through the Tanaka the-
ory, Sato-Yoshikawa [SY] gave a geometrically clear formulation of the
Wünschmann invariant which is well-adapted to our context. For more
historical informations, see e.g., [GN] and [NP].
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The obstruction is geometrically understood as follows. Locally we
can take the quotient by collapsing integral curves of ⟨F⟩ to poiints so that
we obtain a 3-dimensional space. In the porjective plane of the tangent
space of each point of this 3-dimensional space, the Engel plane asigns a
point. The trace of this point along each ⟨F⟩-curve should be a small circle
if it is obtained (locally) by Lorentz prolongation. Conversely if it is the
case, the small circle defines a conformal class of Lorentzian metric on the
3-dimensional space and locally the Engel structure is interpreted as ob-
tained from the Lorentzian prolongation.
3) If we start from the flat Lorentzian space, i.e., the Minkowski 3-space
R2,1 the fibre direction ⟨F⟩ ⊂ D coincides with ⟨X⟩ of the particular fram-
ing [EF] in the Engel-Darboux coordinate in Subsection 1.1.

We will see various constructions by the Lorentz prolongation starting
from surfaces with metrics.

1.4 Pre-quantum prolongation∗

We start from richer data to construct Engel structures. For this, we use
the construction of a complex line bundle with U(1)-connection, or equiv-
alently an S1-bundle with an S1-connection which is well-known as the
pre-quantization or pre-quantum bundle. See e.g., [Kos] for fundamentals.

Lemma 1.8 (Pre-quantization) For a smooth manifold V. an integral co-
homology class α ∈ H2(V; Z), and and a closed 2-form ω which repre-
sents α mod torsion in H2(V; R), there exists an S1-bundle with an S1-
connection ∇ such that its curvature 2-form Ω∇ exactly coincides with
2πω and the euler class coincides with α.

Let ξ = kerα be a contact structure on a 3-manifold V with a non-
singular Legendrian vector field W which is volume preserving with re-
spect to a smooth volume dvol and whose asymptotic cycle presents an in-
tegral 1st homology class. The last condition is also stated as the Poincaré
dual closed 2-form ιWdvol presents an integral 2nd cohomology class in
H2(V; Z)/Torsion ⊂ H2(V; R).

We take the pre-quantum S1-bundle π : M4 → V3 with a connection ∇
for the closed 2-form ω = ιWdvol. The connection defines the horizontal
hyperplane H∇ ⊂ TmM at each point m ∈ M.

Theorem 1.9 (Pre-quantum prolongation) 1) The the plane field D on M
defined as Dm = H∇ ∩ (Dπm)−1ξ is an Engel structure.
2) The even contact structure is exactly the horizontal distribution E = H∇
and the Cauchy characteristic is the horizontal lift W = H∇∩ (Dπm)−1⟨W⟩
of ⟨W⟩.

Proof.
The proof is divided into two parts. The first part shows the existence of
local coordinates (x, z, w) on V which are well-adapted to ξ, ⟨W⟩, and ω.
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Then in the second part under the preparation of the first part we show
that the fibre coordinate y can be so nicely chosen that (x, y, z, w) forms an
Engel-Darboux coordinate system.
Part I.
In general for a non-singular vector field X and an invariant smooth vol-
ume dvol on a manifold, if we take a smooth positive function f , f−1dvol
is also invariant under f X and we have ι f X f−1dvol = ιXdvol. Therefore
ιXdvol, which is regarded as the transverse invariant volume to the folia-
tion spanned by ⟨X⟩, is more essential and is closed.

On a neighborhood U of any point of V it is easy to choose smooth
functions x and z on U such that dx ∧ dz = ω|U and that ξ never coincides
with ker dz. Then on U, the relation ξ = ker [dz − wdx] defines a function
w on U. From the construction we see that (x, z, w) gives a local coordi-

nate on U. Also we have
⟨

∂

∂w

⟩
= ⟨W⟩, while

∂

∂w
does not necessarily

coincides with W even modulo multiplication by constant.
Part II.
Fix a local trivialization of the pre-quantum S1-bundle over U and give
the coordinate (x, z, w, θ) (θ ∈ S1). Then on the total space the connection
1-form Θ∇ is indicated as Θ∇ = dθ + β(x, z, w) where β(x, z, w) is a 1-
form on the base space V with dβ(x, z, w) = ω = dx ∧ dz. As d(−zdx) =
dx ∧ dz and by the Poincaré lemma, there exists a function φ of (x, z, w)
such that β = dφ − zdx. Therefore we obtain Θ∇ = dθ + dφ − zdx =
d(θ + φ(x, z, w))− zdx. This implies by a gauge transformation θ 7→ θ +
φ(x, z, w) (mod 2π) or by change of th local trivialization by θ∗ = θ +
φ(x, z, w), the connection form is indicated as Θ∇ = dθ − zdx.

For a certain part of the fibre S1, we can give a real valued coordinate y
in place of θ and then we naturally obtain the followings;

• E = H∇ = ker[dy − zdx], (Dπ)−1ξ = ker[dz − wdx],
• D = H∇ ∩ (Dπ)−1ξ,

• W =

⟨
∂

∂w

⟩
= (Dπ)−1⟨W⟩ ∩ H∇ .

Q.E.D. □

Remark 1.10 1) From a similar argument, the space of S1-connections of a
given S1-bundle is regarded as not a vector space but the affine space of 1-
forms. Then once the curvature form is specified, then it is the affine space
of closed 1-forms. The difference of an exact 1-form is absorbed as in the
above proof by a gauge transformation which is isotopic to the identity.
Those which correspond to integral 1-st cohomologies are also absorbed
by the gauge tansformations M → S1. Therefore in the above construc-
tion the structures might have H1(V; R/2πZ) as its moduli. Of course it
is more complicated to consider how this moduli reduces considering dif-
feomorphisms of the total space M.
2) If H2(V; Z) has torsion, the integral euler class is determined up to the
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torsion from the real class [ω]. Any of the S1-bundles associated with such
an integral class the pre-quantization works. Therefore provided that V
is compact we might have non-uniqueness and finitely many possibilities
for the manifold M from the given data V, ξ, dvol, and W.

This happens when we take the unit tangent bundle V = S1TΣ of a
closed hyperbolic surface Σ of genus g. As Tor H2(V; Z) ∼= Z/2g−2, we
have (2g − 2)-many possibilities for M.
3) It might be worth remarking that in the pre-quantum prolongation, con-
trary to the Cartan prolongation, the even contact structure comes the sec-
ond.

Examples of pre-quantum prolongation are given in Subsection 4.4.

1.5 Suspension by contact diffeomorphism

Here we review a fairy general method to construct or to modify Engel
structures.

Let (V, ξ) be a contact structure and ℓ be a non-singular Legendrian
line field. Also we assume that ξ is oriented plane field. Then we put
some/any Euclidean metric on ξ so that the angle between two Legen-
drian lines are defined. Let φ be a contact morphism of (V, ξ) which pre-
serves the orientation of ξ. Also we assume that the oriented angle d(v) of
(φ∗ℓ)v from ℓv (v ∈ V) is continuously well-defined and bounded from
above. For example if φ is isotopic to the identity among contactmor-
phisms and V is compact, this is the case. Also note that this condition
is independent of the choice of metric.

Let us consider the mapping torus Mφ = R × V/ ∼ of φ, where ∼
identifies (t + n, v) and (t, φn(v)) for n ∈ Z. The contact structure ξ it is
pulled back to R × V as a hyperplane field Ẽ = ξ̃. Because ξ is invariant
under φ, It is also well-defined as a hyperplane field on M = Mφ which is
denoted by E and is going to be E = [D,D]. Also let W be the suspension

direction, i.e., the natural projection image of W̃ =

⟨
∂

∂t

⟩
on R × V.

Take a smooth metric (conformal structure) on E/W and pull it back
to Ẽ/W̃ . Consider the continuous twisting function d(v) for this metric
restricted to {0} × V and take an integer K so that d(v) < Kπ for any
v ∈ V. On [0, 1] × V let us define D̃(t,v) = R(ρ(t, v))(ℓv) where R(ρ) is
an rotation of D̃(t,v) = ξv by the angle ρ in such a way that the smooth
function ρ(t, v) satisfies

ρ(0, v) ≡ 0, ρ(1, v) ≡ Kπ − d(v), and
∂ρ

∂t
> 0

and also that the deck transformations (t + n, v) ∼ (t, φn(v)) extend D̃ on
[0, 1]× V to the whole D̃ on R × V as an smooth Engel structure which is
invariant under the deck transformations. As a result we obtain an Engel
structure D on M = Mφ naturally.
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We can perform a similar modification to a given Engel structure (M,D).
Let us consider a transversely embedded hypersurface V ⊂ M to the
Cauchy characteristic W with a neighborhood U ∼= ∪v∈V [−α(v), β(v)]×
{v} ⊃ {0} × V = V. Here, α and β are positive smooth function on V,
each curve [−α(v), β(v)] × {v} is a Cauchy characteristic curve, and the
first coordinate t is a twisting angle between (D/W)(t,v) and (D/W)(0, v)
with respect to some metric. V need not be closed. On V a contact struc-
ture ξ = E|V ∪ TV is induced. Consider a contactmorphism φ of (V, ξ).
W cut the manifold M along V and paste it again by φ to obtain a new
manifold which is also denoted by Mφ. More precisely, remove {0} × V,
complete M \ {0} × V by the points (0 − 0, v) and (0 + 0, v) separately,
and identify (0 − 0, v) with (0 + 0, φ(v))

Because the even contact structure E is well-preserved by this opera-
tion, a new even contact structure Eφ is induced on Mφ. The new Cauchy
characteristic Wφ is also naturally defined. Now consider the twisting
function d(v) for φ with respect to (D/W)(−α(t),v) ⊂ ξv. If we can take
d(v) continuously so as to satisfies d(v) < α(v) + β(v) and d(v) = 0 on
V \ supp φ, there is an Engel structure on Mφ which coinsids with D on
M \ U and whose even contact structure is Eφ. It is unique up to isotopy
along Wφ|Uφ .

For any transversal V to W , we can find some positive functions α and
β. Then contactmorphism which is sufficiently C1-close to the identity
with regard to α and β, the above construction is possible. By this modifi-
cation, we can always perturb the dynamics of W .

Example 1.11 (Cartan prolongation) If the contact structure ξ is trivial
as an R2-bundle, it admits a non-singular Legendrian vector field ℓ. Then
its Cartan prolongation is considered to be the result of the suspension
construction by the identity, K = 1, and ρ(v, t) = πt.

Example 1.12 (Bi-Engel structure, [KV]) Let ϕt be a contact Anosov flow
on a 3-manifold V , namely, X is a Reeb vector field for a contact structure
ξ and generates an Anosov flow ϕt. Then there is associated a bi-contact
structure (ξ+, ξ−), where we have ξ+ ∪ ξ− = ⟨X⟩ and ξ± are twisted by
(ϕt)∗ in the opposite directions. Fix any T > 0 and consider the suspen-
sion of (V, ξ) by the time T map φ = ϕT . Then we obtain a pair D± of En-
gel structures associated with ξ± for the same even contact structure. The
twisting directions are opposite to each other exactly like the bi-contact
structure. This example will appear repeatedly.

2 Action of Cauchy characteristics

The transverse dynamics of the 1-dimensional foliation FW spanned by
the Cauchy characteristic W is an important character of Engel structures.

In particular, as [W , E ] = E , we can look at the action of W on the
2-dimensional space (vector bundle) E/W and the movement of D/W
inside E/W along W .

11



For example, in the case of Cartan prolongation of a contact structure,
each orbit of W is the fibre circle and the holonomy of FW is identical
along any closed leaf, while D/W rotates by angle 2π along each W-orbit.
Many more examples are studied in later sections.

First we review the projective structure defined on each orbit of W .
This is introduced by Bryant-Hsu([BH]) and also studied by Inaba([I]).

Next, we will consider to extend such properties of each orbit to the
whole system W ↷ E/W . This is initiated by Kotschick-Vogel([KV]).

2.1 Projective structure on Cauchy characteristic lines

2.1.1 Review of projective structure on 1-manifolds

Roughly speaking, a projective structure on 1-manifold Λ is a geomet-
ric structure modeled on (PGL(2; R), RP1) as a (G, X)-manifold, namely,
there exists an atlas of Λ whose charts take value in RP1 and the coordi-
nate changes are given by elements of PGL(2; R).

We do not consider non-orientable projective structure so that we take
(PGL+(2; R) = PSL(2; R), RP1). More precisely or more formally, tak-

ing the universal covering ( ˜PSL(2; R), R̃P1) as the model and consider
the developing map Φ : Λ̃ → R̃P1 which is an immersion and is equiv-
ariant with respect to π1(Λ). On Λ̃ π1(Λ) acts as the covering transfor-
mation and on R̃P1 through the holonomy homomorphism φ : π1(Λ) →
˜PSL(2; R). As Λ is 1-dimensional, π1(Λ) is trivial or isomorphic to Z. In

the latter case, often we identify φ with φ(1) ∈ ˜PSL(2; R) . In the case of
general (G, X)-manifolds, the developing map is not necessarily injective,
however, so is it in our case. Even then it may not be surjective.

Two projective structure on the same manifold Λ is isomorphic (or
called simply ‘the same’) if they are united to define one atlas. This con-
dition is equivalent to saying that if the developing maps Φ1 and Φ2 are

related by a single element of ˜PSL(2; R), namely, for some g ∈ ˜PSL(2; R)
Φ2 = g ◦ Φ1 holds.

Two projective manifolds Λ1 and Λ2 are isomorphic or diffeomorphic
as projective manifolds if there exists a diffeomorphism ψ : Λ1 → Λ2
through which two structures are isomorphic.

2.1.2 Projective structure on Cauchy characteristic lines

The projective structure of each orbit γ(t) of W is defined as follows.
First take the universal covering γ̃ if necessary and fix a trivialization
(E/W)|γ̃ ∼= R × R2 by using the action of W . For example, using a pa-
rameterization γ̃(t) (t ∈ R) of the orbit, we can identify (E/W)|γ̃(t) with
(E/W)|γ̃(0) for any t ∈ R by the differential of the holonomy transforma-
tion of FW along γ. As a foliation of codimension 3, a priori the linearized
holonomy between 3-dimensional normal spaces is defined. In the case
of the Cauchy characteristic foliation, in the normal space TM/W|γ̃(t),
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E/W|γ̃(t) is 2-dimensional and invariant under the holonomy along FW .
Therefore the above identification is defined.

Then we have the tautological developing map Φ̌ : γ̃ → RP1 =
P((E/W)|γ(0)) defined by Φ̌(γ̃(t)) = (D/W)|γ̃(t) ∈ P((E/W)|γ̃(t) ∼=
P((E/W)|γ̃(0)). The fact that Φ̌ is a submersion is a direct conclusion of
the definition of Engel structure. This defines a projective structure on the
W-orbit γ. Under this setting we do not need to take the developing map
to R̃P1. Thus the projective structure of the each orbit is well-defined.

Remark 2.1 In [BH] Bryant and Hsu define the projective structure in-
side an Engel-Darboux coordinate by (x, y, z, w(t)) 7→ w ∈ R ∼= RP1 \
{∞}. Inside the Engel-Darboux coordinate a W-orbit is exactly tangent to

∂
∂w and x, y, and z are constant along it. Then they checked that by any
Engel-Darboux chart, the coordinate change gives a new w which defines
the same projective structure.

Following our definition and taking
∂

∂x
+ z

∂

∂y
and

∂

∂z
as the invariant

frame of E/W along the W orbit (x, y, z, w(t)) with x, y, and z constant,
we see that it coincides with the projective structure by Bryant-Hsu.

In [I] Inaba adopted a long Engel-Darboux coordinate (x, y, z, θ) in or-
der to treat longer W orbit, which is not necessarily rigid. There, the Engel
structure is defined as D = ker[dy − zdx] ∩ ker[cos θdz − sin θdx] and of

course the developing map θ ∈ ˜P(E/W) defines the projective structure.
Remark also that inside an Engel-Darboux chart, we do not have to go

up to the universal covering.

2.2 Projective structure on closed orbits and length

As a typical case, here we consider the projective structures on closed or-
bits of the Cauchy characteristic in an Engel manifold.

2.2.1 Review of projective structure on circle

Let us review the projective structures on a circle Λ. The classification was
first given by Kuiper ([Kui]).

Consider the developing map between the universal coverings Φ :

Λ̃ → R̃P1 ∼= R and its image. Then the holonomy φ ∈ ˜PSL(2; R) de-
termines the projective structure on Λ as Φ(Λ̃)/φZ.

To classify them, first we need to list up all the pairs of connected sub-
space of the whole line R̃P1 on which the holonomy φZ acts freely. In an
abstract sense, the holonomy φ determines the structure. First let us recall
that elements A ∈ PSL(2; R) \ {id} are classified into three categories:

1)(elliptic) |tr A| < 2, no fixed point in RP1, conjugate to ±
(

cos θ − sin θ
sin θ cos θ

)
.
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2)(parabolic) |tr A| = 2, one fixed point in RP1, conjugate to ±
(

1 ∓1
0 1

)
.

3)(hyperbolic) |tr A| > 2, two hyperbolic fixed points in RP1, contracting

and expanding, conjugate to ±
(

ea 0
0 e−a

)
(a > 0).

Now we proceed to the classification of projective structures on a circle
Λ. There are two cases, in one of which the image of the developing map is
the whole line R̃P1, while in the other case it is an interval of finite length.
It is natural to regard RP1 = R/πZ. The classification of the holonomy

φ ∈ ˜PSL(2; R) and the projective structure on Λ ∼= S1 is given as follows.
Let ⟨φ⟩ denote the class of φ in PSL(2; R).

1) (elliptic case) |tr ⟨φ⟩| < 2, no fixed point in R̃P1, conjugate to the
translation t 7→ t + (nπ + θ) for some n ∈ Z, where θ ∈ (0, π) is as above.
Basically we assume n > 0. The developing image is the whole R = R̃P1,
the projective length of Λ is nπ + θ. The case ⟨φ⟩ = E can be also included
here as the case of θ = 0, provided that φ is just the translation by nπ for
some n ∈ N. Apparently the rotations are projective symmetries, thus the
structure is homogeneous.

2) (parabolic case) |tr ⟨φ⟩| = 2 and there are fixed points in R̃P1. Then

after a conjugation, it takes the following form; ⟨φ⟩ = ±
(

1 −1
0 1

)
, the

fixed point set Fix(φ) is πZ and the developing image is (0, π). The pro-
jective length of Λ̃ is π, while that of Λ has no meaning. The action of

{⟨φ⟩ = ±
(

1 −t
0 1

)
| t ∈ R} on RP1 descends to Λ as rotational symme-

tries. Therefore the structure is homogeneous. ±
(

1 +1
0 1

)
is eliminated

because it is just the inverse of the above and it is preferable that the action
is taken in the positive way in the angle coordinate.

3) (hyperbolic case) |tr ⟨φ⟩| > 2 and there are fixed points in R̃P1. Af-

ter conjugation, it takes the following form; ⟨φ⟩ = ±
(

ea 0
0 e−a

)
(a > 0),

the fixed point set in R̃P1 is Fix(φ) = 1
2 πZ, and the developing image

is (π/2, π). Projectively the length of Λ̃ has no meaning, because it can
take any value in (0, π) by conjugation. On the other hand, |tr ⟨φ⟩| > 2
or the derivative | log(φ)′| at fixed points (as a function φ : R → R ) is a
projective invariant.

Because the projective symmetry {
(

et 0
0 e−t

)
, | t ∈ R} induces the ro-

tational symmetry on Λ, the structure is homogeneous.

4) (trans-parabolic case) |tr ⟨φ⟩| = 2 and there are no fixed points in

R = R̃P1. After conjugation let φ̌ ∈ ˜PSL(2; R) denote the one in the
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parabolic case with ⟨φ⟩ = ⟨φ̌⟩ = ±
(

1 ∓1
0 1

)
. Then φ acts on R as φ(θ) =

φ̌(θ) + nπ for some n ∈ N, after taking the inverse if necessary. Thus e.g.,
[0, nπ) is a fundamental domain of the action.

Depending on ∓1 in the off diagonal component of ⟨φ⟩, n± is the pro-
jective invariant. The length of Λ should be understood as nπ ± 0.

On R the action of {φ ∈ ˜PSL(2; R) | ⟨φ⟩ = ±
(

1 −t
0 1

)
, t ∈ R} includ-

ing those by the center θ 7→ θ + kπ k ∈ Z is the symmetry. Therefore the
decomposition Λ = {[θ] ∈ Λ | θ ∈ πZ} ⊔ {[θ] ∈ Λ | θ /∈ πZ} gives the
orbit decomposition of the projective symmetry action. The structure is
not homogeneous.

5) (trans-hyperbolic case) |tr ⟨φ⟩| > 2 and there are no fixed points in

R = R̃P1. After conjugation let φ̌ ∈ ˜PSL(2; R) denote the one in the

hyperbolic case with ⟨φ⟩ = ⟨φ̌⟩ = ±
(

ea 0
0 e−a

)
. Then φ acts on R as

φ(θ) = φ̌(θ) + nπ for some n ∈ N, after taking the inverse if necessary.
Thus e.g., [0, nπ) is a fundamental domain of the action and n ∈ N and
|tr ⟨φ⟩| or equivalently the derivative | log(φ)′| at (π/2)Z are the projec-
tive invariants. The length of Λ should be understood as nπ ± 0.

On R the action of {φ ∈ ˜PSL(2; R) | ⟨φ⟩ = ±
(

et 0
0 e−t

)
, t ∈ R} in-

cluding those by the center θ 7→ θ + kπ k ∈ Z is the symmetry. There-
fore the decomposition Λ = {[θ] ∈ Λ | θ ∈ πZ} ⊔ {[θ] ∈ Λ | θ ∈ π(Z +
1/2)} ⊔ {[θ] ∈ Λ | θ ∈ (0, π/2)} ⊔ {[θ] ∈ Λ | θ ∈ (π/2, π)Z} gives the
orbit decomposition of the projective symmetry action. The structure is
not homogeneous.

2.2.2 Projective structure on closed Cauchy characteristic lines

Take a simple closed Cauchy characteristic curve. Then after fixing the
orientation of E/W and W so that along the curve D/W is moving in
a positive angular direction. Then it naturally admits one of projective
structures classified in 2.2.1.

Take a parameterization Γ : [a, b] → M of this simple closed curve
(Γ(a) = Γ(b)) a trivialization of E/W|Γ which is invariant under the ac-
tion of W as mentioned in 2.1.2, in such a way that they are respect-
ing the above orientations. The trivialization identifies E/W|Γ(t) with
E/W|Γ(a) ≡ R2 for a ≤ t ≤ b.

The differential of the first return map gives the holonomy ⟨φ⟩ ∈ PSL(2; R).
The (reduced) developing map ⟨W/D⟩|Γ(t) : [a, b] → RP1 = P(E/W|Γ(a))

lifts to the genuine developing map to R = R̃P1, which tells how many

times it turns around and what is φ ∈ ˜PSL(2; R). All the ambiguities
which might appear in above construction stay in the equivalence ex-
plained in the previous sections.
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Example 2.2 1) (Elliptic orbit) The Cartan prolongation (M,D) of a
contact 3-manifold (V, ξ) has all Cauchy characteristic closed, namely, they
are the fibres of π : M → V. Therefore the holonomy is trivial, it follow
from the above definition that it is the elliptic case of length π.

Elliptic ones with other (arbitrary) length naturally appear in the Lorentz
prolongations and the pre-quantum ones as well. We will see them in later
sections.
2) (Parabolic orbits) In the Lorentz prolongation of the flat Lorentzian
3-torus (T3, dg = dx2 + dy2 − dz2), there are lots of closed Cauchy charac-
teristics corresponding to the closed geodesics of (T3, dg). All of them are
parabolic. Many more example will come later.
3) Hyperbolic, trans-parabolic, or trans-hyperbolic orbits are easily real-
ized by the suspension construction reviewed in 1.5. Of course so are el-
liptic or parabolic ones as well.

Remark 2.3 In contrast with trans-hyperbolic or trans-parabolic ones,
we may call hyperbolic or parabolic ones genuine-hyperbolic or genuine-
parabolic. In the following subsection, the terminology will have more
meaning.

•review from Bryant-Hsu on rigidity and projective structure and in-
terpretation

•projective length

2.3 Action of Cauchy characteristic on E/W∗

In order to understand the global structure of an Engel structure D, in par-
ticular on a closed 4-manifold M, the behavior of the Cauchy characteristic
W as 1-dimensional foliation and its dynamics on M as well as on E/W
are important view points. Based on this the behavior of D/W in E/W
along W is more clearly seen.

We reviewed in the preceding subsections that closed orbits of W have
their own characters. This does not always apply to non-closed orbits
nor to the whole structure, however, here we consider a very limited case
where the whole structure still admits such a character, while it seems to
have certain importance. This is similar to the differential geometric study
of surfaces where it is not always true that the curvature has a single sign
or is vanishing everywhere, while such cases have importance in various
senses.

Let (M, E) be an even contact structure on a closed 4-manifold M. We
take and fix a fiberwise metric on 2-dimensional vector bundle E/W . We
assume that W and E/W are oriented. Then take a non-singular vector
field W which spans W and its flow ϕt = exp tW, whose lift to E/W is
denoted by φt. First we define the character of the even contact structure
E in special cases. Remark that we do not have to start with an Engel
structure.
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Definition 2.4 1) (elliptic) This is the case where the conformal distor-
tion of φt is uniformly bounded. Precisely it is formulated as follows. For
each point P ∈ M take an oriented orthonormal basis of (E/W)P, present
the linear holonomy φtP : (E/W)P → (E/W)ϕt(P) with respect to these

bases, and let ⟨φ⟩(t, P) denote its class in P̃GL
+
(2; R) = P̃SL(2; R). Then

the uniform boundedness of the conformal distortion of the linear holon-
omy in E/W is stated that the set {⟨φ⟩(t, P) | t ∈ R, P ∈ M} ⊂ P̃SL(2; R)
is bounded. If this is the case, we call E is of elliptic type.
2) (parabolic) Let us assume there exists a real trivial sub-line bundle lh

of E/W and if necessary change the orientation of E/W . Then take an
oriented orthonormal frame ⟨ℓ1, ℓ2⟩ of E/W so that ℓ1 lies in lh. If there
exist positive constants c and T0 so that

±⟨ϕ±tℓ1P, ϕ±tℓ2P⟩
⟨ϕ±tℓ1P, ϕ±tℓ1P⟩

≥ c · t for ∀P ∈ M, ∀t ≥ T0

the even contact structure E is said to be of parabolic type.
3) (hyperbolic) If there exist two independent sub-line bundles lu and ls

of E/W which are invariant under the action of φt and positive constants
c, c′ and T0 such that the following is satisfied.

∥φtvu∥
∥φtvs∥ ≥ c′ exp(ct)

∥vu∥
∥vs∥ for ∀P ∈ M, ∀vu ∈ lu

P, ∀vs ̸= 0 ∈ ls
P, ∀t ≥ T0

Then the even contact structure is of hyperbolic type. It is also called weakly
hyperbolic or sometimes projectively hyperbolic. Remark here that under the
compactness of M this notion is independent of the choice of fiberwise
metric on E/W .

Remark 2.5 1) Note that these notions are independent of fiberwise met-
ric. For the ellipticity (1), it is also independent of the choice of oriented
orthonormal bases.
2) Moreover, in the parabolic case (2) or in the hyperbolic case (3), we can
easily modify the fiberwise metric so that we can take and T0 = 0 for (2)
and (3) and c′ = 1 for (3) (see e.g., [KV] or [Mi]).
3) Also note that in the parabolic case or in the hyperbolic case, there is no
other W-invariant (continuous) sub-line bundles of E/W other than lh, lu,
or ls.

Definition 2.6 Let D be an Engle structure D on a closed connected 4-
manifold M.
(1) (elliptic) D is of elliptic type just if its even contact structure E is of
elliptic type, .
(2) (parabolic) Let us assume the even contact structure E to be parabolic.
If moreover D/W does not intersect with lh, D is called of genuine-parabolic
type, or just of parabolic type. If there exists a constant T1 > 0 such that the
forward orbit {ϕt(P) | t ∈ [0, T1] of any point P ∈ M (i.e., a portion of a W-
curve) contains a point on which D/W and lh intersect with each other , D
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is called of trans-parabolic type, Otherwise it is called of incomplete-parabolic
type.
(3) (hyperbolic) Let us assume the even contact structure E to be hy-
perbolic. If moreover D/W does not intersect with lu nor with ls, D is
called of genuine-hyperbolic type, or just of hyperbolic type. If there exists
a constant T1 > 0 such that the forward orbit {ϕt(P) | t ∈ [0, T1] of any
point P ∈ M (i.e., a portion of a W-curve) contains a point on which D/W
and lu ∪ ls intersect with each other, D is called of trans-hyperbolic type,
Otherwise it is called of incomplete-hyperbolic type.

Remark 2.7 In parabolic or hyperbolic case, we do not know if there
do exists incomplete ones. In particular, we do not know if there exists
an Engel structure with parabolic even contact structure, which admits
W-orbits of two types, one contains a point on which D/W and lu ∪ ls

intersect with each other, and the other does not. These are fundamental
problems to be considered.

In the case of the Cartan prolongation of a contact 3-manifold, if the
contact structure has trivial Euler class as plane field, then it is considered
to be obtained by suspension construction by the identity. Even if the Euler
class is not trivial, locally it is considered similarly and the resulting Engel
structure is of elliptic type. See the following example.

If there exists a closed W-curve Γ in an Engel structure of one of the
above types, Γ it self has the same type.

Proposition 2.8 Let E be a suitably oriented even contact structure on a
closed 4-manifold M which is of parabolic or hyperbolic type. Then there
exists an Engel structure D on M with whose even contact structure co-
incides with the given one and which is of genuine-parabolic or genuine-
hyperbolic type. In the elliptic case, an even contact structure may fail to
admit a compatible Engel structure.

Proof. In both cases, take the metric on E/W as in Remark 2.5 2). Then
it suffices to take D to be ⟨ℓ2⟩ ⊕ W in the parabolic case, and D± to be
⟨ℓ1 ± ℓ2⟩ ⊕W in the hyperbolic case. Eventually in the hyperbolic case we
obtain a (genuine-hyperbolic) bi-Engel structure in the sense of Kotschick
and Vogel [KV]. Q.E.D. □

For the elliptic case, see the following examples.

Example 2.9 Let ξ be an oriented contact structure on S2 × S1. Take an
S1-bundle H = h × idS1 : S3 × S1 → S2 × S1 where h : S3 → S2 is the Hopf
fibration. Then the even contact structure E = (DH)−1ξ on S3 × S1 admits
a compatible Engel structure if and only if e(ξ) ̸= 0 ∈ H2(S2 × S1; Z) ∼=
H2(S2; Z) ∼= Z.

In particular the standard tight contact structure on S2 × S1, we do not
obtain an Engel structure in this sense.

Proof. For the sake of simplicity, if n is negative, we change the orien-
tation of ξ and assume that n ≥ 0. If e(ξ) = ninZ ∼= H2(S2 × S1; Z),
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its Cartan prolongation is defined on L(2n, 1) × S1 whose even contact
structure is given as E2n = DH−1

2n (ξ) where h2n : L(2n, 1) → S2 is the S1-
bundle of Euler class 2n and H2n : L(2n, 1)× S1 → S2 × S1 is defined as
H2n = h2n × idS1 . Then taking 2n-fold covering in L(2n, 1) direction, we
obtain what we want.

On the other hand, if n = 0, by contradiction, we assume that there
exists an Engel structure D on S3 × S1 compatible with E . Because e(ξ) =
0, there exists non-singular Legendrian vector field ℓ on S2 × S1. By abuse
of notation let ℓ also denote the pull-back of ℓ to E/W on S3 × S1. Then,
from the definition of Engel structures Σ = {P ∈ S3 × S1 | (D/W)P = ℓP}
is a non-singular closed hypersurface of S3 × S1 which is transverse to W .
Along any fibre H−1(x) (x ∈ S2 × S1) if we trace the movement of D/W in
ξx, it is clear that each fibre intersects with Σ. Namely Σ is a multi-section
of H. Therefore its Euler class is at most of torsion. This is a contradiction.
Q.E.D. □

3 Accessible set, causality, and rigidity

Bryant and Hsu showed that W-curves inside an Engel-Darboux coor-
dinate neighborhood exhibit a rigidity property among D-curves. Inaba
improved their computation and established the notion of accessible set,
which seems perfectly fits into the causality property of Lorentz mani-
folds.

In Subsection 3.2 we propose an infinitesimal version of the rigidity
which characterizes W-curves. This notion is valid for any W-curves of
any length and the mechanism of the rigidity is very simple. Moreover it
is well-adapted to give a fairy simple proof of Theorem 1.3.

3.1 Rigidity of Cauchy characteristic curves and accessible
sets

Bryant and Hsu found the following rigidity phenomena on the Cauchy
characteristic curve among D-curves in an Engel manifold (M,D), where
D-curve is a smooth curve which is everywhere tangent to D.

Let γ : [a, b] → M be an embedded regular curve which is tangent to
the Cauchy characteristic W and is included in an Engel-Darboux coordi-
nate. Therefore after changing the coordinates of the Engel-Darboux chart
and [a, b] if necessary we may assume that γ(t) = (0, 0, 0, t) for t ∈: [0, T] in
an Engel-Darboux chart {(x, y, z, w)} with D = ker [dy − zdx] ∩ ker [dz −
wdx]. We consider D-curves which are C1 close to γ.

Theorem 3.1 (Bryant-Hsu, [BH]) Let ω(t) = (x(t), y(t), z(t), t) (0 ≤ t ≤
T) be a D-curve which satisfies ω(0) = (0, 0, 0, 0) and ω(T) = (0, 0, 0, T).
Then ω coincides with γ, i.e., ω(t) = (0, 0, 0, t) for 0 ≤ t ≤ T.
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Proof. We follow Inaba’s computation ([I]) which is easier to see. First
let us forget the condition ω(T) = γ(T) and compute y(T):

y(T) =
∫ T

0

dy
dt

dt =
∫ T

0
z

dx
dt

dt =
∫ T

0
z

1
w

dz
dt

dt =
∫ T

0

1
2w

d(z2)

dt
dt .

Here the integral is ordinary, because
z
w

→ 0 and
1
w

d(z2)

dt
→ 0 when

t → 0 + 0. By integrating by parts, we have

y(T) =
z2

2w
−

∫ T

0

z2

2
d(w−1)

dt
dt =

z2

2w
+

∫ T

0

z2

2w2 dtdt .

Therefore if we only impose y(T) = 0 we can conclude that z(t) ≡ 0 and
thus y(t) ≡ 0 and x(t) ≡ 0 for t ∈ [0, T]. Q.E.D. □

The above computation enabled Inaba to define the accessible set A in
the Engel-Darboux chart.

Definition 3.2 (Accessible set, [I]) Let A be the following subset of the
Engel-Darboux neighborhood R4 = {(x, y, z, w)}.

A = A+ ∪ A− ∪ AW where AW = {x = y = z = 0} ,

A+ = {y >
z2

2w
, w > 0}, A− = {y <

z2

2w
, w < 0}.

A is called the accessible set from the origin. Note that A± is irrelevant to
the x-coordinate.

Theorem 3.3 (Inaba, [I]) 1) If a curve γ : [0, T] → R4 of the form
γ(t) = (x(t), y(t), z(t), w = t) (0 ≤ t ≤ T) in the Engel-Darboux chart
is a D-curve which starts at the origin (i.e., γ(0) = (0, 0, 0, 0)), then the
other end point γ(T) lies in A+ or x(t) ≡ y(t) ≡ z(t) ≡ 0 namely γ itself
stays in AW (i.e., is a W-curve).

Similarly, a D-curve γ : [−T, 0] → R4 of the form γ(t) = (x(t), y(t), z(t), w =
t) (−T ≤ t ≤ 0) which ends at the origin (i.e., γ(0) = (0, 0, 0, 0)), then the
other end point γ(−T) lies in A− or x(t) ≡ y(t) ≡ z(t) ≡ 0 namely γ itself
stays in AW (i.e., is a W-curve).
2) Conversely any point in A± can be joind to the origin by such a D-
curve in the Engel-Darboux chart. If the curve touches AW , i.e., γ(t) =
(0, 0, 0, t) for some t ̸= 0, on [t, 0] or on [0, t] (depending non the sign of t),
γ stays in AW .

Inaba computed the accessiboe set in the long Engel-Darboux chart. Then
at the critical length π the set is the natural continuation of what is de-
scribed above. In the usual coordinate it is also noteworthy that the shape
of the accessiboe set is the right cone in (y, z, w)-space, becuase 0 = z2 −
2yw = z2 + ( 1√

2
(y − w))2 − ( 1√

2
(z + w))2.
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3.2 Infinitesimal rigidity∗

Let us introduce an infinitesimal version of the rigidity of Cauchy charac-
teristic curves.

Definition 3.4 For a nonsingular D-curve γ : [a, b] → M is called linearly
strongly flexible (LSF for short) iff there exists a smooth deformation Γ :
(−ε, ε)× [a, b] → M for some ε > 0 satisfying

(i) Γ(s, ·) = γs : non−singular D−curve ∀ s ∈ (−ε, ε),
(ii) Γ(s, t) = γ(t) on ∃neighborhood of (−ε, ε)× {a, b},

(iii)
∂Γ
∂s

(0, t) /∈ EΓ(0,t) ∃t ∈ (a, b).

γ is called infinitesimally weakly rigid (IWR for short) if it is not LSF.

Proposition 3.5 (LSF)
1) If a non-singular D-curve γ : [a, b] → M is not a W-curve, it is LSF.
2) A non-singular D-curve γ : [a, b] → M is IWR iff it is a W-curve, in
particular, regardless to its length as projective structure.

Of course 2) implies 1) and eventually 1) can be also stated as “iff”.
Proof. 1) follows from the Lemma below. Therefore in order to prove 2)
it is enough to show the sufficiency. .

Take a W-curve γ : [a, b] → M. Then we can find a long Engel-Darboux
coordinates (x, y, z, θ) on a neighborhood of γ([a, b]) with D = ker[dy −
zdx] ∩ ker[cos θ dz − sin θ dx] in such a way that γ(a) = (0, 0, 0, 0), γ(b) =
(0, 0, 0, Θ), x(t) ≡ y(t) ≡ z(t) ≡ 0 for t ∈ [a, b], are satisfied. So γ is
identified with the curve (0, 0, 0, θ) for θ ∈ [0, Θ]. We have to show that
any deformation Γ with the properties (i) and (ii) in Definition 3.4 does not
satisfies (iii). As the even contact structure E = ker[dy − zdx] coincides

with the (x, z, θ)-hyperplane along γ, (iii) is equivalent to
∂y
∂s

(0, θ) ̸= 0.

In order to compute
∂y
∂s

(0, θ), we divide [0, Θ] into (possibly shorter)
closed intervals so that on each interval tan θ or cot θ is well defined. On
the intervals on which cot θ is well-defined, from Inaba’s computation, we
have

y(s, θ1)− y(s, θ0) =

[
1
2

z(s, θ)2 cot θ

]θ1

θ0

+
∫ θ1

θ0

1
2

z(s, θ)2(1 + cot2 θ)dθ

while on the intervals on which tan θ is well-defined, we can exchange the
roll of x and z by integration by parts and then we obtain

y(s, θ1)− y(s, θ0) = [z(s, θ)x(s, θ)]θ1
θ0

−
[

1
2

x(s, θ)2 tan θ

]θ1

θ0

+
∫ θ1

θ0

1
2

x(s, θ)2(1 + tan2 θ)dθ .
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In any case, on the right hand side each term is quadratic with respect to

x and z. Therefore if we apply
∂

∂s

∣∣∣∣
s=0

we obtain
∂y
∂s

(0, θ1) =
∂y
∂s

(0, θ0)

because x(0, θ) ≡ z(0, θ) ≡ 0 . Starting from
∂y
∂s

(0, 0) = 0 and repeatedly

applying the above, we obtain
∂y
∂s

(0, θ) = 0 for any θ ∈ [0, Θ]. Q.E.D. □

Remark 3.6 1) We see from the above argument that in the definition of
IWR, we do not have to fix the both end of γ to deform into Γ, e.g., the
boundary condition Γ(s, a) = γ(a) for s ∈ (−ε, ε) is enough.
2) A better computation without dividing into intervals must be found
for the proof of 2) if we carefully translate the computation in Lorentzian
spaces which is done in the next subsection. This is left to the readers.

Lemma 3.7 (Normal form for D-curves transverse to W)
1) If a non-singular D-curve γ : [c, d] → M is no where tangent to W , for
any t0 ∈ (c, d) there is a neighborhood [c′, d′] of t0 in [c, d] and an Engel-
Darboux chart around γ([c′, d′]) such that γ([c′, d′]) is an segment [−ε, ε]
in the x-axis for some ε > 0 and γ(t0) is the origin.
2) Take a smooth function f (x) of a single variable x which is supported
in (−ε, ε) and satisfies f (0) ̸= 0. Then the family of functions F(s, x) =
s f (x) for s ∈ (−ε, ε) gives rise to a deformation which shows that γ in 1)
is LSF.

Proof. The condition implies the projection of γ to the local quotient
space M/FW is an immersion. Take a smaller part if necessary so that it
is an embedding. Then fix a Darboux coordinate (x, y, z) for E/W on this
small neighborhood such that ker[dy − zdx] = E/W holds and the image
of is as in the statement 1). Then naturally the statement follows. Q.E.D.
□

3.3 Null-geodesic in Lorentzian 3-manifold∗

Here we give an alternative proof for Theorem 1.3 by using 1) in Proposi-
tion 3.5.

A priori, we have to show that a natural lift of null-geodesic is a W-
curve and the converse implication, while in fact it is sufficient to show
only the first because of the following reason. At any point of (v, l) ∈ M =
NC(TV), l being represented by a non-zero null vector ℓℓℓ, (γ(0), γ̇(0)) =
(v, ℓℓℓ) gives an initial condition of a null-geodesic γ(t). Then the equa-
tion of (null)-geodesics admits at least locally a unique solution. It im-
plies the natural lifts of null-geodesics defines a 1-dimensional smooth
non-singular foliation on NC(TV).

Let β : [a, b] → V is a non-constant null-geodesic of a Lorentzian 3-
manifold (V, dg) and (M, D) be its Lorentz prolongation. By definition,
the natural lift γ of β to M = NC(TV) is a non-singular D-curve. Take
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a deformation Γ as in Definition 3.4 with properties (i) and (ii) and then
consider if the property (iii) ∂Γ

∂s (0, t) /∈ EΓ(0,t) ∃t ∈ (a, b) is realizable or
not. Now the condition (iii) is equivalent to

π∗dg
(

∂Γ
∂t

(0, t),
∂Γ
∂s

(0, t)
)
̸= 0 for some t ∈ (a, b) .

Here π∗dg(·, ·) denotes the pull-back of the Lorentzian metric tensor to M
by the projection π : M → V. On the other hand apparently we have

π∗dg
(

∂Γ
∂t

(0, t),
∂Γ
∂s

(0, t)
)
= dg

(
β̇(t),

∂B
∂s

(0, t)
)

where B = π ◦ Γ so that we can compute them on V.
For any such deformation and t ∈ [a, b], using the Levi-Civita connec-

tion ∇, we have

dg
(

β̇(t),
∂B
∂s

(0, t)
)
=

∫ t

0

∂

∂t
dg

(
β̇(τ),

∂B
∂s

(0, τ)

)
dτ

=
∫ t

0
dg

(
∇β̇(τ) β̇(τ),

∂B
∂s

(0, τ)

)
dτ + dg

(
β̇(τ),∇β̇(τ)

∂B
∂s

(0, τ)

)
dτ .

The first term vanishes because β is a geodesic. As we have the map B :

(−ε, ε)× [a, b] → V ,
∂B
∂s

and
∂B
∂t

commute to each other. Therefore we can
compute the second term as follows.∫ t

0
dg

(
β̇(τ),∇β̇(τ)

∂B
∂s

(0, τ)

)
dτ =

∫ t

0
dg

(
∂B
∂t

(0, τ),
(
∇ ∂B

∂s

∂B
∂t

)
(0, τ)

)
dτ

=
∫ t

0

1
2

∂

∂s

∣∣∣∣
s=0

dg
(

∂B
∂t

(s, τ),
∂B
∂t

(s, τ)

)
dτ .

The final term is nothing but
1
2

∫ t

0

∂

∂s

∣∣∣∣
s=0

dg
(

β̇s(τ), β̇s(τ)
)

dτ and van-

ishes because βs is a null-curve for any s ∈ (−ε, ε). Q.E.D. □

3.4 Causality

We do not discuss about global causal structure but take a look at only lo-
cal problems. For a general Lorentzian manifold V and on a small neigh-
borhood U of a point P ∈ V, fix a future/past orientation. Namely, as
the set of time-like vectors in TvV has two components continuous choice
of one of them for each point v is the future orientation. Then non-zero
light-like(=null) vectors are also split into future or past oriented ones.

Now we consider curves joining a point P to another one Q in a small
neighborhood U whose velocity is future oriented. It is not difficult to see
that if P is joined to Q by such a curve, we can always find another curve
ω joining P to Q whose velocity is always future oriented light-like.
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Let us fix the starting point P and consider the local accessible set AP =
{Q ∈ U ; γ(0) = P, γ(1) = Q, γ̇(t)(≤ 0) : future oriented} from P. It is
locally a closed cone, whose interior consists of points to which time-like
curves can reach.

the accessible set AP associated with P is defined as the set of points at
which a positive time-like curve starting from P arrives. Its closure AP is
the set of points at which (time positive) light-like (i.e., null-)curves arrive.
If the accessible sets define a strict partial order on V, the global causality
is established.

If we consider the causality in a local sense, it is known that the bound-
ary of accessible set is achieved only by null-geodesics. Together with the
Bryant-Hsu rigidity, this fact should give one more proof of Theorem 1.3.
This is left to the readers, while this motivated the proof in the previous
subsection and the notion of IWR.

4 Geometry and dynamics of basic examples

In this section we look at examples of Lorentz prolongation and pre-quantum
prolongation, for which the dynamical property of E/W is also investi-
gated.

4.1 Lorentz prolongation-I : Product extension∗

For a surface Σ with a Riemannian metric dh, consider the Lorentzian 3-
manifold (V, dg) = (Σ, dh) × (S1,−dθ2) which is just the direct product
with a circle with negative metric. We call this construction the product
(Lorentzian) extension. Then we obtain an Engel manifold (M = NC(TV),D)
as explained in 1.3. Here we follow the notations there. We consider the
the case where Σ is complete and practically closed.

The Cauchy characteristic curves are the natural lifts of the null-geodesics,
while each null-geodesic of V is just the combination of a geodesic on Σ
and that on S1 with same speed. The unit tangent circle bundle S1(TΣ)
admits the geodesic flow ϕt, which is defined as ϕt((σ, v)) = (γ(t), γ̇(t)),
where γ is the unique geodesic on Σ with the initial condition γ(0) = σ
and γ̇(0) = v.

Even though we do not need detailed description of S1(TΣ) and the
geodesic flow, for later use, we fix some notations here. Let X be the vec-
tor field which is the horizontal (with respect to the Levi-Civita connec-
tion) lift of the tautological vectors, namely, π∗X(σ,v) = v ∈ TΣ. Also Y
denotes the horizontal unit vector field, so that X and Y form an oriented
orthonormal basis of the horizontal space. Let Z denote the unit tangent
vector field along the fibres. Therefore they satisfy the following commu-
tation relations

[Z, X] = Y , [Z, Y] = −X , and [X, Y] = κ ◦ π · Z
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where κ denotes the curvature function of Σ and π : S1(TΣ) → Σ is the
bundle projection. The projection M = NC(TV) → V is also denoted by π
by abuse of notation, because through the identification explained below
they correspond to each other. The geodesic flow ϕt is generated by X,
namely X = ϕ̇t ◦ (ϕt)−1 holds.

On each point (σ, θ) ∈ V = Σ × S1, NC(TV(σ,θ)) is identified with the
unit tangent circle S1(TσΣ) through the identification v ∈ S1(TσΣ) ↔ ⟨v +
∂

∂θ
⟩ ∈ NC(TV(σ,θ)). Therefore M = NC(TV) is identified with S1(TΣ)×

S1. Under this identification, the Cauchy characteristic is generated by the

vector field X +
∂

∂θ
. Note that

∂

∂θ
commutes with any of X, Y, and Z.

The first one X∗ from of the dual frame X∗, Y∗, Z∗ for T∗S1(TΣ) is,
under the identification S1(T∗Σ) = S1(TΣ) by the Riemannian metric dh,
nothing but the tautological 1-form and defines the Liouville contact struc-
ture ξ0, whose Reeb vector field is nothing but X.

The Cauchy characteristic is given by W =

⟨
W = X +

∂

∂θ

⟩
and the

Engel structure is given as the span D = ⟨W, Z⟩.

Proposition 4.1 The Engel manifold (M = NC(TV),D) obtained as the
Lorentz prolongation of (Σ, dh)× (S1,−dθ2) is isomorphic to the one given
by the suspension construction (see 1.5) starting from the contact manifold
(S1(TΣ), ξ0 = ⟨Y, Z⟩), the Legendrian field Y or Z either of which will
do, and the contact diffeomorphism given as the time 2π map ϕ2π of the
geodesic flow, with an appropriate twisting.

Proof. The one by the suspension construction is given as follows. On
the mapping cylinder M′ = S1(TΣ) × R/ ∼ where ∼ is the identifica-
tion ((σ, v), t + 2π) ∼ (ϕ2π((σ, v)), t), the Cauchy characteristic W ′ =⟨

∂

∂t

⟩
and the even contact structure E ′ = W ⊕ ξ0 is automatically fixed.

The Engel structure is defined as D′
((σ,v),t) =

⟨
W ′ ⊕ ϕ−t∗(⟨Z⟩)

⟩
. On the

cyclic covering M̃′ = S1(TΣ) × R, W̃ ′, D̃′, and Ẽ ′ are defined as well
and they are invariant under the deck transformation T′ : ((σ, v), t) 7→
(ϕ−2π((σ, v)), t + 2π). and thus we obtain D′. We can check [D′,D′] = E ′

by the commutation relation [−X, Z] = Y directly. But instead of doing
it we show that (M′,W ′,D′, E ′) is isomorphic to the Lorentz prolongation
(M′,W ′,D′, E ′).

Let us follow the identification M = S1(TΣ)× S1 given above and con-
sider its cyclic covering. M̃ = S1(TΣ)× R1 where everything is lifted and
indicated with ˜. The deck transformation is T : ((σ, v), θ) 7→ ((σ, v), θ +
2π). Consider the diffeomorphism

Φ̃ : M̃′ → M̃, Φ̃((σ, v), t) = (ϕt(σ, v), θ).

It is clear from the construction that we have Φ̃ ◦ T′ = T ◦ Φ̃, Φ̃∗W̃ ′ = W̃ ,
Φ̃∗{ϕ−t ∗ Z} = Z, and thus Φ̃∗D̃′ = D̃ as well. The fact that ϕt preserves
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the Liouville contact structure ξ0 implies Φ̃∗Ẽ ′ = Ẽ . Therefore Φ̃ descends
to the diffeomorphism Φ : (M′,W ′,D′, E ′) → (M,W ,D, E). Q.E.D. □

Let us take a look at the dynamics of the Cauchy characteristic W . W is

spanned by the vector field W = X +
∂

∂θ
Therefore the holonomy action on

TM/E is trivial in this construction, because it comes from
∂

∂θ
on S1. The

action on E/W is nothing but that of the geodesic flow and the curvature
of the surface Σ is directly reflected.

Proposition 4.2 In the case where the curvature κ of (Σ, dh) is positive,
the action of W on E/W is of elliptic type. In the case κ ≡ 0, i.e., Σ is flat,
it is of parabolic type. I the case κ < 0, it is of hyperbolic type. Trans-
hyperbolic nor trans-parabolic case never happens in this construction.

Remark 4.3 If we start from a surface with negative curvature, what we
obtain is one of the bi-Engel structure of Example 1.9 that Kotschick and
Vogel obtained in [KV]. In this case the bi-Engel structure corresponds
to the bi-contact structure (ξ+ = ⟨X, Y⟩ = ⟨h, l⟩, ξ− = ⟨X, Z⟩ = ⟨h, k⟩)
associated with the geodesic Anosov flow exp tX. (See the next subsectioj
for the notation h, l, and k. ) In particular, the Engel structure we obtained
here corresponds to ξ−.

A natural construction which gives rise to the other one corresponding
to ξ+ is given in Subsection 4.3.

4.2 Lorentz prolongation-II : Magnetic extension∗

We start from a Riemannian surface (Σ, dh) like in the previous subsection
while a slightly different constrction is adopted to obtain a 3-dimensional
Lorentzian manidfold (V, dg). Let V be the unit tangent circle bundle
S1(TΣ), so that it admits the unique Levi-Civita connection ∇Σ. At each
point (σ, v) ∈ S1(TΣ), the tangent space admits the horizontal/vertical
splitting T(σ,v)S1(TΣ) = H(σ,v)⊕V(σ,v), where we have the natural iden-
tification H(σ,v)

∼= TσΣ and V(σ,v)
∼= TvS1(TσΣ) . The Lorentzian metric

dg = ⟨, ⟩ on V = S1(TΣ) is defined as dg = dh⊕(−dθ2) with respect to
the splitting. Of course dθ2 denotes the canonical metric of the unit circle
S1(TσTΣ). We call this construction magnetic (Lorentzian) extension of a Rie-
mannian surface Σ. In this subsection we are particularly interested in the
Lorentz prolongation of the magnetic extension of compact srufaces with
constant curvature.

Before getting into special examples, let us fix some notations which
are valid throughout this subsction. Let X, Y, and Z denote the same vec-
tor fields on S1(TΣ), so that they form a Lorentzian orthonormal frame,
namely, ⟨X, X⟩ = ⟨Y, Y⟩ = −⟨Z, Z⟩ = 1 and ⟨X, Y⟩ = ⟨Y, Z⟩ = ⟨Z, X⟩ =
0. At each point (σ, v) ∈ V = S1(TΣ), the horizontal lift of v ∈ TΣ to H(σ,v)
is X(σ,v) by definition. NC(T(σ,v)V) is identified with S1 ∼= S1(H(σ,v)) by
assigning X(θ) 7→ l = ⟨X(θ) + Z⟩ where X(θ) and Y(θ) denote cos θ X +
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sin θ Y and − sin θ X + cos θ Y respectively. Therefore M = NC(TV) is
naturally identified with S1(TΣ)× S1. With respect to this product struc-
ture, let us introduce three horizontal vector fields X̃, Ỹ, Z̃ and a vertical
vectorfield Θ as

X̃|V×{θ} = X(θ), Ỹ|V×{θ} = Y(θ), Z̃|V×{θ} = Z, Θ =
∂

∂θ
.

which form a global frame of TM and satisfy the commutation relations

[Z̃, X̃] = Ỹ, [Z̃, Ỹ] = −X̃, [X̃, Ỹ] = κZ̃,

[Θ, X̃] = Ỹ, [Θ, Ỹ] = −X̃, [Θ, Z̃] = 0

and the metric relations

⟨X̃, X̃⟩ = ⟨Ỹ, Ỹ⟩ = −⟨Z̃, Z̃⟩ = 1, ⟨X̃, Y⟩ = ⟨Ỹ, Z̃⟩ = ⟨Z̃, X̃⟩ = 0,

and
⟨Θ, ·⟩ = 0.

Here again κ denotes the (pull-back of) curvature of Σ and by abuse of
notation, ⟨·, ·⟩ denotes also the pull-back of itself by the projection π :
S1(TΣ)× S1 → S1(TΣ).

If the surface is a flat torus, the magnetic extension is the same as taking
product with (S1,−dθ2). If the curvature κ is not identically zero, a priori
the resullt is different from the product extension.

Particularly interesting is the case of hyperbolic surfaces, i.e., κ ≡ −1.
Let us first look at this case because this case can be described in a special
and totally different way and also because even κ is negative constant only
the case κ ≡ −1 exhibits quite a different feature.

Example 4.4 (Magnetic Lorentzian extension of hyperbolic surface) A
hyperbolic surface is a quotient Γ\H2 where π1(Σ) ∼= Γ ⊂ Isom+(H2) =
PSL(2; R) is a torsion free co-compact discrete subgroup. The hyperbolic
plane H2 is described as H2 = PSL(2; R)/PSO(2; R) and the unit tan-
gent bundles are described as S1(TH2) = PSL(2; R) and S1(TΣ) = Γ\
PSL(2; R). In its Lie algebra psl(2; R), take the basis h= 1

2

(
1 0
0 −1

)
, l= 1

2

(
0 1
1 0

)
,

and k = 1
2

(
0 −1
1 0

)
, so that each of them generates the 1-parameter sub-

groups
{(

et/2 0
0 e−t/2

)}
,
{(

cosh t sinh t
sinh t cosh t

)}
, and

{(
cos t/2 − sin t/2
sin t/2 cos t/2

)
/{±1}

}
respectively.

As the elemets of psl(2; R) are considered to be left-invariant vector fields
on PSL(2; R), they descend to S1(TΣ) = Γ\PSL(2; R). In this context h, l,
and k correspond to X, Y, and Z respectively.

Then the left invariant vector field L = X + Z ∈ psl(2; R) canonically
assigns a null-vector to any point (σ, v) ∈ S1(TΣ).

Proposition 4.5 The null-vector field L fills up S1(TΣ) with the null-
geodesic orbits.
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This fact is understood in many ways. For example, the Lorentzian metric
on PSL(2; R) in this case is not only left-invariant but also right-invariant.
Then any 1-parameter subgroup is a geodesic even respecting the param-
eter. Then any left translation of it is also a geodesic.

Verifying ∇LL = 0 by computing ⟨∇LL, ·⟩ = 0 for a global framing,
e.g., X, Y, and L is another way. A similar comlutation in more general
setting will be done in the next example. A computation of this type also
proves that a 1-parameter subgroup is a geodesic for a bi-invariant metric.

Proposition 4.5 implies that the natural lift of the null-geodesic which
is an orbit of L on S1(TΣ) lies exactly on S1(TΣ)× {θ = 0}. Here remark
that if we regard Y generating a geodesic flow of Σ insead of X, Y is of
Anosov and ⟨L⟩ is eactly its stable foliation, because [Y, L] = L.

For θ ∈ S1 put L(θ) = X(θ) + Z and extend L to L̃ = {L(θ)}θ on
M = NC(T(S1(TΣ))) = S1(TΣ)× S1. L(θ) is the right-translation (or the
Adjoint image) of L by exp(θZ). Thus we obtain all null-geodesics in this
way. An orbit of L(θ) lies on S1(TΣ) × {θ} and the vector field W = L̃
generates the Cauchy characteristic W .

Proposition 4.6 For the Lorentz prolongation D of the magnetic exten-
sion of a hyperbolic surface Σ, the Cauchy characteristic W is regarded
as an S1-family of the Anosov strong stable foliations associated with the
geodesic flow of Σ.

In particular, it is of genuine-parabolic type. The invariant sub-line
bundle in E/W is generated by Ỹ, the S1-family of geodesic flows.

Proof. We verify the second statement. The commutation relation [Y(θ), L(θ)] =
L(θ) on each S1(TΣ)×{θ} implies that the plane fied spanned by Y(θ) and
L(θ) is integrable and in fact it is nothing but the Anosov stable foliation
F s(θ) of the geodesic flow generated by Y(θ). We have seen W = ⟨W⟩ =
⟨L̃⟩, D = ⟨L̃, Θ⟩, and E = ⟨L̃, Θ, Ỹ⟩.

The action of W = L̃ on E/W is easily computed as

[L̃, Θ] = −Ỹ, [L̃, Ỹ] = L̃ ≡ 0 in E/W .

The first one is a general phnomenon, while the second one is character-
istic in this case. Along W, θ inclines towards ±Ỹ but it never reaches.
This proves the ⟨Ỹ⟩ is an invariant sub-line bundle of E/W with which
D/W = ⟨Θ⟩ never coincides. Q.E.D. □

Remark 4.7 The 2-dimensional foliation F̃ = {F s(θ)}θ on S1(TΣ)× S1

naturally extends to two different 3-dimensional foliations G0 = {S1(TΣ)×
{θ} and G1, whose intersection is exactly F̃ . Because F s(θ) = exp(θZ)∗F s =
exp(−θZ)∗F s, the leaves of G1 is the trace of a leaf of F s by the S1 ac-
tion generated by −Z̃ + Θ. Indeed, apparently we have [−Z̃ + Θ, Ỹ] =
[−Z̃ + Θ, L̃] = 0.
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Example 4.8 (Lorentzian extension of flat torus) If the surface Σ is a flat
torus, namely the case of κ ≡ 0, the magnetic extension and the product
extension coincide to each other. In this case also the Engel structure by
Lorentz prolongation is of genuine-parabolic type.

Now we proceed to more general case. The goal of this subsection is
the following result.

Theorem 4.9 Let (Σ, dh) is a compact (or complete) Riemannian surface
with constant curvature κ. The Engel structure by Lorentz prolongation of
the magnetic extension of (Σ, dh) is of

(1) elliptic type iff κ > 0 or κ < −1

(2) genuine-parabolic type iff κ = 0 or −1

(3) genuine-hyperbolic type iff −1 < κ < 0.

The sign of the quadratic function κ(κ + 1) controlls this phenomemon.

Apart from Engel structures, as a problem of magnetic Lorentzian ex-
tensions of Riemaniann surface in general, the following results are of cer-
tain interest. Also it is fundamental to understand the above theorem.

Proposition 4.10 Let (Σ, dh) be any Riemannian surface (the curvature
κ can vary) and (V = S1(TΣ), dg) is its magnetic Lorentzian extension.

1) Any null-geodesic Γ(t) is of constant speed if projected down to Σ.

2) Let γ(t) be the projected image of a null-geodesic Γ(t) as in 1).
Then γ is a curve with geodesic curvature −κ(γ(t)).

One consequence of the above proposition and its proof in Engel struc-
ture is the following.

Corollary 4.11 If the curvature κ is constant, the natural lift of any null-
geodesic stays in a single S1(TΣ)× {θ}.

Proof of Proposition 4.10. Let (Σ, dh) be any Riemannian surface and κ
its (Gaussian) curvature. The unique Levi-Civita connection of the mag-
netic Lorentzian extension (V = S1(TΣ), dg) is denoted by ∇.

Though the statements are described on V, it is easier to prove them
on M = NC(TV). Therefore on M = V × S1, we extend ∇ as ∇× Θ and
by abuseof notation ∇ denotes it again. Also we pull back dg to M and
⟨ , ⟩ denotes both dg on V and the pulled-back on M as in the proof of
Proposition 4.6.

Any point (v, l) ∈ NC(TV) provides an initial condition for a null-
geodesic Γ(t) as Γ(0) = v, Γ̇(0) = X(θ(0)) + Z ∈ l which admits a unique
solution Γ(t). As it is already explained in the second paragraph of Sub-
section 3.3, the unique existence for the initial condition implies NC(TV)
admits a line field W , which is nothing but the Cauchy characteristic of
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the Engel structure, whose integral curves are the natural lifts of null-
geodesics. A priori, we do not have natural choice of vector field spanning
W . Therefore we consider the problem locally. Take a point (v∗, l∗) ∈ M
and a local transversal T ∼= int D3 to W which contains (v∗, l∗). On T
the initial conditions for the geodesics is given as Γ(0) = v ∈ T, Γ̇(0) =
X(θ(0))+Z ∈ Wv. Then, for a small ε > 0 U = {(Γ(t), Γ̇(t)) ; (Γ(0), Γ̇(0)) ∈
T, |t| < ε} is an open set of M which contains (v∗, l∗) and is diffeomorphic
to T × (−ε, ε) and the natural lifts of geodesics with such initial conditions
define a local flow on U, whose velocity field is denoted by W. On U, W
takes the following form.

W = r(X̃ + Z̃) + f Θ

Here r is a positive smooth function on U satisfying r|T ≡ 1 and f is a
smooth function.

The geodesic equation ∇Γ̇Γ̇ = 0 for a null-geodesic Γ(t) on V lifts to M
and W satisfies ∇WW = 0 on U. Therefore it is equivalent to ⟨∇WW, F⟩
for each member F of a framing of π∗V on U, e.g., for X̃, Ỹ, and L̃ = X̃ + Z̃.
For 1) F = X̃ safices. We have

0 = ⟨∇WW, X̃⟩ = W⟨W, X̃⟩ − ⟨W, ∇W X̃⟩
= W · r − ⟨W, [W, X̃]⟩ − ⟨W, ∇X̃W⟩

= W · r − ⟨W, [W, X̃]⟩ − 1
2

X̃⟨W, W⟩ = W · r − ⟨W, [W, X̃]⟩

while

[W, X̃] = [rX̃ + rZ̃ + f Θ, X̃] = [rX̃, X̃] + [rZ̃, X̃] + [ f Theta, X̃]

= −(X̃ · r)X̃ + (r + f )Ỹ − (X̃ · r)Z̃ + (X̃ · f )Θ

implies ⟨W, [W, X̃]⟩ = 0 , so that we can conlude W · r = 0, namely, we
can take r ≡ 1 on U and eventually on M. This completes the proof of 1).

Let us proceed to prove 2), which is done by a similar computation for
F = Ỹ. Form 1) we can assume that globally on M

W = X̃ + Z̃ + f Θ

generates the null-geodesic flow.

Assertion 4.12 f = −(1 + κ).

Proof of Assertion. We have

0 = ⟨∇WW, Ỹ⟩ = W⟨W, Ỹ⟩ − ⟨W, ∇WỸ⟩
= −⟨W, [W, Ỹ]⟩ − ⟨W, ∇ỸW⟩ = −⟨W, [W, Ỹ]⟩

and

[W, Ỹ] = [X̃ + Z̃ + f Θ, Ỹ] = [X̃, Ỹ] + [Z̃, Ỹ]− f X̃ − (Ỹ · f )Θ
= κZ̃ − (1 + f )X̃ − (Ỹ · f )Θ.

30



Therefore we obtain

0 = −⟨W, [W, Ỹ]⟩ = −⟨X̃ + Z̃ + f Θ, κZ̃ − (1 + f )X̃ − (Ỹ · f )Θ⟩
= κ + 1 + f .

Q.E.D. □Assertion 4.12.

Now the statement 2) follows from the following Proposition.
Q.E.D. □Prpopsition 4.10.

Proposition 4.13 Let γ(t) be a curve on Σ with unit speed, Γ(t) be a
null-curve lift of γ to V = S1(TΣ), and Γ̃(t) be the natural lift of Γ to
M = NC(TV), namely,

• p ◦ Γ = γ, π ◦ Γ̃ = Γ
where p and π denote the projections V → Σ and M → V respectively,
• ∥γ̇(t)∥ ≡ 1, Γ̇(t) = a horizontal lift of γ̇(t) + Z, Γ̃(t) = ⟨Γ̇(t)⟩.

We present the velocity of Γ̃ is presented as ˙̃Γ(t) = Γ̇(t) + φ(t)Θ, respect-
ing the product structure M = V × S1. Then the geodesic curvature of
γ(t) on Σ is equal to φ(t) + 1. In the integral form, if Γ̃(t) = (Γ(t), Φ(t)),
then the geodesic curvature is Φ̇(t) + 1.

Remark 4.14 1) Proposition 4.10, in particular the statement 1) im-
plies somehow the Magnetic Lorentzian extension remembers the Rie-
mannian metric of Σ. If we look at the global symmetry of the magnetic
Lorentzian extension, , unless the surface is very special type, e.g., the
global isometry group is the standard S1-action in the fibre direction of
the projection p : S1(TΣ) → Σ.

But even as a local geometry, we can find a reminiscence of the surface
as in the next assertion, which we will partly use in the proof of the above
proposition.
2) It is seen from the proof that the correction term +1 in the above
proposition is the +Z which makes the null-lift going up in Z-direction.

In the magnetic extension, if we take the sum of the metrics of the hor-
izontal and vertical spaces H(σ,v) and V(σ,v), both with the positive sign,
we obtain the standard Riemannian metric on S1(TΣ), i.e., the magnetic
Riemannian extension of Σ.

Assertion 4.15 1) Any horizontal lift of a geodesic on Σ is again a geodesic
on S1(TΣ) with magnetic Riemannian extension.
2) Consequently the horizontal lift of any geodesic on Σ is also a geodesic
for the magnetic Lorentzian extension.
3) The same applies to the fibre circles, i.e., the Z-curves.

Proof of Assertion 4.15. 1) is easily understood because the horizontal lift
is apparently locally minimizing the length. Then 2) is concluded from the
fact that the infinitesimal deformation of the given horizontal lift and the
derivation of the energy is computed by decomposing the deformation in
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the horizontal and the vertical directions. Q.E.D. □Assertion 4.15.

Proof of Proposition 4.13. First let us verify the proposition in the case
of a geodesic γ on Σ of unit speed. Let ζ(θ) denote the standard S1-
action in the fibre direction of S1(TΣ). Let Γh(t) denote a horizontal lift
of γ(t). Its velocity Γ̇h(t) is described as X(θ(t)Γh(t)). Then it is clear
that θΓh = θ(t) is constant in t. Any null-lift Γ(t) of γ(t) is then given
as Γ(t) = ζ(t − c)(Γh(t)) for some constant c. Then clearly the velocity
satisfies Γ̇(t) = X(θΓ − t + c)Γ(t). Its natural lift to M = NC(TV) = V × S1

is (Γn(t), Φ(t) = θΓ − t + c) and thus Φ̇(t) ≡ −1 for any geodesic γ(t) on
Σ.

Now we consider the general case. The geodesic curvature κg(t) of γ(t)
is defined to be ∇Σ

γ̇(t)γ̇(t) or numerically to be dh(∇Σ
γ̇(t)γ̇(t), ν(t)). Here,

ν(t) denotes the unit normal vector field along γ(t) such that γ̇(t) and ν̇(t)
form an oriented orthonormal basis of Tγ(t)Σ with the Riemannian metric
dh, and its Levi-Civita connection ∇Σ.

Let Γh(t) and Γn(t) be horizontal and null- lifts of γ(t) respectively.
Present the velocity of Γh(t) and of Γn(t) as Γ̇h(t) = X(θh(t))Γh(t). Γ̇n(t) =
X(θn(t))Γn(t). Then for some constant c, we have Γn(t) = ζ(t− c)Γh(t) and
thus θn(t) = θh(t)− t + c. Therefore it is enough to show that

θ̇h(t) = κg(t).

We prove the above equality at t = t0. The following computations
and arguments are done locally. Take the vector field X(θh(t0)) and con-
sider an orbit Ω(t) with Ω(t0) = Γh(t0), so that Ω̇(t0) = Γ̇h(t0). Take a
local triviality of the S1-bundle S1(TΣ) → Σ so that we have a product
neighborhood U × S1 of Γh(t0), γ(t0) ∈ U ⊂ Σ, Γh(t0) = (γ(t0), θ0). Also
we can assume that all orbits of X(θh(t0)) in this product neighborhoos
is horizontal with respect to this product structure. Then we also take a
product connection ∇P = ∇Σ × (dθ ⊗ d

dθ ) of T(U × S1) with respect to
this product structure. Then it is clear from the definition that

⟨∇P
Γ̇h(t)

Γ̇h(t), Y(θ(t))⟩ = κg(t)

holds.
Now we calim that even if we replace ∇P in this equation with the

Levi-Civita conection ∇ of the magnetic Lorentzian extension, the follow-
ing argument shows that the equation still holds. (Instead of Lorentzian
extension, we can use the magnetic Riemannian extension and its Livi-
Civita connection. Even then exactly the same argument holds.)

From the construction we have ∇P
Ω̇(t)Ω̇(t) = ∇Ω̇(t)Ω̇(t) = 0. Also it

is clear that both ∇P and ∇ are torsion free as affine connection. There-
fore for vector fiedls A and B with BQ = 0 at a point Q, (∇P

AB)Q =
(∇AB)Q = [A, B]Q. If necessary we extend the vector field Γ̇h(t) along
Γh(t) as a genuine vector field around Γh(t0), this applies to the vector
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fields A = X(θ(t0)), B = Γ̇h(t) − X(θ(t0)), and the point Q = Γh(t0).
Therefore we obtain

∇P
X(θ(t0))Γh(t0)

Γ̇h(t) = ∇X(θ(t0))Γh(t0)
Γ̇h(t) = ∇Γ̇h(t)

Γ̇h(t)
∣∣∣
t=t0

.

From the presentation Γ̇h(t) = X(θh(t))Γh(t) and the above computa-
tions, we see

θ̇h(t0) =
d
dt

∣∣∣∣
t=t0

⟨
Γ̇h(t), Y(θh(t0))Γh(t)

⟩
=

⟨
∇Γ̇h(t0)

Γ̇h(t), Y(θh(t0))Γh(t0)

⟩
+

⟨
Γ̇h(t0),∇Γ̇h(t0)

Y(θh(t0))Γh(t)

⟩
= κg(t0) +

⟨
X(θh(t0)),∇X(θh(t0))Y(θh(t0))

⟩
= κg(t0).

Q.E.D. □Propostion 4.13.

Proof of Theorem 4.9. We are ready to compute the linear holonomy of
W inside E/W . We start the computation without assuming that κ is con-
stant. With respect to the framing Θ and Ỹ of E/W , the infinitesimal action
of W is computed as

[W, Θ] = [X̃ + Z̃ − (κ + 1)Θ, Θ] = −Ỹ

and

[W, Ỹ] = [X̃ + Z̃ − (κ + 1)Θ, Ỹ] = κ(Z̃X̃) + (Ỹ · κ)Θ
≡ κ(κ + 1)Θ + (Ỹ · κ)Θ = {κ(κ + 1) + (Ỹ · κ)}Θ (modW).

This implies, modulo W

d
dt

∣∣∣∣
t=0

exp(tW)∗(Θ, Ỹ) = (Θ, Ỹ)
(

0 −{κ(κ + 1) + (Ỹ · κ)}
1 0

)
.

Finally we assume hereafter the curvature κ to be constant. Then the

above matrix reduces to
(

0 −κ(κ + 1)
1 0

)
, from which it is almost clear

that the theorem holds. However we take a slightly closer look at what
happens in each cases.

Parabolic case “κ = 0,−1” : If κ ≡ 0 or −1, we have exp(tW)∗ =(
1 0
t 1

)
. Therefore in E/W along W , Ỹ is invariant, without expanding

nor contracting, and Θ ≡ D/W inclines to Ỹ. There is no other invariant
line field than ⟨Ỹ⟩. They are of genuine-parabolic type.

Elliptic case “κ < −1” or “κ > 0” : If κ < −1 or κ > 0, as κ(κ +
1) > 0, we take KΘ and Ỹ as a global framing in place of Θ and Ỹ, where
K =

√
κ(κ + 1). Then the matrix for the holonomy becomes exp(tW)∗ =

33



(
cos Kt − sin Kt
sin Kt cos Kt

)
, from which we see clearly that the system is of elliptic

type.

Hyperbolic case “−1 < κ < 0” : If −1 < κ < 0, as κ(κ + 1) < 0, we take
K =

√
−κ(κ + 1) and employ the same change of global framing. Then

Then the matrix for the holonomy becomes exp(tW)∗ =

(
cosh Kt sinh Kt
sinh Kt cosh Kt

)
.

There fore we have two invariant subline bundles, lu =
⟨
KΘ + Ỹ

⟩
which

is expanding, and ls =
⟨
KΘ − Ỹ

⟩
which is contracting.

D/W = ⟨Θ⟩ is expanding and coming closer to lu as t → ∞ while
expanding and coming closer to ls as t → −∞ without passing through lu

nor ls. The system is of genuine-hyperbolic type.
Q.E.D. □Theorem 4.9.

Remark 4.16 On the magnetic extension of surfaces of constant curva-
ture κ, considering the symmetry, we see that the null-geodesics should
project down to the surface to be curves with constant curvature. Let
us look at the case of negative curvature. In order to compare the cases
of different curvatures, we take homotethic transofromations (conformal
transformation by multiplying constant) so that all surfaces are of constant
curvature −1 and then look at projected curves. If the original surface is
of constant curvarure κ, then multiplying (−κ)−1/2 to the metric ((−κ)−1

to the Riemannian metric tensor dh ) provides a surface of constant cur-
vature −1. Then curves of constant geodesic curvature −κ is transformed
into those of (−κ)1/2.

κ ≡ −1 is the critical case. The curves of constant geodesic curvarture 1
is nothing but the horocycles. If κ < −1, then the correponding curves on
the universal covering H after the conformal transformation are those of
constant geodesic curvature (−κ)1/2 > 1, which are closed circles, while in
the case of −1 < κ < 0 they are of geodesic curvature 0 < (−κ)1/2 < 1 and
are not compact. They have an intermediate character between geodesics
and horocycles.

In the spherical case κ > 0, always those curves are small circles on
S2, e.g., for κ ≡ 1 then a circle which passes through the north pole and
touches the equator is one of those.

These observation explains Theorem 4.9 from a slightly different point
of view.

4.3 Lorentz prolongation-III : Lorentzian surfaces∗

The product Lorentzian extension of a hyperbolic surface (or a surface of
negative curvature in general) gives rise to one of the bi-Engel structure
corresponding to the negative one of the bi-contact structure associated
with the geodesic Anosov flow. The seek for a natural construction of
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Engel structure of the partner of the above mentioned one motivated the
examples presented in this subsection.

Starting with a Lorentzian surface, we can perform the magnetic ex-
tension in order to obtain a Lorentzian 3-manifold and thus its Lorentz
prolongation, while what we obtain so far still seems a bit mysterious. It
is an interesting problem to analyze them. This is left to readers as a prob-
lem.

In this subsection we take the product of a Lorentzian surface (Σ, dh)
with (S1,−dθ2), so that we obtain a Lorentzian 3-manifold (V, dg). We do
not assume Σ to be compact, while for the sake of simplicity we assume the
orientations not only of Σ but also of the positive and negative directions.
It means the following. At each point σ ∈ Σ the set Sc = Sc(TσΣ) = {u ∈
TσΣ|dg(u, u) = c} is a hyperbola if c ̸= 0 or a pair of straight lines crossing
at the origin if C = 0. The orientation of the positive or negative directions
implies the choice of a connected component S±1

0 of S±1. We also assume
that the surface is oriented and the pair ⟨u+, u−⟩ (u± ∈ S±1

0 ) forms an
oriented basis.

In this situation the structural group O(1; 1) reduces to the connected
component SO(1; 1)0 of the identity and the set of oriented Lorentzian or-
thonormal frame ∪σ∈Σ{⟨u+, u−⟩ | u± ∈ S±1

0 } is naturally identified with
the associated principal SO(1; 1)0-bundle over Σ. If we take an oriented
Lorentzian orthonormal basis u± at a point σ ∈ Σ as above, then the other
(negative) unit vectors in S±1

0 are indicated as cosh tu+ + sinh tu− or as
sinh tu+ + cosh tu−.

Like in the Riemannian case, using the Levi-Civita connection, we have
the tautological horizontal vector fields X and Y corresponding to u+ and
u− on the unit tangent bundle S1(TΣ). The vertical vector field which
generates the action of R = {t} in the above sense is denoted by Z = ∂

∂t .
Then we have the structural equations

[Z, X] = Y , [Z, Y] = X , [X, Y] = κZ

where κ denotes the Lorentzian curvature of (Σ, dh). The positive geodesic
flow is generated by X, the negative one by Y.

The three dimensional Lorentzian metric dg has signature (1, 2), namely,
one positive dimension and two negative dimensions. At each point v ∈ V
the set NC(TvV) of null-lines in the tangent space TvV is again a circle.
On the other hand, in this construction the circle contains two special
points ℓ+ and ℓ− which are the fixed points of the involution ι : v =
(σ, θ) 7→ (σ,−θ). These two lines are those who already exist in TσΣ as
null-lines ℓ+ = ⟨u+ + u−⟩ and ℓ− = ⟨u+ − u−⟩. The complement of these
two points consists of two open arcs which are exchanged by the invo-
lution. So we take the only one open arc in this construction. This open
arc NC+ = NC+(TσΣ) is also regarded as the real line R = {t} by the
correspondence t ↔ ⟨cosh tu+ + sinh tu− + Θ⟩ after fixing an oriented

Lorentzian ON basis u±. Here again Θ denotes
∂

∂θ
. Therefore like in 4.1,
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our 4-manifold M = NC+(TV) is naturally identified with S1(TΣ) × S1

by ((σ, θ), u++Θ)↔ ((σ, u+), θ). The natural lift of the null-geodesics are
generated by W = X + Θ and the Engel structure is given by D = ⟨W, Z⟩.
and we obtain the even contact structure E = ⟨W, Z, Y⟩. As Θ commutes
with X, Y, and Z, this is also verified by the commutation relation.

Now we focus our attentions to a specific model.

Example 4.17 (de Sitter space) Let us take the de Sitter space dS2 =
{(s1, s2, s3) ∈ R3 | s2

1 + s2
2 − s2

3 = 1} as Σ. which is also identified with
PSL(2; R)/{exp tl | t ∈ R}. Here we are following the notations in Exam-
ple 4.4. More precisely, R3 and its standard basis correspond to the Lie al-
gebra psl(2, R) and their basis h, l, k and the (2, 1)-type metric on R3 to the
adjoint invariant metric (i.e., the Killing form) tr(ad(·) ◦ ad(·)) = 2tr(· × ·).
Then as is well-known, the principal SO(1, 1)0-bundle which coincides
with the unit tangent bundle S1(TdS2) over dS2 is identified with the prin-
cipal R-bundle PSL(2; R) → PSL(2; R)/{exp tl | t ∈ R} = dS2. On the
total space S1(TdS2) = PSL(2; R) the canonical vector fields X, Y, and Z
are now nothing but the left invariant vector fields h, k, and l. From the
commutation relation, we see that κ ≡ −1.

If we take a closed hyperbolic surface Γ \ H2 with π1(Γ \ H2) ∼= Γ ⊂
PSL(2; R), Γ acts as orientation preserving isometry on Γ \ H2, the whole
construction is invariant with respect to this action, namely, to the left
translation of Γ to PSL(2; R)× S1. The action on the second factor is triv-
ial. Thus we obtained the 4-manifold M′ = S1(TΓ \H2)× S1 and an Engel
structure D′ = ⟨h + Θ, l⟩, the Cauchy characteristic W ′ = ⟨W = h + Θ⟩,
and the even contact structure E ′ = ⟨h + Θ, l, k⟩.

As mentioned in Remark 4.3, M′, W ′, and E ′ are exactly the same as
in Subsection 4.1 for a hyperbolic surface Γ \ H2 and the Engel structure
obtained here is one of the bi-Engel structure ([KV]) which corresponds to
the contact structure ξ+ explained in Remark 4.3.

Problem 4.18 1) We do not know when we start with the magnetic
extension of a Lorentzian surface and adopt the above construction with
NC+ whether if there exists some good discrete group action which yields
a compact quotient.
2) If we could have a nice compactification in the above problem, it should
be interesting to look at the dynamics and look for the parabolic ones.
3) Also, even in the above example, we have not yet understood the
meaning of or the geometry corresponding to the compactification of the
subspace NC+ of null-lines by {ℓ+, ℓ−}.

Looking both on the product extension and the magnetic extension
concerning these problems might be of some interest.

4.4 Pre-quantum prolongation∗

Our aim in this subsection is to give examples of pre-quantum prolonga-
tions and look for more Engel structures of hyperbolic or possibly parabolic
type. Basically we follow the notations in Subsection 1.4.
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Example 4.19 (Nil-Solv hybrid) Consider a solvable 3-manifold V3 which
fibers over the circle S1 with fibre T2 and a hyperbolic monodromy φ ∈
SL(2; R) (tr φ > 2). The standard area form of area 1 is invariant un-
der the monodromy φ, we can take a closed 2-form ω whose restriction
to any fibre is the area form, which represents the cohomology class α ∈
H2(V; Z) ∼= Z corresponding to 1 ∈ Z. We take the the volume form

dvol = dθ ∧ α/2π. Then the suspension flow W is a lift of 2π
d

dθ
and is

the Poincaré dual to α with respect to dvol, i.e., α = ιWdvol. W is one of
the standard suspension Anosov flows. Now we take the bi-contact struc-
ture ξ± associated with this Anosov flow ([KV], [Mi]). W is Legendrian
for both of ξ±. Performing the pre-quantum prolongation process, we ob-
tain a bi-Engel structure D± whose even contact structure is the horizontal
space defined by the connection 1-form whose curvature form is exactly
ω. The resulting 4-manifold W is the circle bundle over V, whose restric-
tion to each fibre T2 ⊂ V is a nilpotent 3-manifold Nil3(1) of euler class
1.

The vector field W which spans the Cauchy characteristic W is a lift of
W and preserves the length of the fibre circle. Therefore the dynamics is
nothing almost the same as that of the Anosov flow W.

This is one way to construct a bi-Engel structure introduced in [KV].
We can also start from the 4-dimensional Lie group G which is the central
extension of the 3-dimensional solvable Lie group Solv3. Namely, G is
obtained by

0 → R2 → Solv3 → R → 0 , 0 → R → G → Solv3 → 0

where the first exact sequence is a semi-direct product by the action of
φt ∈ R on R2 and the second one is the unique (up to constant) non-trivial
central extension. Then we can find a co-compact lattice in G.

This Lie group is also presented as a non-central extension of the 3-
dimensional Heisenberg Lie group HR by an automorphism φ̃ which pre-
serves the integral lattice HZ where

HR =


1 x z

0 1 y
0 0 1

 | x, y, z ∈ R

 ⊃ HZ = { ∗ | x, y, z ∈ Z}

and φ̃ acts as
(

x
y

)
7→ φ

(
x
y

)
.

Example 4.20 (Geodesic flow of Riemannian surface) Let (Σ, dg) be a
Riemannian surface with no-where zero curvature κ. Consider the unit
tangent bundle p : V = S1(TΣ) → Σ, the geodesic flow on V generated
by the horizontal canonical vector field X, and the Levi-Civita connection
whose connection 1-form is denoted by β. ξ = ker β is the horizontal
plane field to which X is tangent. If the curvature κ is everywhere posi-
tive [resp. negative] ξ is a negative [resp. positive] contact structure, be-
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cause dβ = −κp∗dareaΣ. Because X is the Reeb vector field of the canon-
ical contact 1-form (i.e., of the associated Liouville 1-form) λ, X is an ex-
act vector field in the sense of asymptotic cycle. We adopt X as W for
the pre-quantum prolongation. The invariant volume is λ ∧ dλ and the
closed 2-form to which the pre-quantization is performed is ω = dλ, so
that the corresponding cohomology class α can be any of the torsion part
Tor(H2(V; Z)).

The resulting manifold M is the circle bundle over V whose euler class
is α. The action of the Cauchy characteristic W on E/W is almost same
as the dynamics of the geodesic flow on V. Therefore if the curvature κ
is everywhere positive, the Engel structure is of elliptic type, and if κ is
everywhere negative, it is of hyperbolic type. Especially if we take the
cohomology class α = 0 = [dλ], on the resulting 4-manifold M = V × S1,
with respect to this product structure we can take the connection form
to be dθ + π∗λ. Therefore the Cauchy characteristic W is generated by

the vector field W = X − ∂

∂θ
. Therefore the Engel structure we obtained

coincides with one in Proposition 4.1 which is obtained by the suspension
of the time 2π map of the geodesic flow.

For a closed oriented surface Σ = Σg of genus g ̸= 1, we have non-
unique candidates for the resulting manifold W on which the Engel struc-
ture because Tor(H2(V; Z)) ∼= Z/|2g − 2|.

For example, if we assume that κ > 0, Σ is topologically S2, V is diffeo-
morphic to RP3, and H2(V; Z) ∼= Z/2. If we take α = 0, M ∼= V × S1 and
π1(M) ∼= Z × Z/2. On the other hand, if we take α ̸= 0 ∈ Z/2, the fiber
bundle structure S1 → M → RP3 and the euler class imply that π1(M) ∼=
Z (the π1’s of the fibration is an extension : 0 → Z

×2→ Z → Z/2 → 0). In
fact M is diffeomorphic to U(2) and even to S3 × S1.

Unfortunately, even the manifold is different, the Engel structure is not
so new. The natural projection M → S1 to the circle of the half length
S1/Z/2 tells that M is the mapping torus of the antipodal map τ of S3,
which is isotopic to the identity of S3. Therefore M is diffeomorphic to the
product. The antipodal map τ is the deck transformation of the universal
covering S3 → RP3 which pulls the geodesic flow ϕt back to S3 as the flow
ϕ̃t and the Liouville contact structure ξ0 = kerλ to ξ̃0 as well. Therefore τ
and ϕ̃t commute to each other. Our Engel structure is also obtained by the
suspension construction given in Subsection 1.5 with respect to V = S3,
ξ̃0, and φ = τ ◦ ϕ̃2π.

Like in the case of κ > 0, for a surface of g > 1 and κ < 0, consider
finite converings in the fibre direction of V → Σg, we see that more or less
similar situations appear.

Example 4.21 (Propellor constructions-I) This class of examples are a
generalization of the Nil-Solv hybrid example. For the suspension con-
struction, we need a contact structure on 3-manifold which gives rise to the
even contact structure, while in the pre-quantum prolongation, the non-
vanishing closed 2-form replaces the roll of the non-integrability which
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assures the bracket generation [E , E ] = TM.
Let V be the mapping cylinder of a linear automorphism φ ∈ SL(2; R)

of T2. It fibers over the circle and is also presented as the quotient of
Ṽ = T2 × S1 ∋ (x, y, t) (x, y,∈ R/Z) by the identification (x, y, t + 1) ∼

(x′, y′, t) with
(

x′

y′

)
= φ

(
x
y

)
. ∂

∂t on Ṽ descends to W on V.

The propellor construction of contact structure is to choose a linear fo-

liation l̃t =

⟨
a(t)

∂

∂x
+ b(t)

∂

∂y

⟩
on each T2 × {t} in such a way that lt

rotates in positive or negative direction when t ∈ R increases and satisfies

lt+1 = φ∗lt. Then ξ̃ = l ⊕
⟨

∂

∂t

⟩
is a contact structure on Ṽ which descends

to ξ on V.
The fiberwise area form ω = dx∧ dy, the standard volume form dvol =

dx ∧ dy ∧ dt are also well-defined on V and satisfies ω = ιWdvol which is
a closed 2-form. The cohomology class α = [ω] is the Poincaré dual to the
suspension circle and is integral. Therefore the pre-quantum prolongation
can be performed to obtain an Engel structure on M which fibers over V
with euler class α.

According to φ being elliptic (including the case φ is the identity),
parabolic, or hyperbolic, the Engel structure is of elliptic, (genuine or trans-
) parabolic, or (genuine or trans-) hyperbolic type.

Example 4.22 (Propellor constructions-II) In the above propellor con-

struction, we choose a non-singular vector field W̃ = a(t)
∂

∂x
+ b(t)

∂

∂y
in

such a way that not only l̃ is invariant under the monodromy but also the

vector field itself is invariant, namely it satisfies φ

(
a(t)
b(t)

)
=

(
a(t + 1)
b(t + 1)

)
,

so that W̃ descends to W on V. W is Legendrian and preserves dvol.
In hyperbolic case or in elliptic case except for the identity, because

through the projection H1(V; Z) ∼= H1(S1; Z) ∼= Z, ω = ιdvol is always
exact. In parabolic case, if the eigenvalue of φ is equal to −1, then again
we have H1(V; Z) ∼= H1(S1; Z) ∼= Z and α = 0, while if it is equal to 1, we
have rank 1 choice for α, which depends on the choice of W. In the case
where φ is the identity, we have choice of rank 2. Multiplying appropriate
non-vanishing smooth function on S1 to W achieves the choice.

It is not hard to see that in any case the resulting Engel structure is of
parabolic type, while it is not surprizing because on the cyclic covering of
M which covers the cyclic covering Ṽ → V, all of them look alike.

5 Problems and discussions

To close this note we collect problems concerning the topics discussed in
this note. Some of them have already been mentioned before and some
other may be accompanied with short discussions. Also some are concrete
and others are rather vague.
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We have not discussed the symmetry of Engel manifolds. One reason
is that for an Engel structure on a closed 4-manifold M, in general the
symmetry is expected to be very small. First of all, if a diffeomorphism
Φ : M → M preserves the Engel structure D, necessarily it also preserves
W . In generic cases it implies Φ preserves each orbit of W . Then inside
each W-orbit the position of D/W in E/W almost determines the point
of the orbit.

The Cartan prolongation is an exceptional case in this sense. If we
start from a contact 3-manifold (V, ξ) and obtain its Cartan prolongation
(M,D), the symmetry of (M,D) is exactly that of (V, ξ), i.e., naturally we
have Diff ∞(M,D) ∼= Diff ∞(V, ξ).

If a closed Lorentzain 3-manifold (V, dg) admits an isometry, it auto-
matically lifts to a symmetry of its Lorentz prolongation.

There are many other closed Engel manifolds for which we have con-
tinuous symmetries.

Problem 5.1 Classify all the closed Engel manifolds with continuous
symmetry.

In particular, study the case where in the support of continuous sym-
metry the W-orbits are not closed.

On the other hand, the 2-jet space J2(1, 1) and the standard Engel struc-
ture D0 with the standard Engel-Darboux coordinates admits a big sym-
metry group, which is naturally isomorphic to the group of contactomor-
phisms of the standard contact structure (R3, ξ0). Here we follow the
notations in [EF] in Subsection 1.1. In side this group we can find a 4-
dimensional 3-step nilpotent Lie group GE which acts transitively and
freely on R4 = J2(1, 1).

The vector fields W, X, Z, and Y on R4 generate a 4-dimensional nilpo-
tent Lie algebra gE and thus the corresponding nilpotent Lie group GE. In
fact they satisfy the commutation relations [W, X] = Z, [Z, X] = Y, and
others are trivial. These relations exactly corresponde to the flag genera-
tion W ⊂ D ⊂ E ⊂ TR4. However, apparently among these vector fields
W and Z are out of symmetries of D0. If we identify R4 = J2(1, 1) with the
Lie group GE and gE is the set of left invariant vector fields on GE, the full
flag W ⊂ D ⊂ E is understood as left invariant fields on GE. In this for-
mulation the action, e.g., exp(tW) generated by W is a right translation on
GE and thus necessarily preserve left invariant fields. Relying on the left
action which preserves the Engel structure the element Φdcba ∈ GE is indi-
cated as Φdcba : (x, y, z, w) 7→ (x + d, y + 1

2 ax2 + bx + c, z + ax + b, w + a)
where Φdcba(0, 0, 0, 0) = (d, c, b, a) for (d, c, b, a) ∈ R4.

The association of the Lie algebra GE or the Lie group GE to an Engel
structure seems to depends on the choice of local Engel-Darboux chart.
However, even at any point and its neighbourhood, the Lie algebra struc-
ture seems to survive as the generation of the flag. Therefore gE msut be
very fundamental.
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Problem 5.2 An Engel structure may have continuous symmetry like in
the case of Lorentz prolongation from a Lorentzian 3-manifold with isome-
try group of positive dimension. Formulate relations between such global
symmetry to gE or if possible to GE.

Problem 5.3 In which sense dess the h-principle for Engel structures
hold? Describe the path-components of the set of Engel structures.

Problem 5.4 ( See 2) in Remark 1.7, [Ch], and [SY].) Formulate the
Wünschmann invariant for a line field L ⊂ D to be the fibre of the Lorentz
prolongation in a local sense in a manner which is suitable for the follow-
ing purpose. For a given Engel structure study the existence or an obstruc-
tion to the existence of a line field L ⊂ D with vanishing Wünschmann in-
variant, or the deformability to such one in a 1-parameter family of Engel
structures of a given one.

Problem 5.5 Which kind of informations on Lorentzian manifold can
we deduce from their Lorentz prolongation? How about the same ques-
tion for the above generalized case, Engel structures equipped with line
fields L ⊂ D with vanishing Wünschmann invariant?

Problem 5.6 Inaba’s accessible set should be reconsidered from the coordinate-
free point of view.

It might be possible to distribte the germ of the accessible set along a
W-curve of each point as a kind of field on the Engel manifold. Formulate
this notion and relate it to the global and dynamical structure of Engel
manifolds.

Consider the Minkowski space R2,1 = {(r, s, t)} with dg = dr2 + ds2 −
dt2 and its Lorentz prolongation. We can arrange an Engel-Darboux co-
ordinate in such a way that r = 1√

2
(w − y), s = z, t = 1√

2
(w + y), and

the positive ineteriot A+ of Inaba’s accessible set from the origin coincides
with the interior of the causal set of the origin in R2,1. In this case, the fibre
direction of the Lorentz prolongation is exactly ⟨X⟩ in [EF]. The function
z2 − 2wy = r2 + s2 − t2 is a 1st integral of the vector field X.

Problem 5.7 Study the relationship between this fact and the problems
5.3 - 5.5 above.

Problem 5.8 (cf. Subsection 3.4.) Give a proof of Theorem 1.3 relying
on the causality and the Bryant-Hsu rigidity.

Problem 5.9 Develop the study of (the group of) contactomorphisms
of 3-dimensional contact structures in order not only for the construction
but also for classification problem of Engel structures.

Problem 5.10 Study the Engel structure of Lorentz prolongation from
one more family of Lorentzian extension of Riemannian surface; (Σ, dh)×
(S1,− f (θ)(dθ)2) for a positive non-constant function f . S1 can be repalced
with any 1-manifold. From the point of view of Engel structures, it is
equivalent to study (Σ, f (θ)−1dh)× (S1,−(dθ)2).
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Problem 5.11 In the construction of compact Lorentzian 3-manifold from
product extension of Lorentzian surfaces in Subsection 4.3, we did not take
the whole of the null circle bundle but a portion of it corresponding to an
open interval in null circle. After taking a quotient by a discrete group
action, the boundary disappeared. Which kind of informations do the
boundary or the compactification carry?

Problem 5.12 Study the magnetic extensions of Lorentzian surfaces and
associated Engel structures.

Problem 5.13 By definition, paraboic/hyperbolic Engel structures re-
quire only two dimensional foliations to which the Cauchy characteristic
W is tangent, while in any example in this note it is raised to 3-dimensional
ones! Does there exist examples which can not be raised, or is it a natural
consequence?

How about the Engel structures coming from Eliashberg-Thurston’s
example based on laminations [ET]?

Problem 5.14 (Discussions on Example 4.20 and Proposition 4.1.) What
is the limit of Example 4.20 with α = 0 ∈ H2(V; Z) when κ tends to 0?
In the family of isomorphic examples in Proposition 4.1, κ = 0 does not
matter and we have an Engel structure.

For a Riemannian surface, in Subsection 4.1 first we performed a (spe-
cial) relativistic procedure (taking the product with (S1,−dθ2)) and then
we took a phase space for lightlike motions and obtained an Engel struc-
ture.

On the other hand, in Example 4.20 with α = 0 ∈ H2(V; Z), we first
took the phase space for motions of fixed kinetic energy on the surface
and then we perform the pre-quantization, then again we obtained the
same Engel structure.

Does there any Physical significance of the coincidence of the results of
these procedures? (Taking phase spaces conjugates the special relativistic
procedure and quantum one. ) If we look into these examples, the coinci-
dence is natural and nothing is mysterious...

If there is some meaning, then does there exists further implication of
the non-uniqueness of the case where H2(V; Z) has torsions?

We have also the third construction for the same Engel structure, namely
the suspension by the geodesic flow (at certain time) (the method of Sub-
section 1.5) of the Liouville contact structure. This construction sounds
more purely mathematical, but in this case we need to put a plane field D
somehow by hand.

Problem 5.15 Provide the study of Engel structures with singularities
with interesting examples and a framework or guiding principle.
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et Technologies de Lille 1, (2003), https://ori-nuxeo.univ-
lille1.fr/nuxeo/site/esupversions/2f7d3dfc-1fbe-4e67-88db-
7014b5e84c9f.

[SY] Hajime SATO & Atsuko Yamada YOSHIKAWA; Third order or-
dinary differential equations and Legendre connections. J. Math. Soc.
Japan, 50, no. 4, (1998), 993–1013.

[V] Thomas Vogel; Existence of Engel structures. Ann. of Math. (2) 169,
no. 1, (2009), 79–137.
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