


－ 1－

中 央 大 学 理 工 学 研 究 所 論 文 集 　第 16 号　 2010 年
Journal of the Institute of Science and Engineering. Chuo University

Iterative Schwarz-Christoffel Transformations
Driven by Random Walks and Fractal Curves

Fumihito Sato and Makoto Katori ∗

27 September 2010

Abstract

Stochastic Loewner evolution (SLE) is a differential equation driven by a one-
dimensional Brownian motion (BM), whose solution gives a stochastic process of confor-
mal transformation on the upper half complex-plane H. As an evolutionary boundary
of image of the transformation, a random curve (the SLE curve) is generated, which
is starting from the origin and running in H toward the infinity as time is going. The
SLE curves provides a variety of statistical ensembles of important fractal curves, if
we change the diffusion constant of the driving BM. In the present paper, we consider
the Schwarz-Christoffel transformation (SCT), which is a conformal map from H to
the region H with a slit starting from the origin. We prepare a binomial system of
SCTs, one of which generates a slit in H with an angle απ from the positive direction
of the real axis, and the other of which with an angle (1−α)π. One parameter κ > 0 is
introduced to control the value of α and the length of slit. Driven by a one-dimensional
random walk, which is a binomial stochastic process, a random iteration of SCTs is
performed. By interpolating tips of slits by straight lines, we have a random path in
H, which we call an Iterative SCT (ISCT) path. It is well-known that, as the number
of steps N of random walk goes infinity, each path of random walk divided by

√
N

converges to a Brownian curve. Then we expect that the ISCT paths divided by
√

N
(the rescaled ISCT paths) converge to the SLE curves in N → ∞. Our numerical
study implies that, for sufficiently large N , the rescaled ISCT paths will have the same
statistical properties as the SLE curves have, supporting our expectation.

1 Introduction

One of the highest topics of recent progress in statistical physics of critical phenomena
and random fractal patterns is introduction of the Stochastic Loewner Evolution (SLE) by
Schramm [1, 2, 3]. The SLE will provide a unified theory of statistics of random curves
in the plane, which covers (continuum limits of) random interfaces characterizing surface
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critical phenomena in equilibrium (e.g. the percolation exploration process, the critical
Ising interface), models of random chains in polymer physics (e.g. the self-avoiding walks),
fractal patterns playing important roles in non-equilibrium statistical mechanics models (e.g.
the loop-erased random walks and the uniform spanning trees for sandpile models and forest
fire models showing self-organized criticality), and so on [4, 5, 6]. The theory is based on
two branches of mathematics, the complex function theory [7] and the stochastic analysis
[2, 3] and is strongly connected with the conformal field theory [8, 9, 10].
As well as by wideness of applications and by richness of mathematics, we are attracted

by simple setting of the theory ; Consider a complex plane C. (i) First we consider a motion
of Brownian particle on the real axis R. We assume that it starts from the origin 0 at time
t = 0 and the diffusion constant is given by κ > 0. If we write the position of the diffusion
particle on R at time t ≥ 0 as Ut, then �Ut� = 0 and �U2

t � = κt for t ≥ 0. Usually we
denote the position of a one-dimensional standard Brownian motion (BM) at time t by Bt,
for which �Bt� ≡ B0 = 0, �B2

t � = t, t ≥ 0. The BM has the scaling property such that for
any constant c > 0, the distribution of the position of BM at time c2t is equal to that of the
position of BM at time t multiplied by a factor c, that is, the equality Bc2t = cBt holds in
distribution. Then we can give the above Ut by

Ut =
√
κBt, t ≥ 0. (1)

(ii) Then we solve the following partial differential equation for a complex function ft(z) on
the upper half complex-plane H = {z ∈ C : Im z > 0},

∂ft(z)

∂t
= −∂ft(z)

∂z

2

z − Ut

(2)

under the initial condition f0(z) = z. (iii) Note that the boundary of H consists of the real
axis R and an infinity point. When z ∈ H approaches the special point Ut on R, the position
of the BM, the RHS of (2) diverges. If we trace the image of this singular point

γt = ft(Ut), t ≥ 0, (3)

we will have a curve γ(0, t] ≡ {γs : 0 < s ≤ t} in H starting from the origin. For each s > 0
the curve γ(0, s] and the region enclosed by parts of the curve and the real axis R should be
eliminated from H in order to continue to solve Eq.(2) for t > s.
For any deterministic simple curve γ(0, t] in H, t ≥ 0, Loewner proved that there exists a

real-valued function Ut and a conformal map ft, which is one-to-one from H to H \ γ(0, t] ≡
{z ∈ H : z �= γs, 0 < s ≤ t}, the upper half complex-plane with a slit γ(0, t], such that ft

and Ut solve Eq.(2) with the condition (3). The equation (2) is called the Loewner equation
[7, 11]. Schramm considered an inverse problem: given Ut on R and derive a curve γ(0, t] by
solving Eq.(2). Since he gave Ut by a BM as Eq.(1), γt given by Eq.(3) performs a stochastic
motion and the obtained curve γ(0, t] is statistically distributed in H [1]. Equation (2)
driven by a BM with variance κt is called the stochastic Loewner equation or the Schramm-
Loewner evolution (SLE) [12], and a random curve γ(0, t], t ≥ 0 is called the SLE curve with
parameter κ (the SLEκ curve).
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Although the change of diffusion constant κ causes only quantitative change of the driving
function Ut, that is, scale/time change

√
κBt = Bκt in distribution, it does qualitative change

of SLEκ curves. When 0 < κ ≤ 4, the curve is simple (with no self-intersection) with
γ(0,∞) ⊂ H. When 4 < κ < 8, the curve is self-intersecting and γ(0,∞) hits the real axis
R infinitely many times, but it is not dense on H : γ(0,∞) ∩ H �= H with limt→∞ |γt| =∞.
And when κ ≥ 8, it will cover whole of H in t → ∞ [2, 3]. The fractal dimension (Hausdorff
dimension) of the SLEκ curve is determined as [13, 14]

dκ =

�
1 + κ/8, 0 < κ < 8
2, κ ≥ 8. (4)

Moreover, if κ is chosen to be a special value, SLEκ curves provide the statistical ensembles of
continuous limits of random discrete paths studied in statistical mechanics models exhibiting
critical phenomena or in fractal models on lattices. For example, the value κ = 6 is for the
critical percolation model [15, 16]. Effective methods for numerical simulations of SLEκ

curves by computers have been reported [17, 18, 19].
Today we can learn from mathematics literatures that the Loewner equation (2) for a

deterministic function Ut had played important roles in the complex function theory even
before Schramm introduced its stochastic version [7]. We shall say, however, that this equa-
tion has not been familiar to us, physicists. More familiar differential equation to us in the
complex calculus is the one, whose solution gives a conformal transformation from H to the
interior of a polygon on the complex plane with mapping the real axis R to a piecewise
linear boundary of the polygon, called the Schwarz-Christoffel transformation (SCT) (see,
for example, [20]). So here we try to discuss the Loewner equation (2) by using a special
case of SCT.

Figure 1: SCT generating a straight slit in H

Let 0 < α < 1. Consider a conformal map f from H to the upper half complex-plane
with a straight slit starting from the origin, H \ {a slit}, where the angle between the slit
and the positive direction of the real axis is απ as shown in Fig.1. Since H with the straight
slit can be regarded as a polygon with the interior angles (1 − α)π on the left side of the
origin, 2π around the tip of the slit, and απ on the right side of the origin, for any length of
a slit, the conformal map is given as an SCT, which solves the differential equation

df(z)

dz
= b1(z + xL)−α(z − x0)(z − xR)α−1, (5)
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where b1 is a complex number and xL, x0, xR are real numbers satisfying the inequalities,
xL > 0, xR > 0,−xL < x0 < xR. By this transformation, both of the points −xL and xR on
R are mapped to the origin, f(−xL) = f(xR) = 0, and x0 to the tip of the slit. See Fig.1.
We have found the general solution of (5) expressed by

f(z) = b0 + b1(z + xL)1−α(z − xR)α

×
�
1 +

x0 − xR + α(xL + xR)

xL + xR

Γ(1− α)

Γ(2− α)
F

�
1, 1, 2 − α;

xL + z

xL + xR

��
, (6)

where b0 is a complex number, Γ(z) =
� ∞
0
e−uuz−1du (the gamma function), and F (α, β, γ; z)

is Gauss’s hypergeometric function F (α, β, γ; z) = Γ(γ)/{Γ(α)Γ(β)}�∞
n=0 Γ(α + n)Γ(β +

n)zn/{Γ(γ + n)n!}. We impose the hydrodynamic condition
f(z)

z
→ 1 in z → ∞. (7)

Then b0 = 0, b1 = 1 and x
0−xR+α(xL+xR) = 0, and we have f(z) = (z+xL)1−α(z−xR)α.

Eq.(5) is rewritten in this case as

df(z)

dz

2

z − x0
=

2f(z)

(z + xL)(z − xR)
. (8)

We then introduce a parameter “time” t ≥ 0 and assume that xL and xR, and thus also x0,
depend on t by setting

ft(z) = (z + xL
t )

1−α(z − xR
t )

α. (9)

The differential of ft with respect to t is written as

∂ft(z)

∂t
= − 2A(z, t)ft(z)

(z + xL
t )(z − xR

t )

with A(z, t) = [−(1−α)(z−xR
t )dx

L
t /dt+α(z+x

L
t )dx

R
t /dt]/2. Let x

L
t = 2ct

β , xR
t = 2t

β/c with
constants c > 0 and β. Then we can see that, if and only if c =

�
α/(1− α) and β = 1/2,

A(z, t) becomes independent both of z and t; A(z, t) ≡ 1. Combining this observation with
Eq.(8) gives the following result: For 0 < α < 1, the SCT

fα
t (z) =

�
z + 2

�
α

1− α

√
t

�1−α
�
z − 2

�
1− α

α

√
t

�α

(10)

is not only a solution of the Schwarz-Christoffel differential equation (5), but also of the
Loewner equation (2) with the driving function

Uα
t = x0

t = xR
t − α(xL

t + xR
t )

=

� √
καt if α ≤ 1/2

−√
καt if α > 1/2,

(11)
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where

κα =
4(1− 2α)2
α(1− α)

. (12)

As time t goes, the straight slit performs as an “evolutionary boundary” of the image of H
by ft, in which the tip of the slit (3) is evolving as

γα
t = fα

t (U
α
t )

= 2

�
1− α

α

�1/2−α

eiαπ
√
t, t ≥ 0. (13)

One can observe the equality

Uα
t = ±

�
�(√καBt)2�, t ≥ 0, (14)

since �B2
t � = t. That is, the driving function Uα

t for the above SCT (11) is the positive or
the negative root square of the squared average of the random driving function (1) of the
SLE. So if we are able to introduce fluctuations into the SCT systematically, we can draw
approximations of SLE curves on H. It may be the basic idea to simulate SLE curves by
dividing a time period (0, t] into n small intervals {(tj−1, tj] : j = 1, 2, . . . , n} by setting
0 = t0 < t1 < · · · < tn = t and the above single SCT is replaced by an n-multiplicative map
of infinitesimal SCTs with sufficiently large n [17, 18].
On the other hand, we know the fact that the diffusion property of BM can be observed

in long-time asymptotic behavior of a simple discrete-time stochastic process, random walk
(RW). Let σj, j = 1, 2, 3, . . . be independent and identically distributed (i.i.d.) random vari-
ables taking values σj = 1 with probability 1/2 and σj = −1 with probability 1/2. Consider
a simple symmetric RW on the one-dimensional lattice Z = {. . . ,−2,−1, 0, 1, 2, . . . } start-
ing from the origin 0 at time n = 0. We denote the position of the random walker at time
n = 0, 1, 2, . . . by wn. Then, w0 = 0 and

wn =

n�
j=1

σj, n = 1, 2, 3, . . . . (15)

In the present paper, we consider an SCT as a functional of a random variable σ and consider
an Iterative system of SCTs (ISCTs) driven by RW. By this system, each time series of steps
(σ1, σ2, . . . ) of RW is mapped to a series of points (ξ1, ξ2, . . . ) in H. Let Wn and Ξn, n ≥ 0
be the interpolations by straight lines of wn and ξn, n = 0, 1, 2, . . . , respectively. Since for
T > 0, {WNt/

√
N : 0 ≤ t ≤ T} converges to {Bt : 0 ≤ t ≤ T} as N → ∞ in distribution,

ζN(0, T ] =

�
ΞNt√
N
, 0 < t ≤ T

�
, T > 0, (16)

which we call the rescaled ISCT path with N up to time T , will converge to an SLE curve
up to time T , γ(0, T ], in distribution as N → ∞. Figure 2 shows the rescaled ISCT paths

5



－ 6－

Fumihito Sato          Makoto Katori

Figure 2: Approximations of the SLEκ curves up to time T = 1 expressed by the ISCTκ

paths for κ = 2 and κ = 6.
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ζN(0, 1] = {ΞNt/
√
N, 0 ≤ t ≤ 1} with N = 5 × 104 for κ = 2 and 6, which are drawn by

interpolating the series of points {ξj/
√
N}N

j=0 by lines. They seems to approximate the SLEκ

curves γ(0, 1] very well. In the present paper, we will show that, for sufficiently large N , ζN
t

has the same statistical properties as the SLE curve γt has.
The paper is organized as follows. In Sec.II, we define the ISCT driven by random walk

with a parameter κ = κα defined by (12) and the ISCTκ paths. In Sec.III, by observing
the behavior of ISCT paths Ξ(0, n] for small values of n, we show that, even if we use the
same realization of RW as a driving function, the ISCTκ paths with large values of κ exhibit
much more complicated motion on H than those with smaller values of κ. In Sec.IV, we
report the properties of the rescaled ISCT paths ζN(0, T ] with T = 1 based on large scaled
computer simulations with N � 104 ∼ 105. We evaluate the fractal dimensions dκ

ISCT of
the N → ∞ limits of ζN(0, 1] for several values of κ, and the dependence of dκ

ISCT on κ is
compared with that of the fractal dimensions dκ of the SLE curves given by (4). We also
show that, for 4 < κ < 8, the generalized version of Cardy’s formula of SLEκ curves [21, 2]
will be applicable to the rescaled ISCTκ paths ζ

N(0, T ], if N and T are sufficiently large.
Section V is devoted to concluding remarks. Appendix A is prepared for giving recurrence
relations, which will be useful to analyze the ISCT paths.

2 ISCT driven by RW

Noting that Eq.(12) is solved for α as α = [1± �
κ/(κ+ 16)]/2, we set

ακ(σ) =
1

2

�
1− σ

�
κ

κ+ 16

�
(17)

for κ > 0, σ ∈ {−1, 1}, and define the SCT as a functional of a random variable σ by

F κ
σ (z) ≡ f

ακ(σ)
1 (z)

=

�
z + 2

�
ακ(σ)

1− ακ(σ)

�1−ακ(σ) �
z − 2

�
1− ακ(σ)

ακ(σ)

�ακ(σ)

. (18)

Given one step σ1 of RW on Z, we consider an SCT, F κ
σ1
(z), which is a conformal map

from H to the region H with a straight slit. The straight slit starts from the origin and ends
at the tip located at

ξ1 = F κ
σ1
(
√
κσ1)

= 2

�
1− ακ(σ1)

ακ(σ1)

�1/2−ακ(σ1)

eiακ(σ1)π. (19)

Next assume that two steps of RW, (σ1, σ2), is given. We transform H by an SCT, F κ
σ2
. The

image of H, F κ
σ2
(H), is the region H with the straight slit, which starts from the origin and

ends at ξ
(1)
2 ≡ F κ

σ2
(
√
κσ2). Then we consider the transformation of the region H with this

7
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straight slit by another SCT, F κ
σ1
. By this SCT, a straight slit from the origin to the point

ξ1 is generated as shown by (19). The image by F
κ
σ1
of the straight slit between the origin

and ξ
(1)
2 in H is, however, no longer a straight line but a curvy one. It starts from ξ1 and

ends at

ξ2 = F κ
σ1
(
√
κσ1 + ξ

(1)
2 )

= F κ
σ1
(
√
κσ1 + F κ

σ2
(
√
κσ2)). (20)

We have then a set of two points (ξ1, ξ2) in H. Set n ≥ 1 and now we assume that a realization
of RW on Z up to time n is specified by the series of n steps, σ(n) = (σ1, σ2, . . . , σn). Let

Sκ
σ(z) = F κ

σ (
√
κσ + z) (21)

for κ > 0, σ ∈ {−1, 1} and z ∈ H. We perform the following iteration of SCTs,

Sκ
σ(n)(z) = Sκ

σ1
◦ Sκ

σ2
◦ · · · ◦ Sκ

σn
(z)

≡ Sκ
σ1

�
Sκ

σ2
(· · · (Sκ

σn
(z)) · · · )

�
. (22)

Then we have a curve consisting of a straight slit between the origin ξ0 = 0 and ξ1 and n−1
segments of curvy slits, which are sequentially connected at ξj, 1 ≤ j ≤ n − 1, and the tip
is at ξn. See Fig. 3. In the present paper we call Sκ

σ(n)(z) the iterative Schwarz-Christoffel

transformation (ISCT for short) driven by RW specified by σ(n) = (σ1, . . . , σn).

Figure 3: Iteration of SCTs

For n = 1, 2, 3, . . . , we define the points in H by

ξn = Sκ
σ(n)(0). (23)

We set ξ0 ≡ 0. The sequence of points (ξ0, ξ1, ξ2, . . . , ξn) is interpolated by straight lines. We
call it an ISCT path in H and denote it by Ξ(0, n]. In other words, each realization σ(n) of
RW on Z is mapped to a path Ξ(0, n] on H by the ISCT.
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For a given n ≥ 1, we introduce the following recurrence relations for a series (ξ(0)
n , ξ

(1)
n , . . . , ξ

(n)
n ),

ξ(k+1)
n = Sκ

σn−k
(ξ(k)

n ), k = 0, 1, 2, . . . , n − 1 (24)

with ξ
(0)
n = 0. Since σj , j = 1, 2, 3, . . . , n are i.i.d., the recurrence formula (24) is useful

to calculate the position ξn, which is given by ξ
(n)
n . Moreover, if we introduce a parameter

θ ∈ (0, π/2) with the relation

cos θ =

�
κ

κ+ 16
, (25)

(17) is written as

ακ(σ) =
1

2
(1− σ cos θ)

=

�
sin2(θ/2), σ = 1
cos2(θ/2), σ = −1, (26)

and (19) is given by

ξ1 = Sκ
σ1
(0)

=

�
2(cot(θ/2))cos 2θeiπ sin2(θ/2), σ1 = 1

2(cot(θ/2))cos 2θeiπ cos2(θ/2), σ1 = −1. (27)

Note that ξ1(σ = −1) = −(ξ1(σ = 1))∗, where ∗ indicates complex conjugate. The recurrence
relation (24) is then written as

ξ(k+1)
n =

�
ξ(k)
n + σn−k cot

θ

2

�cos2(θ/2) �
ξ(k)
n − σn−k tan

θ

2

�sin2(θ/2)

, k = 0, 1, 2, . . . , n− 1
(28)

for σn−k = ±1 with ξ(0)
n = 0. The expressions for the relations between two real components

of complex variable ξ
(k+1)
n and those of ξ

(k)
n are given in Appendix A.

3 Networks on H generated by RW paths

For a fixed time period n > 0, consider a collection of all realization of steps of RW on Z,

F(n) =
�

σ(n) = (σ1, σ2, . . . , σn) : σj ∈ {−1, 1}, 1 ≤ j ≤ n
�
. (29)

The total number of realizations of RWs is |F(n)| = 2n. We note that each realization of
RW up to time n > 0 is represented by a directed path on a squared lattice in a triangular
region in the spatio-temporal plane,

Λn =
�
(j, k) ∈ Z × {0, 1, 2, . . . } : 0 ≤ k ≤ n,−k ≤ j ≤ k, j + k = even

�
. (30)
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Here any edge connecting nearest neighbor vertices in Λn is assumed to be directed in the
positive direction of the time axis; (j, k) → (j ± 1, k + 1), and each path is a sequence of
edges all in the positive direction, starting from (0, 0) to (j, n) with −n ≤ j ≤ n. Figure 4
shows Λ4 and an example of a realization of RW with σ(4) = (1, 1,−1, 1).

Figure 4: Lattice Λ4 and one realization of RW with σ(4) = (1, 1,−1, 1).

By collecting all ISCT paths up to time n, Ξ(0, n], we have a network on H,

N κ
n =

�
Ξ(0, n] : Ξj = Sκ

σ(j)(0), 1 ≤ j ≤ n,σ(n) ∈ F(n)
�
. (31)

Figure 5 shows N κ
n for κ = 2, 4, 6 and 8 for n = 4. As the parameter κ increases, the network

becomes spreading wider in H. There the ISCT path corresponding to the realization of RW
σ(4) = (1, 1,−1, 1) shown in Fig. 4 is indicated by a bold line for each value of κ. In Fig.
6, we compare the ISCT paths with (b) κ = 2 and (c) κ = 8 both obtained from the same
realization (a) of RW with n = 20 steps, where the networks up to n = 10, N κ

10, are also
shown in the background for each κ. We can see that the ISCT path with κ = 8 is much
more complicated than the path with κ = 2. As shown by Fig.5 and Fig.6, the network N κ

n

is bounded by the rightmost path Ξmax(0, n] generated by σmax(n) = (1, 1, . . . , 1) and the
leftmost path Ξmin(0, n] generated by σmin(n) = (−1,−1, . . . ,−1). The height of Ξmax

n and
Ξmin

n , Hκ
n = ImΞ

max
n = ImΞmin

n , is observed to converge to a positive constant Hκ
∞ in n → ∞.

The numerical values are given by Hκ
∞ = 0.014(κ = 1), 0.010 (κ = 2), 0.0084 (κ = 3), 0.0074

(κ = 4), 0.0067 (κ = 5), 0.0062 (κ = 6), 0.0058 (κ = 7), and 0.0055 (κ = 8).

4 Numerical analysis of curves generated by ISCT

For a given number of steps n = NT of RW, we have defined the rescaled ISCT path ζN(0, T ]
by Eq.(16). In particular, ζ(0, 1] is obtained by interpolating the series of points {ξj/

√
N}N

j=0

by straight lines. We have studied statistical properties of the rescaled ISCT paths based on
the numerical data of large scaled computer simulations.

10
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Figure 5: Networks N κ
n on H for n = 4 with κ = 2, 4, 6, 8. The ISCT paths corresponding

to the same realization of RW σ(4) = (1, 1,−1, 1) are indicated by bold lines.
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Figure 6: (a) A realization of RW with time step n = 20. (b) The ISCT path for κ = 2
generated from the RW shown in (a) with the network N 2

10. (c) The ISCT path for κ = 8
generated from the same RW shown in (a) with the network N 8

10.
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4.1 Fractal dimensions

Figure 7 shows a log-log plot of the box counting of segments of ζN(0, 1] with respect to
the box sizes for κ = 4 with N = 5× 104. As shown by this figure, the data for any κ can
be fitted by a straight line very well and we can evaluate the approximate values of fractal
dimensions for finite N .

Figure 7: Log-log plot of the box-counting data for the restricted ISCT paths for κ = 4.

The evaluated values up to at most N = 3 × 105 are then plotted versus 1/N in Fig.8.
For each evaluation we prepared M = 20 samples, and the ranges of scattering of results are
shown by error bars in the figure. There N → ∞ limits are extrapolated by three-parameter
fittings ; d = a0 + a1/N + a2/N

2. The obtained values a0 by the extrapolation are denoted
by dκ

ISCT.

Figure 8: Extrapolation of fractal dimensions in the N → ∞ limit.

Figure 9 shows dependence of dκ
ISCT on κ. The Hausdorff dimensions of the SLEκ curves

13
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given by (4) are also shown by a dotted line. Systematic deviation is found between dκ for
the SLE curves and dκ

ISCT numerically evaluated for the rescaled ISCT paths. We observe
in Fig.8 that the approximate value of fractal dimension for finite N is increasing as N
is increasing, and the ratio of increment becomes larger as κ approaches the value 8. So
we expect that the deviation will be systematically reduced, if we can perform numerical
simulation for larger N ’s and make appropriate extrapolation to the N → ∞ limit.

Figure 9: Dependence of the fractal dimensions dκ
ISCT of rescaled ISCT paths is shown. The

Hausdorff dimensions of the SLEκ curves given by Eq.(4) are also plotted by a dotted line.

4.2 Generalized Cardy’s formula

Here we first consider the SLE curve γ(0,∞) = {γt : 0 < t < ∞} in the case
4 < κ < 8. (32)

In this case, γt starting from the origin will hit the real axis R infinitely many times [2, 3].
For x > 0 we can define

t∗(x) = the first time, when γt hits a point in [x,∞) on R. (33)

Then, γt∗(x) is the leftmost point in the interval [x,∞), at which γt hits R. Note that, if
κ ≤ 4, t∗(x) = ∞, and if κ ≥ 8, γt∗(x) = x, with probability one. For (32), γt∗(x) has a
nontrivial distribution. For each ε > 0, we observe whether ξt∗(x) < x + ε or ξt∗(x) ≥ x + ε.
Figure 10 illustrates the former case. For the SLEκ curves with (32), the following formula
is established. (See Proposition 6.34 in [2].)

P(γt∗(x) < x+ ε) =
Γ(4/κ)

Γ(8/κ− 1)Γ(1− 4/κ)
� ε/(x+ε)

0

u8/κ−2(1− u)−4/κdu

=
Γ(4/κ)

Γ(8/κ)Γ(1− 4/κ)
�

ε

x + ε

�8/κ−1

F

�
4

κ
,
8

κ
− 1, 8

κ
;

ε

x + ε

�
, (34)
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where Γ(z) is the gamma function and F (α, β, γ; z) is Gauss’s hypergeometric function. This
formula can be regarded as a generalization of Cardy’s formula, since the original formula
corresponding to (34) with κ = 6 was derived by Cardy [21] for the “percolation exploration
process” in the critical percolation model, and then the continuum limit of that process was
proved to be described by the SLE curve with κ = 6 [15, 16]. For 0 < ε � 1, the above
formula gives a power law

P(γt∗(x) < x+ ε) �
� ε
x

�δ(κ)

(35)

with the exponent

δ(κ) =
8− κ

κ
(36)

Figure 10: Illustration of the point γt∗(x) on the real axis R for an SLEκ curve with 4 < κ < 8.

Now we consider the ISCT paths. For integers N and T with N � 1, prepare a realization
of RW represented by σ(NT ) = (σ1, σ2, . . . , σNT ). For each n = 1, 2, . . . , NT , by using the
data (σ1, σ2, . . . , σn), we calculate the position ξn in H following the recurrence formula (24).
As noted at the end of Sec.III, Im ξn > 0 for any n ≥ 1. So we set a small value h > 0 and
look for the event

EN
h,x(n) =

�
Im ξn√
N

< h and
Re ξn√
N

≥ x

�
. (37)

We define

nh(x) = min
�
n : 1 ≤ n ≤ NT, EN

h,x(n) occurs
�
. (38)

If nh(x) ≤ NT , we define th(x) = nh(x)/N and calculate the value Re ζ
N
th(x) = ReΞ

N
Nth(x)/

√
N =

Re ξN
nh(x)/

√
N . If nh(x) > NT , that is, the event (37) does not occur for the given σ(NT ),

then th(x) > T . The probability distribution function for the rescaled ISCT paths, which
corresponds to P (γt∗(x) < x+ ε), may be given by

lim
h→0

lim
T→∞

lim
N→∞

P
�
Re ζN

th(x) < x + ε, th(x) ≤ T
�
≡ P(ζt∗(x) < x+ ε), (39)
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Figure 11: Log-log plots of the numerical evaluations of the probability P(Re ζN
th(x) < x +

ε, th(x) < 1) versus ε/(x+ ε) for the rescaled ISCT paths.

where ζ(0,∞) = limT→∞ limN→∞ ζN(0, T ].
In numerical calculations, we have set N = 104 and T = 1 and prepared M = 1000

realizations of RW, which are randomly generated. Since T = 1, we are allowed to consider
only small values of x and ε. The threshold value h is wanted to be small, but for finiteness
of N , it should be positive. In Fig.11, we show log-log plots of the numerical evaluations of
P(Re ζN

th(x) < x + ε, th(x) ≤ 1) for κ = 5 with x = 0.8, h = 0.1, κ = 6 with x = 0.5, h = 0.1,
and κ = 7 with x = 0.8, h = 0.2. For finiteness of N and smallness of the number of samples
M , data scatter for small ε. We find, however, power-law behaviors in the intermediate
regions of ε;

P(ζt∗(x) < x + ε) � εδ. (40)

By linear fitting as shown in Fig.11, we have evaluated the values of exponent δ. The results
are plotted in Fig.12, where Eq.(36) derived from the generalized Cardy’s formula is also
shown by a curve. The good agreement implies that in the proper limit (39) will also follow
the generalized Cardy’s formula in the parameter region (32).

5 Concluding Remarks

In the present paper, we have proposed an algorithm, which generates a random discrete
path Ξ(0, NT ] on the upper half complex-plane H as a functional of a path of random walk
W (0, NT ] on the real axis R for integers N and T . The system has one parameter κ > 0
and we call the path an ISCTκ path. We have studied the rescaled ISCTκ path defined by
ζN(0, T ] = Ξ(0, NT ]/

√
N for large N by computer simulations. The numerical analysis of

the distributions of ζN(0, T ] supports our expectation that the limits of the rescaled ISCTκ

paths ζ(0,∞) = limT→∞ limN→∞ ζN(0, T ] will have the same statistical properties as the
SLEκ curves have.
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Figure 12: Numerical evaluations of the exponent δ in the power law (40) for κ = 5, 6, and
7. The curve shows Eq.(36) of the generalized Cardy’s formula.

The rescaled ISCTκ paths ζ
N(0, T ] can be regarded as discrete approximations of the

SLEκ curves. In this sense, the present study could be included by the previous numerical
work [17, 18]. In this paper, however, we have emphasized our interest in the ISCT itself as
a simple algorithm to generate complicated discrete dynamics of a point on H. Dependence
on the parameter κ of complexity of the SLE curves is demonstrated by dependence of
complexity of the network N κ

n of the ISCT paths on the angle απ of the slit generated by a
single SCT.
We have learned that stochastic analysis is necessary and useful to study statistics and

stochastics of the SLEκ curves [2, 3]. Although we have reported only numerical study in
this paper, we hope that the combinatorics and statistical mechanics methods developed for
solvable models on lattices will be useful to analyze statistics and stochastics of the ISCTκ

paths on H, since they are functionals of simple random walks in one dimension.
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A Recurrence relations

Let ξ
(k)
n = 2reiφ, r > 0, 0 < φ < π for k < n. Then (28) gives

ξ(k+1)
n = 2Rσn−k

exp(iΦσn−k
), σn−k = ±1 (A.1)
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with

Rσ = 2

�
r2 + 2σr cos φ cot

θ

2
+ cot2

θ

2

�(cos2(θ/2))/2

×
�
r2 − 2σr cosφ tan θ

2
+ tan2 θ

2

�(sin2(θ/2))/2

, (A.2)

Φσ = arccos

�
r cosφ+ σ cot(θ/2)�

r2 + 2σr cosφ cot(θ/2) + cot2(θ/2)

�
cos2

θ

2

+ arccos

�
r cosφ− σ tan (θ/2)�

r2 − 2σr cosφ tan (θ/2) + tan2(θ/2)

�
sin2 θ

2
(A.3)

When we set ξ
(k)
n = 2(x + iy), x ∈ R, y > 0, k < n, the above gives

ξ(k+1)
n = 2(Xσn−k

+ iYσn−k
), σn−k = ±1 (A.4)

with

Xσ =

�
x2 + y2 + 2σx cot

θ

2
+ cot2

θ

2

�(cos2(θ/2))/2 �
x2 + y2 − 2σx tan θ

2
+ tan2 θ

2

�(sin2(θ/2))/2

× cos
�
arccos

�
x+ σ cot (θ/2)�

x2 + y2 + 2σx cot (θ/2) + cot2 (θ/2)

�
cos2

θ

2

+ arccos

�
x− σ tan (θ/2)�

x2 + y2 − 2σx tan (θ/2) + tan2 (θ/2)

�
sin2 θ

2

�
, (A.5)

Yσ =

�
x2 + y2 + 2σx cot

θ

2
+ cot2

θ

2

�(cos2(θ/2))/2 �
x2 + y2 − 2σx tan θ

2
+ tan2 θ

2

�(sin2(θ/2))/2

× sin
�
arccos

�
x + σ cot (θ/2)�

x2 + y2 + 2σx cot (θ/2) + cot2 (θ/2)

�
cos2

θ

2

+ arccos

�
x− σ tan (θ/2)�

x2 + y2 − 2σx tan (θ/2) + tan2 (θ/2)

�
sin2 θ

2

�
. (A.6)

References

[1] Schramm, O. : Scaling limits of loop-erased random walks and uniform spanning trees.
Israel J. Math., 118, 221-228 (2000)

[2] Lawler, G. F. : “Conformally Invariant Processes in the Plane” American Mathematical
Society (2005)

[3] Lawler, G.: Schramm-Loewner evolution (SLE). e-print arXiv: 0712.3256 [math.PR]

18



－ 19－

Iterative Schwarz-Christoffel Transformations Driven by Random Walks and Fractal Curves

[4] Kager, W., and Nienhuis, B. : A guide to stochastic Loewner evolution and its applica-
tions. J. Stat. Phys., 115, 1149-1229 (2004)

[5] Cardy, J. : SLE for theoretical physics. Ann. Phys., 318, 81-118 (2005)

[6] Bauer, M., and Bernard, D. : 2D growth processes: SLE and Loewner chains. Phys.
Rep., 432, 115-221 (2006)

[7] Pommerenke, C. : “Univalent Functions” Vandenhoeck & Ruprecht, Götingen (1975)
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