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1 Introduction

Let K be an algebraic number field, and let Ok be its integer ring. Let X be a regular scheme
which is proper flat over B := Spec(Of), and such that X = X ®, K is geometrically
connected over K. We fix a prime number p, and assume that

(x) X has good or log smooth reduction at all places v of K dividing p.

In this paper, we give an approach to the values of the zeta function of X at integers r =
dim(X) using étale cohomology of X with Q,(r) and Z,(r)-coefficients, cf. [KCT], [Mo],
[FM], [FS].

1.1 Selmer groups

Let H;(K,V'(r)) be the Selmer group of Bloch-Kato associated with the p-adic Galois rep-
resentation V'(r) := H'(X7,Q,(r)). The first aim of this paper is to relate this group
with the étale cohomology group H*™'(X,Q,(r)), assuming that r = d := dim(X). Here
H*(X,Q,(r)) is defined as

H*(X,Qy(r)) := Qp ®z, lim H*(X, T, (r))

n>1

and T, (r) (n = 1) denotes the complex of étale Z/p"Z-sheaves on X introduced in [SH]
under the assumption that X has good or semi-stable reduction at all places v dividing p (see
also [JSS] for the case r = d). See §2 below for details on this object under the setting of this

paper.
Theorem 1.1 Assume r = d. Then we have

Q ((i,r) = (2d,d)),

i+1 o
H™ (X, Qy(r)) = {H}(K, Vi(r)) (otherwise).



The key idea of this result is as follows. By a duality result of Jannsen-Saito-Sato [JSS] and
the adjunction between R7x/p (= Rnx/p.) and R?T!X/B, we have

RT(')(/B*‘ZH(T>X = R%Om37z/pnz(R7Tx/Blgn(d — T)X, ‘Zn(l)B)[Q — 2d] (111)

in D" (B, Z/p"Z) (see Lemma 3.1 below), where the assumption = d is crucial and
To(d — 7r)x is a constructible sheaf placed in degree 0 by definition. Using this fact, we
introduce the following complexes:

H7(X, T, (1) == Rotomp, 1)mn(T<ai—o2—i RixmTn(d — 1) x, Tu(1) p)[2 — 2d),
9'(X,T0(d) :== Rstomp, 2z R ' mxmTu(d — 1) x, Tn(1)p).

By the proper base change theorem for R7x/pz1, we have
H'(X, T, (r)) =0 unless 0=i<2d—2,

and the filtration {$=*(X, T,,(r))}; on the right hand side of (1.1.1) yields a convergent spec-
tral sequence . . A

Ey' =H*(B, 9 (X,%Z,(r))) = H"(X,%,(r)).
The Es-terms of this spectral sequence are finite (see Proposition 4.1 below), and we obtain
the following spectral sequence of finite-dimensional (Q,-vector spaces:

By = H'(B,5 (X, Qu(r)) = H™(X,Q, (1)) (112)

where

H*(B,$'(X,Qu(r))) == Q, ®z, lim H(B, 5" (X, %, (r))).

n>1

Concerning the spectral sequence (1.1.2), we will prove

Theorem 1.2 (§§5-6) Assume r = d. Then the Q,-vector space E; " is zero, unless a = 1
or (a,i,r) = (3,2d — 2,d). Consequently, the spectral sequence (1.1.2) degenerates at Es-
terms. Moreover, we have _ 4

Ey" = Hi(K,V(r))
for any i, which is zero unless 0 < i < 2d — 2.

Theorem 1.1 is a direct consequence of this result. An important point of Theorem 1.2 is
the vanishing of ES’ for any 7, which we will prove by computing the cohomology of all
local integer rings with $*(X, Q,(r))-coefficients and by a local-global argument using a
Hasse principle of Jannsen [J] p. 337, Theorem 3 (c). As a consequence of the vanishing of
E3" (and E5* with (i,7) # (2d — 2,d)), we will obtain the following result (cf. [J] p. 349,
Question 2):

Corollary 1.3 (Corollary 6.10(2)) Let S be a finite set of places of K including all places
which divide p- oo or where X has bad reduction. Assume r = d. Then the restriction map
H*(Gs,V'(r)) — @ H*(K,,V'(r))
veS
is bijective for any (i,r) # (2d — 2,d), and injective for (i,r) = (2d — 2, d). In particular, if
r > d or Xk has potentially good reduction at all finite places of K, then

H*(Gs,Vi(r)) =0 forany (i,r) # (2d — 2, d).
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1.2 p-Tate-Shafarevich groups (d = 2)
We assume that X is an arithmetic surface, i.e., d = 2 in what follows. Put 7" := H' (X%, Z,,).
In their paper [BK2] §5, Bloch and Kato introduced a homomorphism

ir . Hl(Kv Ti@Qp/Zp(T)) HI(KU7Ti®@p/Zp(T))
CUHIE T 9Q L) E@ H} (K, T ® Q,/Z, (1))’

(1.2.1)

where P denotes the set of all places of K, and for each v € P, K, denotes the local
field of K at v; H (K, T" ® Q,/Z,(r)) (resp. Hj (K, T* ® Q,/Zy(r))) denotes the image
of Hi(K,V*(r )) (resp H;(K,,V'(r))). The cokernel Coker(a"") is finite and canonically
isomorphic to the Pontryagin dual of H> (X%, Q,/Z,(2 — 1)), if i — 2r < —3. They
also proved that Ker(a’") =: II1®") (H( X )(r)), the p-Tate-Shafarevich group of the motive
H'(X%)(r), is finite for the same (z,7). The second main result of this paper compares the
maps " with the p-adic Abel-Jacobi mappings

aj,"  Hy (X, 2(r)) ©Z, — H'(B, 5" (X, Z,(1)))

assuming r = 2. Here H?,(X,Z(r)) denotes the motivic cohomology of X (see §2.3 below),
and for an abelian group M, M @ Z,, denotes its p-adic completion 1&1,1 M/p™. We will
calculate the above Abel-Jacobi mapping using the Merkur’ev-Suslin theorem [MS] and the
Rost-Voevodsky theorem [V1], [V2], which together with Theorem 1.2 will play important
roles in the following comparison formula:

Theorem 1.4 (§7) Assume r = 2, and that p = 3 or B(R) = (0. Assume further that
H3,(X,Z(r)){p}, the p-primary torsion part of H,(X,Z(r)), is finite. Let S’ be the set
of the places of K which divide p or where X has bad reduction. Then aj;’r has finite kernel
and cokernel for i = 2,3, and we have

') MY HOOOD) [T et -
)~ @) oy 1L g g
x(abr) x(ajy") 217 B0 B2
— —HH (X, Z(r){p}- R YT (r=3),
X(QOT) 'X(oﬂ’) X(aji’ ) M E, go 622 31

where we put x(f) := #Coker(f)/#XKer(f) for homomorphisms f : M — N of abelian
groups with finite kernel and cokernel; for each v € S’ and a = 2,3, we put

e¥'" = #H(B,, 5" (X,Z,(r))), B, := the completion of B at v.
See Corollary 5.6 (2) below for the finiteness of e

The finiteness of CHy(X) is due to Bloch [B1], Kato and Saito [KSa]. By the localization
theorem of Levine [Le], H’, (X, Z(r)) is zero for any ¢ > r+2 (see Lemma 7.1 (1) below). As
natural extensions of these facts, we will prove that H%, (X, Z(r)){p} is finite for any r = 3,
and that H', (X, Z(r)) is uniquely p-divisible for any ¢ = 5 and » = 3, see Propositions 7.5
and 7.6 below. The formulas in Theorem 1.4 are based on these facts and results.
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1.3 Zeta values modulo rational numbers prime top (d = 2)

Assuming a weak version of p-Tamagawa number conjecture (see Conjecture 9.1), we will
relate the formulas in Theorem 1.4 with the residue or value at s = r of the zeta function

xs) =[] 7= @ #nla)

where the product on the right hand side runs through all closed points of X.

Theorem 1.5 (Proposition 9.3) Assume r = 2 and the following conditions:
@ p=r+2
(i) For any v € By dividing p, v is absolutely unramified and X has good reduction at v.

(iii)) A weak p-Tamagawa number conjecture (see Conjecture 9.1 below) holds for the mo-
tives H( X )(r) withi = 0,1 (resp. i = 0,1,2), if r = 2 (resp. 7 = 3).

Then H?,(X,Z(r)){p} is finite, and we have

i22). #CHy(X) - Ry’
Res ((X, s) = Res (k(s)- X(aj‘g 2) # _ o(X) °~  mod Z, (r=2)
= @) A Pie(O) - Ry
:3,r . H4 )(7 Z A RO,T’ . R277.
C(X,r) = x(@j,") - # [ (r){p} Ry - Ry mod Z(Xp) r > 3)

x(@j2")- Ry’

where Zy) denotes the localization of Z at (p). See Conjecture 9.1 below for the definition of
the number Ry" € R*/ Z(Xp ) which is a p-adic modification of the Beilinson regulator of the
motive H (X )(r).

This result is deduced from Theorem 1.4 and certain comparison results between the alternate
products of local terms that appear in Theorem 1.4 with zeta values of the closed fibers of
X — B, see Theorems 8.5 and 8.6 below. The assumptions (i) and (ii) are essential in this
comparison at present, while the reductions at the closed points v € B, with ufp are arbitrary.

Example 1.6 Let F be an elliptic curve over (Q with complex multiplication by the integer
ring of an imaginary quadratic field. Let X be a regular model of £ which is proper flat over
Z. Let p be a prime number = 5 at which X has good reduction and which is regular for £
([So3] 3.3.1). Then we obtain a formula (without assuming any conjectures)

2. x(aj>%) - #CHo(X
Res ((X,s) = ™ @, .)22# 102( ) mod Z,
=2 G- x(aj,”) - Ry 8

from Theorem 1.5 and results of Bloch and Kato [BK2] 6.3 (i), 7.4 (cf. [Kil], [Ki2]). If we
assume that H', (X, Z(2)) is a finitely generated abelian group for i = 2, 3, then we have

HHY(X,Z(2) < 0o, rank HY(X,Z(2)) = 1



by Theorem 1.2 (and Corollary 7.7 (2), (3) below), and obtain a stronger formula

7 - #Ker(reg>’) - #CHy(X)
3- R, 4#Hy (X, 2(2)

by [BK2] 7.4 and Theorem 9.6 below, where 7' denotes the set of prime numbers consisting

of 2, 3 and the bad prime numbers for X; reg?@’2 denotes the regulator map to the real Deligne
cohomology with Z(2)-coefficients

regy’ : Hy (X, Z(2)) — Hy(Epr, Z(2)).

mod Z[T]*

RZeQS ((X,s) =

R, denotes the volume of Coker(reg>;) with respect to the same Z-lattice of H i (E/Q) as
used in the definition of R}If.

Organization of this paper

In §2, we review the definition of the étale complexes T, () on X and establish their fun-
damental properties under the setting of this paper. In §3—54, we further introduce the étale
complexes $H=*(X, T, (r)) and $°(X,T,(r)) on By and prove some preliminary results on
those new complexes. In §5-§6 we will prove Theorems 1.1 and 1.2. In §7, we will compute
p-adic cycle class maps and p-adic Abel-Jacobi mappings assuming d = 2, and then prove the
formulas in Theorem 1.4. In §8, we will relate the alternate product of local terms in Theorem
1.4 with zeta values of the fibers of X — B. Finally in §9, we will relate the formulas in
Theorem 1.4 with zeta values assuming a weak version of p-Tamagawa number conjecture.

1.4 Notation

Throughout this paper, we fix a prime number p, and put A,, := Z/p"Z.
If p is invertible on a scheme X, we write ji,» = pn x (n = 1) for the étale sheaf of p™-th
roots of unity on X, and define a A,,-sheaf A,,(r) = A,(r)x (r € Z) on X4 as

Hon (rz1)
Ap(r) =< A, (r=0) (1.4.1)
Hom (A, (—r), Ay) (r <0).
This notation will be useful mainly in the case that r is negative.
On the other hand, if X is an F)-scheme, then we write W, 2%, . (r = 0,n = 1) for the
étale subsheaf of the logarithmic part of the Hodge-Witt sheaf 1, €Y% (see [Ill] I (1.12.1)).
If r < 0, then we define 1, (2 ,,, as the zero sheaf. If X is an equi-dimensional scheme

which is of finite type over a field £ of characteristic p, then we write v/, for the sheaf on
X defined as the kernel of Kato’s boundary map [KCT]

0: B 101y — P iU,
zeX0 zeX!
where i, : © — X denotes the canonical map for any x € X. If X is smooth over k, then we
have vy , = W, Q% ,, by Gros-Suwa [GS].
Unless indicated otherwise, all cohomology groups of schemes are taken over the étale
topology.



2 Etale coefficients

Let O be a Dedekind ring whose fraction field K has characteristic 0, and let p be a prime
number. We put

B := Spec(9), Blp™'] :=Spec(O[p7']) and ¥ := Spec(D/\/@)

Let X be a regular connected scheme which is separated, flat of finite type over B =
Spec(9). For a closed point v € B, we put B" := Spec(O") and Y, := X xp v, where
O denotes the henselization of the local ring 9, = O ,,. Throughout this paper, we assume
that X satisfies the following condition:

(x1) For any closed point v € B of characteristic p, (Y, )wea has normal crossings on X
and the morphism X x g BY" — BMis log smooth with respect to the log structure on
X x g B! associated with (Y, ).eq and that on B! associated with v.

We write x5 : X — B for the structure morphism, and put d := dim(.X), the absolute
dimension of X. Let Y be the disjoint union of Y,’s for all closed points v € B with ch(v) =
p. Let j (resp. ) be the open immersion X [p~!] < X (resp. closed immersion Y < X).

In this section, we define a family of complexes of étale sheaves {T,,(r)},>1,ez on X
and check several fundamental properties of them using the main results of [SS], which have
been established in [SH] and [Sa2] in the case that X has semi-stable reduction at all v € B
with ch(v) = p. The coefficients {¥,,(r)},..- play key roles throughout this paper.

2.1 KEtale complex %,,(r)
For r = 0, we define T,,(r) = T,,(r)x € D’(Xg, /A,) by the distinguished triangle

Ly [—r — 1] 25 %.(r) T< Rjufipn ), Ly [l (2.1.1)

See [SH] (3.2.5) and (4.2.1) for the right arrow (x). By the same arguments as in loc. cit.
4.2.2, %, (r) is concentrated in [0, 7] and unique up to a unique isomorphism in D°( X, A,,).
For r < 0, we define ¥,,(r) as
To(r) == nAn(r).
See (1.4.1) for the definition of the (locally constant) sheaf A, (r) on (X[p™!])«.
Lemma 2.1 (1) Ifp is invertible in O, then we have ¥,,(r) = A, (r) for any r € Z.
(2) Assume that
(*2) any residue field of O of characteristic p is perfect.

Then we have %, (r) = Rj.jusi for any r = d + 1.



Proof. (1) is obvious. We prove (2). Without loss of generality, we may assume that O is
local and strict henselian. Let k be the residue field of ©. Since k is algebraically closed by
assumption, we have cd,,(K) < 1 ([Se] Chapter II, §3.3). By this fact and the cohomological
dimension of affine varieties [SGA4] X.3.2, we have 7<, I%j, u?f = Rj*ugf for any r = d.
On the other hand, we have 15! = 0 for any r > d + 1 again because k is algebraically

n

closed (note that dim(Y') = d -~ 1). The assertion follows from these facts. [

Proposition 2.2 (cf. [SH] 4.2.8) Let D' be another Dedekind ring which is flat over 9, and
let X' be a scheme which is regular and flat of finite type over B’ and satisfies (x1) over B'.
Let f : X' — X be an arbitrary morphism, and let g : X'[p~'] — X|[p~!] be the induced
morphism. Then for any n = 1 and r € 7, there exists a unique morphism

ff T (r)x — Tu(r)x:  in DY(XY,A)
that extends the natural isomorphism g* Ay, (1) xp-1) = Ay (r) xipp-1 on X'[p~'].

Proof. The case r < 0 is obvious. Assume r = 1 and put U' 05 := Ker (0% — O

red) : We
define a filtration

0 C U'R"jupsd C FRjupll C RUjopit
on the sheaf R"j, /i as

U'R"j, ;L?J := the subsheaf generated étale locally by symbols of the form

{a,by,...,b,_1} witha € U' O and b; € G+ O 1y

FR"j, pff’[ := the subsheaf generated étale locally by U'R"j, /. and the symbols

{a1,aq,...,a,} witha; € OY.

We have R'j,pign | FR j, i = L*V{{nl by [SS] 1.1 (see also Remark 2.3 below) and the same

pm =
arguments as in [SH] 3.4.2, and hence

(T (r)) = FRjpsr (2.1.2)
The assertion follows from this fact and [SH] 2.1.2 (1). ]

Remark 2.3 The assumption in [SS] 1.1 that the base field K contains a primitive p-th root
of unity can be removed by the following argument due to K. Kato, [KSS]. Without loss of
generality, we may assume that © is henselian local and that X is an affine scheme of the
from

X = Spec(Olto, t1, ..., ta| /(L LT -+ - toe — 7))

for some integers 0 < ¢ < d and ¢y, eq,...,¢. = 1 and some prime element 7 € . Put
w = *+/7 and O” := the valuation ring of K (). There is a finite flat extension of X

X" = Spec(O"[Ty, Th, . .., Ta) /(TS T - - - TS — w))

with T; := *3/%;, which is quasi-log smooth over 9" and K (w) contains a primitive p-th
root of unity. Hence [SS] 1.1 is applicable for X", and we obtain the same assertion for X
by a standard norm argument.



Proposition 2.4 (cf. [SH] 4.3.1) For any r € 7Z and m,n = 1, there exists a canonical
distinguished triangle of the following form:

" Sm,n

(1) —= T (r) L Ty (1) % T, (P[] in DP(Xe).

Here p™ (resp. #£'™) is a unique morphism that extends the natural inclusion A,(r) —
A (1) on (X [p~)e (resp. the natural surjection Ay (1) — A (1) on (X [p~))e) satis-
fying

xp™ =p" o B Ny (1) —> Anym(7)
The arrow 6., ,, is a canonical morphism which extends the Bockstein morphism A, (r) —
An(r)[1] in D*((X[p~1])e) associated with the exact sequence 0 — A, (1) — Apym(r) —
A (r) = 0.

Proof. On obtains the assertion by repeating the proof of [SH] 4.3.1, using [SS] 1.1 in place
of [SH] 3.3.7 (1). U

2.2 Purity and duality

Let Z be an integral closed subscheme of Y', and let iy : Z < Y and 1z : Z — X be the
natural closed immersions. Put ¢ := codimy (Z). We define the Gysin morphism for ¢ as
the composite

Gys;
Gys,, : vy [T — i Riyvy H=r —1] =% Ri;T,(r) in D™ (Zg, Ay).  (22.1)

See (2.1.1) for g, and [SH] 2.2.1 for Gys,_ (see also [Sal] 2.4.1).

[

Proposition 2.5 (1) Gys,, induces an isomorphism vy ‘|—r — ¢] = 1<, Ri;%,(r) for
anyr € Z.

(2) Assume further the condition (x2) of Lemma 2.1 (2). Then the above Gys,, is an iso-
morphism for any r 2 d.

Proof. (1) We obtain the assertion by repeating the proof of [SH] 4.4.7, using [SS] 1.1 and
4.5 in place of [SH] 3.3.7. More precisely, our task is to prove that

.| xD s QT _
T§r+cflR2Z(T§T+1L Rj*:up") =0,

which is reduced, by a standard argument using [SS] 1.1, to showing the semi-purity of
Hagihara in our situation:

Riiy("R™j ") =0  forany mand g with g < ¢ — 2.

This last vanishing is further reduced to the case that K contains a primitive p-th root of
unity by the argument in Remark 2.3, and then checked by the arguments in [SH] A.2.9
and the fact that the sheaf U'R™ '*u;?m introduced in the proof of Proposition 2.2 has a
finite descending filtration for which each graded quotient is a free (&1 )P-modules for some
irreducible component 7" of Y, see [SS] 4.5 and the last display in the proof of loc. cit. 4.4.
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(2) Under the assumptions, the left arrow in (2.2.1) is an isomorphism by [Sal] 1.3.2 and
4.3.2. The right arrow in (2.2.1) is an isomorphism as well by the facts that Tger*ufnT =
Ry, uf?n" for any 7 = d (see the proof of Lemma 2.1 (2)) and that R/'Rj, = 0. ([l

2

Corollary 2.6 (cf. [SH] 4.4.9) For any closed immersion 15 : Z — X of codimension
r+ 1 and any ¢ < 2r + 1, we have R115%,,(r) = 0.

Proof. One obtains the corollary by the same arguments as in the proof loc. cit. 4.4.9, using
Proposition 2.5 (1) in place of loc. cit. 4.4.7. O]

Let = and y be points of X such that y € {z} and such that ¢ := codimy(y) =
codimy (x) + 1. To proceed our preliminaries on the complex %, (r), we introduce the fol-
lowing residue diagram:

H™= (2, Ay (r — e+ 1)) — 22— H™(y, A, (r — ¢)) (2.2.2)

Gys,, l l Gys w

HT+=1(Spec(Ox.), Tn(r)) _4. H;JFC(SPGC(ﬁX,y)a Ta(r)),

where the coefficient A,,(s) = A,(s). on a point z denotes the étale complex W, 22, [—s]
(resp. the étale sheaf defined in (1.4.1)) if ch(z) = p (resp. ch(z) # p). If ch(z) # p, then
the Gysin map Gys, for ¢, : z < Spec(Ox.) is defined as the cup product with Gabber’s
cycle class clx(z) € H* (Spec(Ox..), uf?f/), where ¢’ := codimy(z). The arrow 0 denotes
the boundary map of Galois cohomology [KCT], and ¢ denotes the connecting map of a
localization long exact sequence of étale cohomology.

Lemma 2.7 The diagram (2.2.2) is anti-commutative.

Proof. See [JSS] Theorem 3.1.1 for the case ch(y) # p. The case ch(z) = ch(y) = p
follows from the definition of the Gysin morphism in [SH] 2.2.1. We check the case that
ch(z) = 0 and ch(y) = p, using the results in [SH] as follows. Put Z := @ the Zariski
closure of {y} in X. We write RD(X, x,y, r) for the diagram (2.2.2). Since the problem is
étale local on X, we may assume that X is affine and that X is a closed subscheme of an
affine space AY =: X'. Let £ be the generic point of X and put ¢ := codimy/(X). The
diagram RD (X', &, n, r + ¢’) is anti-commutative for any generic point  of Y by [SH] 6.1.1.
Hence there exists a Gysin morphism fori : X < X’

Gys;

7

LT, (r)[-2¢] — Ri'S(r+¢)  in DY (Xg, Ay),

which induces an isomorphism T, (7)[—2¢] & 7<,,»Ri'T,(r + ), by the same arguments
as in loc. cit. §6.3. Moreover, one obtains the transitivity assertion in loc. cit. 6.3.3 for the
closed immersions Z < X < X’ by the same arguments as in the proof of loc. cit. 6.3.3,
where we have again used the fact that the diagram RD(X’, &, n, 7 + ¢/) is anti-commutative
for any generic point 7 of Y. Thus the anti-commutativity of RD(X, x, y, ) follows from
that of RD(X', z,y,r + ¢) (loc. cit. 6.1.1) and the purity in Proposition 2.5 (1) for Z — X
and Z — X'. O

The compatibility in Lemma 2.7 plays an important role in the following results:
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Proposition 2.8 (1) Let O’ be another Dedekind ring which is flat over O, and let X' be a
scheme which is regular and separated flat of finite type over B’ and satisfies (x1) over
B'. Let f : X — X be an arbitrary morphism, and let 1 : X'[p~'] — X[p~!] be the
induced morphism. Put ¢ := dim(X[p~']) — dim(X'[p~]). Then for any n = 1 and
r 2 0, there exists a unique morphism

try: Rf&n(r — C)X/[—QC] — Sn(T)X in D+(Xét7/1n)

that extends the push-forward map try : RihA,(r — ¢)[—=2c] — A,(r) on (X[p™])e
We will often write trx.x for try in what follows.

(2) Assume further the condition (x3) of Lemma 2.1 (2). Then the adjunction morphism of
trx/p = trry . Is an isomorphism for any r 2> d:

Tu(r)x[2(d —1)] = Ry pTo(r + 1 —d)p in D" (Xg, Ay).

Proof. If f is alocally closed immersion, the assertion (1) follows from Lemma 2.7, see [SH]
6.3.4(2). One can check (1) in the general case, using [SS] 1.1 and 4.5 and the arguments in
[SH] §§7.1-7.2; in the step corresponding to loc. cit. 7.1.2, it is enough to consider locally free
(Or)P-modules .# for each irreducible component 7" of Y in place of ‘locally free (Oy )P-
modules .%” (and the assumption that % is perfect is unnecessary).

As for the assertion (2) with » = d, see loc. cit. 7.3.1, where we have used the absolute
purity [FG] and the duality in [JSS] Theorem 4.6.2. The assertion (2) in the case r > d
directly follows from the absolute purity, Lemma 2.1 (2) and the base change isomorphism
RW’X/BRJ'U* = Rj*RT(!XU/U ([SGA4] XVIIL.3.1.12.3), where j;; denotes the open immersion
U:=B[p'|— B. O

Corollary 2.9 Let 5 : B' — B be a flat morphism such that B’ is regular of dimension < 1
and such that X' .= X x g B’ satisfies (x1) over B'. Let « : X' — X be the first projection.
Then the following diagram commutes in DV (B}, A,,) forany r = d — 1:

étr

trX//B/

Rrxypn%,(r)x/[2(d — 1)]

|

B Rrxmi % (r) x [2(d — 1)]

Sn<7’ + 1— d)B’

TB*

B*trx/p

Proof. The assertion follows from the uniqueness of the trace morphisms for ¥, (r) and the
base change property in [SGA4] XVIII.2.9. 0

Corollary 2.10 (1) Assume that O is a strict henselian discrete valuation ring with alge-
braically closed residue field, and let v be the closed point of B. Then there is a trace
map

trx/p Gysw

tryy : sz(X7 L*Rb!fznw)) ——=H}(B,%,(1)) ~= An,

11



where 1, : v — B denotes the closed point of B and the subscript ¢ means the étale
cohomology with proper support over B. Moreover, for any constructible A, -sheaf %
on X and any i 2 0, the induced pairing

H\(X,F) x Extﬁgzi(ﬁ, LRIT,(d) — A,
is a non-degenerate pairing of finite A,,-modules.

(2) Assume that O is an algebraic integer ring. Then there is a trace map

trx : HE (X, T, (d) =% HY(B, T,(1) ~2- A,
where the subscript ¢ means the étale cohomology with compact support (see e.g.
[KCT] §3). Moreover, for any constructible A,-sheaf % on X and any i 2 0, the
induced pairing
HY(X,7) x Ext3{ {1 7(F, T (d)) — A,

is a non-degenerate pairing of finite A,-modules.

Proof. (1) By Proposition 2.8 (2) for r = d and the purity in Proposition 2.5 (2), we have
isomorphisms

RUT,(d) = R/ Ry p T, (1)[—2(d — 1)] = Ry, R, T, (1)[-2(d — 1)] & Ry, An[—2d).
The assertion follows from this fact and the isomorphisms compatible with Yoneda pairings
HAX,Z) = HAY.0F),  Exty, (F.0RIT,(d) = Exty, (°F, RIT,(d),

where we have used the proper base change theorem to obtain the left isomorphism. See e.g.
[KSc] Chapter II, Proposition 2.6.4 for the right isomorphism.

(2) The assertion follows from Proposition 2.8 (2) and [JSS] Proposition 2.4.1 (3), Corol-
lary 2.5.1. U

Remark 2.11 The push-forward morphism tr; in Proposition 2.8 (1) satisfies the projection
formula in [SH] 7.2.4, by the same arguments as in loc. cit. See also the proof of Proposition
2.8 (1) as to how we modified loc. cit. 7.1.2 in our situation.

2.3 Cycle class morphism

To construct a cycle class morphism from Bloch’s cycle complex (see (2.3.2) below), we
formulate a version of ¥, (r) with log poles and a purity for this coefficient; see also [Z]
for a construction assuming Gersten’s conjecture for Bloch’s cycle complex. Let D be a
reduced normal crossing divisor on X which is flat over B and such that D U Y4 also has
simple normal crossings on X and such that the pair (X, D) is quasi-log smooth over B in
the sense of [SS] 5.2. We define T, (r)x,p) by the following distinguished triangle analogous
to (2.1.1):

(*) r—1

T t r
LeV/( E’),n[_r -1 % Tn(r)(x,0) — T Ripupiy — L*V(KE)’H[—T], (2.3.1)

12



where we put £ := Y. N D and y’;g)m = ¢4 with ¢ 1 Y\ E < Y; 1) denotes the
open immersion X \ (Y U D) < X. See also [Sa2] 3.5 and 3.6. When D = (), we have
Tn(r)(x,0) = Tn(r)x. The following propositions concerning the complex <,,(7)x,py play

fundamental roles in our construction of cycle class maps.

Proposition 2.12 (cf. [Sa2] 6.5) Let Z be a closed subset of X of codimension 2 c. Then we
have

H7 (X, Tn(r)(x.0)) =

0 (g<r+o
H (XN D, Z,(r))  (g=7+o0).

In particular, if Z has pure codimension c on X, then we have

0 (g < 2¢)

q ~
H7(X,%,(c)x,p)) = {An[ZO < D] (g = 20),

where A,[Z° \ D] means the free A,-module generated over the set Z° \. D.

Proof. One obtains the assertion by repeating the arguments in the proof of loc. cit. 6.5, using
[SS] 1.1 and 4.5 (resp. Corollary 2.6 of the previous subsection) in place of [Sa2] 3.3 (resp.
[SH] 4.4.9). We do not need to assume the existence of primitive p-th roots of unity in KX by
the argument in Remark 2.3. U

Proposition 2.13 (cf. [Sa2] 4.3) Let E — X be a vector bundle of rank a, and let f : P :=
P(E® 1) — X be its projective completion. Let P’ := P(F) the projective bundle associated
with F, regarded as the infinite hyperplane section of P. Then the composite morphism

‘In(r)X — Rf*(zn(r)]P’ — Rf*Tn<r)([F’,P’)
is an isomorphism in DT (Xg, Ay,).

Proof. One can extend the Dold-Thom isomorphism (loc. cit. 4.1) and the distinguished
triangle in loc. cit. 3.12 to the situation of this section, by repeating the same arguments as
in the proofs of loc. cit. 4.1 and 3.12, using [SS] 1.1 and 4.5 (note also Remark 2.3 of this
section). The assertion follows from those facts and Remark 2.11. O

Let Et/ X be the underlying category of X-schemes of the étale site X. For a scheme
Uand r = 0, let 2"(U, ) be Bloch’s cycle complex [B2]. We define a complex Z(r) of
presheaves on Et /X by the assignment

Z(r) : U € Ob(Et/X) — 2"(U,*)[-2r],

which is in fact a complex of sheaves in the Zariski and the étale topologies. We call Z(r)
the motivic complex of X of weight r. For a closed subset C € X and U € Ob(Et/X),
put Cy = C xx U and let zg,, (U, q) be the subgroup of 2" (U, q) consisting of the cycles
on U x A? of codimension r» whose support is contained in Cy; x A? (and which satisfies
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the face condition). The collection {z¢, (U, q)}4>0 forms a subcomplex of 2"(U, ), and we
define a subcomplex Z(r)ccx C Z(r) by the assignment

Z(r)cex 1 U € Ob(Et/X) — 2¢, (U, *)[—2r].

By Propositions 2.12 and 2.13, Lemma 2.7 and the same arguments as in [Sa2] §7 (see also
Remark 2.14 below), one obtains a cycle class morphism

CIC’CX,An : Z(T’)ch X /1” — REC(X, ‘Sn(r)) in .D(Xét7 An) (232)
for any r = 0, which yields the cycle class map on hypercohomology groups
clecx.a,  Ho(Xzar, Z(r) @ Ay) — HE (X, T, (1)).

When C' = X, the group on the left hand side will be denoted by H?,(X, A,(r)), and the
map clx 4, := clxcx 4, will be computed in Lemma 7.1 (3) below under the assumption that
d=2.

Remark 2.14 To follow the arguments in [Sa2] §7, we have used the projection formula in
[SH] Corollary 7.2.4, which has been extended to our situation in Remark 2.11. We also
need to extend the compatibility fact in [SH] Corollary 6.3.3 to our situation, where the push-
forward morphism in Proposition 2.8 (1) plays the role of Gys, of loc. cit. 6.3.3. One can
easily check the details by Lemma 2.7 and the proof of loc. cit. 6.3.3.

Let Cy C (1 be closed subsets of X, and let ¢ : X' := X ~\ (3 < X be the natural open
immersion. Put C’ := C; \. C5. Then the squares in D( X, A,,)

ot
Z(T)CQCX & An - Z(T)C’ch & An - R¢*Z(T)C’CX’ & An (233)
CICQCX7A7L\L CICICXvAn\L C]C/CX/,An\L

RLc, (X, %0 (r)) — RLc, (X, %0 (r)) — Ro.RLoi (X', %0 (1))

are commutative by the construction of cycle class morphisms. From this commutative dia-
gram, one obtains another commutative diagram in D (X, A,,)

ROZ(r)crexr ® Ay —2> REo (X, Z(r)crcx @ An)[1] <—— Z(r)c,ex @ Ay[1]

clorexs ap cleyex, Ay,
cleycx, Ay,

Ro.RL (X', T (r)) ——= RL 0, (X, T (r)[1],

(2.3.4)
where the arrows ¢ are the connecting morphisms of localization triangles (see [SH] 1.9).

Remark 2.15 The arrow v of (2.3.4) is NOT an isomorphism, or equivalently, the upper
row of (2.3.3) does NOT fit into any localization triangle in D(Xg, A,). If one considers
localization triangles in the Zariski topology, then the morphism corresponding to -y of (2.3.4)
is an isomorphism by Levine [Le].
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2.4 Cospecialization and a residue diagram

In this subsection, we consider a residue map and prove its contravariance, which will be
useful in §5.3 below. We suppose that 7x/z : X — B is proper, and that O is a henselian
discrete valuation ring with algebraically closed residue field. Put I == Gal(K /K). By the
duality in Corollary 2.10 (1) and the Poincaré duality for X, the cospecialization map

cospy : H'(Y, A,) 2 H'(X, A,) — H' (X7, A,)'%
induces a canonical homomorphism
Resy : H' (X7, pS8 e — HYy (X, T,(d)),
where we put i’ :=2(d — 1) — 1.

Proposition 2.16 For any i = 0, the following diagram is anti-commutative:

Hl([Ka Hi<X?7 M?"d)) —— Hi<X?7 M?ﬂdil)lk

i iResX

H (X, p&h) — 2~ HIF2(X, T, (d)),

where the left vertical arrow is an edge map of a Hochschild-Serre spectral sequence, and
the upper horizontal arrow denotes the composite map

HI(IK7 HZ(Xfa N?fl)) — HI(IKv :up") ® HZ(XF7 Hgti_l)l}{
~ K*® HZ(va M?ﬂd_l)h( % Z® HZ(X?a ,u?nd_l)lK'
The bottom horizontal arrow is the connecting map of a localization long exact sequence.
Proof. The following diagram of trace maps and boundary maps are commutative:

tfx/B

H2d71(XK’M§”d) HHl(]Kap“p") ——=K*® A,

N ol o

rx/p trp v A
mny

HY(X, T (d)) —— H3(B, T,(1))

where v denotes the closed point of B, and trp, means trxy for (X,Y) = (B,v) (see
Corollary 2.10(1)). See Lemma 2.7 for the commutativity of the right square. The assertion
follows from this commutativity and the following obvious commutative square:

H(Ig, H' (X, A,)) == H" (X7, A,,)'%

! T

H" (X, Ay,) H (X, A,).

The details are straight-forward and left to the reader. U
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The following consequence of Proposition 2.16 will be useful later. Let O’ be another
strict henselian local ring which is flat over O and whose residue field £’ is algebraically
closed. Let X’ be a scheme which is regular, proper flat of finite type over B’ and satisfies
(1) over B'. Put L := Frac(9’), I}, := Gal(L/L) and Y’ := X' ®q k. Assume that

dim(X’) = dim(X) = d
(hence that dim(X}) = dim(Xg) = d — 1). Under this setting we obtain:

Corollary 2.17 For any morphism f : X' — X and any i = 0, the diagram

i - oo -
H (X,f7 M?nd 1)1L<7H (va N’?ﬂd I)IK

Resx i J/RCSX

i ' It i
HY? (X', T, (d) <— Hy (X, %,(d))

is commutative, that is, the map Resy is contravariant in X.

Proof. In the diagram of Proposition 2.16, the composite map J o € is contravariant in X
by Proposition 2.2, and the map « is surjective by the fact that cd(/x) = 1. The corollary
follows from these facts and Proposition 2.16. 0

3 A filtration on the direct image

Let mx/5 : X — B = Spec(O) be as in the beginning of §2. In this section, we assume
(x2) any residue field of O of characteristic p is perfect.

Under this assumption, we introduce objects H*(X, T, (r)) of D (Bg, A,) for r = d :=
dim(X), which play central roles throughout this paper. The étale cohomology of B with
coefficients in these new objects will be related to the étale cohomology of X with coefficients
in T, (r) by the spectral sequence (3.1.6) below.

3.1 Etale complex (X, %, (r))

Lemma 3.1 For anyr = d, we have

Rrx/pTy(r) =2 R omp 4, (RrxpTn(d — 1), T, (1))[2 — 2d] (3.1.1)
in DT (Bg, Ay,).
Proof. Since r 2 d by assumption, there exists a canonical isomorphism

T (r) 2 R#omx a, (To(d —1),Tp(d))  in D¥(Xe, An), (3.1.2)

16



which is obvious if » = d, and otherwise a consequence of Lemma 2.1 (2) and the adjunction
in [SGA4] XVIIL.3.1.10 for the open immersion X [p~!] < X. Hence we have

Rrxp.Tn(r) & Ruxp.RAOmx 4, (Tn(d — 1), R 5T,(1)[2 — 2d))
= R%O?TLRA” (R?T)(/B!(En(d - 7"), In(l))[Q — 2d]

in D*(Bg, A,,), by Proposition 2.8 (2) and [SGA4] XVIIL3.1.10 for 7xp. O
Definition 3.2 For each m € Z, we define

H="(X, T (r)) = RAomp 4, (T22(0-1)-m B x5 Tn(d — 1) x, Tu(1) )[2 — 2d],
H"(X,T,(r)) := Rotomp 4, (R* D1 pTo(d — ) x, Tn(1)B),

which are objects of DT (B, A,,).
Caution 3.3 ™ (X, %, (r)) is NOT the sheaf R’} /5, %, (r), but a complex of sheaves.

By Lemma 3.1 and the proper base change theorem (for Rmx/p:), we have

X, T () 2 4 (m = 1) (3.1.3)
= L Ta(r)) = 1.
RWX/B*En(T)X (m 2 2(d - 1))
H™MX,Tu(r) =0 unless 0 < m < 2(d—1). (3.1.4)

For any m € Z, we have a natural distinguished triangle of the form
HHX, Tu(r) — HTX, Tu(r)) — H™(X, Tu(r))[-m)
— 95X, T ()], (3.1.5)

The data {$=™(X, T,,(r)) }m<a(a_1) form a finite ascending filtration on =21~V (X, T, (1))
= Rmx/B«En (r)x, and yield a convergent spectral sequence

Ey' = H'(B, (X, T,(r)) = H""(X, Tu(r). (3.16)

To illustrate our complex $H™ (X, %, (r)), we show here the following proposition assum-
ing that mx/p is proper. See Proposition 3.6 below for more detailed computations without
properness assumption.

Proposition 3.4 Assume that X is proper over B and that r = d.

(1) Let U C B[p™'] be an open subset for which wx,, iy : Xy = X xg U — U is smooth
(and proper). Then $H™ (X, %,,(r))|v is the locally constant constructible sheaf placed
in degree 0, associated with H™ (X, i ).

(2) Assume further that the generic fiber X is geometrically connected over K. Then the
trace map trxp : Rx/p %o (1) x[2(d —1)] = T, (r 4+ 1 — d) g induces an isomorphism

DX T (1) 2T (r+ 1 —d)p. (3.1.7)
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To prove this proposition, we need the following lemma:

Lemma 3.5 Let Z be a scheme and let ¥ be a locally constant constructible A,,-sheaf on
Z¢. Then we have

Hom(F, Ap)z = Hom(Fz, A,) and  Exty , (F,A,) =0 (¢ D).

Proof of Lemma 3.5. Since .% is a pseudo-coherent /,,-module on Z in the sense of [Mil] p.
80, we have
gxtqZ’An (JOZ, An)f = Ethln (gng, An)

for any ¢ = 0 by loc. cit. I1.3.20. The assertions follow from this fact and the fact that A,, is
an injective /A,-module. OJ

Proof of Proposition 3.4. (1) By definition, we have
H"(X, Tn(r)|o = Rotomuy, 4, (R*D " A(d = 1), Aa(1)).

Since R¥@~D=mg Xy /u+/An(d — 1) is locally constant and constructible by the proper smooth
base change theorem, the object on the right hand side is isomorphic to the sheaf

Jomy, 4, (RQ(d_l)_mWXU/U*/ln(d — ), A,(1))

placed in degree 0, by Lemma 3.5. Then the assertion follows from the Poincaré duality.
(2) We have

H* (X, T, (r)) = Rtomp 4, (7x/pTn(d — 1) x, Tn(1) )

by definition, and 7x/5.%,,(d — r)x = %, (d — r)p for r = d by the connectedness of the
geometric fibers. The assertion follows from this fact and Lemma 2.1 (2) for B5. ]

3.2 Local computations

We investigate here the local structure of £ (X, ¥, (7)) around the closed points on B with-
out assuming that 7w p is proper. For a closed point v € B, we often write Y, (resp. Yz,
Xp) for X xp v (resp. X x5 v, X xp B, where B denotes the spectrum of the strict
henselization of ©,, = Op, at its maximal ideal.

Proposition 3.6 Let v be a closed point on B, and let ¢ and m be integers. We write v, for
the closed immersion v — B and j, for the open immersion B ~. v — B. Assume r 2 d.
Then

(1) We have R1.\$™(X,%,,(r)) = 0 unless q = 2, and a canonical isomorphism
(R20,$9™ (X, Ta(r)))s = HY (Ko, Ta(r)).

Moreover, we have R\ Y™ (X, %, (r)) = 0, ifch(v) = pand r > d.
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(2) We have
(R sy 59" (X, T (1)) o 2 HO (Lo, H™ (X, pi30),

where I, denotes the inertia subgroup of Gy at v. Consequently, we have
R ji$)™ (X, Tn(r)) = 0
unless ¢ = 0 or 1, by the fact that cd,(1,,) = 1 (see [Se]11.3.3).
(3) We have

H™ (X7, )™ ifq=0

AUH" (X"f()))v—{o ifg#0,10r2

and an exact sequence
0 — A (H™(X,Z0(r)s — H (L, H™ (X7, pi))
2 HP P (X, Ty (1) — (S (X, To(r)))5 — 0.

Here 7¢9(—) denotes the q-th cohomology sheaf, and 0" denotes the composite map
0x o € in the diagram of Proposition 2.16.

Proof of Proposition 3.6. (1) By the definition of $™(X, %, (r)) in Definition 3.2 and the
adjunction in [SGA4] XVIIL.3.1.12.2, we have

RLLS’Jm(X, Ta(r) = RLLR%”omB’An(R2(d_1)_m7rX/B!‘Z (d—r)x,%,(1)p)
= R om, a, (R T (d — 1) x, RET, (1)) (3.2.1)
= R om, a, (RX "y, (6 Tn(d = 7)x), An)[—2),

where vy, denotes the closed immersion Y,, — X, and we have used the proper base change
theorem for Rmy/p and the purity in Proposition 2.5(2) for %,(1)p in the last isomor-
phism. In particular if ch(v) = p and r > d, then (5, T,,(d — r)x is zero and we have
Rt 9™(X, T, (r)) = 0, which shows the third assertion of (1). If ch(v) # porr = d,
then RiL$H™ (X, T, (r)) is acyclic outside of degree 2 by (3.2.1) and Lemma 3.5 for Z = v.
Moreover, if r = d, then we have

2,1 am (3};” 2(d—1)—m
R, 9H"(X,%,(d)) = FHomy,a, (R Ty, ol An; An)

= %m_Q(d_l)(Rﬁomv7An(Rﬂyv/vl/ln, Ap))
~ %””‘2(‘1_1)(RWYU/U*RW%/UAn)

again by Lemma 3.5 for Z = v and adjunction, and we have
Ry, ), An & Ry, Ru, T, (1) 5[2] = Riy, T,(d) x [2d) (32.2)
by the purity in Proposition 2.5 (2) for v < B and Proposition 2.8 (2). Hence we have

(R20,$™ (X, Tp(d)) = HY (X, Ta(d).-
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The isomorphism in the case that » > d and ch(v) # p is similar and left to the reader.

(2) We may assume that B is local with closed point v, without loss of generality. Put
n := B\ v, which is the generic point of B. The sheaf j;: R*“"D ="y 5T, (d —r) is locally
constant on 7, and the object

o™ (X, Tu(r) = Rotomy o, (G5 R* D" mxm T (d = 1), )

is isomorphic to the sheaf (on 7)) associated with H™ ( X, pg?f ) placed in degree 0 by Lemma
3.5 for Z = 7 and the Poincaré duality. The assertion follows from this fact.

(3) The assertion follows from Proposition 3.6 (1), (2) and the fact that the stalk at v of
the connecting homomorphism

0p,5ww : R usdif™(X, T (1) — 1o R2,H™(X, T, (1))
agrees with 6 up to a sign. O
The following corollary follows from Proposition 3.6 (1) and (3).
Corollary 3.7 (1) Ifch(v) = pandr > d, then H™(X, T, (r)) = RjnjiH™ (X, Tn(r)).

(2) H™(X,F,.(r)) is concentrated in [0, 2], and Rrxp.%,,(r) is concentrated in [0, 2d).

3.3 Rigidity

In this subsection, we assume further that £ is henselian local. Let £’ be the completion of
9 at its maximal ideal, and put

B’ :=Spec(D) and X' :=X xp B’

Let v be the closed point of B’, which we identify with the closed point of B. Let Y’ be the
special fiber of mx/p : X’ — B’, and let Y be the special fiber of 7x/5 : X — B. We have
cartesian squares

Vi L x/ g oy, (3.3.1)
1 ed
TX/B ;

Yo X —>B<"™ oy,

We prove here the following preliminary result, where we do not assume that 7x,p is proper:

Proposition 3.8 (rigidity) For any r = d, there exist canonical isomorphisms

1/}1 : RWX/B*gn(T)X i> RB*RWX’/B’*gn(T)X’

Yo HEX, T (r)) — RBHZ(X, T (1)) ("m € 7)
59X, Ta(r) — RASH™ (X', Tu(r)) ("m € Z)
Y RiLH™(X, Ta(r)) — RULH™(X', T, (1)) (“m € 7Z)

in D*(Bg, A,), where i, : v — B and 1, : v — B’ are canonical closed immersions.
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Corollary 3.9 We have canonical isomorphisms for any q,m € 7Z and any r = d
H(X, T (r)x) = HY(X', T(r)x),
HY (X, Tn(r)x) = HY (X, To(r) ),
HY(B, 9™ (X, %n(r))) = HY(B', 9™ (X', Tu(r))),
H(B, 5™ (X, Tu(r))) = HY(B, §™(X', Tu(r)))-
Proof of Proposition 3.8. Let Resx and Resp be the pull-back morphisms
Resy : "%, (r)x — T, (r)x» and Resp: ("%, (1)p = T, (1)p
We define 1), as the composite
U1 @ R T (r)x — Roxpe Rou%, (1) xr = RERT x5 %0 (1) x7,
where the first arrow is the adjunction map of Resx. We define ¢/3" as the composite
Ly HE(X, F,(r)) = Rotomp a, (Toaid-1)-mBTxmTa(d — 1) x, Tu(1) )2 — 2d]
— RB.RAomp: A, (T22(d-1)-mB Rrx/mTn(d — 1) x, f7%,(1)5)[2 — 2d]
— RBRAompr A, (T22(d-1)-m B xypnTp(d — 1) x7, Tn(1) pr)[2 — 2d]
= RBH (X, T, (1)),
where the second arrow is induced by Resp and the isomorphisms
B*RrxpZn(d — 1) x = Rrxypna T, (d —r)x (proper base change)
=~ RrxypnTn(d — 1) x (r 2 d).

We define 75" in a similar way. Note that the following diagram is commutative by Corollary
2.9:
R Ea(r)x — 5= HFD (X, Tu(r) (33.2)

wll lw2(d1)

RB*RWX//B/*SH(T)X Rﬁ*ﬁ<2d 1)(X/ z ( ))

We define ¢}* as the composite

(313)

base change

U RS (X, Ta(r) RiL 357 (X, Ta(r) 5 RES™ (X', T (1))
See [SGA4] XVIIIL.3.1.14.2 for the base change morphism. This #)}" is an isomorphism, be-
cause both Ri\ 9™ (X, T, (r)) and R\ $H™(X’, %, (r)) are isomorphic to
Rtom, z, (RPV""ry A (d —71), A,)[—2]  (if ch(v) # porr = d)
0 (if ch(v) = pand r > d)

by (3.2.1) and Proposition 3.6 (1). We prove that v;, ¥5" and 15" are isomorphisms. By the
triangle (3.1.5) and the commutative diagram (3.3.2), we are reduced to showing that %" is
an isomorphism for any m € Z. Put K’ := Frac(9'), and let us note the following facts:
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() H™(Xg, pgn ) = H™(XZ,, L ), see [Mil] VI.4.3
(i) Gg = Ggr, see [Mi3] p. 160, (i), (ii)
(iii) )" is an isomorphism

By these facts and Proposition 3.6 (2), we see that 5" is an isomorphism, which completes
the proof of Proposition 3.8. 0

4 Projective and inductive limits

Letmxp : X — B = Spec(9) be as in §2. We do not assume that Tx/p 18 proper in this
section, but assume that O and K = Frac(9) satisfy either of the following conditions:

(L) K is anon-archimedean local field of characterictic 0, i.e., a finite field extension of QQ,
for some prime number ¢, and £ is the valuation ring of K.

(G) K is an algebraic number field, i.e., a finite field extension of Q, and B = Spec(9) is
an open subset of Spec(Oy ), where Ok denotes the integer ring of K.

The main aims of this section are to prove some standard finiteness results and to construct
spectral sequences (4.1.1)—(4.1.3) below, under these assumptions.

Proposition 4.1 There is a canonical isomorphism
HY(B,H™(X,T,(r))) = ExtL(R* D1y T, (d — 1), Gy (4.0.1)

forany g,m 2 0,n = 1 andr = d. Moreover, H1(X,%,,(r)) and H1(B, $H™(X,%,(r))) are
finite for the same q, m,n and r.

Proof. The isomorphism (4.0.1) follows from the definition of £ (X, ¥, (r)) (see Definition
3.2) and the canonical isomorphism

Rtomp(A,,Gy) = T, (1)

(a variant of [SH] Proposition 4.5.1). See also [JSS] (2.3.4). The finiteness of the groups
in (4.0.1) follows from the finiteness of Ext-groups in the Artin-Verdier duality ([Ma] (2.4))
and the constructibility of R*4~V="7y 5T, (d — r). The finiteness of H?(X, T,,(r)) follows
from the spectral sequence (3.1.6) and that of Es-terms. U

4.1 Spectral sequences

For r = d, we introduce the following groups:

HI(X, Z,(r)) = lim HI(X, T, (r)).

n>1

22



HY(X, Qy(r)) = HI(X, Zy(r)) @z, Qp,

HY(X,Qp/Zy(r)) == hﬂ HY(X, %, (r)),

n=1

Hq(B7"6m<X7 ZP(T>>> = 1£1 Hq(Bvﬁm<X7 ‘Zn(T))),

n>1

HY(B, 5™(X,Qy(r))) := H(B, 5™ (X, Zy(1))) @z, Qp,

HY(B, 5™ (X, Qp/Zy(r))) = lim HI(B, H™ (X, T (r)))-

n>1
Here the transition maps in the forth group is defined by the commutative diagram
HI(B, 5™ (X, T () o = HI(B, 57(X, To(r))

(4.0.1)l% (4.0.1)i%
EthB(R%dfl)fmﬂx/B[(sn_,_l (d — T'), Gm) — EthB(R2(d71)7m7TX/Bl(En(d — T), Gm)

with the bottom arrow induced by p : T,,(d — r) = T, ;1(d — r) of Proposition 2.4. The
transition maps in the last group is defined by the commutative diagram

HOB S (X, Tu(r) = HI(BS™(X, T (1)
(4.0.1)i~ (4.0.1)\LN
EthB(Rz(d_l)_mﬂx/B[gn(d — 7”), Gm> E—— EthB(R2(d_l)_m7Tx/B!En+1 (d — 7’), Gm)

with the bottom arrow induced by #' : %,.1(d —r) — %,(d — r) of Proposition 2.4.
Taking the projective limit of the spectral sequence (3.1.6) with respect to n = 1, we obtain
a convergent spectral sequence of Z,-modules

EY" = HY(B,$°(X, Z,(r))) = H*(X,Z,(r)). (4.1.1)
This spectral sequence yields a spectral sequence of (Q,-vector spaces:
By = HY(B, $°(X,Q,(r))) = H* (X, Q,(r)). (4.1.2)

On the other hand, taking the inductive limit of (3.1.6) with respect to n = 1, we obtain
another convergent spectral sequence of Z,-modules

E;J) = Ha(Bwﬁb(Xa QP/ZP(T))) = Haer(X? QP/ZP(T)) (413)

4.2 Finite and cofinite generation

The following standard facts will be useful later:

Theorem 4.2 (1) HY(X,Z,(r)) and HY(B,$H™ (X, Z,(r))) are finitely generated over Z,
forany q,m € Z and any r = d.
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(2) HY(X,Q,/Z,(r)) and HY (B, $H™(X,Q,/Z,(r))) are cofinitely generated over Z, for
any q,m € Z and any r 2 d.

(3) We have rankz, HY(B,$H™(X,Zy(r))) = coranky, HI(B,H™(X,Q,/Z,(r))) for any
q,m € Z and any r 2 d.

Proof. The assertions for H?(X, Z,(r)) and HY(X,Q,/Z,(r)) follow from a standard argu-
ment using Propositions 4.1 and 2.4. We prove the assertions for H?(B, $™ (X, Z,(r))) and
HY(B,9H™(X,Q,/Z,(r))) in the case (G); the case (L) is similar and left to the reader.

We first show that H9(B, $H™(X,Z,(r))) is finitely generated over Z,. By the Artin-
Verdier duality, it is enough to show that its Pontryagin dual

H¥ (B, R xQ,/Zy(d — 7)) := lim H¥ (B, R™ 7x/pTp(d — 1))

n=1

is cofinitely generated over Z,, where m’ := 2(d — 1) — m. Let MJ,, to be the maximal
p-divisible subsheaf of M* := R°mx/Q,/Z,(d —r),ie.,

Mg, = Im(%ﬂomB(Qp, M?®) — M5>,
where (Q,, denotes the constant sheaf on B¢ with values in Q,,. There is an exact sequence

0— p"(M]giV) — p"+"/<MI§iv> — pn (MSIV> — 0

of constructible sheaves for any n,n’ = 1, and H'(B, Mg,,) is cofinitely generated over Z,
for any ¢ by a standard argument. On the other hand, the quotient sheaf

s
M cotor

= MS/MBiV

is the torsion part of R*™'7x 57, hence constructible ([SGA5] V1.2.2.2), and H'(B, Mg )
is finite for any 7. Therefore by the long exact sequence

cotor

) = HPY (B, M) — -, (42.1)

H'(B, M?®) is cofinitely generated over Z, for any i and s, and H(B, $H™(X,Z,(r))) is
finitely generated over Z,, for any ¢ and m.

We next show that H4(B, $™(X,Q,/Z,(r))) is cofinitely generated over Z,. By similar
arguments as before, it is enough to show that the group

H (B, R*mxypZy(d — 1)) = lim H (B, R'rxmT,(d — 1))

n>1
18 finitely generated over Z,, for any 7 and s. Let M* and Mg, be as before, and put

T3 = (M) (n21) and T°:= (),

n

Note that 7% := (7%),,>1 is a constructible Z,-sheaf. We further put

H(B,T*) := lim H (B,Ty),

n=1
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which is finitely generated over Z, for any ¢ by a standard argument. Noting that there is a
short exact sequence of constructible Z,-sheaves

0 — Mgy — RomxpZy(d — 1) — T° — 0

cotor

we obtain a long exact sequence

co o HU(B, ML) = Hi(B, RnxpZ,y(d — 1)) — H.(B, T*)

cotor

— HY B, MS5) — -+, (4.2.2)

cotor

which shows that H.(B, R*mx/pZ,(d — r)) is finitely generated over Z, for any i.
Finally noting that there is a long exact sequence of Z,-modules

o= Hy(B,T*) = Hy(B, RmxmQp(d — 1)) = H(B, My,)
— HY(B,T%) — -+, (4.2.3)
we obtain the equalities
rankz, H(B, 9™ (X, Z,(r))) (i) corankz, H (B, M™) (m':=2(d—1) —m)
@b corankz, H. (B, MY @29 rankz, H. (B, ™)

“22)

=" rankg, Hz’_q(B, Rm,ﬂx/BgZp(d —)) (duality)

corankz, H'(B,H™(X,Q,/Zy(r))),

which shows the assertion (3). [

S Comparison with Selmer groups, local case

Let mxp : X — B = Spec(O) be as in §2. In this section, we always assume the following:
e Tx/p 1S proper, and the generic fiber Xy is geometrically connected over K.

e K is a non-archimedean local field of characteristic 0, and O is the valuation ring of
K, i.e., the case (L) of £4.

Let k be the residue field of O and put £ := ch(k). We will often write Y" (resp. Y) for X @0 k
(resp. X ®p k). A main aim of this section is to compare H* (X, Q,(r)) (r = d) with Selmer
groups H } whose definition we are going to review briefly.

Let V be a finite-dimensional Q,-vector space on which the Galois group Gk acts con-
tinuously. In their paper [BK2] §3, Bloch and Kato defined the Q,-subspace H }(K , V) of
HY(K,V) as
Ker(H'(K, V) — H'(K™, V) (¢ #p)

Hi(K,V):=
Ker(Hl(K, V) — HI(K, V ®Qp Bcrys)) (6 = p)7
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where K" denotes the maximal unramified extension field of K, and By, denotes the period
ring of crystalline representations defined by Fontaine [Fo]. We often write H /ﬁ[ (K, V) for the

quotient of H'(K, V') by H (K, V). Let us recall here the following fundamental theorem of
Bloch-Kato [BK2] 3.8, which will be useful in this section:

Lemma 5.1 (Bloch-Kato) Assume that 'V is finite-dimensional over Q,, and has a Z,-lattice
which is preserved under the action of Gi. If { = p, assume further that V is a de Rham
representation. Let V*(1) be the Kummer dual of V, that is, Homg, (V,Q,(1)). Then under
the perfect pairing of local Tate duality

H'(K,V) x H'(K,V*(1)) = H*(K,Q,(1)) = Q,,
the subspaces H} (K, V') and H; (K, V*(1)) are the exact annihilators of each other.
The following standard fact will be useful later in §56—8 below.

Lemma 5.2 Assume that { # p, and that Tx/p : X — B is smooth and proper. Then we have
HY(B,9"™(X,%,(r))) =0foranya =22, m=0,n=21andr = d.

Proof. Under the assumptions, (X, T, (r)) is a locally constant sheaf on By placed in
degree 0, whose stalk at v is H™(Y, uf?{) by Lemma 2.1 (1), Proposition 3.4 (1) and the
proper smooth base change theorem. Hence we have

H(B, §™(X, Tu(r))) = H (0, H™(V, 4I)) = 0

for any a = 2, as claimed. O

5.1 Comparison results
The main result of this section is the following:

Theorem 5.3 For any m = 0 and r = d, we have canonical isomorphisms

HY (K, H™(X%, Q,(r =1
Hq(Bjﬁm(Xy@p(r)))g{f( (X7, Qp(r)) (@=1

0 (otherwise)
Moreover, if { # p, then we have H(B, 5™ (X, Q,(r))) = 0 for any ¢, m = 0 and r 2 d.

Remark 5.4 If ¢ # p, then we have H™ (X, Q,(r)) = 0 for any m € Z and any r = d by the
proper base change theorem

H™ (X, Qp(r)) = H™ (Y, Qy(r))

and a theorem of Deligne [De] 3.3.4 on weights of H*(Y,Q,) (note that dim(Y) = d — 1).
Theorem 5.3 for ¢ # p refines this fact.

We first state a few consequences of Theorem 5.3. By the theorem and the spectral sequence
(4.1.2), we obtain the following corollary:
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Corollary 5.5 The spectral sequence (4.1.2) degenerates at E5, and we have
H™(X, Qp(r)) = H (K, H™ (X7, Qy(r)))
for any m = 0 and any r = d.
The following corollary will be useful later:
Corollary 5.6 (1) There exists a natural map
Hy (K, H™ (X7, Qy(r))) — H'(B,H™ (X, Qy/Zy(1)))

which fits into a commutative diagram

H} (K. H™ (X, Q1))

N%

v
HY (B, 5™(X,Qp/Zy(r))) — H'(K,H™ (X7, Qp/Zy(1)))-
See Proposition 3.6 (1) for the injectivity of the bottom arrow.

(2) HY(B,5™(X,Z,(r))) and H*(B,$9™(X,Q,/Z,(r))) are finite for any a # 1, m = 0
andr 2 d.

Proof. The claim (1) immediately follows from Theorem 5.3, and the claim (2) follows from
Theorems 5.3 and 4.2. U

We start the proof of Theorem 5.3. A key step is to show Theorem 5.7 below. Fix integers
m 2 0andr 2 d,and put V := H™ (X%, Q,) and

Hq(B, Rmﬂx/B*Qp(d - T)) = Qp ®ZP lﬂl Hq(B, Rmﬂ'X/B*En(d - T)),

Under this notation, we prove the following:

Theorem 5.7 We have

V(d —r)Cx (q=0)
HY(B, R"mxp.Qp(d — 1)) = { Hi (K,V(d — 7)) (g=1) (5.1.1)
0 (g#0,1)
and
V(r)¥x = 0. (5.1.2)

We have HY(B, R™mx/p.Qp(d—r)) = 0if { = pand r > d, by the definition of ¥,,(d—r) and
the proper base change theorem. In this case, the isomorphism (5.1.1) asserts the vanishing
of the right hand side. We will prove Theorem 5.7 in §5.2 and §5.3 below.
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Proof of “Theorem 5.7 =—> Theorem 5.3”. Let v be the closed point of B. Put s := d—r(= 0)
for simplicity. By the isomorphisms in (5.1.1) and the localization long exact sequence

- — HIY(B, R" x5 Qy(s)) — H 1 (B, R™mx)5.Qp(s)) — HI ' (K, V(s))
— HZ(B, Rm’YTx/B*@p(S)) —
we have

0 (g #2,3)
H{(B, R"mxp.Qy(s)) =  HY (K H™ (X7, Qp(s)) (g =2) (5.1.3)
H*(K,H™ (X%, Qy(s))) (¢ =3).

Theorem 5.3 for ¢ # 0 follows from (5.1.3) with 2(d — 1) — m in place of m, Lemma 5.1 and
the Tate duality for cohomology of B (see [Ma] (2.4)):

HY(B, 5™(X,Qy(r))) x HY (B, %) "105,Q,(s)) — H3(B,Qy(1)) = Q.
The assertion for ¢ = 0 of Theorem 5.3 is a consequence of the isomorphism
H(B,$™(X,Qy(r))) = V(r)°x

(see Proposition 3.6 (1)) and the vanishing (5.1.2). Finally if ¢ # p, then H}(K, Vir)) =
H'(k,V(r)x) = 0 again by (5.1.2) and the equality of dimensions

dimg, V (r)“* = dimg,H" (k, V (r)'%), (5.1.4)

which is a consequence of the duality of Galois cohomology of Gy. U

5.2 Proof of Theorem 5.7 (the case ¢ # p)

Let K be the maximal unramified extension of K, and let I;x = Gal(K /K™) be the inertia
group of K. Let D" be the valuation ring of K", and let cosp’y be the cospecialization map

cospy : H™(Y,Q,) = H™ (X", Q,) — H™ (X5, Q)" (5.2.1)

for m = 0, where X" (resp. Y) denotes X ®go O (resp. Y &y k). We first reduce Theorem
5.7 for £ # p to the following proposition:

Proposition 5.8 Assume that { # p. Let m 2 0 be an integer, and put V := H™ (X5, Q).
(1) We have V (r)9% =0 for any r = d.
(2) Forany s < 0and q = 0, 1, the map cosp induces an isomorphism

H(k, H™ (Y, Qy(5))) = H(k, V(s)"%).
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Proposition 5.8 (1) is the same as (5.1.2) of Theorem 5.7.
Proof of “Proposition 5.8 =—> Theorem 5.7”. We have
H(B, R"mx/5.:Qy(s)) = H(k, H™ (Y, Qy(5)))

and the last group is zero unless ¢ = 0 or 1, because cd(Gy) = 1. The isomorphisms for
q = 0,1 of (5.1.1) follow from Proposition 5.8 (1) and the fact that

H}(K,V(s)) = H'(k,V(s)")
by definition. Thus we obtain Theorem 5.7, admitting Proposition 5.8. 0

Proof of Proposition 5.8. If X is smooth over B, then the assertions are clear by the proper
smooth base change theorem and Deligne’s proof of the Weil conjecture [De] 3.3.9. We are
concerned with the case that mx/p : X — B is not smooth, in what follows.

(I) Strict semi-stable reduction case. We first prove Proposition 5.8 assuming that X
has strict semi-stable reduction. We introduce some notation. Let j be the canonical map
X — X' = X ®p O, and let 7 be the closed immersion Y — X'*. By the properness of
X/ B, we have the following Leray spectral sequence for any n = 1:

EYY = HY(Y ,7°R'j,A,) = H" (X4, A,,). (5.2.2)

By a theorem of Rapoport and Zink [RZ]2.23, there is an exact sequence on (Y )

0 — "R, Ay — ulT AL (=) yosry — ulT2AL(—D) yosn) —

oo u Ay (<b) gy — 0, (5.2.3)

where for each m > 0, Z("™ denotes the disjoint union of m-fold intersections distinct irre-
ducible components of Y and v denotes the canonical (finite) map Z™ — Y; see (1.4.1)
for A,,(—b). Hence the F,-terms of the spectral sequence of (5.2.2) are finite and we obtain a
spectral sequence

Ey* =HY(Y, 7' R'},Q,) = H"'(X%,Q,). (5.2.4)

by taking the projective limit with respect to n = 1 and the tensor product with Q,, over
Z,. Note that the canonical map Ey° = H™(Y,Q,) — E™ = H™(X%, Q,) agrees with
the cospecialization map cosp’y of (5.2.1), and that the inertia group [k acts trivially on the
Es-terms of (5.2.4). We will prove the following:

Lemma 5.9 In the spectral sequence (5.2.4), we have Es" = 0 unless 0 < a < 2(d —b— 1)
and 0 < b < d—1. Furthermore, for a pair (a,b) with0 < a < 2(d—b—1)and0 < b < d—1,
the weights of ES" are at least max{2b,2(a + 2b+ 1 — d)} and at most a + 2b.

By this lemma, the kernel and the cokernel of the map cosp’y in (5.2.1) have only positive
weights and hence we obtain the assertion of Proposition 5.8 (2). Similarly, one can easily
derive Proposition 5.8 (1) from this lemma.

29



Proof of Lemma 5.9. By (5.2.3), the sheaf 7*R’j, A, (hence ES” of (5.2.4)) is zero unless
0<b< d—1.Fixab = 0in what follows. By the exact sequence (5.2.3), we have a spectral
sequence of finite-dimensional G'-Q,-vector spaces:

Byt = HY(ZCT Q,(—b)) = H*(Y, 7" R"},Q,), (5.2.5)
Here 'E{" is zero unless
0St<2(d—s—b—1) and 0=s=d—-b—1, (5.2.6)

because dim(Z(+*Y) = d — s — b — 1 and Z***Y) = () if s + b = d. Using this spectral
sequence, one can easily check that Eg’b of (5.2.4)) is zero unless 0 < a =< 2(d — b —
1). Moreover, ’Ef’t has weight ¢ 4+ 20 by [De] 3.3.9. Therefore one obtains the lemma by
computing the span of ¢ + 2b under the conditions (5.2.6) and a = s + ¢. 0

This completes the proof Proposition 5.8 in the strict semi-stable reduction case.

(I) General case. We prove Proposition 5.8 in the general case. By the alteration theo-
rem of de Jong [dJ] 6.5, there exists a proper generically étale morphism f : X’ — X such
that X' is regular and flat over B and has strict semi-stable reduction over the normalization
B’ of Bin X’. Let L (resp. ) be the function field of B’ (resp. the residue field of the closed
point of B’), Y’ for the special fiber of mx/p : X’ — B’. Then Proposition 5.8 (2) immedi-
ately follows from those for X', proved in Step (I), and the fact that V' = H™(X%,Q,) is a
direct summand of H m(X’Z, Q,) as G-Q,-vector spaces. To prove Proposition 5.8 (1), we
consider the following commutative diagram:

Hq(k,Hm(f, Q,(s))) —L~ H(F, Hmf Qy(5))) Lm@,mf Q,(5)))

H(k, V(s)) HO(F, H™ (X}, Qy(5))') ——= H(k, V (s)'x),

where the right horizontal arrows are induced by the following homomorphism of étale
sheaves on B:

(*)
try Ty R Txypr An(8)xr 2 R xypeAn(8)xr = R™xr pu (R A () x)

= R™Tx /B« (Rf.Rf An(s)x)

adjunction

R™mx /B An(8)x

and we have used the absolute purity [FG] to obtain the isomorphism (x). Since the middle
vertical arrow in the above diagram is bijective by Step (I), the assertion of Proposition 5.8 (1)
for X follows from the fact that the composite map

# tr
Rm'/TX/B*An(S)X f—> 7rB//B>|<RmWX'/B'*/ln(S)X' 2 Rm'/TX/B*An(S)X

on By agrees with the multiplication by the extension degree of function fields of f : X' —
X. This completes the proof. 0
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5.3 Proof of Theorem 5.7 (the case { = p)

By the same arguments as in the proof of “Proposition 5.8 = Theorem 5.7” in §5.2, the
assertions of Theorem 5.7 with ¢ = p is reduced to the following:

Proposition 5.10 Assume that { = p. Let m be an arbitrary integer with m = 0, and put
V= H"™( X%, Q,). Then:

(1) We have V (r)'x =0 for any r = d.
(2) Forany s < 0, we have V (s)'x = 0. For s = 0, the cospecialization map
cospi : H™(Y,Q,) — H™ (X%, Q,)'x = V'«
is bijective.

(3) Forany s <0, we have H'(k,V (s)') = H;(K,V (s)) as subspaces of H' (K, V (s)).
In particular, we have H} (K, V (s)) = 0 if s < 0.

We will first prove Proposition 5.10 assuming that X has semi-stable reduction, and then
prove the log smooth reduction case.

Proof. (1) Semi-stable reduction case. Put D := Hy, . (Y/W(k)). By the Fontaine-

Jannsen conjecture ([HK], [Ts] 0.2), we have a p-adic period isomorphism

4 ®Qp By=D ®W(l€) Bst7 (5.3.1)
which preserves the Frobenius operator ¢, the monodromy operator NV, the action of G, and
the Hodge filtration F}; after taking ® g, Bar. By the isomorphism (5.3.1), we have

N=0, ¢=p"

and

V()™ 2 (Hity s (V/WR))a, )™ N Fy (Hi(Xi/K) 01 K¥), (532)

for any r € Z. Here ¢ denotes the Frobenius operator acting on Hf7, ... (Y/ W(k)), Ko

denotes the completion of K, and we have used the following facts:
(a) (By)'® = Frac(W(k)) ([Fo]5.1.2, 5.1.3), and (Bg)'* = K.
() D @wiy K = Hix(Xk/K) ((HK]).

Proposition 5.10 (1) and the case s < 0 of Proposition 5.10 (2) follow from (5.3.2) and the
fact that
(H g,

log-crys

(Y/W(k))g,)?™ =0 ifr Zdorr <0,

As for the case s = 0 of Proposition 5.10 (2), the map cosp™ is bijective by [W] Theorem 1.
To prove Proposition 5.10 (3), it is enough to show the following two claims:
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(c) The restriction map
H'(K,V ®q, Berys) — H'(K",V ®q, Beys)
is injective. Consequently, the image of the inflation map
H' (k,V(s)lx)c—~ HY(K,V(s))
is contained in H} (K, V (s)) for any s € Z.

(d) We have dimg, H'(k,V (s)"<) = dimg, H} (K, V (s)) for any s < 0.

Proof of (c). By the exact sequence
(0 =) H'(k, (V ®q, Beys)'®) — H'(K,V ®q, Bays) — H' (K", V ®q, Berys)“*

arising from a Hochschild-Serre spectral sequence, it is enough to show that the first term is
zero. We have
(V ®Qp, Bcrys)IK =~ Hy,

log-crys

Y/ W(k)g, "
by the exact sequence ([Fo] 3.2.3)

0 — Berys — By X By —0
and the period isomorphism (5.3.1). Hence we have

H(k, (V @, Bey)'™) = Qp @z, i H' (k, Higy oy (V/Wa (k)Y 7).

n=1

Finally, the group on the right hand side is zero, because H
successive extension of additive GG,-modules.

(Y /W,,(k))N=0 is a finite

m
log-crys

Proof of (d). Since V' is a de Rham representation [Fa], there is an exact sequence of finite-
dimensional Q,-vector spaces ([BK2] Corollary 3.8.4):

0 — V(s)9% — Cris(V) @ DR(V (s))°
— Cris(V) ® DR(V) — H}(K,V(s)) — 0, (5.3.3)

where Cris(V), DR(V(s))? and DR(V) denote (V ®q, Bays)“%, (V(s) ®q, Bik)“* and
(V Rq, BdR)GK, respectively, and Bd} denotes the valuation ring of Bgg, see [Fo] 1.5.5.
Moreover we have

DR(V) = Hk(Xx/K) = FiHg (Xk /K) = DR(V (s))° (5.3.4)
for any s < 0. Hence we obtain the claim (d) from the equalities

dimg, H}(K,V(s)) °=” dimg, V(s)°% = dimg, H' (k, V(s)),
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where the right equality is similar to the left equality in (5.1.4). This completes the proof of
Proposition 5.10 in the semi-stable reduction case.

() Log smooth reduction case. Let f : X' — X, B and L be as in Step (I) in the
proof of Proposition 5.8. The assertions in Proposition 5.10 other than the bijectivity of
cosp™ are reduced to the semi-stable reduction case directly by a standard norm argument for
fx + X] — Xk. We derive the bijectivity of cosp™ for X from that for X’. Indeed, there
exists a homomorphism try : 7/, R 7 x g« Ap — R™7x /By, 0n Bg for each n > 1 given
by the following left commutative square, which is by definition the Pontryagin dual of the
right commutative square (m' := 2d’ — m):

m(\71 m(y m/ 7\ur ft m/ ur
H™(Y', Ay) H™(Y, Ay) HIEF((XN), B (d)) <— HE (XY, T, (d))

cosp7X”, l cospy l Res ./ T Resx T
#

H™ (X, Ag)e —= H™ (X, A H™ (X0, pS ), <L H™ (X, 58 1

where we put (X')* := X' xp (B)" and X" := X xp B", and the right square is the
commutative diagram in Corollary 2.17. Thus we see that cosp’y is bijective by a similar
norm argument as in Step (II) in the proof of Proposition 5.8. This completes the proof of
Proposition 5.10 and Theorem 5.7. U

By Proposition 5.10 (1) and [BK2] Corollary 3.8.4 for V(r) = H™ (X%, Q,(r)), we ob-
tain the following corollary:

Corollary 5.11 The exponential map of Bloch-Kato induces an isomorphism
exp : Hiy (X /K) — H} (K, H™ (X%, Q,(r)))

foranym = 0and r = d.

6 Comparison with Selmer groups, global case

Let mx/p : X — B = Spec(9) be as in §2. In the rest of this paper, we always assume:
e Txp is proper, and the generic fiber Xy is geometrically connected over K.
e K is an algebraic number field, and O is the integer ring of K, i.e., the case (G) of §4.

In this section, we compare H*(X,Q,(r)) (r 2 d) with Selmer groups H, using the results
of the previous section. For a place v of K, we write K, for the completion of K at v. For a
finite place v of K (i.e., a closed point of B), we put B, := Spec(O,), where O, denotes the
valuation ring of K,. We often write X, for X xp B,.

We first review the definition of Hf1 briefly. Let V' be a G x-Q,-vector space satisfying
the following two conditions:

o V is finite-dimensional over Q,, and the action of Gk on V' is continuous.
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o There exists a finite set S of places of K such that V' is unramified at v, i.e., the inertia
group I, acts trivially on 'V, for any v & S.

The Selmer group H; (K, V) = H} p(K, V) is defined as the kernel of the restriction map
Res: H'(Gs, V) — @D H)5 (K., V).
veS

Here S denotes a finite set of places of K which contains all ramified places of 1/ and all
places dividing p or co, and Gg denotes the Galois group Gal(Kg/K); Kg denotes the max-
imal S-ramified extension of K (i.e., the maximal Galois extension of K which is unram-
ified at every finite place of K outside of S). See §5 for the definition of H }(Kv, V') and
H /1f(K v, V). One can easily check that H} (K, V') is independent of the choice of S.

6.1 Fast computations

Proposition 6.1 Let r be an integer with r = d.
(1) HY(B,$™(X,Zy,(r))) is finite in each of the following cases:

i) m<O0 (i) m > 2(d — 1) (i) ¢ £ 0 @iv) ¢ > 3
v) g=3 and 0ESm <2d—3 (vi) q=3, m=2(d—1) and r > d.

Consequently, the spectral sequence (4.1.1) degenerates at Fo-terms up to finite p-
primary torsion.

(2) Foranym = 0, we have
H' (B, 5™(X,Qy(r))) = Hp (K, H™ (Xg, Qy(r)))-
Proof of Proposition 6.1. (1) We put
H™ = HY(B, 5™ (X, Zy(r))).

The cases (i) and (ii) are clear by the definition of $H™ (X, ¥, (7)) (see Definition 3.2). The
case (iii) with ¢ < 0 follows from the fact that $™ (X, T,,(r)) is concentrated in degrees = 0
(see Proposition 3.6 (3)). When ¢ = 0, the restriction map

HO™ s (X )

is injective by Proposition 3.6 (1) and the last group is finite by [De] 3.3.9. Hence H%™" is
finite. The case (iv) follows from the Artin-Verdier duality [Ma] (2.4). Indeed, we have

HY(B,5™(X,%,(r))) =2 Exth(R** Y"1 5.T,(d — 1), Gy)
by (4.0.1), and its dual
Hi_q(B, R2(d_1)_m7Tx/B*§n(d — T‘))
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is finite 2-torsion for any n = 1 and ¢ > 3. Finally we prove the cases (v) and (vi). Fix a
dense open subset U C B[p~!| such that X;; — U is smooth (and proper). Let j be the open
immersion U — B, and for each v € B let ¢, : v — B be the canonical map. There is an
exact sequence

H*(B, jij* ™ (X, Zy(r))) — H*™" — @ H(B,,$™(X, Z,(r))),
veEB\U

where we identified H? (v, ;9™ (X, Z,(r))) with H3(B,,, 9™ (X,, Z,(r))) foreachv € B\U
by Corollary 3.9. The first term in this sequence is finite unless (m,r) = (2(d — 1), d) by
the Artin-Verdier duality and a weight argument which is similar as for the case ¢ = 0. The
last term is finite as well by Corollary 5.6 (2). Thus H>™" is finite in the cases (v) and (vi),
which completes the proof of Proposition 6.1 (1).

(2) We put V™ := H™(X%,Q,), for simplicity. Let S be a finite set of places of K
containing all places dividing p or oo, and all finite places where X has bad reduction. To
prove Proposition 6.1 (2), it is enough to check the following:

Lemma 6.2 There is an exact sequence of Q,-vector spaces

0 — H'™ @z, Q, — H'(Gs, V™ (r)) = @ H} (K, V™ (r)).

veS
where H/lf(Kv, V'™(r)) means zero for the places v|oc.

Proof. Let P, be the set of all infinite places of K, and consider the localization long exact
sequence of cohomology groups for each n = 1

= HY(B,H™ (X, T(r)) = HY(Gs, H" (X7, 150)) = D HITH By, 5™ (X, T(r)))
VESN P
S HTYB, ™ (X, T (r) = -

where we have used the fact that ™ (X, %, (r))|s.s is a locally constant sheaf on B ~ S
associated with the Gg-module H™ ( X+, Mfﬁf ) (see Proposition 3.4 (1)). We have also used
the isomorphisms

H(B,9™(X,%,(r))) = H,(By, 5™ ( Xy, Tp(1))) (v e SN Py

obtained from étale excision and the rigidity of Corollary 3.9. The groups in this long exact
sequence are finite by Proposition 4.1. Therefore we obtain the following long exact sequence
by taking the projective limit with respect to n 2 1 and then ®z,Q,:

B @ HI(By, 9™ (Xy, Qu(r))) — H*™" @7, Q, — HY(Gs, V™ (1))

veSs

— P HIT(B,, H™(X,, Q1)) — -+

veES
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Moreover we have
0 @=1
H(By, 5™ (X0, Qu(r))) = § HY (K, V™(r)  (¢=2)
H?*(K,,V™(r)) (g=3)

by Theorem 5.3; the case ¢ = 3 will be useful later in the proof of Corollary 6.10 (2) below.
The assertion follows from these facts. ([l

This completes the proof of Proposition 6.1. U

Corollary 6.3 For any r = d, the spectral sequence (4.1.2) degenerates at E,, and we have
Hj (K, H™ (X5, Qy(r)))
®H?(B, 5™ (X,Q,(r))) 1<m=2d-1)

Q, ((m,r) = (2d + 1,d))
0 (otherwise).

H™ (X, Qy(r)) =

We will prove that H*(B, H™(X,Q,(r))) = 0 for any (m,r) with r = d, in Theorem 6.6
below. The following corollary is a global analogue of Corollary 5.6 (1), which will be useful
later.

Corollary 6.4 For any r = d, there exists a natural map
Hfl(Ka Hm(Xfu QP(T))) — HI(B7 ﬁm(X’ QP/ZP(T)»

which fits into a commutative diagram

HH (K, H™ (X, Q1)

v
HY(B,5™(X,Qp/Zy(r))) — H'(K,H™ (X7, Qp/Zy(7)))-
See Proposition 3.6 (1) for the injectivity of the bottom arrow.

Remark 6.5 For any s < 0, one can easily check the following canonical isomorphism by
(5.1.1), (5.1.3) and similar arguments as for the proof of Proposition 6.1:

H'(B, R"7x5.Qy(s)) = Hy (K, H™ (X7, Qy()))-

6.2 A global finiteness of étale cohomology
In this subsection, we prove the following vanishing and finiteness result:

Theorem 6.6 For any m = 0 and r = d, we have
H*(B,H™(X,Qy(r))) =0,
and the groups H*(B, 9" (X,Z,(r))) and H*(B, $H5™(X,Q,/Z,(r))) are finite.
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As a direct consequence of this theorem and Corollary 6.3, we obtain:
Corollary 6.7 Forany m = 0 and r = d with (m,r) # (2d + 1,d), we have
H™ (X, Qp(r)) = Hy (K, H™ (X7, Qy(r))).

On the other hand, Theorem 6.6 and Remark 6.5 imply the following vanishing result by the
Artin-Verdier duality:

Corollary 6.8 For anym 2 0 and s < 0, we have H (K, H™ (X7, Q,(s))) = 0.

Proof of Theorem 6.6. By Theorem 4.2, it is enough to show that H*(B, H™(X, Q,/Z,(r)))
is finite. When (m,r) = (2(d — 1), d), we have

(.17

H2(B, 920 (X,Q,/Z,(d)) = H*(B,Qy/Z,(1)) = Br(Ox) {p}.

by the finiteness of Pic(Oy ), and moreover Br(Oy) is finite 2-torsion by the classical Hasse
principle for Brauer groups. Thus we obtain the finiteness in question.

In what follows, we assume (m, d) # (2(d — 1), d) and consider the following commuta-
tive diagram with exact rows, where the coefficients $H™ (X, Q,/Z,(r)) in the upper row and
H"™(Xy, Qp/Zy(r)) in the lower row are omitted:

H'(K) P Hi(B) H?*(B)
vE By

vE By
al ai B ai
D #(K) -2 P H2B,) — @ HX(B,) — P HX(K,) — D HI(B,)

vE By vE By vE By vE By vEBy

H*(K)

D Hi(B)

v

Here B, denotes the set of the closed points on B, and the both rows are obtained from
localization sequences of étale cohomology; we put

H);(K,) = Coker (Hj (K, H™ (X7, Qy(r))) — H' (Ko, H™ (X7, Qp/Z, (1))

for each v € B (note also Proposition 3.4 (1)), and used Corollary 5.6 (1) to verify the
existence of the bottom left arrow (x). The arrows ¢ are bijective by étale excision and the
rigidity (Corollary 3.9). The arrow -~ has finite kernel and cokernel by the Hasse principle
of Jannsen [J] p. 337, Theorem 3 (c). The map « has finite cokernel by [BK2] Proposition
5.14 (ii). Hence 3 is bijective up to finite groups. Finally, H?(B,, 5™ (X,, Q,/Z,(r))) is
finite for all v € By by Corollary 5.6 (2), and zero for any v € (B[p~!])y at which X has
good reduction by Lemma 5.2. Thus H?(B, $™(X,Q,/Z,(r))) is finite. O

Remark 6.9 (1) By Theorem 6.6 for r = d = 2 and m = 1 and Lemma 7.1 (3) below,
Bloch’s conjecture ([B1] Remark 1.24) for a projective smooth curve C' over K is re-
duced to a variant of Bass’ conjecture (cf. [Ba]) that H? (X, Z(2)) is finitely generated
for an arbitrarily taken proper regular model X /B of C'.
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(2) Corollary 6.8 removes an assumption of a result of Morin [Mo] Theorem 1.5.

The following corollary of Theorem 6.6 follows from a similar argument as for the proof
of Lemma 6.2 (see also [J] p. 349, Question 2):

Corollary 6.10 Assume r = d, and let S be as in the proof of Theorem 6.1 (2). Then:

(1) We have

I

H (G, HY (X Q1)) ey B H (O Q1)
HI(K B (X, Q(r)) Y (K, H" (X, Q,(1)))

for any m. Moreover, both hand sides are zero for r > d.

(2) The restriction map

HQ(G&Hm(Xf? @p(r))) — @ HQ(KvaHm(X?a @p(r)))

vES

is bijective for any (m,r) # (2(d — 1), d) and injective for (m,r) = (2(d — 1), d). In
particular, if r > d or Xk has potentially good reduction at all finite places of K, then

H?*(Gs, H™ (X7, Q,(r))) =0 forany (m,r) # (2(d — 1),d).

7 p-adic Abel-Jacobi mappings (d = 2)

The setting remains as in §6. From this section on, we assume further that d = 2.

7.1 Cycle class maps

See §2.3 for the definition of the motivic complex Z(r) on (Et/X)z,. We regard Z(r) as a
complex on Xz, by restriction of topology. We define the motivic cohomology of X as

Hy (X, 2(r)) == Hy (X, Z(r)),
and define the motivic cohomology with A, (= Z/p"7Z)-coefficients as
Hy(X, An(r)) = Hzy (X, Z(r) @ A) - (n 2 1),
Lemma 7.1 (1) We have

(X 2r) = {H%K(X>,Z<2>> (m<1r=2)

(m>r+2)

where K (X)) denotes the function field of X.
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(2) H}(X,Z(2)) is isomorphic to the cohomology at deree m — 2 of the Gersten complex
of Milnor K-groups

K (K(X) — @ klx) — P z

(deg 0) (deg 1) (deg 2)

for any m = 2. In particular, we have H7,(X,7(2)) = CHy(X), the Chow group of
0-cycles modulo rational equivalence.

(3) Assume that r = 2, and that p 2 3 or B(R) = (). Then the cycle class map (see §2.3)
iy - Hy(X, An(r)) — H™(X, T (1))
is bijective for any m € Z and n 2 1. Consequently, there exists a short exact sequence
0 — Hy (X, Z(r)/p" — H™(X, Tu(r)) — pHy (X, Z(r)) — 0
for the same m and n.

Proof. There exists a coniveau spectral sequence

B = @D Hy (@, Z(r — a)) = H (X, Z(r)) 71D

reXa

by [Ge] Proposition 2.1, whose E}""-term is zero in each of the following cases for the reason
of the dimension of cycles and the codimension of points:

om>r o a<0 oa>2 om<a=r omSa=r-—1

See [B2] Theorem 6.1 for the vanishing in the last case. The assertions (1) and (2) follow
from these facts and the Nesterenko-Suslin-Totaro theorem

Hy, (Spec(F), Z(q)) = K, (F)

for any field F and any ¢ = 0, see [NS], [To].
To prove the assertion (3), we consider a coniveau spectral sequence analogous to (7.1.1)

EY™ = @D HYy (x, Au(r — ) = HY™(X, A, (1), (7.1.2)
reX?e
whose E}""'-terms are zero in each of the following cases:

om>r oca<0 oa>?2

On the other hand, since » = 2, there is a coniveau spectral sequence of étale cohomology
(see [JSS] (5.10.1))

B = @ H™ %z, An(r — a)) = Haer(X, To(r)), (7.1.3)

rzeXa

where the coefficients A,,(s) (s € Z) on the points are those in (2.2.2). The E}""'-terms of
(7.1.3) are zero in each of the following cases:
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om>3 om<a oca<0 oa> 2.

Here we have used the well-known fact that the cd,(x(x)) = 3 — a with for any ¢ = 0 and
x € X (see e.g., [T] Theorem 3.1, [Se] Chapter II, §4.2 Proposition 11). There is a map of
spectral sequences from (7.1.2) to (7.1.3) induced by cycle class maps of motivic cohomology
groups by the commutative diagrams (2.3.3) and (2.3.4) in §2.3. The cycle class map

Hy “(x, Ay(r —a)) — H™ “(z, A, (r — a))

is bijective for any a = 0, any point x € X and any m < r by Rost-Voevodsky [V1],
[V2] Theorem 6.16 and Geisser-Levine [GL2] Theorem 7.5 (resp. Bloch-Gabber-Kato [BK1]
Theorem 2.1 and Geisser-Levine [GL1] Theorem 1.1), when ch(z) # p (resp. when ch(z) =
p). If r = 3, then the map cl’"" in question is bijective by these facts. As for the case
r = 2, it remains to check that the E%?-term of (7.1.3) is zero for any a = 0, 1, 2, which is a
consequence of Kato’s Hasse principle [KCT] p. 145, Corollary. U

Remark 7.2 If we assume the Beilinson-Soulé vanishing conjecture ([So2] p. 501, Conjec-
ture) for points of X, then we would have

T e I

up to small torsion for any r = 2, by the same arguments as in the proof of Lemma 7.1 (1).

7.2 p-adic Abel-Jacobi mappings and finiteness results
Let 7 be an integer with = 2. We define a p-adic cycle class map
™" Hy (X, Z(r) ® Z, — H™(X, Z,(r))

as the projective limit with respect to n = 1 of the cycle class map

m

Clys < Hp (X, Z(0) /" — H (X, Au(r) 53 H™ (X, T,(r)).

/p™

See Lemma 7.1 (3) for the isomorphism cl’)"". Since Xz is a curve, H™ (X4, Z,(r)) is
torsion-free, and
HY(B,$5™(X,Z,(r))) € H™( X7, Z,(r))" =0 (7.2.1)

by Proposition 3.6 (1) and for the reason of weights. We define a p-adic Abel-Jacobi mapping
aj, " Hyy (X, Z(r)) © Ly, — H'(B,H" (X, Zy(r)))
as the map induced by cIJ*" and an edge map of the spectral sequence (4.1.1):
EY® = HY(B,$°(X, Z,(r))) = H*(X,Z,()). (7.2.2)
We first observe the following abstract nonsense:
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Proposition 7.3 Let m and r be integers with r 2 2, and assume that p = 3 or B(R) = ().
Then the following five conditions are equivalent to one another:

(i) aj,"" has finite cokernel.
(ii) cl;*" has finite cokernel.
(iii) c*™" is surjective.
(iv) HPH(X, Z(r)){p} is finite.
(v) H'}"N(X,Z(r))ppiv is uniquely p-divisible.
Moreover if m < 1, these conditions are equivalent to
(i') aj,"" is surjective.

Proof. The Es-term Ey™ of (7.2.2) is finite for any a = 2 by Theorems 6.1 (1) and 6.6,
which shows (iii)=-(i). The assertion (i)=-(ii) is a consequnece of the following fact (a), and
the assertion (i1)=-(ii1) is a consequnece of the following (b), where T}, denotes the p-Tate
module:

(a) The canonical map
H™ (X, Zy(r)) — H (B, 9™ (X, Zy(1)))
has finite kernel by Theorem 6.6.

(b) By taking the projective limit with respect to n. = 1 of the short exact sequence of
Lemma 7.1 (3), we see that Coker(cI"™") = T,(H'y*' (X, Z(r))), where the latter group
is torsion-free.

We next prove (iii)<(iv). Indeed, by taking the inductive limit with respect to n = 1 of the
short exact sequence of Lemma 7.1 (3), we get an exact sequence

0— H}(X,Z(r)) ® Qy/Z, = H™(X,Q,/Z,(r)) = H} (X, Z(r)){p} — 0, (7.2.3)

which imply that H7;*' (X, Z(r)){p} is cofinitely generated over Z,, see Theorem 4.2 (2).
Hence
(i) < T,(H?T(X,Z(r) =0 <= (iv).

The assertion (iv)=-(v) is obvious, and the assertion (v)=-(iv) also follows from the fact that
H7 (X, Z(r)){p} is cofinitely generated over Z,. Finally, if m < 1, the canonical map in
(a) is bijective by (7.2.1), which shows that (iii) is equivalent to (i'). ]

The following lemma will be useful in what follows.

Lemma 7.4 Assume that p = 3 or B(R) = (. Then:

(1) cl)"" is injective for any m € Z and r = 2.
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(2) We have H*(X,%,(2)) 2 A, foranyn = 1, and H™(X,%,,(r)) = 0 for any m = 5,
r 2 2andn 2 1 with (m,r) # (5,2).

Proof. The assertion (1) follows from Lemma 7.1 (3). The assertions in (5) follow from the
duality (see Corollary 2.10(2), (3.1.2))

H™(X,T,(r) £ H " ™(X, T, (2 —1))"
The details are straight-forward and left to the reader. U
The following result gives an extension of the vanishing assertion in Lemma 7.1 (1):
Proposition 7.5 Assume that p = 3 or B(R) = (). Then
Hy(X, Z(r){p}, Hp(X,Z(r)©Z, and H™(X,Z,(r))

are zero for any m 2 5 and r 2 3. In particular, H'}}(X, Z(r)) is uniquely p-divisible for the
same m and r.

Proof. We have H™ (X, Z,(r)) = 0 by Lemma 7.4 (2), so H}( X, Z(r)) ® Z, = 0 by Lemma
7.4 (1). To show that H?} (X, Z(r)){p} = 0, we use the surjectivity of the boundary map

H™ (X, Q,/Z,(r)) - Hy (X, Z(r)){p}

of (7.2.3). By Lemma 7.4(2), we have H™ *(X,Q,/Z,(r)) = 0 for any m = 6, which
implies that H} (X, Z(r)){p} is zero for any m = 6 by (7.2.3). As for the case m = 5, we
have H*(X,Q,/Z,(r)) = 0. Indeed, it is finite by Corollary 6.7, and p-divisible by the exact
sequence obtained from Proposition 2.4

o — HY(X,Q,/Z,(r)) &HAl(X?Qp/Zp(T)) — H (X, %y(r)) — -

and Lemma 7.4 (2). Thus H?,(X, Z(r)){p} is zero. O

Proposition 7.6 Assume that p = 3 or B(R) = (). Then for any r = 3, we have

Hy (X, Z(r){p} = Hy (X, Z(r)) © 2, —» H' (X, Z, (1)),

cly”
which are all finite.

Proof. The cycle class map clff is injective by Lemma 7.4 (1), and surjective by Proposition
7.3 (iv)=-(iii) and the vanishing of H>,(X,Z(r)){p} in Proposition 7.5. The finiteness of
H*(X,Z,(r)) follows from Corollary 6.7.

We next prove that H?, (X, Z(r)){p} is finite. By Proposition 7.3 (i)=-(iv), it is enough to
check that the map

ajy”  Hiy (X, Z(r)) @ Z, — H'(B, (X, Zy(r))) = H'(B[p™"], Z,(r — 1))
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has finite cokernel, where the last isomorphism follows from Proposition 3.4 (2) and Lemma
2.1 (2) for B. The finiteness of Coker(ajf;”’) follows from [Ka] Theorem 5.3 and a standard
norm argument (see also [Sol] Theorem 1 for the case p = 3). Thus HJ,(X,Z(r)){p} is
finite.

Finally, the natural map H%, (X, Z(r)){p} — H%(X,Z(r)) ® Z, is injective by the finite-
ness of H7,(X,Z(r)){p}. To show the surjectivity of this map, consider the following com-
mutative triangle:

H*(X,Q,/Z,(r)) == H (X, Z(r)){p}

x \Lclé,rhors

H4(X7 Zp(r))7

where the arrow ¢ denotes the boundary map of (7.2.3), and the arrow ¢’ denotes the boundary
map of the long exact sequence obtained from Proposition 2.4

o HY(X,Qp(r) = HY(X,Qy/Zy(r)) = HY(X, Z,(r)) — H' (X, Qy(r)) — -+

The arrow cl}” |iors means the restriction of cl;" to HJ, (X, Z(r)){p}. Since ¢’ is surjective by
the finiteness of H*(X, Z,(r)), cl;lf |wors 18 surjective as well, which completes the proof. [J

The following corollary is a summary of known facts and our results on cI;" and aj,"":

Corollary 7.7 Let r be an integer = 2, and assume that p = 3 or B(R) = (). Then:

(0) H)(X,Z(r)) is uniquely p-divisible for any m < 0 and any m 2 5, and zero for any
m>r+ 2.

(1) clzlf and ajzlf are injective.
2) 01129”” is injective, and ajf,’r has finite kernel.
3) Cli’r is bijective, and aji”' has finite kernel and cokernel.

(4) cl," is bijective, and Hy, (X, Z(r)){p} is finite. Moreover, cl," induces an isomorphism
HY(X,Z(r){p} = HY(X, Z,(r)), and ajﬁ’r is zero.

Proof. The assertion (0) for m < 0 follows from Lemmas 7.1 (3) (for m < 0) and 7.4 (1)
(for m = 0) and the vanishing of H™ (X, %,,(r)) for m < 0 and H°(X,Z,(r)). See Lemma
7.1(1) and Proposition 7.5 for the other claims in (0). The injectivity of cl;*" in (1)—(4)
is the same as Lemma 7.4 (1), and the finiteness of Ker(aj;’”) in (2)—(4) follows from (a)
in the proof of Proposition 7.3. The injectivity of aj;’ in (1) is that of cl};’“. By Proposi-
tion 7.3, the surjectivity of cl)™" and the finiteness of Coker(aj,"") are both equivalent to
the finiteness of H ™" (X, Z(r)){p}. This last finiteness for the case (m,r) = (3,2) (resp.
the case (m,r) = (4,2), the case m = 4 and r = 3) is a consequence of Lemma 7.1 (2)
and the finiteness of H7,(X,Z(2)) = CHy(X) due to Bloch [B1], Kato-Saito [KSa] (resp.
Lemma 7.1 (1), Propositions 7.5 and 7.6). Finally, ajf,”" is zero for any r = 2, because

HY(B,$3(X,Z,(r))) = 0 by (3.1.4). 0
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7.3 p-Tate-Shafarevich groups
Let r be an integer with » = 2. We put

MK H X Q/B(0)
Image of H; (K, H™ (X%, Q,(r)))

H (K, H™ (X5, Qy/Z,(r))) -

Let P (resp. P,) be the set of all places of K (resp. all infinite places of K'). We often identify
a finite place of K with a closed point of B. For each v € P, we put

_ HY(K,,H™(Xgz, Qy/Zy(1)))
Image of H}(Kv, H™(X7,Q,(1)))

H)y (Ko, H" (X7, Qp/Z,(r))) :

where we defined H;(K,, H™ (X%, Q,(r))) := 0 for any v € P.. This group for v € By
has been (defined and) used in the proof of Theorem 6.6. For m = 0 and » = 2 with
(m,r) # (2,2), the natural map

o™ HY (K H™ (X5, Q) Z(r) — @D Hy (K H™ (X, Q/Z,(r))  (1.3.1)
vEP
has finite kernel and cokernel, and we have

Coker(a™") = (H* ™( X7, Q,/Z,(2 — 1))“%)* (7.3.2)

by [BK2] Proposition 5.14 (i), (ii). The p-Tate-Shafarevich group of the motive H™ (X )(r)
is defined as Ker(a™") and often denoted by IIL”)(H™(Xf)(r)). We fix a finite subset
S’ C By containing all points of characteristic p and all points where X has bad reduction.

Theorem 7.8 Assume that p = 3 or B(R) = (), and assume further that H3,(X, Z(r)){p} is
finite. For eachv € S’ and a = 2,3, we put

eg,m,r = #Ha(va me(Xv? Zp(r)))a
which is finite by Corollary 5.6 (2). Then we have

w(0*?)  x@) #CH(XO{p} €2 ed®?

X(@%2) T N(ai?) #Pie(O){p} LY el
r 3, 2,1,r . ,3,0,r . ,3,2,r
X(O{l’ ) X(a.]p ) 4 61}’ ) '67_)7 e e
= H#H (X, Z(r . L r=3),
X(ao,r) ,X(QQ,r) X(ajz,r) # ///( ( )){p} v];/ g,o,r ] 637277~ ] 63’1’T ( = )

where we put x(f) := #Coker(f)/#Ker(f) for homomorphisms f : M — N of abelian
groups with finite kernel and cokernel.

See Proposition 7.6 for the finiteness of H7,(X, Z(r)){p}. The alternate products of local
terms e2™" will be computed in §8 below. To prove Theorem 7.8, we first prove Lemma 7.9

below as a preparation, which relies on the assumption that d = 2. We put

_ H'(B,5™(X,Q,/Z,(r)))
Image of H (K, H™ (X%, Q,(r)))

Hjy (B, 5™ (X, Qp/Zy(1))) :
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using Corollary 6.4. For each v € By, we put

_ HY(B, 9" (X, Qp/Zy(r)))
Image of H}(Kv, H™(X7,Q,(1)))

H/lf(Bva ﬁm(Xa QP/ZP(T))) :

cf. Corollary 5.6 (1).
Lemma 7.9 There are canonical isomorphisms of finite p-groups

H}Y (B, 5™ (X,Q,/Z,(r))) = H*(B,H™ (X, Z,(r))), (733)
H*(B,$5™(X,Q,/Zy(r))) = H*(B, 9™ (X, Zy(r))), (7.3.4)

forany m = 0 and r = 2. Similarly, there are canonical isomorphisms of finite p-groups
H/lf(Bva N"( Xy, Qp/Zy(r))) = H*(B,, 5™ (X,, Zy(r))), (7.3.5)
H2(B,, 5" (X, Q/Z,(r))) = HY(B, 5" (X, Z,(r). (73.6)

foranym 2 0, r 2 2 and v € By. Moreover, the groups in (7.3.5) and (7.3.6) are zero for
anyv € By~ 5.

Proof. We prove only (7.3.3) and (7.3.4), and omit the proof of (7.3.5) and (7.3.6). We start
with the following short exact sequence on X, which is a simple case of Proposition 2.4:

0 —%v2—1)—Fpin2—1)— T, (2—7) —0.

Since the fibers of mx/p : X — B are proper curves, the associated long exact sequence of
higher direct image sheaves breaks up into short exact sequneces on By

0= R "rxpTo (2 —1) = R " xpeTpin(2 — 1) = B " mxpTn(2 — 1) = 0
for m = 0, 1, 2, which yield distinguished triangles in D(By)
H"X,Tn(r) — H™X T (1)) — 97X, (1)) — H™(X, Tn(r))[1]

One obtains the following long exact sequence by the finiteness in Proposition 4.1 and a
standard argument:

- = HY(B,5™(X,Q,(r))) = H*(B,H™(X,Qu/Zy(r))) — H* (B, 9™(X, Zy(r)))
— H"(B,5™(X,Qy(r))) — -

Now (7.3.4) follows from the finiteness of H?(B, $™(X,Q,/Z,(r))) (Theorem 6.6) and the
vanishing of H3(B, $H™(X,Q,(r))) (Theorem 6.1 (1)). Similarly, (7.3.3) follows from The-
orems 4.2 (2) and 6.1 (2) and the vanishing of H*(B, $H™(X,Q,(r))).Finally, the groups on
the right hand side of (7.3.5) and (7.3.6) are zero for any v € By \. S’ by Lemma 5.2. U
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Proof of Theorem 7.8. The map cl*" is bijective for m = 2 by the finiteness assumption
on H?,(X,Z(r)){p} (see Proposition 7.3 (iv)=(iii)), and bijective for m = 3, 4 by Corollary
7.7(3), (4). In particular for m = 2, 3, the map aj,"" is identified with the canonical map

H™(X,Zy(r)) — H' (B, " (X, Zy(1))).

We put e®™" := #H*(B, 9" (X, Z,(r))) foreacha = 2, m =2 0 and r = 2 with (a, m,r) #
(3,2,2), which is finite by Theorems 6.1 (1) and 6.6. One can easily derive an equality

3,7
X(a.]p ) 62,07r . 62,2,7” . 6371’T

X(aiy") et eS0T S HY (X, Z,(r))

for any » = 2, from the spectral sequence (7.2.2) and the vanishing (7.2.1). Therefore by
Corollary 7.7 (4) and the isomorphisms

H(B,5%(X,7,(2))) = H*(B,Z,(1)) = Pic(Ox) ® Z, = Pic(Ox) {p},

H(B.$°(X,Z,(r))) = HB,Zy(r—1)) 2 H*Blp '] Z,(r=1))=0  (r23)

12

we are reduced to showing that

3.m,r 2,m,r

m,r\ __ € 61} v
x(@™") = o X 1T S for Y(m,r) #(2,2), r=2. (7.3.7)

veS’

To prove (7.3.7), we use the same notation as in the proof of Theorem 6.6, and consider
the following commutative diagram with exact rows for (m,r) # (2,2) with r = 2, where
the coefficients (X, Q,/Z,(r)) in the upper row and $H™(X,, Q,/Z,(r)) in the lower row
are omitted:

1
Hy;

1 (K) @ u2(B)

ve By
Q™ P \Lz

AP H):(B,)—~ P HL(K,) — @ H2(B,) -

vEBy vE By vE By

(B)e—— > H}

(%)

H(B)

H*(K)

P 1)
. Oalz
L P EB) —— P HAK,) — P HYB.)

vEBy vEBy vE By

B 0l

In this diagram, the arrows § are bijective as explained in the proof of Theorem 6.6. The
arrow -y is bijective by the Hasse principle of Jannsen ([J] p. 337, Theorem 3 (d)) and the
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fact that H™ (X%, Q,/Z,(r)) is divisible. From the above commutative diagram, we obtain a
six-term exact sequence

0 — Ker(a™") — H/lf(Bvﬁm(X> Qp/Zp(1))) — @ H/?(vaf)m(Xva Qp/Zy(r)))

vEBy

— Coker(a™") = H*(B,$™(X,Q,/Zy(r))) = @D H*(B,, 9™ (X,, Q,/Z,(r))) — 0.

vEBy

By Lemma 7.9, this sequence yields an exact sequence of the following from:

0 — Ker(a™") — H*(B, §"(X, Zy(r))) — @D H* (B, 5™ (X, Z,(r)))

veSs’
— Coker(a™") — H*(B, $™(X, Z,(r))) — €D H*(By, " (X0, Zy(r))) — 0,
ves’
which implies the formula (7.3.7). [

8 Local terms and zeta values (d = 2)

In this section, we compute the local terms e>™" and e>™" that appear in Theorem 7.8. The

results in §§8.1-8.2 below were obtained in discussions with Takao Yamazaki.

The setting and the notation remain as in §7. In particular, we assume d = 2. We further
fix the following notation. For a finite place v of K, we write k, (resp. Y,, Y5) for the residue
field at v (resp. X ®oy kv, X @0, k,), and X, (resp. Xz) for X R0y O, (resp. X ®o,, O,
where O, (resp. O denotes the completion of Ok at v (resp. the strict henselization of O,
at its maximal ideal). We put ¢, := #k,.

8.1 Comparison with local points

We first show the following lemma, which refines the case of ¢ = 1 of Theorem 5.3 under the
assumption that d = 2:

Lemma 8.1 We have
H' (B, " (X, Zy(r))) = Hj (Ko, H™ (X7, Z,y(r)))
as subgroups of H*(K,, H™ (X3, Z,(r))), for any finite place v of K, m = 0 and r = 2.

Proof. Consider a commutative diagram

H (Ko, 5™ (Xo, Zy(7))) : H(By, 5™(Xy, Zy(r)))

]

H' (Ko, H™ (X0, Zy(r))) —"> Hfy (Ko, H™ (X2, Qy (1)) S L Hy (B, 5™(X,, Qp(1)),
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where the arrows d and d' are connecting maps of localization sequences of cohomology of
B,, and the existence and the injectivity of d’ is a consequence of Theorem 5.3 for ¢ = 1.
The arrow a is a natural map, and we have

Ker(a) = H}(KU,H’"(XK, Zp(1))).
On the other hand, since H}(B,, 9™ (X, Z,(r))) = 0 by Proposition 3.6 (1), we have
Ker(d) = H'(B,, 9" (X,, Z,(r))).
Thus it remains to check that the arrow 0 is injective, which follows from the facts that
H2(By, 95" (X,,Z,(r))) =0 ifvljpand r 23 (Corollary 3.7 (1))
and that otherwise
H(By, 5"(Xy, Zy(r))) = H (ko, H " (Y5, Qp/Z,(2 = 7)))"  ([Ma] (2.4))
is torsion-free because dim(Y,) = 1 and cd(k,) = 1. O

The following corollary follows from Proposition 3.6 (1), Lemma 8.1 and a similar argu-
ment as in the proof of Lemma 6.2:

Corollary 8.2 We have
H' (B, 9™ (X, Zy(r))) = H} (K, H™ (X5, Zy(r)))

as subgroups of H* (K, H™ (X%, Z,(r))), foranym = 0 and r = 2.

8.2 Comparison with zeta values of the fibers (the case v/p)

In this subsection, we always assume that v/p and r = 2. Note that H*(B,, 9" (X, Z,(r)))
is finite for any (a, m,r) by Theorems 4.2 (1) and 5.3, and zero unless a = 0, 1,2,3 and
m =0,1,2. We put

ey = #H(By, 9™ (Xo, Zy(r)))

v

for each (a, m, 7). Note that ((Y,, ) is a non-zero rational number, since dim(Y,) = 1. Let

| |, be the p-adic absolute value on Q,, such that |p|, = p~'.

Lemma 8.3 We have
— | | a,m,r\(—1)atm
|<—(Y*v’r)’p1 — (ev’ ) )( 1) ,

(a,m)

where (a,m) on the right hand side runs through all pairs with0 < a < 3and 0 < m < 2.

Proof. Let G, be the absolute Galois group of k,, and let 7}, be a free Z,-module of finite
rank on which G, acts continuously and Z,-linearly. It is well-known that

#H' (ky, T,) = |detg, (1 — ¢, | T, ®z, Q)] (8:2.1)
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where ¢, € G, denotes the arithmetic Frobenius element. Now let Fr, be the geometric
Frobenius operator acting on H'(Yy, Q,). We have ¢, = ¢"-Fr,* on H'(Yy, Q,(r)), and

C(Y,,r) H ‘det(@p 1—q," Fr, | H(Yy, @p))};_l)i (trace formula [G], §2)
120
=[] F#H" (ko H (Y5, Z,(r))) (by (8.2.1))
i0
® H (#H'(Y,, Zp(r)))(_l)i (see below)
i0
= H (#H'(X,, Zp(r)))(_l)i (proper base change)
i0
= H (egymﬂ“)“l)“*’” (spectral sequence (4.1.1))

as claimed, where the equality () follows from the fact that H(Yy, Z,(r))¢* = 0 for any
i = 0 (because dim(Y,) = 1 and r = 2). d

As a consequence of Lemma 8.1 and (8.2.1) we obtain:

Corollary 8.4 Assume that X, is smooth over O,. Then we have
#H (K, H (X5, Zy(r))) = |detg, (1 — ¢, - Fr, | H' (Y, @p))\
The following theorem extends Corollary 8.4 to the general v/p case (see also Lemma 5.2):
Theorem 8.5 We have e**" = 1 for a = 2, 3, and
#H (Ko, H (X, Zy(r))  eblr.edor

v v

-1 2,07, 317 °
(Vo)1 —g )1 —gm)|, e e

Proof. We first show that 6372’7" = 1 for a = 2, 3. Indeed, we have

(3.17)

1.
H*(By, 9*(Xo,Zy(r))) = H(By, Zy(r — 1)) = H(v, Zy(r — 1)) =0
for any a = 2. To prove the second assertion, we note the following facts:

(@) ™" = 1 for any m = 0, by Proposition 3.6 (1), Theorem 5.3 and the fact that
H™ (X, Zy) is torsion-free.

(b) ;™" = #H;(K,,H™ (X%, Zy(r))) by Lemma 8.1.

(©) e =|1—q, |,  and e>" = |1 — q;7"|;, by (b) and [BK2] Theorem 4.1 (i).
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Combining these facts with Lemma 8.3, we have

[C(Yo,r) (L=, )(1 = ¢;7)] )

1

61 1,7 62 2,r 62’0’T 63 1,r

. - v v v

_|(1 ‘ : R R "T21r 307 (Lemma 8.3 and (a))

ey ey ey ey
1 1 62 0, , 3 1,r

= #H; (K, H (X7, Zp(r))) - ﬁ, (b), (c), €227 = 327 = 1)

€v *Cy
which shows the assertion. ]

8.3 Comparison with zeta values of the fibers (the case v|p)

Let v be a finite place of K dividing p. For each m = 0, 1,2, we fix a Haar measure x' on
H(Xk,/K,) such that
py (H g (Xo/On)) =

Via the exponential isomorphism of Corollary 5.11:
exp : Hig (X, /o) — H} (Ko H" (X7, Qy(r) (2 2),

we regard 4" as a Haar measure on H; (K, H™ (X7, Q,(7))). Let Ko = K, be the fraction
field of the Witt ring W := W (k,), and let o be the Frobenius automorphism of K. Let | |,
be the p-adic absolute value on Q such that |p|, = p~'. We prove here a p-adic counterpart
of Theorem 8.5 under some assumptions.

Theorem 8.6 Assume thatp —2 2 r 2 2, K, /Q, is unramified, and that X, is smooth over
O,. Then we have eg’Q”" =1fora=2,3, and

,uv(Hf(Kv?Hl(XIOZ ( ) ertredtr

v v
-1~ 20r 317
‘C Y;,,T (1_qv ‘ ey’ ey

where we put 2" := #H(B,, 9" (X,, Zy(r))) for a # 1.

To prove this theorem, we need Lemma 8.7 below, which is a p-adic analogue of Lemma
8.3. For a homomorphism ¢ : M — N of locally compact Z,-modules with finite kernel and
with open image, and for a Haar measure v on N, we define a Haar measure 1’ on M by

i=1

for any Borel subset Z C M, where Z = Z; 11 Z, 11 - -- 11 Z, is a partition of Z by Borel
subsets 7y, Zs, ..., Z, with each ¢|z injective. We call ' the measure induced by v and
often denote it by v.
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Lemma 8.7 Under the same assumptions as in Theorem 8.6, we have
— a,m,r\(—1)etm
CYem)l,t = I (eomn)cY
(a,m)

where (a, m) on the right hand side runs through all pairs with0 < a < 3 and 0 < m = 2;
we put

ey™" = iy (H'(By, 9™(X, Zy(1))))
with " the measure induced by )" on Hp (K, H™ (X%, Q,(1))).

Proof. We first note that e%™" = 1 for any m = 0, by Proposition 3.6 (1), Theorem 5.3
and the fact that H™ (X, Z,) is torsion-free. Hence there exists an edge map induced by the
spectral sequence (4.1.1)

H™ (X, Zy(r)) — HY (B, 95™(X, Z,(7))),

which has finite kernel and cokernel by Theorem 5.3. We have the Haar measure p' on
H™ (X, Z,(r)) induced by that on H*(B,, $™(X,Z,(r))), and

T wi E (X, 2y ()Y = T ey n
i=0 (a,m)

by the spectral sequence (4.1.1). It remains to show that

COYo )t =T v M H (X, Zy(r)) (8.3.1)

120

By the assumption on O,, it is isomorphic to W := W(k,), the ring of Witt vectors in
k,. Foreachn 2 1, we put X, := X, @y W, and let S,,(r)x, be the syntomic complex
associated with the smooth scheme X, over W' = O,.. Let p(r)Q% ;. (resp. p(r)Q% /) be
the subcomplex

T d T— T d r—
pOx, — " Qx w, (resp. p™- Ox, — p"1- Q% /W)
of the de Rham complex €25 w, (resp. 0%, /w)- We note the following facts:
(a) There exists an isomorphism

(P %, w,), [—1] = (Sa(r)x,)n

forany r with 2 < r < pin the derived category of complexes of pro-sheaves on (Yy,)a,
by |[BEK] Theorem 5.4.

(b) The Euler characteristic

XX Qo /0(r) e, ) = [T H (X0, Q% o /0(r) 2, )

20

a —1)atb(r—m
=[] #H (v, 95, )0
(a,b)

agrees with |((Y,, 7)|, " (IMi2] Theorem 0.1).
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(c) We have S,,(r)x, = i*%,(r) in D(Y,, A,) for any r withr < p — 1 and any n 2 1
([Ku] p. 275, Theorem), where i denotes the closed immersion Y, — X,,.

By these facts, we have

C(Yo, Pt = X (X, %, jw /()% w) (by (b))
B Gl )
L (X, () 05y )
=TT o (H (Xop(r) Q% DTV il (Hip(Xu/W)) = 1)
20

=TT wi(H (X0, 2, (r))) 0 (by (a), (©)).

120

Thus we obtain (8.3.1) and Lemma 8.7. [

Proof of Theorem 8.6. We first show that e%*" = 1 for any a = 2. Indeed, we have

HO(B,, 52X, Z,(r)) 2 HY(By Zo(r — 1)).

If r = 2, then the last group is zero for any a = 2 because H*(B,, G,,) = 0 for any a = 1.
On the other hand, if » = 3, then by the Tate duality, we have

H(By, Zy(r — 1)) = H (K, Zy(r — 1)) = H*"(K,,Qy/Z,(2 = 7))",
which is zero for any a = 2 by the assumption that &, is unramified over Q,. Noting that

(") e, = |1—q, 7|, and e} = [1—q,~"| " by [BK2] Theorem 4.1 (iii) for V = Q,(r)
and Q,(r — 1), and again by the assumption that K, is unramified over Q,,

one obtains the second assertion from the same computations as in Theorem 8.5. 0

9 Global points and zeta values (d = 2)

The setting and the notation remain as in §7 (in particular, d = 2). In this section, we
relate the formula in Theorem 7.8 with zeta values assuming Conjecture 9.1 below for the
motives H™ (X )(r) with m = 0, 1, 2, a weak version of p-Tamagawa number conjecture of
Bloch-Kato [BK2] §5. Let S’ be a finite set of closed points of B containing all points of
characteristic p, and all points where X has bad reduction. For m = 0,1,2 and r = 2 with
(m,r) # (2,2), we put

Lo(H™(X),r):= ] det(l —q " Fr, |H" (X7, Q)" = [] #A77(K.)™"

vEBo\.S! vEBNS’

This infinite product on the right hand side converges, because m — 21 < —3. Let Z,) be the
localization of Z at the prime ideal (p).
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9.1

p-Tamagawa number conjecture

Conjecture 9.1 (Bloch-Kato) For any m = 0,1,2 and r 2 2 with (m,r) # (2,2), there
exists a finite-dimensional Q-subspace ®™" = ®" of the Q-space

Hy ™ (X, Q(r)z = Im(H (X, Q(r)) — Hp (Xi, Q(r)))

satisfying the following conditions (1) and (i1):

@

(i)

The p-adic Abel-Jacobi map
Hy (X, Q(r) — H' (K H™ (X, Qy(r)))

induces an isomorphism ®™" @ Q, = H; (K, H™ (X%, Q,(r))), and Beilinson’s regu-
lator map to the real Deligne cohomology

Hy ™ (Xie, Qr)) — Hy ™ (Xm, R(r))
induces an isomorphism ®™" @ R = HP (X g R(r)).

We define A;”’T(K ), the group of p-global points as the pull-back of ®™" under the
natural map

H}(K7Hm(X?= Zp(r))) — H}<K= H™ (X7, @p(ﬂ)) O™ @ Qy,

which is a finitely generated Z,)-module. We further fix an Ok-lattice L™ of the de
Rham cohomology Hi (X /K), and define a number Rg™" € R /Z, to be the vol-

ume of the space
Hy " (X, L) (1)) /Image of A} (K)

with respect to L. See Remark 9.2 (1) below for an explicit description of the real
Deligne cohomology H') ™' (X ks Lpy(1)). On the other hand, for each v € By we put

AP (K, o= Hy (K, H™ (X7, Z,y(r))),
which we call the group of p-local points at v. Then we have

Lo (H™(Xx),r) = x(a™) Ry [[ s (A7 (K,)  mod Z7,,  (9.1.1)

veS’

where 111" for vfp means the cardinarity, and 1)} for v|p denotes the Haar measure on
AT (K,) constructed from that on H g (Xy, / K,) such that 117" (L™ ®o, O,) = 1; see
(7.3.1) for the map o™".

Remark 9.2 (1) The map A™"(K) — H}™" (X, Z,(r)) induced by the regulator map

is injective, by the condition (i) for """ and [BK2] Lemma 5.10. Here

H3(X/Z)® C )*
(X X7, C, (27Ti)r . Z(p))

H (X, 20 (0) = (47

sing

for any m = 0, 1,2 and r = 2, by definition.
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(2) The product on the right hand side of (9.1.1) is independent of the choice of L™.
(3) Conjecture 9.1 for m = 0 (resp. m = 2) implies that
Cilr) = X(@®) RS (resp. Gielr — 1) = x(a® 1)L By

modulo Z(Xp ) if r = 2 (resp. r = 3) and p is unramified in K. Here we have used the

fact (c) in the proof of Theorem 8.5 for all vfp belonging to S’, and the fact (a™) in the
proof of Theorem 8.6. See also [FM] §5.8.3.

(4) We have R}" = 1 for any m = 3, because H) "' (X g, Z(,) (1)) is zero for such m’s.

(5) If (m,r) = (2,2), there exists a Q-subspace > of H?,(Xx, Q(2))z which is isomor-
phic to H), (B, Q(1)) under the push-forward map

Hjy (Xi,Q(2)) — Hy(Spec(K),Q(1)) = K* ® Q.
Indeed, by a standard norm argument, the push-forward map
Hy(X,Q(2)) — Hy(B,Q(1)) = O @ Q

is surjective, and there is a Q-subspace ®22 C H?,(X,Q(2)) which maps bijectively
onto Hy,(B,Q(1)). One can define a desired space *2 by

2 = Im(9*? — HZ, (X, Q(2))).
By this construction of 22, we have
*? @ Q, = Hj (K, H* (X7, Q,(2))) (= Hf (K,Qy(1))).

See also Lemma 7.7 (3). For (m,r) = (2,2), we will use the classical class number
formula instead of (9.2.1), later in Theorem 9.6 below.

Proposition 9.3 Let r be an integer, and let p be a prime number. Assume all the following
conditions:

Hp—22r=2
(11) For any v € By dividing p, v is absolutely unramified and X has good reduction at v.
(iii) Conjecture 9.1 holds for m = 0,1 (resp. m = 0, 1,2), if r = 2 (resp. v = 3).

Then the equivalent conditions (1)—(v) of Proposition 7.3 are satisfied for m = 1,2 (resp.
m =1,2,3), if r = 2 (resp. if r = 3). Moreover, we have

X(aj%?) - #CHy (X) - Ry’
R X,s) =R P 7. —9
Res (X, 5) = Res ((s)- (%) #Pic(Ox) T mod Z;, (r=2)
X 7 . 0,7"' 2,r
C(Xa ’l“) = X(aJP ) #H///( (T)){p} R@ R@ mod Z(Xp) (T ; 3)

x(ai2") - Rg'
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Proof. The first assertion is obvious. For any r = 2, we have

X,s 1 Yo, r
((X,s) H C(Yy,7)

lim — ]
S GG el (X)) L =) (=g )T
o) L et m )
N Lr m( ALT 21r 3.0r
Rq) ves’ Hoy (Ap (K'U)) veS! €Ev cEy (p)
_xa) p et
R}},r e 6%,1,7’ . ei,O,r

by the assumptions (1)—(iii) for m = 1 and Theorems 8.5 and 8.6 (see Remark 9.2 (2)). Hence
for r = 2, we have

0,2 1,2 2,0,2 .3,1,2
be ’ X(Oé ) €y "€y

0.2 . 12 ° 21,2 302
x(a%?) - Rg™ oo e ey

aj>?). #CHy(X) - RY®
— Res ol A7) HORON) £
s=1 x(aj,”) - #Pic(Ok) - Ry
by the assumption (iii) for m = 0 and Theorem 7.8. See also Remark 9.2 (3). Similarly for
any r = 3, we have

— X
IS{:er ((X,s) = ls{:els Ck(s)- mod Z,

C(X 7,) _ R%r . X(Oél’r) . R(QDJ" . H eg,ﬂ,r . ei,l,r
T @) Ry x(e) g e
_ x(@iy") - #H (X, Z(r){p} - Ry - Ry
x(ai2")- Ry"
as claimed. [l

mod Z*
el g3 (p)

9.2 Zeta value formula without étale cohomology

Let p be an arbitrary prime number. Assuming Conjecture 9.1 for p, we define a number
Ry = RZ; e R*/ Z(Xp ) (m = 0,7 = 2) as follows. We first take the inverse image A7"" of
A7"(K) under the composite map

Hy " (X, Z(r) @ Ly — Hy ™ (Xk, Z(r)) @ L) — H (K, H™ (X7, Zy(17))),
where for (m,r) = (2,2), A2?(K) is considered with respect to > constructed in Remark

9.2(5). Since A" (K) is finitely generated over Z;), the canonical map Av;” — A(K)
factors through a homomorphism

M AT = AT (AT gy — AT (K.

This map fits into a commutative diagram

J— m,r m ~ aj;n+l,r .
Anr @ 7, ——= H73 (X, Z(r)) ® Z, —— H' (B, 5™ (X, Z,(r))) 9.2.1)
cm,rml
A;Cn’T(K)(@Zp = H}(Kva(Xfazp(r)))v
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where 7" denotes the natural map. See Corollary 8.2 for the right vertical equality.

Lemma 9.4 Assume that p = 3 or B(R) = (), and that Conjecture 9.1 holds. Then v™" and
c"™" have finite cokernel.

Proof. Coker(c™") is finite, because it is finitely generated over Z,) and torsion by the

definition of g;”’r. The map ™" has finite cokernel as well, because ¢™" ® idz, has finite
cokernel and ajglﬂ”" has finite kernel by Lemma 7.7 (1) and (2). O

By the finiteness of Coker(¢™"), we define R);" € R*/ Z(Xp) to be the volume of the space

HP N (X)r, Zp)(r))/Image of Z;” (for (m,r) # (2,2))
H3,(X/v, Z(y)(2))/Image of A2 (for (m,r) = (2,2))

with respect to L™ that we fixed in Conjecture 9.1, where H?,(X /R, Z(p)(2)) denotes the
kernel of the canonical trace map

tr: HY(Xg, Zp(2)) — R.
We have R"" = 1 for any m = 3 by definition.
Proposition 9.5 ™" of (9.2.1) is bijective for (m,r) = (3, 2).

Proof. The assertion follows immediately from the facts that H%, (X, 7Z(2)) = CHy(X) is
finite (Lemma 7.7 (4)) and that A>*(K’) = 0. O

Theorem 9.6 Under the same assumptions as in Proposition 9.3, assume further that
@iv) ™" of (9.2.1) is bijective for any m = 0,1, 2, 3.
Then c™" has finite kernel for any m = 0, 1,2, 3, and we have

3

RZaT (_l)m

* — M X

C (X, T) = | | (W) HlOd Z(p)’
0

m=

where (*(X, r) denotes RZGQS C(X,s) (resp. ((X,r)) if r = 2 (resp. r = 3).

Remark 9.7 A stronger version of Conjecture 9.1 asserts that
(h1) The Q-vector space ®™" agrees with H;}Jrl (XK, Q(1))z.

The above condition (iv) holds true, under this stronger hypothesis and a variant of Bass’
conjecture (cf. [Ba]) that

(h2) H P (X, Z(r)) is finitely generated for m = 0,1, 2, 3.
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Under the hypotheses (h1) and (h2), Ker(¢"™") agrees with the p-primary torsion part of the
kernel of the regulator map

regy; " Hy (X Z(r) — Hy M (Xgr, Z(r))

X

by Remark 9.2 (1), and R/"/;’T is exactly the volume of its cokernel (modulo Z(p)).

Proof of Theorem 9.6. The map aJmJrl " has finite kernel for any m = 0 (see Lemma 7.7 (1),
(2)). By this fact and the assumption (iv), ¢™" ®id in the diagram (9.2.1) has finite kernel for
any m = 0. Thus ¢™" has finite kernel, because Z, is faithfully flat over L.

We rewrite the number on the right hand side in the formulas in Proposition 9.3. By the
classical class number formula, we have

R:els Ck (s) = vol(Coker(p)) - #Pic(Ok),

where p = px denotes the regulator map to (the reduced part of) the integral Deligne coho-
mology B
0:Of — Hi,(Br,Z(1)) := Ker(tr : H},(B/g, Z(1)) — R)

and the volume of Coker(p) has been taken with respect to O C K = H%(Spec(K)/K)
(note that p is injective). To prove the formula in Theorem 9.6, it is enough to check

e

Ry’ (m = 0)
x(@i;") Ry’ (m=1)
Ry o) mn =2
Ker(e™™) | x(aip") R (m=2,r23)
(#CHo(X){p})~" ((m,7) = (3,2))
(HHL(XZO)EY T m=3.r23)
We have
Ker(aj,"") = Ker(c™") and Coker(aj,"") = Coker(c™") (9.2.3)

for any (m,r) by the diagram (9.2.1) and the hypothesis (iv). See also Remark 9.5 for the
case (m,r) = (3,2). This fact implies (9.2.2) for m = 0, 1,2 with (m,r) # (2,2). See also
Proposition 7.3 and Lemma 7.7 (1) for the fact that X(ajp ) = #Ker(c'") = 1. The formula
(9.2.2) for m = 3 follows from (9.2.3) and the fact that R);" = 1 for m = 3. Finally, noting
that v>? is bijective by assumption, consider the diagram (9 2.1) for (m, r) (2,2):

- c>2®id ~
A2 @ Ly A2 K) @ Ly ———=0g Q L,

aj;’gl

H1<3752<X? Zp(2)>> :HHKvHQ(X?? Zp(2)))

l l

H (K, Zy(1)),

which shows (9.2.2) for (m,r) = (2, 2). This completes the proof. O
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