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ABSTRACT. In this paper, we define syntomic complex for modulus pair (X, D), where X is regular
semi-stable family and D is an effective Cartier divisor on X. We compute its cohomology sheaves.
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In their paper [KSY], Bruno Kahn, Shuji Saito and Takao Yamazaki construct and study a trian-

gulated category of motives with modulus M DM, gefff over a field k that extends Voevodsky’s category

DM ng;f with non A'-homotopy invariant property. While the Voevodsky’s category DM ;f;f is con-

structed from smooth k-varieties, the category of motives with modulus M DM, ;’,J:Lf is constructed from

proper modulus pairs (X, D), that is, pairs of a proper k-variety X and an effective divisor D on X

such that X — |D| is smooth.
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2 K. YAMAMOTO

Let K be a p-adic field, and let Ok be its valuation ring with k the residue field. Let X be a regular
semistable family over Ok and put Y := X ®g4, k. Let D be an effective Cartier divisor which is flat
over Ok and such that D,.;UY has normal crossings on X. The first aim of this paper is to define the
syntomic complex .#;,(7) x|p with modulus for such pairs (X, D) for n > 1 and 0 < r < p — 1, which
is a generalization of Tsuji’s syntomic complex S,(r)x ) (cf. [Kal], [Ka2|, [Ku], [Tsul], [Tsu2],
[Tsu3] etc.). More explicitly, we have .7, (1) xj0 = Sn(7)(x,mx)- In [Tsul], [Tsu2] and [Tsu3|, Tsuji

constructed the symbol map
SymbX : (Mg(zi)(@r — /Hr<8n(’l")(x’jux))

and proved the surjectivity of this map. The second aim of this paper is to construct a symbol map
for .7, (r)x|p and to investigate the surjectivity of the symbol map for 7, (r)x|p. We will prove the

following main result:

Theorem 1.1. (Theorem 3.4) Let n > 1 be an integer. If 0 < r < p — 2, the cokernel of the symbol

map
Symbyp: (L+1Ip,,)" ® (M§i+l)®r_l — H"(Zn(r)x|D)

18 Mittag-Leffler zero with respect to the multiplicities of the prime components of D. Here X, :=
XQ®ZL/p"ZL, Dyp := D R ZL/p"Z and Ip, ., (C Ox,,,) is the definition ideal of D, 1; Mx denotes the

log structure on X associated with Dyeq UY , and Mx,, is the inverse image of Mx onto X,,.

In fact, the cokernel of Symb x|p 18 non-zero unless D is zero or reduced, and deeply depends on the
multiplicities of the prime components of D. Nevertheless our main result asserts that those cokernels
are Mittag-Leffler zero as a projective system. A key fact to understand this phenomenon is a Cartier
inverse isomorphism in a modulus situation (see Lemma 3.2 below). From this key lemma, we will
obtain an explicit description of the cokernel of the symbol map in a sufficiently local situation.

As an application of the subject of this paper, we will consider a p-adic étale Tate twists for a
modulus pair (X, D) in a forthcoming paper Y], which is a generalization of Sato’s p-adic étale Tate
twists ([Sat]). We will show that our new object is a “dual” of the usual p-adic étale Tate twists of

X —D.

Notation and conventions.
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(i) Throughout this paper, p denotes a prime number and K denotes a henselian discrete valuation
field of characteristic 0 whose residue field k is a perfect field of characteristic p. We write Ok
for the integer ring of K, and 7 denotes a prime element of k.

(ii) For a scheme X, we put X, := X ® Z/p"Z.

(iii) Let X be a pure-dimensional scheme which is flat of finite type over Spec(fk). We call X be a
regular semistable family over Spec(Ok), if it is regular and evrywhere étale locally isomorphic
to

Spec(ﬁK[Tg, e Tal /(T - Ty — 7r)),

for some a such that 0 < a < d := dim(X/0k).

2. SYNTOMIC COMPLEX WITH MODULUS

In this section, we will define syntomic complex with modulus .7, (r)x|p for 0 < ¢ <p—1.
Setting;:
e Let X be a regular semistable family over Spec(Ok). We denote Y := X ®g, k and
Xk = X®g, K. Let D C X be an effective Cartier divisor on X which is flat over Spec(Ok)
and Y U D,.¢q has normal crossings on X.
e Let Mx be a logarithmic structure on X associated with D,.qUY . Let Mp be a logarithmic
structure on D defined as the restriction of Mx. For n > 1, we write Mx,_ for the inverse

image of log structure of Mx onto X,,. Let (Y, My) be the reduction of mod 7 of (X, Mx).

To define the syntomic complex with modulus in a sufficiently local situation, we assume the existence

of the following data:

Assumption 2.1.

o There exist an exact closed immersions By, : (Xn, Mx,) — (Zn,Mz,) and B p : (Dn, Mp,) —
(D, Mg,) of log schemes for n > 1 such that (Z,,Mz,) and (Zn, Mg,) are smooth over

W :=W(k), and such that the following diagram is commutative:

X, Pz
Bp,n
D, %Y 9,

o There exist a compatible system of lifting frobenius endomorphisms {Fz, : (Z,,Mz ) —

(Zpny Mz, )} and {Fg, : (Pn,Mg,) = (Dn,Mg,)} for each n € N.
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Let (&,, Mg, ) be the PD-envelope of (X,,, Mx, ) in (Z,,, Mz, ) which is compatible with the canon-
ical PD-structure on the ideal (p)C Z/p"Z. Let (6,,p, Mg, ,) be the PD-envelope of (D,, Mp,) in
(Dn, Mg, ). By the assumption the flatness of D, we have &, p = &, @z, Zn. The morphism Fyz_
induces a lifting of Frobenius Fg, of (&,, Mg, ). For i > 1, let J([@ll C O, be the i-th devided power
of the ideal Jg, := Ker(ﬁ’gn — ﬁxn)- For i <0, we put Jéﬁi = Og, . We put

w%n = Qan/Wn(log MZ“')’ w%n‘@n = w%n ®ﬁzn ﬁzﬂ(_‘@n) (q 2 O)
which are locally free 0z, -modules.

Let us recall that the syntomic complex defined as follows:

Snl@) (X0, Mx, ) (Zn Mz, = Cone(l —p~ 9wy Re, Jgf'] —wy ®e, Os)[-1]

for 0 < ¢ <p—1 (cf. [Tsul], [Tsu2], [Tsu3]).

Definition 2.2. (syntomic complex with modulus, sufficiently local case)

We assume ¢ < p— 1. We define

lo
DX D20 Mz, /(s Mo, ) = CONE(S0(0) (X0, ), (20, M) — SnlD)(Dr MDY (P Mo, )) 1]

under the Assumption 2.1.

Lemma 2.3. The syntomic complex with modulus yn(q)l)?ch’(ZmMZ V(D Mo, ) is independent of the

choice of (Z,,,Mz,) and (D, Mg,).

Proof. If we choose another (Z,,, Mz:) and (2}, Mg ), we consider the following commutative dia-

grams:
(X, Mx,) <ou (2, M) (Du, Mp,) 2 (90, Moy)
lid i lid l
(X, Mx,) < (Z,,My,), (Du. Mp,) 222 (2, Mg,),

where 3, Bn, Bp,, and Bp, are exact closed immersions. Let (&x n, Mey ), (é”)’(’n,Mg)/M) (resp.
(Ep,ns Mep ), (6D, Mey, ) denote the PD-envelopes of 8, and 3, (resp. fp,, and fSp ). From

[Tsu3], Cororally 1.11, we have quasi-isomorphisms

i

Q
w

1

Sn(@) (XM, ) (20 Mz,) = Snl@)(X M, ) (2 My )

is

8n<q)(Dn,MDn)i(@n,M@n) g Sn(q)(DnvMDn)v(@;M@;L)

Q
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Thus we have a quasi-isomorphism
l
yn(Q))?TD,(ZmMZn),(@n,M_%l) = y (a )X|D (24, M4y ) (P}, Moy )

This completes the proof. ([l

In the general case, we define .7, (q)x|p € Dt (Xet,Z/p Z) by gluing the local complexes: We
choose a hyper-covering X*® of X (resp. D® of D) in the étale topology and a closed immersions 37 :
(Xp, Mxe) — (Z3,Mzs) (resp. Bn,p° : (Dy, Mpe) — (25, Mge)), with the property that, for each
integer u > 0, 8, (resp. B, p") is an immersion of log schemes and (Z#, Mzu) (resp (2%, Mgu)) is a

smooth log scheme over W, in such a way that there exists a compatible system of liftings of frobenius

{Fze, : (Z3,Mze) — (Z,Mze)} (vesp. {Fge, : (D, Mgs) — (D5, Mgs)}).

Definition 2.4. (syntomic complex with modulus, the general case; cf. [Tsu3], p. 540) We define the

syntomic complex with modulus #,,(q) x|p to be the object

loc
RO (0 ()X D (23.0025).(23.May)
of D¥(X? ;, Z/p"Z), where 6 denotes the canonical morphism of topoi (X3), — X1 ¢t
If we choose another X'*, 8% : (X}, Mxss) < (Z;7,Mz:s), By p o (Dy, Mprs) — (9/'n,M@/.n),
{Fz,}n and {Fg, }, then by taking the fiber products
XH. =X* Xx )(/.7 (Z;:.,Mzgo) = (Z;L,Mzz) XZ/an (Z;;,sz)
D" :=D* xp D', (2" Myre )= (2°3, Mage,) Xz/pnz (2 *n, Myrs ),
Fzy/]{o = FZ:,, X FZT’:, FQ”’n = F@on X F@’on
and using [Tsu3], Cororallyl.11, we obtain canonical quasi-isomorphisms
pr—15n(7“)(x;,MX;),(z;,MZ. — Sn(r)(xrs Mixrre) (25, Myine)s
-1
pr’ Sn(T)(X’;,MX/:L),(Z’;,MZ/;) - STL(T)(X”Z»MX”;)»(Z"Z’MZ";%
-1
P Sn(7)(D3 Mpg (23, Mog) — Sn(T) (D18 Mpie) (2775, Mors)»

—1
pr Sn(T)(D/;,,MD,T.L),(@';,M@,:L) — Sn(T)(D//;,MD,,:L),(.@”;L,M@,,:L)

and a canonical quasi-isomorphisms
R

& 0 . (Sn(T)(X':L’Mx’;t)*(Z';’sz'fz))’



6 K. YAMAMOTO

n?

RO, (S"L(r)(D:z’MD;)’(@. M@;/)) = RO".. (Sn(T)(D”;,]WDu:L),(@”;,M@u;)>
& Re,* (Sn(r)(D,;/,MD/:L),(@,;’,M@/;))7
where pr, pr’, 6’, 8" denote the canonical morphism of topoi
(X//Ifét — (X1.)~ét’ (XHI);:t — (X/I)~éta

(X Der — (XN, (XD — (X1

ét*

Hence we obtain

loc = loc
R, (yn(Q)X’|D’7(Z57Mz;)a(957M.@;)) — Re"*(yn(‘J)X“\D“&(Z”;,Mz//;),(@“;,M@u;))
= loc
— RY'. (yn(Q)X/-\Df-,(Zf;,,MZ,:L),(@/;,M@,;))-

This quasi-isomorphism satisfies the transitivity, and then .#,,(¢) x|p is independent of the choice of

hyper coverings X*® and D*® up to a canonical isomorphism.

Lemma 2.5. Let n > 1 be an integer. We have a distinguished triangle

yn(Q)X|D — yn+1(Q)X|D — yl(Q)X\D — yn,(Q)X|D[1]~
Proof. The assertion follows form the following two distinct distinguished triangles

Sn(@)(x,Mx) = Snt1(@)(x,mx) — S1(@) (x,mx) — Snl@)(x, M) (1]
and
Sn(@) (D, M) — Sn+1(0) (D, 1p) — S1(@) (D, Mp) — Sn(@) (D, Mp)[1]-

The details are straight-forward and left to the reader. O

In what follows, we assume the following assumption:

Assumption 2.6.

o There exist an exact closed immersions By, : (X, Mx,) < (Zn,Mz,) and Bp.p : (Dn, Mp,) —
(Dny,Mg,,) of log schemes for n > 1 such that (Z,,Mz,) and (2n, Mg, ) are smooth over

W := W (k), and such that the following diagram is cartesian :

X, Pz,

J ool

D, 2 g,
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o There exist a compatible system of lifting frobenius endomorphisms {Fyz, : (Z,,Mz,) —
(Zn,Mz,)} and {Fg, : (Dn,Mg,) = (Z,,Mz,)} for each n € N.
o an effective Cartier divisor Dy, C Zy,, such that 5P, = D,, and Fz, which induces a morphism

Dy — Dy,

We denote ¢ : J[gﬂ ®e,, Oz,(—Dn) — J[gj ®6,, Oz,(—Zn) ;04 @b @(a) @ ¢(b), where the

797

homomorphism ¢ induced by Fg,. We will define the Frobenius morphism “devided by p™ p~"¢ (or
or) Jg:'] ®,, Oz,(=Dn)) = Os, @6, Oz,(—Py) in the following:
We have
P(J) ®os, 02,(~20) C1'(Os, ®oy, Oz,(~Fn),

(cf. [Kal], I, Lemma 1.3 (1)). On the other hand, Jg} is flat over Z/p"Z and
(JE  © Oz, (~Puin) @L)P" L2 JL) @ O7,(~F,)
for every n > 1 and r > 0. Hence, for 0 < r < p — 1, there exists a unique homomorphism
or i J5) @0, On,(=Tn) = Os, ®0,, O7,(~T)

which makes the following diagram commute:

Jg] 02~ D) ——> Os,., D0,

n+r

Rey b ﬁznw(_@nﬁ-r)

| I

I3 ®e,, O2,(~Pn) ———— 0%, @0, 02,(~P).

n+r

From the fact that
de(wy, jw,) Cp-wy, w, (nEN, n>0),

we can define a frobenius “divided by p”

de 1
? : wZn/Wn — wZn/Wn'

Definition 2.7. (another syntomic complex with modulus, sufficiently local case)

We assume r < p—1. We define
sn(r)x|p = Cone(1 — ¢, : J([g?:l—'] ®6,, W, 19, = 08, Q0,, wénl@n)[_1]7
where @, = pr_q ® /\qd?‘p in degree q.

Lemma 2.8. Under Assumption 2.6, s,(q)x|p and Yn(q)l)?TDv(ZmMZ V(D Mgy, ) OTE quasi-isomorphic.
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Proof. By the definition of yn(q)l;ch, we have a quasi-isomorphism

(,:g,s loc
Ker (8,(9) (x,,Mx,).(ZoM2,) = Snl@Q)(D M, ) (20Mo)) = I (DX D (20 M, ) (T M, )

We will show that the isomorphism of complexes
Ker (8n(q) (X, M, ). (ZnMz,) — Snl@) (Do Mp, ) (20 Mo,)) = $0(D) x| D-
It sufficies to show that
Jgi_‘] ®6z, Wz, |2, = Ker(Jé[%_'] Re,, Wz — J([gh_'} Ry, Wz, @6y, ﬁ@n).
The surjectivity of this morphism is trivial from short exact sequence
0— Oz, (—Dn) — Oz, — Og, — 0.

We will prove that the injectivity of this morphism. It suffices to show that g, RER Ug, is injective,

where f is the definition equation of Z,,. The problem is reduced to the case
Xn = Spec(ﬁK/p"[tl, e ,td}/(ti . 'fd — 7'(')),
Zn = Spec(W,,[To, T1, - .., T, Teo)),

Dy = {t]" - ;7 =0},

D ={T7"" - Tzrrgﬂ =T},
Y WolTo, Th, .. TayToo] = Ok [p™[t1, .. ta)/(ti - ta — );
To—m, T =t (1<i<d), To — 0.
In this case, f =T;"" --- TZTZ;“ — T, and the kernel of the ring homomorphism 1 is

J = (To—ﬂ', Too; T]_"'Td—TQ>.

We put g1 := Ty —m, g2 := T and g3 := 11 ---Ty — Ty. The affine ring A,, of &, is generated by
A = {ggml} -ggmz] ~g:[3m3] | Z?Zl m; = m,m € N} as a W,[To,Th,...,Tq, Too]-module. Then any
element of A,, can be written as ¥; ,>1, zea @;2, where a; € W, [Ty, 11, . .., T4, Tso]. The generators
91, 92,93 of J is a linearly independent on W, [Ty, T1,...,Ty, Too]. Thus A is a basis for A, as a
Wi To, 1, . . ., Ta, To]-module ([Ber], p.31, 1.4.2 and Corollarie 2.3.2 (ii)). Since the polynomial f is

non-zero divisor on W,,[To, T4, . .., Ta, Teo], f is non-zero divisor on A,,. This completes the proof. [

In what follows, we will use the complex s,,(q) x|p when we compute the cohomology sheaf of the
syntomic complex with modulus in sufficiently local situation. By definition, s, (q)x|p is concentrated

in [0, q|. Note that s,(q)xj0 = Sn(q)(x,Mmx), the syntomic complex defined in [Tsu2|, [Tsu3|.



ON SYNTOMIC COMPLEX WITH MODULUS FOR SEMI-STABLE REDUCTION CASE 9

Lemma 2.9. For q,q" >0, there is a morphism in D~ (Ye, Z/p"Z):
(2.1) $0(0) x1D @ Snld) (X0 Mx, ) (ZniMz, ) — Sn(a+ ) x|D-
Proof. Proof is straightforward from the product structure of S, (q)(x,ary) (cf. [Tsu2], [Tsu3]). O

Let us define a symbol map

(2.2) (L+1p,, ) ® (MP )2 — HY( () x10)
for ¢ > 0. Here Ip,,, C Ox,,, is the definition ideal of D, ;1 and

(1 + IDn+1)>< = (1 + IDn+1) N ﬁ;;’

n+1 .

We construct a symbol map in the local situation in the following. By taking R0, we immediately
obtain its global case.
Recall that (X,,, Mx,) denotes the reduction of mod p™ of (X, Mx). Let Cp41 be the complex

X

(2.3) 1+ Js )N (1+ Oz, (~Pni1)) — (14 Oz, (D))
deg. 0 deg. 1
We define the morphism of complexes Cy, 11 — s,(1)x|p by
(2.4) (14 Je )N+ Oz, (—Zni1))* — (sa(D)x10)° = Ji, @6, Oz, (—Dn);
a —log(a) mod p"
at degree 0 and
25) (1402, (-Zni1)) — (sn(Dx1p)" = (O, ®0,, Wy 12,) © (05, ®o,, O, (—Pn));

b (dlogh mod p",p~" log(t"ps, . ()71
at degree 1, where pg : Og — Og denotes the Frobenius operator induced by {Fz, } and we have

used the fact that log(bP¢s, ,, (b)~') is contained in
P(Os,41 ®6z,,, 02,1 (—Dnt1)) & Os, ®0,, 02,(~Tn),
since bPog, ., (b)) €1+ p(Os,,, ®0z, ., O, (—Zn+1)). Taking H', we obtain
(2.6) Symbyp: (1+1p,,,)" =H"(Coy1) — H' (sn(1)x)p) = H (S (D)D)
We obtain the symbol map (2.2) as following composite maps:

Symb ®Symb
27)  (A+1Ip,. )< @ (M )Pet ZEXIDTRIN,

Xnt1

— Hq(sn(Q)X|D) = Hq(yn(Q)é?TD)

H (sn(1)x1p) @ HH(Snlg — 1) (x,01x))
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Here Symby : (Mg(iﬂ)@’q’l — HT (S, (g — 1)(x,my)) is symbol map defined by [Tsu2|] §2. The
second morphism is product structure s, (1)x|p @ S, (q— Dx,mx) = $n(@)x|D-
3. MAIN RsULTS

In this and the next section, for 0 < g < p — 2, we calculate the cohomology sheaf
(3.1) Hi(s1(g)xp) (0<qg<p—2).
We first define tow filtrations on the sheaf 7?(s1(q)x|p)using symbols and state our main results on
the associated graded pieces.
Definition 3.1. We define the filtrations U and V' on (1+ Ip,)* ® (M%)Mq*l) (q>1) by

(3.2) U1+ 1p,)*):=(1+1p,)*, VU1 +1Ip,)*):=0+7Ip,)* <>,

(3.3) U™(1+1Ip,)*) := (L +7"1Ip,)*, V™(1+1p,)") := U™ (1 +Ip,)") (m > 1),
ifq=1, and

(3.4) um ((1 +1p,)* ® (Mgg)@(q*l)) = (the image of U™((1+ Ip,)*)) ® (M )®1),

(3.5) V™ ((1 +1Ip,)* ® (M)gg;)@?(q*l)) := (the image of U™((14 Ip,)™)) ® (Még)@(ff*?@ <m>
+ U (14 Ip,) @ (M) 26 D)
if ¢ > 2. Here (1+7"Ip,)* := (14+a™Ip,)N O, form > 0.

We define the filtration U" and V" on H9(s1(q)x|p)(¢ > 0) to be the images of these filtrations

under the symbol map 2.2. Put
(3.6) gro H(s1(q)xp) == U H (s1(q)x|p)/V"H (s1(2)x|D),
(3.7) gr"H(s1(q)x|p) == V" H(s1(q)xp) /U™ H(s1(q) x|p)-
To describe these graded pieces, we introduce some differential sheaves on Y. We define
(3.8) wg,‘D = wy ®e, Oy(—Dy),

where s := Spec(k), w{ = Q‘{,/S(log(My/NS)), D, := D®g, k and (s, N;) denotes the log point over

s. We define the subsheaves Zf,lD and B%‘D of W;Z/|D by
(3.9) Zyp = Ker(d" : w§, , — wg,ﬁ)),

- -1
(3.10) By, p = Im(d* ! LWy p = Wy p)-
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Let wg/l D.log be the subsheaf of abelian groups of w{. generated by local sections of the form
dlog(x) A dlog(ai) A--- A dlog(ag—1),
X
where z € (1 + ﬁy( — DS)) and a1,...,a4-1 € My.
If D=3 cpomaDy, we denote D' := >,y m\Dy. Here m) := min{l € N |p-1>my}. We

put Dy := > cp ma(Ds),. We define a map d : wi ® Oy(-Dy) — witt ® Oy (—D,) by the local

assignment

w®H7r;”*r—> (dw+2m>\~dlog(7r>\)/\w)®n7rf\”* (w € wy),
AEA A€A AEA
where my € Oy denotes a local uniformizer of (Dy),, for each A\ € A. Using this d, we regard

(wy ® Oy (—Dy),d) as a complex.

We have the following Lemma:

Lemma 3.2. (cf. [SS], Theorem 3.2) For each integer q > 0, there exists an isomorphism

(3.11) ct: wg,‘Dg - Hq(wiles)

(3.12)  adlog(b1) A dlog(b2) A ... A dlog(bg) + the class of a? dlog(b1) A dlog(b2) A ... A dlog(b,),

where a € Oy (—D?) and by,...,by € My.

Proof. We use a similar argument as in [SS]|, Theorem 3.2. If p divides my for any A € A, then the
map d : w{ ® Oy (—D;) — (,u}q,Jrl ® Oy (—Dy) sends

w® HWT)‘ = dw ® HWZ“.
AEA AEA

Thus we have the isomorphism

from [SS], Theorem 2.3 (2).

We next show the general case. We see that the natural inclusion
wy ® Oy (—p - Dy) = wy ® Oy (=D)
is a quasi-isomorphism. We define wy, := wy ® Oy (—Dy), where m = (my)xea. We can consider a
filtration

pm’ — ¥m, m

such that

ZmA’iH—Zm)\’i:l fOT 0<i<t,

AEA AEA
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where m; := (m ;) and m; := (m/,\z)/\

The graded pieces of the above filtration are of the form wf"‘i such that (my4,p) = 1, for all

m;41

A € A. The sheaf

i are acyclic from a similar argument as in [SS], Lemma 3.4.

q

wm
7
miq

Using above facts, we obtain the isomorphism
C71:wl @ Oy (—DL) 5 H(wy @ Oy (—p- DL)) = HI(wy @ Oy (~Dy)).
This completes the proof. (Il

For each integer g > 0, we have the following morphism which restricts a morphism (3.11) to wg,‘ D

(3.13) ct: wyp — M (wy|p)

(3.14)  adlog(b1) A dlog(b2) A ... A dlog(bg) + the class of a? dlog(b1) A dlog(b2) A ... A dlog(b,),
where a € Oy (—Dy), and by, ...,b, € My

Lemma 3.3. (cf. [JSZ], Theorem 1.2.1, Proposition 1.2.3) We assume that the notation and the
assumption be as above. Then, for each integer ¢ > 0, we have the following exact sequence.

(3.15) 0wl 1oy — Zhip —5 HI(wip) — 0.

Proof. This claim is trivial except the exactness in the middle term (The surjectivity of 1 — C~1 is

reduced to that of 1 —C~1: w%‘D — wg,lD/B)q,lD). One can check the exactness at the middle term

in the same way as that of [JSZ] Theorem 1.2.1. O

We have the following main results.

Theorem 3.4. Let n > 1 be an integer. If 0 < r < p — 2, the cokernel of the symbol map

Symbxp : (1+1p,,,)* @ (M, )"~ — H'(Su(r)x|p)

Xn41

1s Mittag-Leffler zero with respect to the multiplicities of the prime components of D.
Theorem 3.5. We assume that p > 3. Let e be the absolute ramification index of K. Then the sheaf
Ha (sl(q)X|D) has the folllowing structure:

(1) For m =0, we have short exact sequences:

R
0— — gryH? — W — 0,
RNeH (s1(@)xp) 0" (1(@x12) = 110

{z,a1,...,aq-1} — dlogZT Adlogar A --- Ndlogay



ON SYNTOMIC COMPLEX WITH MODULUS FOR SEMI-STABLE REDUCTION CASE 13
Here v € (1+1Ip,)*, a1,...,aq-1 € MY and y € Ox,(—=D3). We denote T (resp. @;) the
image of  (resp. a;) in My, and we denote § the image of y in Oy (—Dy)

0 — RNgriH(s1(q)xp) — griH(s1(q)x|p) — w%‘,é,log — 0,

{z,a1,...,aq—2,7} — dlogTAdlogai A---Ndlogay,—3
where

R = Ker(gr%%q(S'D) — Ker(Zq(ﬁy ®e, w'le%) M Hq(ﬁy R0, w‘Zu%))).
(2) If 0 <m < pe/(p—1) and p fm, then we have

Wil
m ~ Y|D
gro' H? (81((1)X|D) = |

qg—1
BY\D

{1+7™y,a1,...,a4-1} —gdlogar A--- Adlogay
wi?

gri"HY <Sl(q)X\D) = Zi—'f;
Y|D
{1+ 7™y,a1,...,a4—2,7} — Ydlogas A --- Adlogag_2

(3) If 0 <m < pe/(p—1) and p|m, then we have short exact sequences

—1
£m y
0

Yy D
— — gri'H(s1(q — —
LmNH(s1(q)x ) ! (=1(@)x1p) ;1/|1:1)

— 0,

{1+7™y,a1,...,a4-1} — gdlogas A --- Adlogay

“p
0— L™ NHY(s1(q)xp) — gr"H(s1(q)x|p) —

q—2
ZY\D

— 0,

{1+7"y,a1,...,0q4—2,7} — Ydlogai A--- Adlog a3

where L™ is an certain subsheaf of gr’{}?—lq(sl(q)xm) which is given more explicitly in a

sufficientlly local situation (see Lemma 4.10 below).

(4) If m > pe/(p — 1), then U™H(s1(q)x|p) =0

4. PROOF OF MAIN RESULTS

4.1. Proof of Theorem 3.4. From Lemma 2.5 and induction on n, it suffices to show the claim in

the case n = 1. By Lemma 4.11 and Lemma 4.12 below, the cokernel of the morphism

g (1 +Ip,)* ® (M}(]i)@q_l) — gryHY(s1(q) x|p)
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will be Mittag-Leffler zero with respect to the multiplicities of the prime components of D.. Then we
will obtain that Coker(Symbyp) is Mittag-Leffler zero by the finiteness of the filtration {U™ }.en in
Theorem 3.5 (4).

4.2. Proof of Theorem 3.5. By Lemma 4.2 and Lemma 4.10 below, we will obtain (1), (2) and
(3). From Lemma 4.5 (3) below, we will obtain gri?H4(Sp) = 0 for pe/(p — 1) < m < pe. Since
UP*H(Sp) = 0 by Lemma 4.4 and Corollary 4.6 below, this implies (4). Thus we will obtain
Theorem 3.5 from Lemmas 4.2, 4.4, 4.5, 4.10, and Corollary 4.6 below.

In the rest of this section we prove the lemmas that have been mentioned in the above proof of

Theorem 3.4 and Theorem 3.5. We will work with the following local situation.

4.3. Local computation. We denote (S, N) the scheme Spec(0k) with log sturcture N defined by
the closed point. Let (V, My ) be the scheme Spec(W[T]) with the log structure defined by the divisor
{T =0}, and let iy : (S,N) — (V, My) be the exact closed immersion defined by T'— 7. We assume
that there exists a factorization (Z, Mz) — (V, My) — Spec(W) such that (Z, Mz) — (V,My) is
smooth and compatible with the liftings of frobenii, and that the following diagram is cartesian (the

left cartesian diagram is mentioned in Assumption 2.6):

T N

(9,Mg) —— (Z,Mz) —— (V,My).

Lemma 4.1. Let n be a non-negative integer.

(1) From the reduction mod T of the short exact sequence

- AdlogT

(41) 0— wgl/lvl ®ﬁzl ﬁZ1(7~@1) '—Og—) w%1|@1 — Wél/vl ®0zl ﬁZl(*gl) — 0,
and the Oz, -linear isomorphism

(4.2) Oy ®0,, wh g — (M0, )T 1 02) @ W |,

induced by the multiplication by T™ on qull% for each integer ¢ > 0, we obtain a short exact

sequence of complezes:

(4.3) 0 — wypl-1] — (T 0%, /T O2,) @ wy, 19, — wyp — 0.
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(%) Furthermore, for each integer ¢ > 0, the connecting homomorphism Hq(w;,lD) — Hq(w;,‘D)

of the long exact sequence associated to (4.3) is the multiplication by (—1)%m.
(2) pr /{/mi Hq((TmﬁZ1/Tm+1ﬁZ1) ®w21|91) =0.

(3) If p|m, there is an isomorphism:

(4.4) ™. (30 ® /\qd?‘p) L Oy @0, WY 1, — H‘I((Tmﬁzl [T 67,) ® W'zl\%)

Proof. The assertions 4.1, 4.2 and 4.3 are easy follows from Lemma 2.4.2, [Tsu2] and (2) follows from
(). We prove (*) and (3). There is a commutative diagram of complexes with exact rows:

Adlog(T
(1)

—14d d
l/\q e lT"’w(@@/\q dp“’) l/\q%’

T™-(Ndlog(T)) T" Oz, . .
(Tm+1ﬁzl Qwyz 9, * Wyp » 0

0 —— wyp[-1

and taking cohomology, we get the following commutative diagram:

q—1 Adlog(T)

q
0 _— Wy D — Oy ®wzl‘@, _ - 0

q
Yy | D’

| Jo- o) e |

T™-(Adlog(T)) T 0 7 . . .
Hq((Tmﬂ@él ) ®w21|@1) — Hi(wyp) — HU(wyp):

wY\D)

”Hq_l(w‘YID) —_— HITY(

The commutativity of the above two diagrams follows from Lemma 7.1.4 in [Tsu2] and the character-
ization of Cartier isomorphism. Then we have (3) from Lemma 3.2. The claim (x) is follows from a

similar arguments as in the proof of Lemma 7.4.3 (2) [Tsul]. O

Lemma 4.2. Let m be a non-negative integer.

(1) If p fm, there is a short exact sequence

—2 -1
45 0 D pa((rmay, T ' b
( ' ) - Zq72 — ( Zl/ Zl) ®wz1\@1 — q—1
Y|D Y|D
which is characterized by the following properties. For x € Oy(=%1) and ay, ..., a1 € MZ,

the image of

(4.6) d(T™z ®dlogay A--- Adlogag—1) € Bq<(Tmﬁzl/Tm+lﬁzl) ®w21\@)
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(4.7)

(2)

(4.8)

(4.10)

(4.11)

(4.12)

(4.13)

K. YAMAMOTO

q—1
in X0 s pdlogar A -+ A dloga,—1, and
Byp
d(me ®dlogay A--- ANdlogag—a A dlogT) S Bq((Tmﬁzl/TmHﬁZl) ® w21\91>
q—2
is the image of zdlogar A --- ANdlogag_3 € ;‘;—'f;, where @; denote the images of a; in M.
Y|D
If p|m, there is a short exact sequence
w2 wiil
0— Yl_g — Bq((TmﬁZI/Tm“ﬁZl) ®w'le%> — Yl_? —0
Z;J,lD Zlq/\D

which is characterized in the same way as (1).

The homomorphism
¢4P . : q :
1—p®A ) 17 (ﬁy@)wzll%) —H (ﬁY@lel.%)

is surjective. Its kernel IC is the subsheaf of abelian groups of : Zq(ﬁy ®W21|91) generated by

local sections of the form
1 ® dlog(ar) A dlog(ag) A--- Adlog(ag), (a1 €14 Oz, (—Zh),az... a0 € MP)
and there is a short exact sequence
0— w%]é’log K = Wi pieg =0

which is characterized by the following properties:

Foray € 14 Oz,(=%1),aa,...,a, € MZ", the image of
1 ® dlog(a1) A dlog(az) A--- Adlog(ay) € K
in wg,lD’log is dlog(ar) A dlog(az) A - -- A dlog(ag), and
1 ® dlog(a1) A dlog(az) A --- Adlog(ag—1) ANdlogT € K

is the image of dlog(at) A dlog(az) A --- Adlog(ag_1) € wgflg log’ Where a; denote the images

; gp
of a; in M.

Proof. 1t p fim, 217} ((T™ 0, /T™102,) @ wy ) = BUH((T"07,/T™107,) @ wy, 5, ) by

Lemma 4.1 (2). Then we have from 4.3 the following exact sequence:

(4.14)

0 782 = 70! ((Tmﬁzl/Tm“ﬁzl) ® w'le%) — BIH = 0.

If p|m ,the homomorphism

(4.15)

HQ*I ((Tmﬁzl /TerlﬁZl) ® le\.@l) - Hqil(w.Y|D)
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is surjective by Lemma 4.1 (1). Hence, the homomorphism

(4.16) 27 (T 02, /T 02,) @ Wy, 9, ) = 297 (Wi p)

is surjective and 4.3 induces a short exact sequence:

(4.17) 0 ZL 2 — 707! ((Tmﬁ’zl JT™H6,) ® w‘Zl‘%) = ZLh 0.

(1) and (2) follows from these two short exact sequences and 4.3. (3) follows from the latter exact

sequence with m = 0, Lemma 4.1 (1) and Lemma 3.3. O

Let A (resp. B’) be the subcomplex of Jé?lf'] ® Wy g, (resp. Og ®wy 4 ) which coincide with
Jgff'] ® Wy, 9, (resp. Og ® w‘Zl‘%) in degree ¢ — 1, ¢, and ¢ + 1 (resp. degree ¢ — 2, ¢ — 1, and q),
and is 0 in other degree. The inclusion map (resp. 1 ® A" tdp/p) J([éaql_'] ® qu:|1% — Op, ® wg‘l%
and the identity map (resp. ® A1dp/p) Og, ® w%l‘ 9, 08 ® w%l‘ , give a morphism of complexes
1 (resp. ¢q):A" — B'. We put Sp’ the mapping fiber of the morphism 1 — ¢, : A* — B". Then we
have H%(s1(q) x|p) = H*(Sp’).

We define the descending filtration U™ (0 < m < pe) on A (resp. B’) as follows:

(4.18) 0 (T 05 + T @l > (T 06 + TE) ®uf
m [p] +1
= (T 0s, + Jg)) @yl iy — 0=
(4.19) (reSp' e 0= (T Os + TP @ = (T 05 + T @ Wl

— (T™0s, + J2) ®Wy g — 0= ),
where m’ denotes the smallest integer which is > max(e + m/p,m). The morphism 1 : A* — B’
is compatible with the filtrations U'. By the assumpution p > 3, we have gpl(Jgi]) = 0. Then the
morphism ¢, : A* — B is also compatible with the filtrations U.

We define the filtration Um(O < m < pe) on Sp" to be the mapping fiber of 1 — ¢, : UmA —
U™B' and define the filtration U™ on H9(Sp’) to be the image of H4(U™Sp’). We will show that
U™H(Sp) = HI(U™Sp") (0 < m < pe).

Next we calculate the image of (14 Ip,)* @ (M$)®@~1) under the symbol map 2.2.

Lemma 4.3. For x € (1 + ﬁZ2(—@2))X, aiy...,0q-1 € Mgof, the image of TR a1 @ -++ @ Gg_1 in
HI(Sp’) under the symbol map 2.2, is the class of the cocycle

(4.20) <d10gm Adlogar A---Adlogag—1, p~* log(zPp e, (z) 1) - dp/p(dlogai) A - -+ Adp/p(dlogag—1)
+2?;11(—1)i_1p_1 log(alpg,(a;)™t) - dlogz Adlogai A -

d d _
ANdloga; 1 A ?@(dlog @it1) AN A f(dlog aq—l)) S (ﬁgl ®w%1‘@1) 3} (ﬁgl ®wq21|1@1),

where T denote the image of x in (1 + Ip,)* and @; denote the images of a; in M}gfz.
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Proof. This is a straightforward calculation by (2.2). a
Lemma 4.4. For 0 < m < pe, we have U"HI(Sp’) C HI(U™Sp").

Proof. We use a similar argument as in [Tsu2], Lemma 2.5.2. By Lemma 4.3, Z4(U™Sp’) = Z9(Sp")N
U™Sp", and the definition of U™Sp’, it suffices to prove that:

(4.21) dlog(1+T"z) € (T™ s, + Jgi]) ® wlzl‘%

(4.22) p~tlog ((1 +T™x)Pps, (1 + me)_l) € (Tmﬁgl + Jg]) ®e,, Oz, (—9)

for z € Og, ®p,, Oz,(—%2) and 1 <m < pe. We denote T' € I'(&, Og,) a lifting of 7 € I'(Xz, Ox,).
The former is trivial. We will prove the latter. We have ¢g, (x) = 2P + py for some y € Og, ®o,,
Oz,(—%s). Put z = y(1 4+ TP™xP)~ 1. Then we have @g, (1 + T™x) = (1 + TP™zP)(1 + pTP™z). On
the other hand, (1+7"x)P = 1+TP"xP 4+ pT™w for some w € O, ®e,, Oz,(—P2). Hence we obtain

4.23 1+ Tm2)Ppe, (1 +Tmz) ! = (1 + pT™w(1 4+ TP"aP) 1) (1 + pTP™2) L.
2

This completes the proof. O

Next we calculate Hq(grgS p’) for 0 < m < pe. By definition, we have a long exact sequence:

(4.24) 0= Z9 (g2 B) — HY gr2Sp') — 29 (grp A) —25% HO N (g2 B)
1—¢q grngq
Bi(grgB')
Since m > e +m/p (resp. m < e+ m/p)<=m > pe/(p — 1) (resp. m < pe/(p — 1)), we have the

— Hi(grgySp) — H(grg A')

following:
" (0<m < pe/(p—1).p Jm).
(425)  Z207 (g A) = { (TH2 0, [T G, ) @ Wl L, (0 <m < pe/(p—1),plm),
Zq—l((Tmﬁzl/Tm-Hﬁzl) ®w'le%) (pe/(p —1) <m < pe),

(4.26) HI (@ B) = HO (T O, [T 02, @ Wy, 9,),

(427)  HI(gmA) = 29((17" 07, /T 02) ©wy,15,) (0 m <pe/(p—1),
i ’HQ((Tmﬁzl ST 64,) @ le‘%) (pe/(p — 1) < m < pe),

(4.28) gryy B (T Oz, [T O2,) @ WY g,

Bi(grpB) BQ((Tmﬁzl/Tm“ﬁZl) ® W21|@1> |

Lemma 4.5. Let m be an integer such that 0 < m < pe. Then :
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(1) If m =0, we have an exact sequence

q—1
Oy @64, Wy g,

(4.29) 0 — — H(gry Sp')

qg—1
Oy ®ﬁzl wZ1\@1

. 1-p@A? 52 :
— KeI‘(Zq(ﬁY ®ﬁzl U‘)Zﬂ@l) — Hq(ﬁy ®ﬁzl wZ1|@1)) — 0.

(2) We have an isomorphism
(4.30) 272 (gt B) = HT (e Sp ).
(3) If 0 <m < pe/(p—1) and p|m, we have a surjective morphism,
(4.31) HilgrgSp) — BU((T™ 07, /T 02,) @ wy, 0,),
and it is isomorhism if 0 <m < pe/(p — 1) and p fm.
(4) If pe/(p —1) <m < pe,
(4.32) H(grg Sp) = 0.
Proof. We describe the homomorphism Zq_l(gr?;A‘) N Hq_l(gr?}B') as follows:
(1)
0= HI (702, /T 02,) @ iy, 5, ), (0<m < pe/(p—1),p Jm),
(i)
er+m eTm - ®/\q_1d / — m m .
(T - /PﬁZI/T - /p—HﬁZl) ®w%1ll@1 e e 1((T Oz, )T —Hﬁzl) ®wZ1|@1)’
(i)
_ m m . 1—p1 QAT L dy/ _ m m .
zZ4 1((T ﬁZl/T +1ﬁZ1) ®WZ1|.@1) u) Hq 1((T ﬁZl/T +1ﬁZ1) ®w21|@1)7

(m = pe/(p—1)),

ze™ ((TmﬁZI/Tm+lﬁzl) ® w'21|@1> S HI <(Tmﬁzl /Tm+1ﬁzl) ® o‘)IZ1|%)’
(pe/(p = 1) <m < pe).
The first homomorphism (i) is isomorphism by Lemma 4.1 (2). The second homomorphism (ii) is

injective by Lemma 4.1 (3). The third homomorphism (iii) is surjective by Lemma 4.2 (3). It is trivial

that (iv) are surjective. Hence we have

(4.33) H(gr

mea o\ m g\ 1—%q grz B
507) = Ker (WY (g A7) = Bq<gUrmB->>
U
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except for 0 < m < pe/(p—1),p|m case. (1) and (2) follows from the injectivity of the homomorphism
of (ii). O

Lemma 4.6. We have HI(U™Sp") =0 for pe/(p — 1) < m < pe

Proof. I pe/(p — 1) < m < pe, we have

(4.34) OmAT=t = U BT = (T 05 + JE)) @ w4
(4.35) (resp. UmAT=U"B" = (T™0s + Jgi]) ® w%ﬂ%)

and @1 @ A1~ tdp/p(resp. p @ Ald¢/p) are nilpotent on them since pe/(p—1) < m implies m > e+m/p
and <p1(Jc[§i]) =0. Then 1 — ¢, : UmA — U™B" are bijective in degree ¢ — 1 and degree gq. [

Corollaly 4.7. We have U™H(Sp’) = 0 for pe/(p — 1) < m < pe.
Lemma 4.8. The homomorphism HI(U™1Sp") — U™HI(Sp’) are injective for 0 < m < pe.

Proof. By Lemma 4.6, we may assume that m + 1 < pe/(p — 1). It is enough to show that
(436) ,Hq_l(UmSD') — ’Hq_l(grngD')
is surjective. From the argument before Lemma 4.5 (i), we obtain an isomorphism
(4.37) Z97 (g B) = 2977 ((Tmﬁzl/Tm“ﬁzl) ® w'le%) — HI N (g Sp').
Then it suffices to prove that the natural homomorphism
(4.38) 220" B) = 202 (T 0z, + JE) @ iy, ,)
= 292 (g B) = 2072 (I 0, /T 0s,) © iy, 15, )
is surjective or equivalently that the homomorphism
(4.39) HI2 (T O, + T @ wiyy0,) = HI2 (T 02, /T 05,) © iy, ,)

is surjective. When p fm, this is obvious by Lemma 4.1 (2). In the case of p|m, this follows from the
following commutative diagram in which the lower horizontal arrow is surjective and the right vertical

arrow is an isomorphism by Lemma 4.1 (3).

HI2 (T Oz, + T @iy 0,) —— HIR((TM02 /T 02,) @ w0,
TT’"w@/\Q*Q%’ TT"%ap@A‘I*z%’

q—2 q—2
Wz 190 R Oy ®w21\@/1'
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Corollaly 4.9. H4(U™Sp’) = U™H(Sp") for 0 < m < pe.

From lemma 4.4 and 4.9, we have homomorphisms
(4.40) am,p gty HY(Sp') — g HI(Sp)
and injective homomorphisms
(4.41) Bm.p : grHI(Sp") — H(gry Sp’)

for 0 < m < pe.

Lemma 4.10. Let m be a non-negative integer. Let x € (1 + Ig,)*, let a1,...aq-1 € MZ’ and let
y € 0z,(=22). Let T denote the image of x in (14 Ip,)*, let @; denote the image of a; in M3 and

let § denote the image of y in Ox,(—Ds). Then we have:
(1) If m =0, the image of
TR@®...0g-1 € (L+Ip,)* @ (ME)®
under the composite

(4.42) (1+Ip,)* ® (ME)®@D - @d HI(Sp') =2 grd HY(Sp)

Bo,p

. ) 1— a4
— ’Hq(gr%SD ) —» Ker(Zq(ﬁy ®6y, wzl‘%) -M

HI(Oy @0,y wip12,) )
is 1®dlogx Adloga; A--- Adlogag—_;.

(2) If 0 <m < pe/(p—1) and p fm, the image of
A+ @@ @T1 € U™ ((L+1p,)* @ (ME)* )

under the composite

Bm,D%m.D

(4.43) um ((1 +Ip,)* ® (Mgg)@q*l)) — g HI(Sp) ZmPEE, 349 (grmS ')

= +1 .

T e BU((1702 /T 05) © 7,15,
is d(T™y @ dlogay A+ Adlogag 1).

We put

Lm .= Ker(gl"ZL/Hq(S'D) - Bq((Tmﬁzl/Tm+lﬁzl) ® w21|@1)).

Proof. We obtain the lemma from Lemma 4.5. Note that T € I'(Z3, 07,) is alifting of 7 € T'(X», Ox,).
|
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Lemma 4.11. The cokernel of the morphism
grmSymbX‘D : gr@“((l +1Ip,)* ® (M§2)®(q_1)) — grqu(S'D)

is Mittag-Leffler zero with respect to the multiplicities of the prime components of D.

Proof. We have the following diagram:

0 <—— Coker(gr™Symby| p) <—— grg HI(Sp) <—— ert (1 + Ip,)* ® (M)~ 1)

/

D

0

where the vertical and horizontal sequences is exact, £™ := L™ N grgLHq(Sb) and © is certain

differenital sheaves which is explicitly written in Lemma 4.5. The morphism (*x) is surjective, then

(*) is also. Here £'™ is Mittag-Leffler zero with respect to the multiplicities of the prime components

of D. Hence Coker(gr™Symbyp) is also.

Lemma 4.12. The kernel and the cokernel of the morphism
am,p gy HU(SH) — grg"Hq(Sb)

are Mittag-Leffler zero with respect to the multiplicities of the prime components of D.
Proof. We consider the following commutative diagram:

0 —— U™FIHI(Sy) —— UTHI(S,) — grPPHY(S)) — 0

! l |

0 —— U™HHI(Sy) —— U™HY(Sp) —— grpHI(Sp) —— 0

The left and central vertical morphism is injective by Lemma 4.4. If m > pe/(p — 1), the claim is

trivial. We assume that 0 < m < pe/(p—1). If m = pe/(p—1), the right vertical morphism is injective

by Corollaly 4.7 and the cokernel of o, p is Mittag-Lefller zero from Lemma 4.11. We can easily to

show by induction on m.
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5. CALCULATION OF H9(s1(r)x|p) FOR 0 <7 <q<p—2

In this section, for 0 < ¢ < r < p — 2, we will calculate the cohomology sheaf H?(s1(r)x|p) by a
similar computations as in Appendix [Tsu3]. The setting remains as in §4.3.
We define a descending filtration on £™,m € N on 51(r)x|p for an integer 0 < r < p—2 as follows:

we define the filtration &, m € N on Og, (reSp"]gl} (r <p—2)) by
T g, + I8 (resp. T TE 17 g 4 gl

Here [z] for € R denotes the smallest integer > xz. We can easy to see that the morphism 1, ¢, :
Jgf'] Wz 19, = Op, @ Wy g, are compatible with $4. We define the filtration 4™ on s1(r)x|p to

be the mapping fiber of 1 — ¢, : ﬂm(,]([;l_'}) Qwy g — U™(Og,) @ Wy 9,

Lemma 5.1. Let m be a non-negative integer. For a € k*, the homomorphism
p 03¢ . g : q .
(5.1) L—a? @A ?.Z (Oy @wy,|9,) = HI (O ®wy, 9,)

1s surjective. Its kernel K is the subsheaf of abelian groups of : Zq(ﬁy ® w‘Zl‘%) generated by local
sections of the form

(5.2)

z@dlog(ar)Adlog(ag)A- - -Adlog(ag), (€ Ker(1—aPyp : Oy = Oy),a1 € 1407,(—%1),az...,ag € MY).

and there is a short exact sequence
(5.3)
0 — Ker(1 —a?C™": Ziq/‘_fl, — Hq_l(wle)) — K — Ker(1 —a?C™": Z;J,lD — ’Hq(wy‘D)) —0

which is characterized by the following properties:

Foray € 14 0z,(=21),az,...,aq € M3’ and x € Ker(1 — aPp : Oy — Oy), the image of

(5.4) z ® dlog(a1) A dlog(az) A--- Adlog(ag) € K

in the right term is dlog(ar) A dlog(@z) A - - - A dlog(ay), and

(5.5) z ® dlog(a1) Adlog(az) A--- Adlog(ag—1) ANdlogT € K

is the image of dlog(ar) A dlog(@z) A --- A dlog(ag,—1) in the left term, where @; denote the images of

a; in Mf}p.

Proof. We can prove this in the same way as Lemma 4.2 (3), [Tsu3], Lemma AS8. |
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Lemma 5.2. (¢f. [Tsul], Lemma 4.5) Let q and r be integers such that 0 < g <r < p—2. We have
the following description of the kernel of
H (g (U5 @ wyy0,) — M (0 ©wyyg,)) - (%).
(1) Ifm<ep(r—q)/(p—1) orm >ep(r—q+1)/(p—1), then (k) is isomorphism.
(2) If m=ep(r —q)/(p— 1), then the kernel of () is isomorphic to the kernel of
1_ ag(r—q) NORLE ZQ((ﬁzl/Tﬁzl) ®o, w'le%) — HQ((ﬁzl/Tﬁzl) ®oy, w'le%),

where ag :== Ng_ (=) -p~! mod p € k*.

R/wW
(8) Suppose ep(r —q)/(p—1) <m < ep(r —q+1)/(p— 1), then the kernel of (%) is isomorphic

to Bq((ﬁnﬁi;ﬁ;;l @wzyi2,))- If p fm, (k) is surjective. If plm, (%) is not surjective.

Proof. We note that
&g (0, ®0y, W) & (T 02, [T 02,) ©0,, Wy,
and
m=Ze(r—q)+m/pomZep(r—q)/(p-1).
eIlf m>ep(r—q+1)/(p—1), flch[;:'] ® Wy g, coincides with Um0 @ Wy, g, in degree
>q—1and
Grq (mg “”) c 4G
Hence the morphism () is the identity.

o Ifep(r—q)/(p—1) <m < ep(r—q+1)/(p—1), ﬂmJ([;:'}@w‘Zl‘% coincides with ﬂmﬁgl OWy, |7,
in degree > ¢ and
ar (ﬂm‘]gfqﬂ] ® W%ﬁ%) cUmIg T @ wh g,
o If m > ep(r—q)/(p—1), we have
@r,q(ﬂmJg‘q]) c Ao,
then we have (3).
If m=ep(r—q)/(p—1), we have (2) from Lemma 4.1 and Lemma 5.1 and

@req(TU=D) = (ah 4+ aYTP + -+ al_ Te7VP 4 (7o)

where T¢ + p(ae_1T¢"* + -+ a1T + ap) (a; € W) denotes the Eisenstein polynomial of = over W.

If m<ep(r—gq)/(p—1) and p fm, both sides of the homomorphism (%) vanish by Lemma 4.1 (2).
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If m <ep(r—q)/(p—1) and p|m, the claim (1) follows from Lemma 5.1 and the above description of
Pr_q(TE0=0). O

If K contains a primitive p-th root of unity, then we have ay € (k*)P~*(See [Tsu3|, the proof of

Proposition A17). Choose a (p—1)-th root by € k of ag. Then, by Lemma 3.2, for integers ¢ > 0,6 > 0,

we have
(1) WY p 1o = Ker(1—af’C™": Zyyp — HI(wyp)), wr— by - w.

Proposition 5.3. Let the notation and assumption be as above. Let q and r be an integers such that

0<gq<r<p-—2. Then, for every integer m > 0, we have the structure of H1 (grgl(sl(r)Xm)) as

follows:
(1) If m <ep(r—q)/(p—1) orm =ep(r—q+1)/(p—1), then
H? (grg(sl(r)xw)) =0.

(2) If m=ep(r —q)/(p — 1), then there exists an exact sequence

H(gr™ (s1(r)x|p))
-1 S |
0— wgf|D,log R4 wgf\D,log — 0,

o a=1
where R := MR AE wzl‘?ll
: AlEa
ﬁy®ﬂ21 “zy1121

(8) Suppose ep(r —q)/(p—1) <m <ep(r—q+1)/(p—1). Then

(a) If p fm, there exists an exact sequence

q—2 q—1
Wy p m Wy p

00— —A2 s 4 (g (51(r) x ) — Bql_l — 0.
Y|D Y|D

(b) If p|m, there exists an exact sequence

—2 m -1
W%\D Hq(grg (s1(r)x1p) "J;]f|D

0 a2 — T — Zi1 0.
Y|D Y|D

Proof. We immediately obtain this Proposition from Lemma 4.2, Lemma 5.1 and Lemma 5.2. O

For integers 0 < ¢ < r < p — 2, we define the filtration 4" on H%(s1(r)x|p) to be the image of

Ha (grg(sl(r)X‘D). By the same argument as in proposition A6 in [Tsu3], we have
(x2)  grg (M (s1(r)xip)) = H(gry (s1(r)x D)
(x3) UPHI(s1(r)xp = 0.

For z € ﬂm’Hq(sl(r)X‘D) and 2’ € ﬂm/Hq/(sl(r’)XW), where m,m’,q,¢’ > 0and 0 < r, v/ r 41 <

p— 2, the product z - 2’ is contained in U™ H9+9 (s (r + ") x|p)- By Proposition 5.3 and (x2), for
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each integer 0 < r < p — 2, we have an isomorphism
(#4)  HO(s1(r)x|p) < UP P IHO (s (r)x p) > g/ PTVHO(s1(r) x1p) = Z/pL.

Here the last isomorphism, we use (x1) with ¢ = 0,0 = r.

Definition 5.4. We define a filtrations on H(s1(r)x|p) as follows:
UMHI (81(7“))(\[)) := the image of Z/pZ @ U™H1 (sl(q)X|D) under the product morphism
Z/pZ @ M (s1(q)xp) — H(s1(r)x|p),
VTH (81(7“))(\1)) :=the image of Z/pZ @ V""" H! (sl(q)X|D) under the product morphism
Z/pZ @ H (s1(q)xp) — H(s1(r)x|p)-

As in Lemma 4.4, we see that the image of U™((1+ Ip,)* ® (M{)®@=V) (m € N) under the

symbol map is contained in {"H9(s(r) x|p). Hence we have a homomorphism
it} (H(s1(r)xyp)) — grg " TV (H(s1(r) xp)
by using (x4). Put
(5.6) grg H(s1(r)x|p) = U"HI(s1(r)x1p)/ V" H (51(r) x|D)>
(5.7) gl H(s1(r)x|p) == V" H(s1(r)x|p) /U™ H(51(r) x| D)-
Proposition 5.5. Let m be a non-negative integer. Let x € (1 4+ Ig,)*, let a1,...aq-1 € Mg’; and

lety € Oz,(—P>). Let T denote the image of x in (14 Ip,)*, let a; denote the image of a; in Mfg;

and let § denote the image of y in Ox,(—D2). Then we have:
(1) If m =0, the image of
TR ®... a1 € (1+1Ip,)* @ (M)~
under the composite
(14 1Ip,)* ® (ME)* 0 — gxfy (H(s1(r)x|p))

— gD (3951 (1) x )

Oy, , 1—af(=. o1 Oz, ,
— Ker(Zq( (T;) ®0z, Wy 9,) — > HY( (T;a) ®03z, wZu@l))

Zy

is bap(r_q)dlog(x) Adlog(ar) A--- ANdlog(ag—1).
By Proposition 5.3, (x1) and (¥2), we get an exact sequence :

ep(r— —1
- grgp( 9)/(p )Hq (Sl(T)X|D) ,
00— Wy D log Ra Wy D log

— 0,
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(2) Suppose 1 <m <ep/(p—1). If p fm, the image of
1+ R ® ... 051 € Um((l +1p,)*® (M§£)®(‘1—1)>
under the composite

U (14 Ip,)* @ (M) ) — gafy (H9(s1 () x )

_)grep(r )/ (p— 1)+m(7_[q( (") x|p)) )) = B

Tep(r—q)/(p—1) +mﬁz
(Tep’“ 0)/(p—D+m+145, ®w21@1>
N -

is d(Tep(T—q)/(p_1)+mbap(T Dy dlog(z) A dlog(ai) A--- A dlog(ag— 1))
If p fm (resp. p|m), by Proposition 5.3 and (x2), we get an exact sequence:

q—2 q—1

“y D — —1)+ Wy D
0— q|f2 ngzpw D= qu(Sl(r)XID) 7 g1 —0
Y|D Y|D
2 ep(r—q)/(p—1)+m -1
( 0 —s wgf\D . grgp e H(s1(r)x|p) R wY\D 0 )
resp. a2 a Zi1 )
Y|D Y|D

Proof. We put mg :=ep(r — q)/(p — 1) and denote by c¢ the image of 1 € Z/pZ in
((m ((m r— r—q=1,V=0
AU (51 (r — q)xip) = (™ TE " @ 0, (-))*
under (%4). Then we have ¢ = Tmobap(T_Q)( mod ﬂmOHJg_q} ® Oz,(—%)). By using this fact,

Lemma 4.2, Lemma 4.3, Lemma 5.1 and Lemma 5.2, we obtain this Proposition. ([l

Corollaly 5.6. If K contains a primitive p-th roots of unity, for any integer q and r such that

0<qg<r<p-—2, the homomorphism
HO(s1(r — q)x1p) ® H(s1(q)x|p) — H(s1(r)x D)
induced by the product structure is an isomorphism.
Proof. Applying Proposition 5.5 to H(s1(r) x|p) and H%(s1(¢q)x|p) and using (*4), we can verify that
HO(Sl(T - Q)X|D) & Hq(sl(Q)X\D) — Hq(SI(T)X|D)
induces an isomorphism
HO(s1(r — q)xp) ® B H(s1() xp) —> gV ETIIHI(s () x )

for every non-negative integer m. ([

Corollaly 5.7. Let e be the absolute ramification index of K. Then the sheaf H4 (sl(r)X|D) has the

folllowing structure:
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(1) For m =0, we have short exact sequences:

R

0—s — grdH(s1(r) x|p) — Wi — 0,
RAg i nap)  E0 (10)x10) T

{z,a1,...,aq-1} — dlogZ Adlogai A --- Ndlogay

Here v € (1+1Ip,)*, a1,...,aq-1 € MY and y € Ox,(—D3). We denote T (resp. @;) the

image of x (resp. a;) in My”, and we denote § the image of y in Oy (—Ds).

0 — RNgrdHI (sl(r)X‘D) — gr(l)’}—[q(sl(r)xw) — wg,Tlluog — 0,

{z,a1,...,aq-2,7} = dlogZAdlogai A---ANdlogag—3

where

. 1—p@ATdp/p .
R = Ker(grg (’Hq(sl(r)Xw)) — Ker(Zq(ﬁy R0, wzl‘%) T Hq(ﬁy ®6, lel%)))'
(2) If 0 <m < pe/(p—1) and p fm, then we have
q—1
Wy D
—1
Byip
{1+ 7™y a1,... 001} + by """ Vgdlogag A--- A dlogag
-2
wg/\D

q—2
ZY|D

gro"He (sl(r)X|D)

I

1

gri"H (s1(r)x|p)

{I1+7"y,a1,...,aq-2,7} b(;p(r_q)ydlogaﬁ/\ - ANdlogag—s

(3) If 0 <m < pe/(p— 1) and p|m, then we have short exact sequences

~1
£ wgf\D

0— — grg" " (s1(r — — 0,
¢ m,Hq(sl(r)XlD) 8Ty ( 1( )X|D) Z;;/Té

{1+7"y,a1,...,aq9-1} — bap(rfq)yd logaiA- - -Adlog Gy

q—2
Yy D
0 — LNHY(s1(r)xp) — gr"H(s1(r)xp) — q|,2 — 0,
Y|D
{1+7™y,a1,...,aq—2,m} — bgp(T_Q)ydlogaTN -Adloga,—3
m Tepr(r—a)/(p—1)+m
where £ := Kef(gfu (H(s1(r)x|p)) — B (TGT’(7‘*Q)/(D*1)+M+1;;1 ® WZI\91> )

(4) If m > pe/(p—1), U™H(s1(r)x|p) = 0.

Proof. By Proposition 5.5, we obtain (1), (2) and (3). Since UP*H4(s1(q)x|p)) = 0 by Lemma 4.4

and Corollary 4.6 , this implies (4). This completes the proof of this Proposition. |
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Next we do not assume that K contains a primitive p-th root of unity. Let Ok be a totally ramified
extension of Ok of degree d. We denote (S’, N') the scheme SpecOk with the log structure defined by
the closed point. Assume that there exists a prime 7’ of O such that 7’¢ = 7. We choose such a prime
7', Let (V', My) be the scheme Spec(W|[N]) = Spec(W[T"]) endowed with the log structure associated
to the inclusion N < WIN]. We define the exact closed immersion iy, : (S, Ms;) — (V', My/) in

the same way as iy, , by using 7’ (see the argument before Lemma 4.1). We have a cartesian diagram:

(Sy, Ms;) —— (V,, My)

l | l(&)
(S’ﬂ7Nn) (V’naMVn);

where the morphism (&) is defined by the multiplication by d on N. We define (X', Mx/) :=
(X, Mx) x(s,ny (S, N'), D := D xg S, and denote Z,, (Z),,Mz:) and {Fz: } the base changes of
Dy (Zn,Mz,) and {Fz, } under the morphism (&) above. Then one can apply the above arguments
to Ok, 7', (X', Mx/), (Z,,Mz:;) and {Fz }. We denote by ' the corresponding things. Since
(Y', My+) := (Y, My) X(s,nm,) (8', M), s = 8" and Y' =Y, then we have Wy p, =N w.Y’IDS' Thus we
obtain the following relations of the filtrations U™ on H%(s; (r) x| p) and H9(sy (r)’X‘D) from Proposition

5.3 and (x2) :

Lemma 5.8. (¢f. [Tsu3], Lemma A18) Let r and q be are integers such that 0 < ¢ <r <p—2. Then

there exists a canonical morphism
H(s1(r)x1p) — HU(s1(r)xp)

sends U™ into 4™ for m e N. If ep(r—q)/(p—1) <m <ep(r—q+1)/(p—1), we have the following

commutative diagram:

0 2, gry H? (‘2(T)X\D) 2, 0

o | I

a1 (s1(1)x )

0 2, LRt 0, 0,
where
w2 w2
W, = Ker(l — ag(qu)C—l : Z;Z/‘_é — Hq—l(wwD)) (resp. q‘_Q, resp. ZZ’I_Z ),

Y|D Y|D
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p(r—q) ~—1 q . qul wg’_\é
Wy = Ker(l —a c™: ZYID — HQ(leD)) (resp. Z 1 resp. Zi1 ),
Y|D Y|D
if
m=ep(r—q)/(p—1) (resp.m >ep(r—q)/(p—1), p fm, resp. m >ep(r —q)/(p — 1), p|m),
“$ b
W= il m>ep(r—a)/(p— 1), pldm,

Y|D

and W, = Wy otherwise,
R:=R? (resp.0, resp. RY)

if m=ep(r—q)/(p—1) (resp.m>ep(r—q)/(p—1), p fm, resp.m > ep(r —q)/(p — 1), p|m),
8 =8 (resp.0, resp. 8'9)

ifm=ep(r—q)/(p—1) (resp.m>ep(r—q)/(p—1), p fdm, resp. m > ep(r —q)/(p — 1), pldm).

ﬁy®ﬁzlw;7|1@/ , ﬁy@ﬁz/ qu/‘@'/ i ) . . .
Here R 1= —=1+L /' = —1 1L We denote pr. the canoical projection or the identity.
Oy®0, Wz 19, ﬁ"@’jzi Wari9,

If K' is tamely ramified filed over K, we have an isomorphism:

gy (s1(r)xip) o g1 (510 p)
R & ’

Proof. The first claim is trivial by 7' = T"¢. The second claim follows from dlog7 = d’ - dlogT’. O

Corollaly 5.9. If 0 < m < ep/(p — 1) and K’ is tamely ramified filed over K, the kenel and the

cokernel of
g M (s1(r)x|p) — gra"He (511 p)

are Mittag-Leffler zero with respect to the multiplicities of the prime components of D.

Proof. We consider a commutative diagram

0 R g’ (s1(r)x|p) gy M (2(T)X'D) 0
0 ® grd™ M1 (s1(r)’xp) Gl (5;1 o) 0.

From Lemma 5.8, the right vertical arrow is isomorphism. The kernel and the cokernel of the left

vertical arrow are Mittag-Lefller zero. Thus we obtain the claim. (]

By the same arguments as in Lemma 4.11 and Lemma 4.12, we have the following Lemma:
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Lemma 5.10. The kernel and the cokernel of the morphism
A1 () x10) = s 1))

are Mittag-Leffler zero with respect to the multiplicities of the prime components of D.
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