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1 Introduction
LetK be an algebraic number field, and let OK be its integer ring. Let X be a regular scheme
which is proper flat over B := Spec(OK), and such that XK = X ⊗OK

K is geometrically
connected over K. We fix a prime number p, and assume that

(?) X has good or log smooth reduction at all places v of K dividing p.

In this paper, we give an approach to the values of the zeta function of X at integers r ≧
dim(X) using étale cohomology of X with Qp(r) and Zp(r)-coefficients, cf. [KCT], [Mo],
[FM], [FS].

1.1 Selmer groups
Let H1

f (K,V
i(r)) be the Selmer group of Bloch-Kato associated with the p-adic Galois rep-

resentation V i(r) := H i(XK ,Qp(r)). The first aim of this paper is to relate this group
with the étale cohomology group H i+1(X,Qp(r)), assuming that r ≧ d := dim(X). Here
H∗(X,Qp(r)) is defined as

H∗(X,Qp(r)) := Qp ⊗Zp lim←−
n≧1

H∗(X,Tn(r))

and Tn(r) (n ≧ 1) denotes the complex of étale Z/pnZ-sheaves on X introduced in [SH]
under the assumption that X has good or semi-stable reduction at all places v dividing p (see
also [JSS] for the case r = d). See §2 below for details on this object under the setting of this
paper.

Theorem 1.1 Assume r ≧ d. Then we have

H i+1(X,Qp(r)) ∼=

{
Qp ((i, r) = (2d, d)),
H1
f (K,V

i(r)) (otherwise).
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The key idea of this result is as follows. By a duality result of Jannsen-Saito-Sato [JSS] and
the adjunction between RπX/B!(= RπX/B∗) and Rπ!

X/B, we have

RπX/B∗Tn(r)X ∼= RHomB,Z/pnZ(RπX/B!Tn(d− r)X ,Tn(1)B)[2− 2d] (1.1.1)

in D+(Bét,Z/pnZ) (see Lemma 3.1 below), where the assumption r ≧ d is crucial and
Tn(d − r)X is a constructible sheaf placed in degree 0 by definition. Using this fact, we
introduce the following complexes:

H≧i(X,Tn(r)) := RHomB,Z/pnZ(τ≦2d−2−iRπX/B!Tn(d− r)X ,Tn(1)B)[2− 2d],

Hi(X,Tn(d)) := RHomB,Z/pnZ(R
2d−2−iπX/B!Tn(d− r)X ,Tn(1)B).

By the proper base change theorem for RπX/B!, we have

Hi(X,Tn(r)) = 0 unless 0 ≦ i ≦ 2d− 2,

and the filtration {H≧i(X,Tn(r))}i on the right hand side of (1.1.1) yields a convergent spec-
tral sequence

Ea,i
2 = Ha(B,Hi(X,Tn(r))) =⇒ Ha+i(X,Tn(r)).

The E2-terms of this spectral sequence are finite (see Proposition 4.1 below), and we obtain
the following spectral sequence of finite-dimensional Qp-vector spaces:

Ea,i
2 = Ha(B,Hi(X,Qp(r))) =⇒ Ha+i(X,Qp(r)), (1.1.2)

where
Ha(B,Hi(X,Qp(r))) := Qp ⊗Zp lim←−

n≧1

Ha(B,Hi(X,Tn(r))).

Concerning the spectral sequence (1.1.2), we will prove

Theorem 1.2 (§§5–6) Assume r ≧ d. Then the Qp-vector space Ea,i
2 is zero, unless a = 1

or (a, i, r) = (3, 2d − 2, d). Consequently, the spectral sequence (1.1.2) degenerates at E2-
terms. Moreover, we have

E1,i
2
∼= H1

f (K,V
i(r))

for any i, which is zero unless 0 ≦ i ≦ 2d− 2.

Theorem 1.1 is a direct consequence of this result. An important point of Theorem 1.2 is
the vanishing of E2,i

2 for any i, which we will prove by computing the cohomology of all
local integer rings with Hi(X,Qp(r))-coefficients and by a local-global argument using a
Hasse principle of Jannsen [J] p. 337, Theorem 3 (c). As a consequence of the vanishing of
E2,i

2 (and E3,i
2 with (i, r) 6= (2d − 2, d)), we will obtain the following result (cf. [J] p. 349,

Question 2):

Corollary 1.3 (Corollary 6.10 (2)) Let S be a finite set of places of K including all places
which divide p ·∞ or where X has bad reduction. Assume r ≧ d. Then the restriction map

H2(GS, V
i(r)) −→

⊕
v∈S

H2(Kv, V
i(r))

is bijective for any (i, r) 6= (2d− 2, d), and injective for (i, r) = (2d− 2, d). In particular, if
r > d or XK has potentially good reduction at all finite places of K, then

H2(GS, V
i(r)) = 0 for any (i, r) 6= (2d− 2, d).
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1.2 p-Tate-Shafarevich groups (d = 2)
We assume thatX is an arithmetic surface, i.e., d = 2 in what follows. Put T i := H i(XK ,Zp).
In their paper [BK2] §5, Bloch and Kato introduced a homomorphism

αi,r :
H1(K,T i ⊗Qp/Zp(r))
H1
f (K,T

i ⊗Qp/Zp(r))
−→

⊕
v∈P

H1(Kv, T
i ⊗Qp/Zp(r))

H1
f (Kv, T i ⊗Qp/Zp(r))

, (1.2.1)

where P denotes the set of all places of K, and for each v ∈ P , Kv denotes the local
field of K at v; H1

f (K,T
i ⊗ Qp/Zp(r)) (resp. H1

f (Kv, T
i ⊗ Qp/Zp(r))) denotes the image

of H1
f (K,V

i(r)) (resp. H1
f (Kv, V

i(r))). The cokernel Coker(αi,r) is finite and canonically
isomorphic to the Pontryagin dual of H2−i(XK ,Qp/Zp(2 − r))GK , if i − 2r ≦ −3. They
also proved that Ker(αi,r) =: III(p)(H i(XK)(r)), the p-Tate-Shafarevich group of the motive
H i(XK)(r), is finite for the same (i, r). The second main result of this paper compares the
maps αi,r with the p-adic Abel-Jacobi mappings

aji,rp : H i
M (X,Z(r)) ⊗̂Zp −→ H1(B,Hi−1(X,Zp(r)))

assuming r ≧ 2. Here H∗
M (X,Z(r)) denotes the motivic cohomology of X (see §2.3 below),

and for an abelian group M , M ⊗̂Zp denotes its p-adic completion lim←− n M/pn. We will
calculate the above Abel-Jacobi mapping using the Merkur’ev-Suslin theorem [MS] and the
Rost-Voevodsky theorem [V1], [V2], which together with Theorem 1.2 will play important
roles in the following comparison formula:

Theorem 1.4 (§7) Assume r ≧ 2, and that p ≧ 3 or B(R) = ∅. Assume further that
H3

M (X,Z(r)){p}, the p-primary torsion part of H3
M (X,Z(r)), is finite. Let S ′ be the set

of the places of K which divide p or where X has bad reduction. Then aji,rp has finite kernel
and cokernel for i = 2, 3, and we have

χ(α1,2)

χ(α0,2)
=
χ(aj3,2p )

χ(aj2,2p )
· #CH0(X){p}
#Pic(OK){p}

·
∏
v∈S′

e2,1,2v ·e3,0,2v

e2,0,2v ·e3,1,2v

(r = 2)

χ(α1,r)

χ(α0,r) ·χ(α2,r)
=

χ(aj3,rp )

χ(aj2,rp )
·#H4

M (X,Z(r)){p} ·
∏
v∈S′

e2,1,rv ·e3,0,rv ·e3,2,rv

e2,0,rv ·e2,2,rv ·e3,1,rv

(r ≧ 3),

where we put χ(f) := #Coker(f)/#Ker(f) for homomorphisms f : M → N of abelian
groups with finite kernel and cokernel; for each v ∈ S ′ and a = 2, 3, we put

ea,i,rv := #Ha(Bv,H
i(X,Zp(r))), Bv := the completion of B at v.

See Corollary 5.6 (2) below for the finiteness of ea,i,rv .

The finiteness of CH0(X) is due to Bloch [B1], Kato and Saito [KSa]. By the localization
theorem of Levine [Le], H i

M (X,Z(r)) is zero for any i > r+2 (see Lemma 7.1 (1) below). As
natural extensions of these facts, we will prove that H4

M (X,Z(r)){p} is finite for any r ≧ 3,
and that H i

M (X,Z(r)) is uniquely p-divisible for any i ≧ 5 and r ≧ 3, see Propositions 7.5
and 7.6 below. The formulas in Theorem 1.4 are based on these facts and results.
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1.3 Zeta values modulo rational numbers prime to p (d = 2)
Assuming a weak version of p-Tamagawa number conjecture (see Conjecture 9.1), we will
relate the formulas in Theorem 1.4 with the residue or value at s = r of the zeta function

ζ(X, s) :=
∏
x∈X0

1

1− q−sx
(qx := #κ(x)),

where the product on the right hand side runs through all closed points of X .

Theorem 1.5 (Proposition 9.3) Assume r ≧ 2 and the following conditions:

(i) p ≧ r + 2.

(ii) For any v ∈ B0 dividing p, v is absolutely unramified and X has good reduction at v.

(iii) A weak p-Tamagawa number conjecture (see Conjecture 9.1 below) holds for the mo-
tives H i(XK)(r) with i = 0, 1 (resp. i = 0, 1, 2), if r = 2 (resp. r ≧ 3).

Then H3
M (X,Z(r)){p} is finite, and we have

Res
s=2

ζ(X, s) ≡ Res
s=1

ζK(s) ·
χ(aj3,2p ) ·#CH0(X) ·R0,2

Φ

χ(aj2,2p ) ·#Pic(OK) ·R1,2
Φ

mod Z×
(p) (r = 2)

ζ(X, r) ≡
χ(aj3,rp ) ·#H4

M (X,Z(r)){p} ·R0,r
Φ ·R

2,r
Φ

χ(aj2,rp ) ·R1,r
Φ

mod Z×
(p) (r ≧ 3)

where Z(p) denotes the localization of Z at (p). See Conjecture 9.1 below for the definition of
the number Ri,r

Φ ∈ R×/Z×
(p), which is a p-adic modification of the Beilinson regulator of the

motive H i(XK)(r).

This result is deduced from Theorem 1.4 and certain comparison results between the alternate
products of local terms that appear in Theorem 1.4 with zeta values of the closed fibers of
X → B, see Theorems 8.5 and 8.6 below. The assumptions (i) and (ii) are essential in this
comparison at present, while the reductions at the closed points v ∈ B0 with v6 |p are arbitrary.

Example 1.6 Let E be an elliptic curve over Q with complex multiplication by the integer
ring of an imaginary quadratic field. Let X be a regular model of E which is proper flat over
Z. Let p be a prime number ≧ 5 at which X has good reduction and which is regular for E
([So3] 3.3.1). Then we obtain a formula (without assuming any conjectures)

Res
s=2

ζ(X, s) ≡
π2 · χ(aj3,2p ) ·#CH0(X)

6 · χ(aj2,2p ) ·R1,2
Φ

mod Z×
(p)

from Theorem 1.5 and results of Bloch and Kato [BK2] 6.3 (i), 7.4 (cf. [Ki1], [Ki2]). If we
assume that H i

M (X,Z(2)) is a finitely generated abelian group for i = 2, 3, then we have

#H3
M (X,Z(2)) <∞, rank H2

M (X,Z(2)) = 1
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by Theorem 1.2 (and Corollary 7.7 (2), (3) below), and obtain a stronger formula

Res
s=2

ζ(X, s) ≡ π2 ·#Ker(reg2,2
D ) ·#CH0(X)

3 ·R1,2
M ·#H3

M (X,Z(2))
mod Z[T−1]×

by [BK2] 7.4 and Theorem 9.6 below, where T denotes the set of prime numbers consisting
of 2, 3 and the bad prime numbers for X; reg2,2

D denotes the regulator map to the real Deligne
cohomology with Z(2)-coefficients

reg2,2
D : H2

M (X,Z(2)) −→ H2
D(E/R,Z(2)).

R1,2
M denotes the volume of Coker(reg2,2

D ) with respect to the same Z-lattice of H1
dR(E/Q) as

used in the definition of R1,2
Φ .

Organization of this paper
In §2, we review the definition of the étale complexes Tn(r) on Xét and establish their fun-
damental properties under the setting of this paper. In §3–§4, we further introduce the étale
complexes H≧i(X,Tn(r)) and Hi(X,Tn(r)) on Bét and prove some preliminary results on
those new complexes. In §5–§6 we will prove Theorems 1.1 and 1.2. In §7, we will compute
p-adic cycle class maps and p-adic Abel-Jacobi mappings assuming d = 2, and then prove the
formulas in Theorem 1.4. In §8, we will relate the alternate product of local terms in Theorem
1.4 with zeta values of the fibers of X → B. Finally in §9, we will relate the formulas in
Theorem 1.4 with zeta values assuming a weak version of p-Tamagawa number conjecture.

1.4 Notation
Throughout this paper, we fix a prime number p, and put Λn := Z/pnZ.

If p is invertible on a scheme X , we write µpn = µpn,X (n ≧ 1) for the étale sheaf of pn-th
roots of unity on X , and define a Λn-sheaf Λn(r) = Λn(r)X (r ∈ Z) on Xét as

Λn(r) :=


µ⊗r
pn (r ≧ 1)

Λn (r = 0)

Hom(Λn(−r), Λn) (r < 0).

(1.4.1)

This notation will be useful mainly in the case that r is negative.
On the other hand, if X is an Fp-scheme, then we write WnΩ

r
X,log (r ≧ 0, n ≧ 1) for the

étale subsheaf of the logarithmic part of the Hodge-Witt sheaf WnΩ
r
X (see [Ill] I (1.12.1)).

If r < 0, then we define WnΩ
r
X,log as the zero sheaf. If X is an equi-dimensional scheme

which is of finite type over a field k of characteristic p, then we write νrX,n for the sheaf on
Xét defined as the kernel of Kato’s boundary map [KCT]

∂ :
⊕
x∈X0

ix∗WnΩ
r
x,log −→

⊕
x∈X1

ix∗WnΩ
r−1
x,log,

where ix : x→ X denotes the canonical map for any x ∈ X . If X is smooth over k, then we
have νrX,n = WnΩ

r
X,log by Gros-Suwa [GS].

Unless indicated otherwise, all cohomology groups of schemes are taken over the étale
topology.
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2 Étale coefficients
Let O be a Dedekind ring whose fraction field K has characteristic 0, and let p be a prime
number. We put

B := Spec(O), B[p−1] := Spec(O[p−1]) and Σ := Spec
(
O
/√

(p)
)
.

Let X be a regular connected scheme which is separated, flat of finite type over B =
Spec(O). For a closed point v ∈ B, we put Bh

v := Spec(Oh
v) and Yv := X ×B v, where

Oh
v denotes the henselization of the local ring Ov = OB,v. Throughout this paper, we assume

that X satisfies the following condition:

(?1) For any closed point v ∈ B of characteristic p, (Yv)red has normal crossings on X
and the morphism X ×B Bh

v → Bh
v is log smooth with respect to the log structure on

X ×B Bh
v associated with (Yv)red and that on Bh

v associated with v.

We write πX/B : X → B for the structure morphism, and put d := dim(X), the absolute
dimension of X . Let Y be the disjoint union of Yv’s for all closed points v ∈ B with ch(v) =
p. Let j (resp. ι) be the open immersion X[p−1] ↪→ X (resp. closed immersion Y ↪→ X).

In this section, we define a family of complexes of étale sheaves {Tn(r)}n≧1,r∈Z on X
and check several fundamental properties of them using the main results of [SS], which have
been established in [SH] and [Sa2] in the case that X has semi-stable reduction at all v ∈ B
with ch(v) = p. The coefficients {Tn(r)}n,r play key roles throughout this paper.

2.1 Étale complex Tn(r)

For r ≧ 0, we define Tn(r) = Tn(r)X ∈ Db(Xét, Λn) by the distinguished triangle

ι∗ν
r−1
Y,n [−r − 1]

g−→ Tn(r)
t−→ τ≦rRj∗µ

⊗r
pn

(⋆)−→ ι∗ν
r−1
Y,n [−r]. (2.1.1)

See [SH] (3.2.5) and (4.2.1) for the right arrow (?). By the same arguments as in loc. cit.
4.2.2, Tn(r) is concentrated in [0, r] and unique up to a unique isomorphism in Db(Xét, Λn).
For r < 0, we define Tn(r) as

Tn(r) := j!Λn(r).

See (1.4.1) for the definition of the (locally constant) sheaf Λn(r) on (X[p−1])ét.

Lemma 2.1 (1) If p is invertible in O, then we have Tn(r) ∼= Λn(r) for any r ∈ Z.

(2) Assume that

(?2) any residue field of O of characteristic p is perfect.

Then we have Tn(r) ∼= Rj∗µ
⊗r
pn for any r ≧ d+ 1.
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Proof. (1) is obvious. We prove (2). Without loss of generality, we may assume that O is
local and strict henselian. Let k be the residue field of O. Since k is algebraically closed by
assumption, we have cdp(K) ≦ 1 ([Se] Chapter II, §3.3). By this fact and the cohomological
dimension of affine varieties [SGA4] X.3.2, we have τ≦rRj∗µ⊗r

pn
∼= Rj∗µ

⊗r
pn for any r ≧ d.

On the other hand, we have νr−1
Y,n = 0 for any r ≧ d + 1 again because k is algebraically

closed (note that dim(Y ) = d− 1). The assertion follows from these facts. □

Proposition 2.2 (cf. [SH] 4.2.8) Let O′ be another Dedekind ring which is flat over O, and
let X ′ be a scheme which is regular and flat of finite type over B′ and satisfies (?1) over B′.
Let f : X ′ → X be an arbitrary morphism, and let g : X ′[p−1] → X[p−1] be the induced
morphism. Then for any n ≧ 1 and r ∈ Z, there exists a unique morphism

f ♯ : f ∗Tn(r)X −→ Tn(r)X′ in Db(X ′
ét, Λn)

that extends the natural isomorphism g∗Λn(r)X[p−1]
∼= Λn(r)X′[p−1] on X ′[p−1].

Proof. The case r ≦ 0 is obvious. Assume r ≧ 1 and put U1O×
X := Ker

(
O×
X → O×

Yred

)
. We

define a filtration
0 ⊂ U1Rrj∗µ

⊗r
pn ⊂ FRrj∗µ

⊗r
pn ⊂ Rrj∗µ

⊗r
pn

on the sheaf Rrj∗µ
⊗r
pn as

U1Rrj∗µ
⊗r
pn := the subsheaf generated étale locally by symbols of the form

{a, b1, . . . , br−1} with a ∈ U1O×
X and bj ∈ j∗O×

X[p−1],

FRrj∗µ
⊗r
pn := the subsheaf generated étale locally by U1Rrj∗µ

⊗r
pn and the symbols

{a1, a2, . . . , ar} with aj ∈ O×
X .

We haveRrj∗µ
⊗r
pn /FR

rj∗µ
⊗r
pn
∼= ι∗ν

r−1
Y,n by [SS] 1.1 (see also Remark 2.3 below) and the same

arguments as in [SH] 3.4.2, and hence

H r(Tn(r)) ∼= FRrj∗µ
⊗r
pn . (2.1.2)

The assertion follows from this fact and [SH] 2.1.2 (1). □

Remark 2.3 The assumption in [SS] 1.1 that the base field K contains a primitive p-th root
of unity can be removed by the following argument due to K. Kato, [KSS]. Without loss of
generality, we may assume that O is henselian local and that X is an affine scheme of the
from

X = Spec(O[t0, t1, . . . , td]/(t
e0
0 t

e1
1 · · · tecc − π))

for some integers 0 ≦ c ≦ d and e0, e1, . . . , ec ≧ 1 and some prime element π ∈ O. Put
$ := p−1

√
π and O′′ := the valuation ring of K($). There is a finite flat extension of X

X ′′ = Spec(O′′[T0, T1, . . . , Td]/(T
e0
0 T

e1
1 · · ·T ecc −$))

with Ti := p−1
√
ti , which is quasi-log smooth over O′′ and K($) contains a primitive p-th

root of unity. Hence [SS] 1.1 is applicable for X ′′, and we obtain the same assertion for X
by a standard norm argument.

8



Proposition 2.4 (cf. [SH] 4.3.1) For any r ∈ Z and m,n ≧ 1, there exists a canonical
distinguished triangle of the following form:

Tn(r)
pm

// Tn+m(r)
Rm

// Tm(r)
δm,n // Tn(r)[1] in Db(Xét).

Here pm (resp. Rm) is a unique morphism that extends the natural inclusion Λn(r) ↪→
Λn+m(r) on (X[p−1])ét (resp. the natural surjection Λn+m(r) ↠ Λm(r) on (X[p−1])ét) satis-
fying

×pm = pm ◦Rm : Λn+m(r) −→ Λn+m(r)

The arrow δm,n is a canonical morphism which extends the Bockstein morphism Λm(r) →
Λn(r)[1] in Db((X[p−1])ét) associated with the exact sequence 0 → Λn(r) → Λn+m(r) →
Λm(r)→ 0.

Proof. On obtains the assertion by repeating the proof of [SH] 4.3.1, using [SS] 1.1 in place
of [SH] 3.3.7 (1). □

2.2 Purity and duality
Let Z be an integral closed subscheme of Y ′, and let iZ : Z ↪→ Y and ιZ : Z ↪→ X be the
natural closed immersions. Put c := codimX(Z). We define the Gysin morphism for ιZ as
the composite

GysιZ : νr−cZ,n [−r − c]
GysiZ−→ Ri!Zν

r−1
Y,n [−r − 1]

g−→ Rι!ZTn(r) in D+(Zét, Λn). (2.2.1)

See (2.1.1) for g, and [SH] 2.2.1 for GysiZ (see also [Sa1] 2.4.1).

Proposition 2.5 (1) GysιZ induces an isomorphism νr−cZ,n [−r − c] ∼= τ≦r+cRι
!
ZTn(r) for

any r ∈ Z.

(2) Assume further the condition (?2) of Lemma 2.1 (2). Then the above GysιZ is an iso-
morphism for any r ≧ d.

Proof. (1) We obtain the assertion by repeating the proof of [SH] 4.4.7, using [SS] 1.1 and
4.5 in place of [SH] 3.3.7. More precisely, our task is to prove that

τ≦r+c−1Ri
!
Z(τ≧r+1ι

∗Rj∗µ
⊗r
pn ) = 0,

which is reduced, by a standard argument using [SS] 1.1, to showing the semi-purity of
Hagihara in our situation:

Rqi!Z(ι
∗Rmj∗µ

⊗r
p ) = 0 for any m and q with q ≦ c− 2.

This last vanishing is further reduced to the case that K contains a primitive p-th root of
unity by the argument in Remark 2.3, and then checked by the arguments in [SH] A.2.9
and the fact that the sheaf U1Rmj∗µ

⊗m
p introduced in the proof of Proposition 2.2 has a

finite descending filtration for which each graded quotient is a free (OT )
p-modules for some

irreducible component T of Y , see [SS] 4.5 and the last display in the proof of loc. cit. 4.4.
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(2) Under the assumptions, the left arrow in (2.2.1) is an isomorphism by [Sa1] 1.3.2 and
4.3.2. The right arrow in (2.2.1) is an isomorphism as well by the facts that τ≦rRj∗µ⊗r

pn
∼=

Rj∗µ
⊗r
pn for any r ≧ d (see the proof of Lemma 2.1 (2)) and that Rι!Rj∗ = 0. □

Corollary 2.6 (cf. [SH] 4.4.9) For any closed immersion ιZ : Z ↪→ X of codimension ≧
r + 1 and any q ≦ 2r + 1, we have Rqι!ZTn(r) = 0.

Proof. One obtains the corollary by the same arguments as in the proof loc. cit. 4.4.9, using
Proposition 2.5 (1) in place of loc. cit. 4.4.7. □

Let x and y be points of X such that y ∈ {x} and such that c := codimX(y) =
codimX(x) + 1. To proceed our preliminaries on the complex Tn(r), we introduce the fol-
lowing residue diagram:

H r−c+1(x, Λn(r − c+ 1))

Gysιx
��

∂ // H r−c(y, Λn(r − c))
Gysιy
��

H r+c−1
x (Spec(OX,x),Tn(r))

δ // H r+c
y (Spec(OX,y),Tn(r)),

(2.2.2)

where the coefficient Λn(s) = Λn(s)z on a point z denotes the étale complex WnΩ
s
z,log[−s]

(resp. the étale sheaf defined in (1.4.1)) if ch(z) = p (resp. ch(z) 6= p). If ch(z) 6= p, then
the Gysin map Gysιz for ιz : z ↪→ Spec(OX,z) is defined as the cup product with Gabber’s
cycle class clX(z) ∈ H2c′

z (Spec(OX,z), µ
⊗c′
pn ), where c′ := codimX(z). The arrow ∂ denotes

the boundary map of Galois cohomology [KCT], and δ denotes the connecting map of a
localization long exact sequence of étale cohomology.

Lemma 2.7 The diagram (2.2.2) is anti-commutative.

Proof. See [JSS] Theorem 3.1.1 for the case ch(y) 6= p. The case ch(x) = ch(y) = p
follows from the definition of the Gysin morphism in [SH] 2.2.1. We check the case that
ch(x) = 0 and ch(y) = p, using the results in [SH] as follows. Put Z := {y}, the Zariski
closure of {y} in X . We write RD(X, x, y, r) for the diagram (2.2.2). Since the problem is
étale local on X , we may assume that X is affine and that X is a closed subscheme of an
affine space AN

O =: X ′. Let ξ be the generic point of X and put c′ := codimX′(X). The
diagram RD(X ′, ξ, η, r + c′) is anti-commutative for any generic point η of Y by [SH] 6.1.1.
Hence there exists a Gysin morphism for i : X ↪→ X ′

Gysi : Tn(r)[−2c′] −→ Ri!Tn(r + c′) in D+(Xét, Λn),

which induces an isomorphism Tn(r)[−2c′] ∼= τ≦r+c′Ri
!Tn(r + c′), by the same arguments

as in loc. cit. §6.3. Moreover, one obtains the transitivity assertion in loc. cit. 6.3.3 for the
closed immersions Z ↪→ X ↪→ X ′ by the same arguments as in the proof of loc. cit. 6.3.3,
where we have again used the fact that the diagram RD(X ′, ξ, η, r + c′) is anti-commutative
for any generic point η of Y . Thus the anti-commutativity of RD(X, x, y, r) follows from
that of RD(X ′, x, y, r + c′) (loc. cit. 6.1.1) and the purity in Proposition 2.5 (1) for Z ↪→ X
and Z ↪→ X ′. □

The compatibility in Lemma 2.7 plays an important role in the following results:
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Proposition 2.8 (1) Let O′ be another Dedekind ring which is flat over O, and let X ′ be a
scheme which is regular and separated flat of finite type over B′ and satisfies (?1) over
B′. Let f : X ′ → X be an arbitrary morphism, and let ψ : X ′[p−1] → X[p−1] be the
induced morphism. Put c := dim(X[p−1]) − dim(X ′[p−1]). Then for any n ≧ 1 and
r ≧ 0, there exists a unique morphism

trf : Rf!Tn(r − c)X′ [−2c] −→ Tn(r)X in D+(Xét, Λn)

that extends the push-forward map trψ : Rψ!Λn(r − c)[−2c] → Λn(r) on (X[p−1])ét.
We will often write trX′/X for trf in what follows.

(2) Assume further the condition (?2) of Lemma 2.1 (2). Then the adjunction morphism of
trX/B = trπX/B

is an isomorphism for any r ≧ d:

Tn(r)X [2(d− 1)] ∼= Rπ!
X/BTn(r + 1− d)B in D+(Xét, Λn).

Proof. If f is a locally closed immersion, the assertion (1) follows from Lemma 2.7, see [SH]
6.3.4 (2). One can check (1) in the general case, using [SS] 1.1 and 4.5 and the arguments in
[SH] §§7.1–7.2; in the step corresponding to loc. cit. 7.1.2, it is enough to consider locally free
(OT )

p-modules F for each irreducible component T of Y in place of ‘locally free (OY )
p-

modules F ’ (and the assumption that k is perfect is unnecessary).
As for the assertion (2) with r = d, see loc. cit. 7.3.1, where we have used the absolute

purity [FG] and the duality in [JSS] Theorem 4.6.2. The assertion (2) in the case r > d
directly follows from the absolute purity, Lemma 2.1 (2) and the base change isomorphism
Rπ!

X/BRjU∗ = Rj∗Rπ
!
XU/U

([SGA4] XVIII.3.1.12.3), where jU denotes the open immersion
U := B[p−1] ↪→ B. □

Corollary 2.9 Let β : B′ → B be a flat morphism such that B′ is regular of dimension ≦ 1
and such that X ′ := X ×B B′ satisfies (?1) over B′. Let α : X ′ → X be the first projection.
Then the following diagram commutes in D+(B′

ét, Λn) for any r ≧ d− 1:

RπX′/B′!Tn(r)X′ [2(d− 1)]
trX′/B′

// Tn(r + 1− d)B′

β∗RπX/B!Tn(r)X [2(d− 1)]

α∗

OO

β∗trX/B // β∗Tn(r + 1− d)B.

β∗

OO

Proof. The assertion follows from the uniqueness of the trace morphisms for Tn(r) and the
base change property in [SGA4] XVIII.2.9. □

Corollary 2.10 (1) Assume that O is a strict henselian discrete valuation ring with alge-
braically closed residue field, and let v be the closed point of B. Then there is a trace
map

trX,Y : H2d
c (X, ι∗Rι

!Tn(d))
trX/B // H2

v(B,Tn(1)) Λn,
Gysιv
≃

oo
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where ιv : v ↪→ B denotes the closed point of B and the subscript c means the étale
cohomology with proper support over B. Moreover, for any constructible Λn-sheaf F
on X and any i ≧ 0, the induced pairing

H i
c(X,F )× Ext2d−iX,Λn

(F, ι∗Rι
!Tn(d)) −→ Λn

is a non-degenerate pairing of finite Λn-modules.

(2) Assume that O is an algebraic integer ring. Then there is a trace map

trX : H2d+1
c (X,Tn(d))

trX/B // H3
c(B,Tn(1))

trB
≃

// Λn,

where the subscript c means the étale cohomology with compact support (see e.g.
[KCT] §3). Moreover, for any constructible Λn-sheaf F on X and any i ≧ 0, the
induced pairing

H i
c(X,F )× Ext2d+1−i

X,Λn
(F,Tn(d)) −→ Λn

is a non-degenerate pairing of finite Λn-modules.

Proof. (1) By Proposition 2.8 (2) for r = d and the purity in Proposition 2.5 (2), we have
isomorphisms

Rι!Tn(d) ∼= Rι!Rπ!
X/BTn(1)[−2(d− 1)] = Rπ!

Y/vRι
!
vTn(1)[−2(d− 1)] ∼= Rπ!

Y/vΛn[−2d].

The assertion follows from this fact and the isomorphisms compatible with Yoneda pairings

H∗
c(X,F ) ∼= H∗

c(Y, ι
∗F ), Ext∗X,Λn

(F, ι∗Rι
!Tn(d)) ∼= Ext∗Y,Λn

(ι∗F, Rι!Tn(d)),

where we have used the proper base change theorem to obtain the left isomorphism. See e.g.
[KSc] Chapter II, Proposition 2.6.4 for the right isomorphism.

(2) The assertion follows from Proposition 2.8 (2) and [JSS] Proposition 2.4.1 (3), Corol-
lary 2.5.1. □

Remark 2.11 The push-forward morphism trf in Proposition 2.8 (1) satisfies the projection
formula in [SH] 7.2.4, by the same arguments as in loc. cit. See also the proof of Proposition
2.8 (1) as to how we modified loc. cit. 7.1.2 in our situation.

2.3 Cycle class morphism
To construct a cycle class morphism from Bloch’s cycle complex (see (2.3.2) below), we
formulate a version of Tn(r) with log poles and a purity for this coefficient; see also [Z]
for a construction assuming Gersten’s conjecture for Bloch’s cycle complex. Let D be a
reduced normal crossing divisor on X which is flat over B and such that D ∪ Yred also has
simple normal crossings on X and such that the pair (X,D) is quasi-log smooth over B in
the sense of [SS] 5.2. We define Tn(r)(X,D) by the following distinguished triangle analogous
to (2.1.1):

ι∗ν
r−1
(Y,E),n[−r − 1]

g−→ Tn(r)(X,D)
t−→ τ≦rRψ∗µ

⊗r
pn

(⋆)−→ ι∗ν
r−1
(Y,E),n[−r], (2.3.1)

12



where we put E := Yred ∩ D and νr−1
(Y,E),n := φ∗ν

r−1
Y ∖E with φ : Y ∖ E ↪→ Y ; ψ denotes the

open immersion X ∖ (Y ∪ D) ↪→ X . See also [Sa2] 3.5 and 3.6. When D = ∅, we have
Tn(r)(X,∅) = Tn(r)X . The following propositions concerning the complex Tn(r)(X,D) play
fundamental roles in our construction of cycle class maps.

Proposition 2.12 (cf. [Sa2] 6.5) Let Z be a closed subset of X of codimension ≧ c. Then we
have

H q
Z(X,Tn(r)(X,D)) ∼=

{
0 (q < r + c)
H r+c
Z∖D(X ∖D,Tn(r)) (q = r + c).

In particular, if Z has pure codimension c on X , then we have

H q
Z(X,Tn(c)(X,D)) ∼=

{
0 (q < 2c)
Λn[Z

0 ∖D] (q = 2c),

where Λn[Z0 ∖D] means the free Λn-module generated over the set Z0 ∖D.

Proof. One obtains the assertion by repeating the arguments in the proof of loc. cit. 6.5, using
[SS] 1.1 and 4.5 (resp. Corollary 2.6 of the previous subsection) in place of [Sa2] 3.3 (resp.
[SH] 4.4.9). We do not need to assume the existence of primitive p-th roots of unity in K by
the argument in Remark 2.3. □

Proposition 2.13 (cf. [Sa2] 4.3) Let E → X be a vector bundle of rank a, and let f : P :=
P(E⊕1)→ X be its projective completion. Let P′ := P(E) the projective bundle associated
with E, regarded as the infinite hyperplane section of P. Then the composite morphism

Tn(r)X −→ Rf∗Tn(r)P −→ Rf∗Tn(r)(P,P′)

is an isomorphism in D+(Xét, Λn).

Proof. One can extend the Dold-Thom isomorphism (loc. cit. 4.1) and the distinguished
triangle in loc. cit. 3.12 to the situation of this section, by repeating the same arguments as
in the proofs of loc. cit. 4.1 and 3.12, using [SS] 1.1 and 4.5 (note also Remark 2.3 of this
section). The assertion follows from those facts and Remark 2.11. □

Let Ét/X be the underlying category of X-schemes of the étale site Xét. For a scheme
U and r ≧ 0, let zr(U, ∗) be Bloch’s cycle complex [B2]. We define a complex Z(r) of
presheaves on Ét/X by the assignment

Z(r) : U ∈ Ob(Ét/X) 7−→ zr(U, ∗)[−2r],

which is in fact a complex of sheaves in the Zariski and the étale topologies. We call Z(r)
the motivic complex of X of weight r. For a closed subset C ⊂ X and U ∈ Ob(Ét/X),
put CU := C ×X U and let zrCU

(U, q) be the subgroup of zr(U, q) consisting of the cycles
on U × ∆q of codimension r whose support is contained in CU × ∆q (and which satisfies

13



the face condition). The collection {zrCU
(U, q)}q≧0 forms a subcomplex of zr(U, ∗), and we

define a subcomplex Z(r)C⊂X ⊂ Z(r) by the assignment

Z(r)C⊂X : U ∈ Ob(Ét/X) 7−→ zrCU
(U, ∗)[−2r].

By Propositions 2.12 and 2.13, Lemma 2.7 and the same arguments as in [Sa2] §7 (see also
Remark 2.14 below), one obtains a cycle class morphism

clC⊂X,Λn : Z(r)C⊂X ⊗ Λn −→ RΓC(X,Tn(r)) in D(Xét, Λn) (2.3.2)

for any r ≧ 0, which yields the cycle class map on hypercohomology groups

clC⊂X,Λn : H∗
C(XZar,Z(r)⊗ Λn) −→ H∗

C(X,Tn(r)).

When C = X , the group on the left hand side will be denoted by H∗
M (X,Λn(r)), and the

map clX,Λn := clX⊂X,Λn will be computed in Lemma 7.1 (3) below under the assumption that
d = 2.

Remark 2.14 To follow the arguments in [Sa2] §7, we have used the projection formula in
[SH] Corollary 7.2.4, which has been extended to our situation in Remark 2.11. We also
need to extend the compatibility fact in [SH] Corollary 6.3.3 to our situation, where the push-
forward morphism in Proposition 2.8 (1) plays the role of Gysi of loc. cit. 6.3.3. One can
easily check the details by Lemma 2.7 and the proof of loc. cit. 6.3.3.

Let C2 ⊂ C1 be closed subsets of X , and let φ : X ′ := X ∖C2 ↪→ X be the natural open
immersion. Put C ′ := C1 ∖ C2. Then the squares in D(Xét, Λn)

Z(r)C2⊂X ⊗ Λn / /

clC2⊂X,Λn

��

Z(r)C1⊂X ⊗ Λn
ϕ♯ //

clC1⊂X,Λn

��

Rφ∗Z(r)C′⊂X′ ⊗ Λn
clC′⊂X′,Λn

��
RΓC2

(X,Tn(r)) // RΓC1
(X,Tn(r)) // Rφ∗RΓC′(X ′,Tn(r))

(2.3.3)

are commutative by the construction of cycle class morphisms. From this commutative dia-
gram, one obtains another commutative diagram in D(Xét, Λn)

Rφ∗Z(r)C′⊂X′ ⊗ Λn δ //

clC′⊂X′,Λn

��

RΓC2
(X,Z(r)C1⊂X ⊗ Λn)[1]
clC2⊂X,Λn

��

Z(r)C2⊂X ⊗ Λn[1]
γoo

clC2⊂X,Λntthhhh
hhhh

hhhh
hhhh

hh

Rφ∗RΓC′(X ′,Tn(r))
δ // RΓC2

(X,Tn(r))[1],

(2.3.4)
where the arrows δ are the connecting morphisms of localization triangles (see [SH] 1.9).

Remark 2.15 The arrow γ of (2.3.4) is NOT an isomorphism, or equivalently, the upper
row of (2.3.3) does NOT fit into any localization triangle in D(Xét, Λn). If one considers
localization triangles in the Zariski topology, then the morphism corresponding to γ of (2.3.4)
is an isomorphism by Levine [Le].
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2.4 Cospecialization and a residue diagram
In this subsection, we consider a residue map and prove its contravariance, which will be
useful in §5.3 below. We suppose that πX/B : X → B is proper, and that O is a henselian
discrete valuation ring with algebraically closed residue field. Put IK := Gal(K/K). By the
duality in Corollary 2.10 (1) and the Poincaré duality for XK , the cospecialization map

cospX : H i(Y, Λn) ∼= H i(X,Λn) −→ H i(XK , Λn)
IK

induces a canonical homomorphism

ResX : H i′(XK , µ
⊗d−1
pn )IK −→ H i′+2

Y (X,Tn(d)),

where we put i′ := 2(d− 1)− i.

Proposition 2.16 For any i ≧ 0, the following diagram is anti-commutative:

H1(IK ,H i(XK , µ
⊗d
pn ))

α //

ε

��

H i(XK , µ
⊗d−1
pn )IK

ResX
��

H i+1(XK , µ
⊗d
pn )

δX // H i+2
Y (X,Tn(d)),

where the left vertical arrow is an edge map of a Hochschild-Serre spectral sequence, and
the upper horizontal arrow denotes the composite map

H1(IK ,H i(XK , µ
⊗d
pn )) −→ H1(IK , µpn)⊗ H i(XK , µ

⊗d−1
pn )IK

∼= K× ⊗ H i(XK , µ
⊗d−1
pn )IK

ordK−→ Z⊗ H i(XK , µ
⊗d−1
pn )IK .

The bottom horizontal arrow is the connecting map of a localization long exact sequence.

Proof. The following diagram of trace maps and boundary maps are commutative:

H2d−1(XK , µ
⊗d
pn )

trX/B //

δX
��

H1(IK , µpn)
∼

δB
��

K× ⊗ Λn
−ordK
��

H2d
Y (X,Tn(d))

trX/B // H2
v(B,Tn(1))

trB,v

∼ Λn,

where v denotes the closed point of B, and trB,v means trX,Y for (X,Y ) = (B, v) (see
Corollary 2.10 (1)). See Lemma 2.7 for the commutativity of the right square. The assertion
follows from this commutativity and the following obvious commutative square:

H0(IK ,H i′(XK , Λn)) H i′(XK , Λn)
IK

H i′(XK , Λn)

OO

H i′(X,Λn).oo

OO

The details are straight-forward and left to the reader. □
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The following consequence of Proposition 2.16 will be useful later. Let O′ be another
strict henselian local ring which is flat over O and whose residue field k′ is algebraically
closed. Let X ′ be a scheme which is regular, proper flat of finite type over B′ and satisfies
(?1) over B′. Put L := Frac(O′), IL := Gal(L/L) and Y ′ := X ′ ⊗O′ k′. Assume that

dim(X ′) = dim(X) = d

(hence that dim(X ′
L) = dim(XK) = d− 1). Under this setting we obtain:

Corollary 2.17 For any morphism f : X ′ → X and any i ≧ 0, the diagram

H i(X ′
L
, µ⊗d−1

pn )IL

ResX
��

H i(XK , µ
⊗d−1
pn )IK

f♯oo

ResX
��

H i+2
Y ′ (X ′,Tn(d)) H i+2

Y (X,Tn(d))
f♯oo

is commutative, that is, the map ResX is contravariant in X .

Proof. In the diagram of Proposition 2.16, the composite map δ ◦ ε is contravariant in X
by Proposition 2.2, and the map α is surjective by the fact that cd(IK) = 1. The corollary
follows from these facts and Proposition 2.16. □

3 A filtration on the direct image
Let πX/B : X → B = Spec(O) be as in the beginning of §2. In this section, we assume

(?2) any residue field of O of characteristic p is perfect.

Under this assumption, we introduce objects H∗(X,Tn(r)) of D+(Bét, Λn) for r ≧ d :=
dim(X), which play central roles throughout this paper. The étale cohomology of B with
coefficients in these new objects will be related to the étale cohomology ofX with coefficients
in Tn(r) by the spectral sequence (3.1.6) below.

3.1 Étale complex Hm(X,Tn(r))

Lemma 3.1 For any r ≧ d, we have

RπX/B∗Tn(r) ∼= RHomB,Λn(RπX/B!Tn(d− r),Tn(1))[2− 2d] (3.1.1)

in D+(Bét, Λn).

Proof. Since r ≧ d by assumption, there exists a canonical isomorphism

Tn(r) ∼= RHomX,Λn(Tn(d− r),Tn(d)) in D+(Xét, Λn), (3.1.2)
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which is obvious if r = d, and otherwise a consequence of Lemma 2.1 (2) and the adjunction
in [SGA4] XVIII.3.1.10 for the open immersion X[p−1] ↪→ X . Hence we have

RπX/B∗Tn(r) ∼= RπX/B∗RHomX,Λn(Tn(d− r), Rπ!
X/BTn(1)[2− 2d])

∼= RHomB,Λn(RπX/B!Tn(d− r),Tn(1))[2− 2d]

in D+(Bét, Λn), by Proposition 2.8 (2) and [SGA4] XVIII.3.1.10 for πX/B. □

Definition 3.2 For each m ∈ Z, we define

H≦m(X,Tn(r)) := RHomB,Λn(τ≧2(d−1)−mRπX/B!Tn(d− r)X ,Tn(1)B)[2− 2d],

Hm(X,Tn(r)) := RHomB,Λn(R
2(d−1)−mπX/B!Tn(d− r)X ,Tn(1)B),

which are objects of D+(Bét, Λn).

Caution 3.3 Hm(X,Tn(r)) is NOT the sheaf Rm
X/B∗Tn(r), but a complex of sheaves.

By Lemma 3.1 and the proper base change theorem (for RπX/B!), we have

H≦m(X,Tn(r)) ∼=

{
0 (m ≦ −1)

RπX/B∗Tn(r)X (m ≧ 2(d− 1))
(3.1.3)

Hm(X,Tn(r)) = 0 unless 0 ≦ m ≦ 2(d− 1). (3.1.4)

For any m ∈ Z, we have a natural distinguished triangle of the form

H≦m−1(X,Tn(r)) −→ H≦m(X,Tn(r)) −→ Hm(X,Tn(r))[−m]

−→ H≦m−1(X,Tn(r))[1]. (3.1.5)

The data {H≦m(X,Tn(r))}m≦2(d−1) form a finite ascending filtration on H≦2(d−1)(X,Tn(r))
∼= RπX/B∗Tn(r)X , and yield a convergent spectral sequence

Ea,b
2 = Ha(B,Hb(X,Tn(r))) =⇒ Ha+b(X,Tn(r)). (3.1.6)

To illustrate our complex Hm(X,Tn(r)), we show here the following proposition assum-
ing that πX/B is proper. See Proposition 3.6 below for more detailed computations without
properness assumption.

Proposition 3.4 Assume that X is proper over B and that r ≧ d.

(1) Let U ⊂ B[p−1] be an open subset for which πXU/U : XU = X ×B U → U is smooth
(and proper). Then Hm(X,Tn(r))|U is the locally constant constructible sheaf placed
in degree 0, associated with Hm(XK , µ

⊗r
pn ).

(2) Assume further that the generic fiber XK is geometrically connected over K. Then the
trace map trX/B : RπX/B∗Tn(r)X [2(d− 1)]→ Tn(r+1−d)B induces an isomorphism

H2(d−1)(X,Tn(r)) ∼= Tn(r + 1− d)B. (3.1.7)
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To prove this proposition, we need the following lemma:

Lemma 3.5 Let Z be a scheme and let F be a locally constant constructible Λn-sheaf on
Zét. Then we have

Hom(F , Λn)x ∼= Hom(Fx, Λn) and ExtqZ,Λn
(F , Λn) = 0 (q ≧ 1).

Proof of Lemma 3.5. Since F is a pseudo-coherent Λn-module on Zét in the sense of [Mi1] p.
80, we have

ExtqZ,Λn
(F , Λn)x ∼= ExtqΛn

(Fx, Λn)

for any q ≧ 0 by loc. cit. II.3.20. The assertions follow from this fact and the fact that Λn is
an injective Λn-module. □

Proof of Proposition 3.4. (1) By definition, we have

Hm(X,Tn(r))|U = RHomU,Λn(R
2(d−1)−mπXU/U∗Λn(d− r), Λn(1)).

Since R2(d−1)−mπXU/U∗Λn(d− r) is locally constant and constructible by the proper smooth
base change theorem, the object on the right hand side is isomorphic to the sheaf

HomU,Λn(R
2(d−1)−mπXU/U∗Λn(d− r), Λn(1))

placed in degree 0, by Lemma 3.5. Then the assertion follows from the Poincaré duality.
(2) We have

H2(d−1)(X,Tn(r)) = RHomB,Λn(πX/B∗Tn(d− r)X ,Tn(1)B)

by definition, and πX/B∗Tn(d − r)X ∼= Tn(d − r)B for r ≧ d by the connectedness of the
geometric fibers. The assertion follows from this fact and Lemma 2.1 (2) for B. □

3.2 Local computations
We investigate here the local structure of Hm(X,Tn(r)) around the closed points on B with-
out assuming that πX/B is proper. For a closed point v ∈ B, we often write Yv (resp. Yv,
Xv) for X ×B v (resp. X ×B v, X ×B Bsh

v ), where Bsh
v denotes the spectrum of the strict

henselization of Ov = OB,v at its maximal ideal.

Proposition 3.6 Let v be a closed point on B, and let q and m be integers. We write ιv for
the closed immersion v ↪→ B and jv for the open immersion B ∖ v ↪→ B. Assume r ≧ d.
Then

(1) We have Rqι!vH
m(X,Tn(r)) = 0 unless q = 2, and a canonical isomorphism

(R2ι!vH
m(X,Tn(r)))v ∼= Hm+2

Yv
(Xv,Tn(r)).

Moreover, we have Rι!vH
m(X,Tn(r)) = 0, if ch(v) = p and r > d.

18



(2) We have
(Rqjv∗j

∗
vH

m(X,Tn(r)))v ∼= H q(Iv,Hm(XK , µ
⊗r
pn )),

where Iv denotes the inertia subgroup of GK at v. Consequently, we have

Rqjv∗j
∗
vH

m(X,Tn(r)) = 0

unless q = 0 or 1, by the fact that cdp(Iv) = 1 (see [Se] II.3.3).

(3) We have

H q(Hm(X,Tn(r)))v ∼=

{
Hm(XK , µ

⊗r
pn )

Iv if q = 0

0 if q 6= 0, 1 or 2

and an exact sequence

0 −→H 1(Hm(X,Tn(r)))v −→ H1(Iv,Hm(XK , µ
⊗r
pn ))

δ+−→ Hm+2
Yv

(Xv,Tn(r)) −→H 2(Hm(X,Tn(r)))v → 0.

Here H q(−) denotes the q-th cohomology sheaf, and δ+ denotes the composite map
δX ◦ ε in the diagram of Proposition 2.16.

Proof of Proposition 3.6. (1) By the definition of Hm(X,Tn(r)) in Definition 3.2 and the
adjunction in [SGA4] XVIII.3.1.12.2, we have

Rι!vH
m(X,Tn(r)) = Rι!vRHomB,Λn(R

2(d−1)−mπX/B!Tn(d− r)X ,Tn(1)B)
∼= RHomv,Λn(ι

∗
vR

2(d−1)−mπX/B!Tn(d− r)X , Rι!vTn(1)B) (3.2.1)

∼= RHomv,Λn(R
2(d−1)−mπYv/v!(ι

∗
YvTn(d− r)X), Λn)[−2],

where ιYv denotes the closed immersion Yv → X , and we have used the proper base change
theorem for RπX/B! and the purity in Proposition 2.5 (2) for Tn(1)B in the last isomor-
phism. In particular if ch(v) = p and r > d, then ι∗YvTn(d − r)X is zero and we have
Rι!vH

m(X,Tn(r)) = 0, which shows the third assertion of (1). If ch(v) 6= p or r = d,
then Rι!vH

m(X,Tn(r)) is acyclic outside of degree 2 by (3.2.1) and Lemma 3.5 for Z = v.
Moreover, if r = d, then we have

R2ι!vH
m(X,Tn(d))

(3.2.1)∼= Homv,Λn(R
2(d−1)−mπYv/v!Λn, Λn)

∼= H m−2(d−1)(RHomv,Λn(RπYv/v!Λn, Λn))

∼= H m−2(d−1)(RπYv/v∗Rπ
!
Yv/vΛn)

again by Lemma 3.5 for Z = v and adjunction, and we have

Rπ!
Yv/vΛn

∼= Rπ!
Yv/vRι

!
vTn(1)B[2]

∼= Rι!YvTn(d)X [2d] (3.2.2)

by the purity in Proposition 2.5 (2) for v ↪→ B and Proposition 2.8 (2). Hence we have

(R2ι!vH
m(X,Tn(d)))v ∼= Hm+2

Yv
(Xv,Tn(d)).
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The isomorphism in the case that r > d and ch(v) 6= p is similar and left to the reader.
(2) We may assume that B is local with closed point v, without loss of generality. Put

η := B∖ v, which is the generic point of B. The sheaf j∗vR
2(d−1)−mπX/B!Tn(d− r) is locally

constant on ηét, and the object

j∗vH
m(X,Tn(r)) = RHomη,Λn(j

∗
vR

2(d−1)−mπX/B!Tn(d− r), µpn)

is isomorphic to the sheaf (on ηét) associated with Hm(XK , µ
⊗r
pn ) placed in degree 0 by Lemma

3.5 for Z = η and the Poincaré duality. The assertion follows from this fact.
(3) The assertion follows from Proposition 3.6 (1), (2) and the fact that the stalk at v of

the connecting homomorphism

δB,B∖v : R
1jv∗j

∗
vH

m(X,Tn(r)) −→ ιv∗R
2ι!vH

m(X,Tn(r))

agrees with δ+ up to a sign. □

The following corollary follows from Proposition 3.6 (1) and (3).

Corollary 3.7 (1) If ch(v) = p and r > d, then Hm(X,Tn(r)) ∼= Rjv∗j
∗
vH

m(X,Tn(r)).

(2) Hm(X,Tn(r)) is concentrated in [0, 2], and RπX/B∗Tn(r) is concentrated in [0, 2d].

3.3 Rigidity
In this subsection, we assume further that O is henselian local. Let O′ be the completion of
O at its maximal ideal, and put

B′ := Spec(O) and X ′ := X ×B B′.

Let v be the closed point of B′, which we identify with the closed point of B. Let Y ′ be the
special fiber of πX′/B′ : X ′ → B′, and let Y be the special fiber of πX/B : X → B. We have
cartesian squares

Y ′ � � //

□

X ′

α
��

πX′/B′
//

□

B′

β
��

□

v? _
ιvoo

Y � � // X
πX/B // B v.? _

ivoo

(3.3.1)

We prove here the following preliminary result, where we do not assume that πX/B is proper:

Proposition 3.8 (rigidity) For any r ≧ d, there exist canonical isomorphisms

ψ1 : RπX/B∗Tn(r)X
≃−→ Rβ∗RπX′/B′∗Tn(r)X′

ψm2 : H≦m(X,Tn(r))
≃−→ Rβ∗H

≦m(X ′,Tn(r)) (∀m ∈ Z)

ψm3 : Hm(X,Tn(r))
≃−→ Rβ∗H

m(X ′,Tn(r)) (∀m ∈ Z)

ψm4 : Ri!vH
m(X,Tn(r))

≃−→ Rι!vH
m(X ′,Tn(r)) (∀m ∈ Z)

in Db(Bét, Λn), where iv : v ↪→ B and ιv : v ↪→ B′ are canonical closed immersions.
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Corollary 3.9 We have canonical isomorphisms for any q,m ∈ Z and any r ≧ d

H q(X,Tn(r)X) ∼= H q(X ′,Tn(r)X′),

H q
Y (X,Tn(r)X)

∼= H q
Y ′(X

′,Tn(r)X′),

H q(B,Hm(X,Tn(r))) ∼= H q(B′,Hm(X ′,Tn(r))),

H q
v(B,H

m(X,Tn(r))) ∼= H q
v(B

′,Hm(X ′,Tn(r))).

Proof of Proposition 3.8. Let ResX and ResB be the pull-back morphisms

ResX : α∗Tn(r)X −→ Tn(r)X′ and ResB : β∗Tn(1)B → Tn(1)B′ .

We define ψ1 as the composite

ψ1 : RπX/B∗Tn(r)X −→ RπX/B∗Rα∗Tn(r)X′ = Rβ∗RπX′/B′∗Tn(r)X′ ,

where the first arrow is the adjunction map of ResX . We define ψm2 as the composite

ψm2 : H≦m(X,Tn(r)) = RHomB,Λn(τ≧2(d−1)−mRπX/B!Tn(d− r)X ,Tn(1)B)[2− 2d]

−→ Rβ∗RHomB′,Λn(τ≧2(d−1)−mβ
∗RπX/B!Tn(d− r)X , β∗Tn(1)B)[2− 2d]

−→ Rβ∗RHomB′,Λn(τ≧2(d−1)−mRπX′/B′!Tn(d− r)X′ ,Tn(1)B′)[2− 2d]

= Rβ∗H
≦m(X ′,Tn(r)),

where the second arrow is induced by ResB and the isomorphisms

β∗RπX/B!Tn(d− r)X ∼= RπX′/B′!α
∗Tn(d− r)X (proper base change)

∼= RπX′/B′!Tn(d− r)X′ (r ≧ d).

We define ψm3 in a similar way. Note that the following diagram is commutative by Corollary
2.9:

RπX/B∗Tn(r)X

ψ1

��

(3.1.3)
≃ // H≦2(d−1)(X,Tn(r))

ψ
2(d−1)
2

��
Rβ∗RπX′/B′∗Tn(r)X′

(3.1.3)
≃ // Rβ∗H

≦2(d−1)(X ′,Tn(r)).

(3.3.2)

We define ψm4 as the composite

ψm4 : Ri!vH
m(X,Tn(r))

base change // Rι!vβ
∗Hm(X,Tn(r))

ψm
3−→ Rι!vH

m(X ′,Tn(r)).

See [SGA4] XVIII.3.1.14.2 for the base change morphism. This ψm4 is an isomorphism, be-
cause both Ri!vH

m(X,Tn(r)) and Rι!vH
m(X ′,Tn(r)) are isomorphic to{

RHomv,Λn(R
2(d−1)−mπYv/v!Λn(d− r), Λn)[−2] (if ch(v) 6= p or r = d)

0 (if ch(v) = p and r > d)

by (3.2.1) and Proposition 3.6 (1). We prove that ψ1, ψm2 and ψm3 are isomorphisms. By the
triangle (3.1.5) and the commutative diagram (3.3.2), we are reduced to showing that ψm3 is
an isomorphism for any m ∈ Z. Put K ′ := Frac(O′), and let us note the following facts:
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(i) Hm(XK , µ
⊗r
pn ) ∼= Hm(X ′

K′ , µ
⊗r
pn ), see [Mi1] VI.4.3

(ii) GK ∼= GK′ , see [Mi3] p. 160, (i), (ii)

(iii) ψm4 is an isomorphism

By these facts and Proposition 3.6 (2), we see that ψm3 is an isomorphism, which completes
the proof of Proposition 3.8. □

4 Projective and inductive limits
Let πX/B : X → B = Spec(O) be as in §2. We do not assume that πX/B is proper in this
section, but assume that O and K = Frac(O) satisfy either of the following conditions:

(L) K is a non-archimedean local field of characterictic 0, i.e., a finite field extension of Qℓ

for some prime number `, and O is the valuation ring of K.

(G) K is an algebraic number field, i.e., a finite field extension of Q, and B = Spec(O) is
an open subset of Spec(OK), where OK denotes the integer ring of K.

The main aims of this section are to prove some standard finiteness results and to construct
spectral sequences (4.1.1)–(4.1.3) below, under these assumptions.

Proposition 4.1 There is a canonical isomorphism

H q(B,Hm(X,Tn(r))) ∼= ExtqB(R
2(d−1)−mπX/B!Tn(d− r),Gm) (4.0.1)

for any q,m ≧ 0, n ≧ 1 and r ≧ d. Moreover, H q(X,Tn(r)) and H q(B,Hm(X,Tn(r))) are
finite for the same q,m, n and r.

Proof. The isomorphism (4.0.1) follows from the definition of Hm(X,Tn(r)) (see Definition
3.2) and the canonical isomorphism

RHomB(Λn,Gm) ∼= Tn(1)

(a variant of [SH] Proposition 4.5.1). See also [JSS] (2.3.4). The finiteness of the groups
in (4.0.1) follows from the finiteness of Ext-groups in the Artin-Verdier duality ([Ma] (2.4))
and the constructibility of R2(d−1)−mπX/B!Tn(d− r). The finiteness of H q(X,Tn(r)) follows
from the spectral sequence (3.1.6) and that of E2-terms. □

4.1 Spectral sequences
For r ≧ d, we introduce the following groups:

H q(X,Zp(r)) := lim←−
n≧1

H q(X,Tn(r)),
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H q(X,Qp(r)) := H q(X,Zp(r))⊗Zp Qp,

H q(X,Qp/Zp(r)) := lim−→
n≧1

H q(X,Tn(r)),

H q(B,Hm(X,Zp(r))) := lim←−
n≧1

H q(B,Hm(X,Tn(r))),

H q(B,Hm(X,Qp(r))) := H q(B,Hm(X,Zp(r)))⊗Zp Qp,

H q(B,Hm(X,Qp/Zp(r))) := lim−→
n≧1

H q(B,Hm(X,Tn(r))).

Here the transition maps in the forth group is defined by the commutative diagram

H q(B,Hm(X,Tn+1(r))) //

∼=(4.0.1)
��

H q(B,Hm(X,Tn(r)))

∼=(4.0.1)
��

ExtqB(R
2(d−1)−mπX/B!Tn+1(d− r),Gm) // ExtqB(R

2(d−1)−mπX/B!Tn(d− r),Gm)

with the bottom arrow induced by p : Tn(d − r) ↪→ Tn+1(d − r) of Proposition 2.4. The
transition maps in the last group is defined by the commutative diagram

H q(B,Hm(X,Tn(r))) //

∼=(4.0.1)
��

H q(B,Hm(X,Tn+1(r)))

∼=(4.0.1)
��

ExtqB(R
2(d−1)−mπX/B!Tn(d− r),Gm) // ExtqB(R

2(d−1)−mπX/B!Tn+1(d− r),Gm)

with the bottom arrow induced by R1 : Tn+1(d − r) ↠ Tn(d − r) of Proposition 2.4.
Taking the projective limit of the spectral sequence (3.1.6) with respect to n ≧ 1, we obtain
a convergent spectral sequence of Zp-modules

Ea,b
2 = Ha(B,Hb(X,Zp(r))) =⇒ Ha+b(X,Zp(r)). (4.1.1)

This spectral sequence yields a spectral sequence of Qp-vector spaces:

Ea,b
2 = Ha(B,Hb(X,Qp(r))) =⇒ Ha+b(X,Qp(r)). (4.1.2)

On the other hand, taking the inductive limit of (3.1.6) with respect to n ≧ 1, we obtain
another convergent spectral sequence of Zp-modules

Ea,b
2 = Ha(B,Hb(X,Qp/Zp(r))) =⇒ Ha+b(X,Qp/Zp(r)). (4.1.3)

4.2 Finite and cofinite generation
The following standard facts will be useful later:

Theorem 4.2 (1) H q(X,Zp(r)) and H q(B,Hm(X,Zp(r))) are finitely generated over Zp
for any q,m ∈ Z and any r ≧ d.
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(2) H q(X,Qp/Zp(r)) and H q(B,Hm(X,Qp/Zp(r))) are cofinitely generated over Zp for
any q,m ∈ Z and any r ≧ d.

(3) We have rankZp H q(B,Hm(X,Zp(r))) = corankZp H q(B,Hm(X,Qp/Zp(r))) for any
q,m ∈ Z and any r ≧ d.

Proof. The assertions for H q(X,Zp(r)) and H q(X,Qp/Zp(r)) follow from a standard argu-
ment using Propositions 4.1 and 2.4. We prove the assertions for H q(B,Hm(X,Zp(r))) and
H q(B,Hm(X,Qp/Zp(r))) in the case (G); the case (L) is similar and left to the reader.

We first show that H q(B,Hm(X,Zp(r))) is finitely generated over Zp. By the Artin-
Verdier duality, it is enough to show that its Pontryagin dual

H3−q
c (B,Rm′

πX/B!Qp/Zp(d− r)) := lim−→
n≧1

H3−q
c (B,Rm′

πX/B!Tn(d− r))

is cofinitely generated over Zp, where m′ := 2(d − 1) − m. Let M s
Div to be the maximal

p-divisible subsheaf of M s := RsπX/B!Qp/Zp(d− r), i.e.,

M s
Div := Im

(
HomB(Qp,M

s)→M s
)
,

where Qp denotes the constant sheaf on Bét with values in Qp. There is an exact sequence

0 −→ pn(M
s
Div) −→ pn+n′ (M s

Div) −→ pn′ (M s
Div) −→ 0

of constructible sheaves for any n, n′ ≧ 1, and H i
c(B,M

s
Div) is cofinitely generated over Zp

for any i by a standard argument. On the other hand, the quotient sheaf

M s
cotor :=M s/M s

Div

is the torsion part of Rs+1πX/B!Zp, hence constructible ([SGA5] VI.2.2.2), and H i
c(B,M

s
cotor)

is finite for any i. Therefore by the long exact sequence

· · · → H i
c(B,M

s
Div)→ H i

c(B,M
s)→ H i

c(B,M
s
cotor)→ H i+1

c (B,M s
Div)→ · · · , (4.2.1)

H i
c(B,M

s) is cofinitely generated over Zp for any i and s, and H q(B,Hm(X,Zp(r))) is
finitely generated over Zp for any q and m.

We next show that H q(B,Hm(X,Qp/Zp(r))) is cofinitely generated over Zp. By similar
arguments as before, it is enough to show that the group

H3−q
c (B,RsπX/B!Zp(d− r)) := lim←−

n≧1

H3−q
c (B,RsπX/B!Tn(d− r))

is finitely generated over Zp for any i and s. Let M s and M s
Div be as before, and put

T sn := pn(M
s
Div) (n ≧ 1) and T s := (T sn)n≧1

Note that T s := (T sn)n≧1 is a constructible Zp-sheaf. We further put

H i
c(B, T

s) := lim←−
n≧1

H i
c(B, T

s
n),
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which is finitely generated over Zp for any i by a standard argument. Noting that there is a
short exact sequence of constructible Zp-sheaves

0 −→M s−1
cotor −→ RsπX/B!Zp(d− r) −→ T s −→ 0

we obtain a long exact sequence

· · · → H i
c(B,M

s−1
cotor)→ H i

c(B,R
sπX/B!Zp(d− r))→ H i

c(B, T
s)

→ H i+1
c (B,M s−1

cotor)→ · · · , (4.2.2)

which shows that H i
c(B,R

sπX/B!Zp(d− r)) is finitely generated over Zp for any i.
Finally noting that there is a long exact sequence of Zp-modules

· · · → H i
c(B, T

s)→ H i
c(B,R

sπX/B!Qp(d− r))→ H i
c(B,M

s
Div)

→ H i+1
c (B, T s)→ · · · , (4.2.3)

we obtain the equalities

rankZp H q(B,Hm(X,Zp(r)))
(duality)
= corankZp H3−q

c (B,Mm′
) (m′ := 2(d− 1)−m)

(4.2.1)
= corankZp H3−q

c (B,Mm′

Div)
(4.2.3)
= rankZp H3−q

c (B, Tm
′
)

(4.2.2)
= rankZp H3−q

c (B,Rm′
πX/B!Zp(d− r))

(duality)
= corankZp H q(B,Hm(X,Qp/Zp(r))),

which shows the assertion (3). □

5 Comparison with Selmer groups, local case
Let πX/B : X → B = Spec(O) be as in §2. In this section, we always assume the following:

• πX/B is proper, and the generic fiber XK is geometrically connected over K.

• K is a non-archimedean local field of characteristic 0, and O is the valuation ring of
K, i.e., the case (L) of §4.

Let k be the residue field of O and put ` := ch(k). We will often write Y (resp. Y ) forX⊗Ok
(resp. X ⊗O k). A main aim of this section is to compare H∗(X,Qp(r)) (r ≧ d) with Selmer
groups H1

f , whose definition we are going to review briefly.

Let V be a finite-dimensional Qp-vector space on which the Galois group GK acts con-
tinuously. In their paper [BK2] §3, Bloch and Kato defined the Qp-subspace H1

f (K,V ) of
H1(K,V ) as

H1
f (K,V ) :=

{
Ker(H1(K,V ) −→ H1(Kur, V )) (` 6= p)

Ker(H1(K,V ) −→ H1(K,V ⊗Qp Bcrys)) (` = p),
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where Kur denotes the maximal unramified extension field of K, and Bcrys denotes the period
ring of crystalline representations defined by Fontaine [Fo]. We often write H1

/f (K,V ) for the
quotient of H1(K,V ) by H1

f (K,V ). Let us recall here the following fundamental theorem of
Bloch-Kato [BK2] 3.8, which will be useful in this section:

Lemma 5.1 (Bloch-Kato) Assume that V is finite-dimensional over Qp and has a Zp-lattice
which is preserved under the action of GK . If ` = p, assume further that V is a de Rham
representation. Let V ∗(1) be the Kummer dual of V , that is, HomQp(V,Qp(1)). Then under
the perfect pairing of local Tate duality

H1(K,V )× H1(K,V ∗(1))→ H2(K,Qp(1)) ∼= Qp,

the subspaces H1
f (K,V ) and H1

f (K,V
∗(1)) are the exact annihilators of each other.

The following standard fact will be useful later in §§6–8 below.

Lemma 5.2 Assume that ` 6= p, and that πX/B : X → B is smooth and proper. Then we have
Ha(B,Hm(X,Tn(r))) = 0 for any a ≧ 2, m ≧ 0, n ≧ 1 and r ≧ d.

Proof. Under the assumptions, Hm(X,Tn(r)) is a locally constant sheaf on Bét placed in
degree 0, whose stalk at v is Hm(Y , µ⊗r

pn ) by Lemma 2.1 (1), Proposition 3.4 (1) and the
proper smooth base change theorem. Hence we have

Ha(B,Hm(X,Tn(r))) ∼= Ha(v,Hm(Y , µ⊗r
pn )) = 0

for any a ≧ 2, as claimed. □

5.1 Comparison results
The main result of this section is the following:

Theorem 5.3 For any m ≧ 0 and r ≧ d, we have canonical isomorphisms

H q(B,Hm(X,Qp(r))) ∼=

{
H1
f (K,H

m(XK ,Qp(r))) (q = 1)

0 (otherwise)

Moreover, if ` 6= p, then we have H q(B,Hm(X,Qp(r))) = 0 for any q,m ≧ 0 and r ≧ d.

Remark 5.4 If ` 6= p, then we have Hm(X,Qp(r)) = 0 for any m ∈ Z and any r ≧ d by the
proper base change theorem

Hm(X,Qp(r)) ∼= Hm(Y,Qp(r))

and a theorem of Deligne [De] 3.3.4 on weights of H∗(Y ,Qp) (note that dim(Y ) = d − 1).
Theorem 5.3 for ` 6= p refines this fact.

We first state a few consequences of Theorem 5.3. By the theorem and the spectral sequence
(4.1.2), we obtain the following corollary:
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Corollary 5.5 The spectral sequence (4.1.2) degenerates at E2, and we have

Hm(X,Qp(r)) ∼= H1
f (K,H

m−1(XK ,Qp(r)))

for any m ≧ 0 and any r ≧ d.

The following corollary will be useful later:

Corollary 5.6 (1) There exists a natural map

H1
f (K,H

m(XK ,Qp(r))) −→ H1(B,Hm(X,Qp/Zp(r)))

which fits into a commutative diagram

H1
f (K,H

m(XK ,Qp(r)))

��

(natural map)

++WWWW
WWWWW

WWWWW
WWWWW

H1(B,Hm(X,Qp/Zp(r))) � � // H1(K,Hm(XK ,Qp/Zp(r))).

See Proposition 3.6 (1) for the injectivity of the bottom arrow.

(2) Ha(B,Hm(X,Zp(r))) and Ha(B,Hm(X,Qp/Zp(r))) are finite for any a 6= 1, m ≧ 0
and r ≧ d.

Proof. The claim (1) immediately follows from Theorem 5.3, and the claim (2) follows from
Theorems 5.3 and 4.2. □

We start the proof of Theorem 5.3. A key step is to show Theorem 5.7 below. Fix integers
m ≧ 0 and r ≧ d, and put V := Hm(XK ,Qp) and

H q(B,RmπX/B∗Qp(d− r)) := Qp ⊗Zp lim←−
n

H q(B,RmπX/B∗Tn(d− r)),

Under this notation, we prove the following:

Theorem 5.7 We have

H q(B,RmπX/B∗Qp(d− r)) ∼=


V (d− r)GK (q = 0)
H1
f (K,V (d− r)) (q = 1)

0 (q 6= 0, 1)
(5.1.1)

and
V (r)GK = 0. (5.1.2)

We have H q(B,RmπX/B∗Qp(d−r)) = 0 if ` = p and r > d, by the definition of Tn(d−r) and
the proper base change theorem. In this case, the isomorphism (5.1.1) asserts the vanishing
of the right hand side. We will prove Theorem 5.7 in §5.2 and §5.3 below.
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Proof of “Theorem 5.7 =⇒ Theorem 5.3”. Let v be the closed point ofB. Put s := d−r(≦ 0)
for simplicity. By the isomorphisms in (5.1.1) and the localization long exact sequence

· · · −→ H q−1
v (B,RmπX/B∗Qp(s)) −→ H q−1(B,RmπX/B∗Qp(s)) −→ H q−1(K,V (s))

−→ H q
v(B,R

mπX/B∗Qp(s)) −→ · · ·

we have

H q
v(B,R

mπX/B∗Qp(s)) ∼=


0 (q 6= 2, 3)
H1
/f (K,H

m(XK ,Qp(s))) (q = 2)
H2(K,Hm(XK ,Qp(s))) (q = 3).

(5.1.3)

Theorem 5.3 for q 6= 0 follows from (5.1.3) with 2(d− 1)−m in place of m, Lemma 5.1 and
the Tate duality for cohomology of B (see [Ma] (2.4)):

H q(B,Hm(X,Qp(r)))× H3−q
v (B,R2(d−1)−mπX/B∗Qp(s)) −→ H3

v(B,Qp(1)) ∼= Qp.

The assertion for q = 0 of Theorem 5.3 is a consequence of the isomorphism

H0(B,Hm(X,Qp(r))) ∼= V (r)GK

(see Proposition 3.6 (1)) and the vanishing (5.1.2). Finally if ` 6= p, then H1
f (K,V (r)) =

H1(k, V (r)IK ) = 0 again by (5.1.2) and the equality of dimensions

dimQpV (r)GK = dimQpH1(k, V (r)IK ), (5.1.4)

which is a consequence of the duality of Galois cohomology of Gk. □

5.2 Proof of Theorem 5.7 (the case ` 6= p)
Let Kur be the maximal unramified extension of K, and let IK = Gal(K/Kur) be the inertia
group of K. Let Our be the valuation ring of Kur, and let cospmX be the cospecialization map

cospmX : Hm(Y ,Qp) ∼= Hm(Xur,Qp) −→ Hm(XK ,Qp)
IK (5.2.1)

for m ≧ 0, where Xur (resp. Y ) denotes X ⊗O Our (resp. Y ⊗k k). We first reduce Theorem
5.7 for ` 6= p to the following proposition:

Proposition 5.8 Assume that ` 6= p. Let m ≧ 0 be an integer, and put V := Hm(XK ,Qp).

(1) We have V (r)GK = 0 for any r ≧ d.

(2) For any s ≦ 0 and q = 0, 1, the map cospmX induces an isomorphism

H q(k,Hm(Y ,Qp(s))) ∼= H q(k, V (s)IK ).
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Proposition 5.8 (1) is the same as (5.1.2) of Theorem 5.7.

Proof of “Proposition 5.8 =⇒ Theorem 5.7”. We have

H q(B,RmπX/B∗Qp(s)) ∼= H q(k,Hm(Y ,Qp(s)))

and the last group is zero unless q = 0 or 1, because cd(Gk) = 1. The isomorphisms for
q = 0, 1 of (5.1.1) follow from Proposition 5.8 (1) and the fact that

H1
f (K,V (s)) = H1(k, V (s)IK )

by definition. Thus we obtain Theorem 5.7, admitting Proposition 5.8. □

Proof of Proposition 5.8. If X is smooth over B, then the assertions are clear by the proper
smooth base change theorem and Deligne’s proof of the Weil conjecture [De] 3.3.9. We are
concerned with the case that πX/B : X → B is not smooth, in what follows.

(I) Strict semi-stable reduction case. We first prove Proposition 5.8 assuming that X
has strict semi-stable reduction. We introduce some notation. Let j be the canonical map
XK → Xur = X ⊗O Our, and let ι be the closed immersion Y → Xur. By the properness of
X/B, we have the following Leray spectral sequence for any n ≧ 1:

Ea,b
2 = Ha(Y , ι∗Rbj∗Λn) =⇒ Ha+b(XK , Λn). (5.2.2)

By a theorem of Rapoport and Zink [RZ] 2.23, there is an exact sequence on (Y )ét

0 −→ ι∗Rbj∗Λn −→ ub+1
∗ Λn(−b)Z(b+1) −→ ub+2

∗ Λn(−b)Z(b+2) −→
· · · −→ ud∗Λn(−b)Z(d) −→ 0, (5.2.3)

where for each m > 0, Z(m) denotes the disjoint union of m-fold intersections distinct irre-
ducible components of Y and um denotes the canonical (finite) map Z(m) → Y ; see (1.4.1)
for Λn(−b). Hence the E2-terms of the spectral sequence of (5.2.2) are finite and we obtain a
spectral sequence

Ea,b
2 = Ha(Y , ι∗Rbj∗Qp) =⇒ Ha+b(XK ,Qp). (5.2.4)

by taking the projective limit with respect to n ≧ 1 and the tensor product with Qp over
Zp. Note that the canonical map Em,0

2 = Hm(Y ,Qp) → Em = Hm(XK ,Qp) agrees with
the cospecialization map cospmX of (5.2.1), and that the inertia group IK acts trivially on the
E2-terms of (5.2.4). We will prove the following:

Lemma 5.9 In the spectral sequence (5.2.4), we have Ea,b
2 = 0 unless 0 ≦ a ≦ 2(d− b− 1)

and 0 ≦ b ≦ d−1. Furthermore, for a pair (a, b) with 0 ≦ a ≦ 2(d−b−1) and 0 ≦ b ≦ d−1,
the weights of Ea,b

2 are at least max{2b, 2(a+ 2b+ 1− d)} and at most a+ 2b.

By this lemma, the kernel and the cokernel of the map cospmX in (5.2.1) have only positive
weights and hence we obtain the assertion of Proposition 5.8 (2). Similarly, one can easily
derive Proposition 5.8 (1) from this lemma.
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Proof of Lemma 5.9. By (5.2.3), the sheaf ι∗Rbj∗Λn (hence Ea,b
2 of (5.2.4)) is zero unless

0 ≦ b ≦ d−1. Fix a b ≧ 0 in what follows. By the exact sequence (5.2.3), we have a spectral
sequence of finite-dimensional Gk-Qp-vector spaces:

′Es,t
1 = H t(Z(s+b+1),Qp(−b)) =⇒ H s+t(Y , ι∗Rbj∗Qp), (5.2.5)

Here ′Es,t
1 is zero unless

0 ≦ t ≦ 2(d− s− b− 1) and 0 ≦ s ≦ d− b− 1, (5.2.6)

because dim(Z(s+b+1)) = d − s − b − 1 and Z(s+b+1) = ∅ if s + b ≧ d. Using this spectral
sequence, one can easily check that Ea,b

2 of (5.2.4)) is zero unless 0 ≦ a ≦ 2(d − b −
1). Moreover, ′Es,t

1 has weight t + 2b by [De] 3.3.9. Therefore one obtains the lemma by
computing the span of t+ 2b under the conditions (5.2.6) and a = s+ t. □

This completes the proof Proposition 5.8 in the strict semi-stable reduction case.

(II) General case. We prove Proposition 5.8 in the general case. By the alteration theo-
rem of de Jong [dJ] 6.5, there exists a proper generically étale morphism f : X ′ → X such
that X ′ is regular and flat over B and has strict semi-stable reduction over the normalization
B′ of B in X ′. Let L (resp. F ) be the function field of B′ (resp. the residue field of the closed
point of B′), Y ′ for the special fiber of πX′/B′ : X ′ → B′. Then Proposition 5.8 (2) immedi-
ately follows from those for X ′, proved in Step (I), and the fact that V = Hm(XK ,Qp) is a
direct summand of Hm(X ′

L
,Qp) as GL-Qp-vector spaces. To prove Proposition 5.8 (1), we

consider the following commutative diagram:

H q(k,Hm(Y ,Qp(s)))
f♯ //

cospmX
��

H q(F,Hm(Y ′,Qp(s)))
trf //

cospm
X′

��

H q(k,Hm(Y ,Qp(s)))

cospmX
��

H q(k, V (s)IK )
f♯ // H q(F,Hm(X ′

L
,Qp(s))

IL)
trf // H q(k, V (s)IK ),

where the right horizontal arrows are induced by the following homomorphism of étale
sheaves on B:

trf : πB′/B∗R
mπX′/B′∗Λn(s)X′ ∼= RmπX′/B∗Λn(s)X′

(∗)∼= RmπX′/B∗(Rf
!Λn(s)X)

= RmπX/B∗(Rf∗Rf
!Λn(s)X)

adjunction // RmπX/B∗Λn(s)X

and we have used the absolute purity [FG] to obtain the isomorphism (∗). Since the middle
vertical arrow in the above diagram is bijective by Step (I), the assertion of Proposition 5.8 (1)
for X follows from the fact that the composite map

RmπX/B∗Λn(s)X
f♯−→ πB′/B∗R

mπX′/B′∗Λn(s)X′
trf−→ RmπX/B∗Λn(s)X

on Bét agrees with the multiplication by the extension degree of function fields of f : X ′ →
X . This completes the proof. □
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5.3 Proof of Theorem 5.7 (the case ` = p)
By the same arguments as in the proof of “Proposition 5.8 ⇒ Theorem 5.7” in §5.2, the
assertions of Theorem 5.7 with ` = p is reduced to the following:

Proposition 5.10 Assume that ` = p. Let m be an arbitrary integer with m ≧ 0, and put
V := Hm(XK ,Qp). Then:

(1) We have V (r)IK = 0 for any r ≧ d.

(2) For any s < 0, we have V (s)IK = 0. For s = 0, the cospecialization map

cospmX : Hm(Y ,Qp) −→ Hm(XK ,Qp)
IK = V IK

is bijective.

(3) For any s ≦ 0, we have H1(k, V (s)IK ) = H1
f (K,V (s)) as subspaces of H1(K,V (s)).

In particular, we have H1
f (K,V (s)) = 0 if s < 0.

We will first prove Proposition 5.10 assuming that X has semi-stable reduction, and then
prove the log smooth reduction case.

Proof. (I) Semi-stable reduction case. Put D := Hm
log-crys(Y/W(k)). By the Fontaine-

Jannsen conjecture ([HK], [Ts] 0.2), we have a p-adic period isomorphism

V ⊗Qp Bst
∼= D ⊗W(k) Bst, (5.3.1)

which preserves the Frobenius operator φ, the monodromy operator N , the action of GK , and
the Hodge filtration F•

H after taking ⊗BstBdR. By the isomorphism (5.3.1), we have

V (r) ∼=
(
D ⊗W(k) Bst

)N=0, ϕ=pr ∩ FrH
(
D ⊗W(k) BdR

)
and

V (r)IK ∼= (Hm
log-crys(Y /W(k))Qp)

φ=pr ∩ FrH
(

Hm
dR(XK/K)⊗K K̂ur

)
, (5.3.2)

for any r ∈ Z. Here ϕ denotes the Frobenius operator acting on Hm
log-crys(Y /W(k)), K̂ur

denotes the completion of Kur, and we have used the following facts:

(a) (Bst)
IK = Frac(W(k)) ([Fo] 5.1.2, 5.1.3), and (BdR)

IK = K̂ur.

(b) D ⊗W(k) K ∼= Hm
dR(XK/K) ([HK]).

Proposition 5.10 (1) and the case s < 0 of Proposition 5.10 (2) follow from (5.3.2) and the
fact that

(Hm
log-crys(Y /W(k))Qp)

φ=pr = 0 if r ≧ d or r < 0.

As for the case s = 0 of Proposition 5.10 (2), the map cospm is bijective by [W] Theorem 1.
To prove Proposition 5.10 (3), it is enough to show the following two claims:
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(c) The restriction map

H1(K,V ⊗Qp Bcrys) −→ H1(Kur, V ⊗Qp Bcrys)

is injective. Consequently, the image of the inflation map

H1(k, V (s)IK ) �
� // H1(K,V (s))

is contained in H1
f (K,V (s)) for any s ∈ Z.

(d) We have dimQp H1(k, V (s)IK ) = dimQp H1
f (K,V (s)) for any s ≦ 0.

Proof of (c). By the exact sequence

(0→)H1(k, (V ⊗Qp Bcrys)
IK ) −→ H1(K,V ⊗Qp Bcrys) −→ H1(Kur, V ⊗Qp Bcrys)

Gk

arising from a Hochschild-Serre spectral sequence, it is enough to show that the first term is
zero. We have

(V ⊗Qp Bcrys)
IK ∼= Hm

log-crys(Y /W(k))N=0
Qp

by the exact sequence ([Fo] 3.2.3)

0 −→ Bcrys −→ Bst
N−→ Bst −→ 0

and the period isomorphism (5.3.1). Hence we have

H1(k, (V ⊗Qp Bcrys)
IK ) ∼= Qp ⊗Zp lim←−

n≧1

H1(k,Hm
log-crys(Y /Wn(k))

N=0).

Finally, the group on the right hand side is zero, because Hm
log-crys(Y /Wn(k))

N=0 is a finite
successive extension of additive Gk-modules.

Proof of (d). Since V is a de Rham representation [Fa], there is an exact sequence of finite-
dimensional Qp-vector spaces ([BK2] Corollary 3.8.4):

0 −→ V (s)GK −→ Cris(V )⊕ DR(V (s))0

−→ Cris(V )⊕ DR(V ) −→ H1
f (K,V (s)) −→ 0, (5.3.3)

where Cris(V ), DR(V (s))0 and DR(V ) denote (V ⊗Qp Bcrys)
GK , (V (s) ⊗Qp B

+
dR)

GK and
(V ⊗Qp BdR)

GK , respectively, and B+
dR denotes the valuation ring of BdR, see [Fo] 1.5.5.

Moreover we have

DR(V ) ∼= Hm
dR(XK/K) = FsHHm

dR(XK/K) ∼= DR(V (s))0 (5.3.4)

for any s ≦ 0. Hence we obtain the claim (d) from the equalities

dimQp H1
f (K,V (s))

(5.3.3)
= dimQp V (s)GK = dimQp H1(k, V (s)IK ),
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where the right equality is similar to the left equality in (5.1.4). This completes the proof of
Proposition 5.10 in the semi-stable reduction case.

(II) Log smooth reduction case. Let f : X ′ → X , B and L be as in Step (II) in the
proof of Proposition 5.8. The assertions in Proposition 5.10 other than the bijectivity of
cospm are reduced to the semi-stable reduction case directly by a standard norm argument for
fK : X ′

L → XK . We derive the bijectivity of cospm for X from that for X ′. Indeed, there
exists a homomorphism trf : πB′/B∗R

mπX′/B′∗Λn → RmπX/B∗Λn on Bét for each n ≧ 1 given
by the following left commutative square, which is by definition the Pontryagin dual of the
right commutative square (m′ := 2d′ −m):

Hm(Y ′, Λn) //

cospm
X′

��

Hm(Y , Λn)

cospmX
��

Hm(X ′
L
, Λn)

IL // Hm(XK , Λn)
IK

Hm′+2

Y ′ ((X ′)ur,Tn(d)) Hm′+2

Y
(Xur,Tn(d))

f♯oo

Hm′
(X ′

L
, µ⊗d−1

pn )IL

ResX′

OO

Hm′
(XK , µ

⊗d−1
pn )IK

f♯oo

ResX

OO

where we put (X ′)ur := X ′ ×B′ (B′)ur and Xur := X ×B Bur, and the right square is the
commutative diagram in Corollary 2.17. Thus we see that cospmX is bijective by a similar
norm argument as in Step (II) in the proof of Proposition 5.8. This completes the proof of
Proposition 5.10 and Theorem 5.7. □

By Proposition 5.10 (1) and [BK2] Corollary 3.8.4 for V (r) = Hm(XK ,Qp(r)), we ob-
tain the following corollary:

Corollary 5.11 The exponential map of Bloch-Kato induces an isomorphism

exp : Hm
dR(XK/K)

≃−→ H1
f (K,H

m(XK ,Qp(r)))

for any m ≧ 0 and r ≧ d.

6 Comparison with Selmer groups, global case
Let πX/B : X → B = Spec(O) be as in §2. In the rest of this paper, we always assume:

• πX/B is proper, and the generic fiber XK is geometrically connected over K.

• K is an algebraic number field, and O is the integer ring of K, i.e., the case (G) of §4.

In this section, we compare H∗(X,Qp(r)) (r ≧ d) with Selmer groups H1
f , using the results

of the previous section. For a place v of K, we write Kv for the completion of K at v. For a
finite place v of K (i.e., a closed point of B), we put Bv := Spec(Ov), where Ov denotes the
valuation ring of Kv. We often write Xv for X ×B Bv.

We first review the definition of H1
f briefly. Let V be a GK-Qp-vector space satisfying

the following two conditions:

◦ V is finite-dimensional over Qp, and the action of GK on V is continuous.
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◦ There exists a finite set S of places of K such that V is unramified at v, i.e., the inertia
group Iv acts trivially on V , for any v 6∈ S.

The Selmer group H1
f (K,V ) = H1

f,B(K,V ) is defined as the kernel of the restriction map

Res : H1(GS, V ) −→
⊕
v∈S

H1
/f (Kv, V ).

Here S denotes a finite set of places of K which contains all ramified places of V and all
places dividing p or∞, and GS denotes the Galois group Gal(KS/K); KS denotes the max-
imal S-ramified extension of K (i.e., the maximal Galois extension of K which is unram-
ified at every finite place of K outside of S). See §5 for the definition of H1

f (Kv, V ) and
H1
/f (Kv, V ). One can easily check that H1

f (K,V ) is independent of the choice of S.

6.1 Fast computations
Proposition 6.1 Let r be an integer with r ≧ d.

(1) H q(B,Hm(X,Zp(r))) is finite in each of the following cases:

(i) m < 0 (ii) m > 2(d− 1) (iii) q ≦ 0 (iv) q > 3

(v) q = 3 and 0 ≦ m ≦ 2d− 3 (vi) q = 3, m = 2(d− 1) and r > d.

Consequently, the spectral sequence (4.1.1) degenerates at E2-terms up to finite p-
primary torsion.

(2) For any m ≧ 0, we have

H1(B,Hm(X,Qp(r))) ∼= H1
f (K,H

m(XK ,Qp(r))).

Proof of Proposition 6.1. (1) We put

H q,m,r := H q(B,Hm(X,Zp(r))).

The cases (i) and (ii) are clear by the definition of Hm(X,Tn(r)) (see Definition 3.2). The
case (iii) with q < 0 follows from the fact that Hm(X,Tn(r)) is concentrated in degrees ≧ 0
(see Proposition 3.6 (3)). When q = 0, the restriction map

H0,m,r −→ Hm(XK ,Zp(r))
GK

is injective by Proposition 3.6 (1) and the last group is finite by [De] 3.3.9. Hence H0,m,r is
finite. The case (iv) follows from the Artin-Verdier duality [Ma] (2.4). Indeed, we have

H q(B,Hm(X,Tn(r))) ∼= ExtqB(R
2(d−1)−mπX/B∗Tn(d− r),Gm)

by (4.0.1), and its dual
H3−q
c (B,R2(d−1)−mπX/B∗Tn(d− r))
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is finite 2-torsion for any n ≧ 1 and q > 3. Finally we prove the cases (v) and (vi). Fix a
dense open subset U ⊂ B[p−1] such that XU → U is smooth (and proper). Let j be the open
immersion U ↪→ B, and for each v ∈ B let ιv : v ↪→ B be the canonical map. There is an
exact sequence

H3(B, j!j
∗Hm(X,Zp(r))) −→ H3,m,r −→

⊕
v∈B∖U

H3(Bv,H
m(Xv,Zp(r))),

where we identified H3(v, ι∗vH
m(X,Zp(r))) with H3(Bv,H

m(Xv,Zp(r))) for each v ∈ B∖U
by Corollary 3.9. The first term in this sequence is finite unless (m, r) = (2(d − 1), d) by
the Artin-Verdier duality and a weight argument which is similar as for the case q = 0. The
last term is finite as well by Corollary 5.6 (2). Thus H3,m,r is finite in the cases (v) and (vi),
which completes the proof of Proposition 6.1 (1).

(2) We put V m := Hm(XK ,Qp), for simplicity. Let S be a finite set of places of K
containing all places dividing p or ∞, and all finite places where X has bad reduction. To
prove Proposition 6.1 (2), it is enough to check the following:

Lemma 6.2 There is an exact sequence of Qp-vector spaces

0 −→ H1,m,r ⊗Zp Qp −→ H1(GS, V
m(r))

Res−→
⊕
v∈S

H1
/f (Kv, V

m(r)).

where H1
/f (Kv, V

m(r)) means zero for the places v|∞.

Proof. Let P∞ be the set of all infinite places of K, and consider the localization long exact
sequence of cohomology groups for each n ≧ 1

· · · → H q(B,Hm(X,Tn(r)))→ H q(GS ,Hm(XK , µ⊗r
pn ))→

⊕
v∈S∖P∞

H q+1
v (Bv,H

m(Xv,Tn(r)))

→ H q+1(B,Hm(X,Tn(r)))→ · · · ,

where we have used the fact that Hm(X,Tn(r))|B∖S is a locally constant sheaf on B ∖ S
associated with the GS-module Hm(XK , µ

⊗r
pn ) (see Proposition 3.4 (1)). We have also used

the isomorphisms

H∗
v(B,H

m(X,Tn(r))) ∼= H∗
v(Bv,H

m(Xv,Tn(r))) (v ∈ S ∖ P∞)

obtained from étale excision and the rigidity of Corollary 3.9. The groups in this long exact
sequence are finite by Proposition 4.1. Therefore we obtain the following long exact sequence
by taking the projective limit with respect to n ≧ 1 and then ⊗ZpQp:

· · · −→
⊕
v∈S

H q
v(Bv,H

m(Xv,Qp(r))) −→ H q,m,r ⊗Zp Qp −→ H q(GS, V
m(r))

−→
⊕
v∈S

H q+1
v (Bv,H

m(Xv,Qp(r))) −→ · · · .
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Moreover we have

H q
v(Bv,H

m(Xv,Qp(r))) ∼=


0 (q = 1)
H1
/f (Kv, V

m(r)) (q = 2)
H2(Kv, V

m(r)) (q = 3)

by Theorem 5.3; the case q = 3 will be useful later in the proof of Corollary 6.10 (2) below.
The assertion follows from these facts. □

This completes the proof of Proposition 6.1. □

Corollary 6.3 For any r ≧ d, the spectral sequence (4.1.2) degenerates at E2, and we have

Hm(X,Qp(r)) ∼=


H1
f (K,H

m−1(XK ,Qp(r)))

⊕H2(B,Hm−2(X,Qp(r))) (1 ≦ m ≦ 2d− 1)
Qp ((m, r) = (2d+ 1, d))
0 (otherwise).

We will prove that H2(B,Hm(X,Qp(r))) = 0 for any (m, r) with r ≧ d, in Theorem 6.6
below. The following corollary is a global analogue of Corollary 5.6 (1), which will be useful
later.

Corollary 6.4 For any r ≧ d, there exists a natural map

H1
f (K,H

m(XK ,Qp(r))) −→ H1(B,Hm(X,Qp/Zp(r)))

which fits into a commutative diagram

H1
f (K,H

m(XK ,Qp(r)))

��

(natural map)

++WWWW
WWWWW

WWWWW
WWWWW

H1(B,Hm(X,Qp/Zp(r))) � � // H1(K,Hm(XK ,Qp/Zp(r))).

See Proposition 3.6 (1) for the injectivity of the bottom arrow.

Remark 6.5 For any s ≦ 0, one can easily check the following canonical isomorphism by
(5.1.1), (5.1.3) and similar arguments as for the proof of Proposition 6.1:

H1(B,RmπX/B∗Qp(s)) ∼= H1
f (K,H

m(XK ,Qp(s))).

6.2 A global finiteness of étale cohomology
In this subsection, we prove the following vanishing and finiteness result:

Theorem 6.6 For any m ≧ 0 and r ≧ d, we have

H2(B,Hm(X,Qp(r))) = 0,

and the groups H2(B,Hm(X,Zp(r))) and H2(B,Hm(X,Qp/Zp(r))) are finite.
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As a direct consequence of this theorem and Corollary 6.3, we obtain:

Corollary 6.7 For any m ≧ 0 and r ≧ d with (m, r) 6= (2d+ 1, d), we have

Hm(X,Qp(r)) ∼= H1
f (K,H

m−1(XK ,Qp(r))).

On the other hand, Theorem 6.6 and Remark 6.5 imply the following vanishing result by the
Artin-Verdier duality:

Corollary 6.8 For any m ≧ 0 and s ≦ 0, we have H1
f (K,H

m(XK ,Qp(s))) = 0.

Proof of Theorem 6.6. By Theorem 4.2, it is enough to show that H2(B,Hm(X,Qp/Zp(r)))
is finite. When (m, r) = (2(d− 1), d), we have

H2(B,H2(d−1)(X,Qp/Zp(d)))
(3.1.7)∼= H2(B,Qp/Zp(1)) ∼= Br(OK){p},

by the finiteness of Pic(OK), and moreover Br(OK) is finite 2-torsion by the classical Hasse
principle for Brauer groups. Thus we obtain the finiteness in question.

In what follows, we assume (m, d) 6= (2(d− 1), d) and consider the following commuta-
tive diagram with exact rows, where the coefficients Hm(X,Qp/Zp(r)) in the upper row and
Hm(Xv,Qp/Zp(r)) in the lower row are omitted:

H1(K) //

α

��

⊕
v∈B0

H2
v(B) //

δ

��

H2(B) //

β

��

H2(K) //

γ

��

⊕
v∈B0

H3
v(B)

δ

��⊕
v∈B0

H1
/f (Kv)

(⋆) //
⊕
v∈B0

H2
v(Bv) //

⊕
v∈B0

H2(Bv) //
⊕
v∈B0

H2(Kv) //
⊕
v∈B0

H3
v(Bv)

Here B0 denotes the set of the closed points on B, and the both rows are obtained from
localization sequences of étale cohomology; we put

H1
/f (Kv) := Coker

(
H1
f (Kv,Hm(XK ,Qp(r)))→ H1(Kv,Hm(XK ,Qp/Zp(r)))

)
for each v ∈ B0 (note also Proposition 3.4 (1)), and used Corollary 5.6 (1) to verify the
existence of the bottom left arrow (?). The arrows δ are bijective by étale excision and the
rigidity (Corollary 3.9). The arrow γ has finite kernel and cokernel by the Hasse principle
of Jannsen [J] p. 337, Theorem 3 (c). The map α has finite cokernel by [BK2] Proposition
5.14 (ii). Hence β is bijective up to finite groups. Finally, H2(Bv,H

m(Xv,Qp/Zp(r))) is
finite for all v ∈ B0 by Corollary 5.6 (2), and zero for any v ∈ (B[p−1])0 at which X has
good reduction by Lemma 5.2. Thus H2(B,Hm(X,Qp/Zp(r))) is finite. □

Remark 6.9 (1) By Theorem 6.6 for r = d = 2 and m = 1 and Lemma 7.1 (3) below,
Bloch’s conjecture ([B1] Remark 1.24) for a projective smooth curve C over K is re-
duced to a variant of Bass’ conjecture (cf. [Ba]) that H3

M (X,Z(2)) is finitely generated
for an arbitrarily taken proper regular model X/B of C.
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(2) Corollary 6.8 removes an assumption of a result of Morin [Mo] Theorem 1.5.

The following corollary of Theorem 6.6 follows from a similar argument as for the proof
of Lemma 6.2 (see also [J] p. 349, Question 2):

Corollary 6.10 Assume r ≧ d, and let S be as in the proof of Theorem 6.1 (2). Then:

(1) We have

H1(GS,Hm(XK ,Qp(r)))

H1
f (K,Hm(XK ,Qp(r)))

∼=
⊕
v∈S

H1(Kv,Hm(XK ,Qp(r)))

H1
f (Kv,Hm(XK ,Qp(r)))

for any m. Moreover, both hand sides are zero for r > d.

(2) The restriction map

H2(GS,Hm(XK ,Qp(r))) −→
⊕
v∈S

H2(Kv,Hm(XK ,Qp(r)))

is bijective for any (m, r) 6= (2(d − 1), d) and injective for (m, r) = (2(d − 1), d). In
particular, if r > d or XK has potentially good reduction at all finite places of K, then

H2(GS,Hm(XK ,Qp(r))) = 0 for any (m, r) 6= (2(d− 1), d).

7 p-adic Abel-Jacobi mappings (d = 2)
The setting remains as in §6. From this section on, we assume further that d = 2.

7.1 Cycle class maps
See §2.3 for the definition of the motivic complex Z(r) on (Ét/X)Zar. We regard Z(r) as a
complex on XZar by restriction of topology. We define the motivic cohomology of X as

Hm
M (X,Z(r)) := Hm

Zar(X,Z(r)),

and define the motivic cohomology with Λn(= Z/pnZ)-coefficients as

Hm
M (X,Λn(r)) := Hm

Zar(X,Z(r)⊗ Λn) (n ≧ 1).

Lemma 7.1 (1) We have

Hm
M (X,Z(r)) ∼=

{
Hm

M (K(X),Z(2)) (m ≦ 1, r = 2)

0 (m > r + 2)

where K(X) denotes the function field of X .
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(2) Hm
M (X,Z(2)) is isomorphic to the cohomology at deree m− 2 of the Gersten complex

of Milnor K-groups

KM
2 (K(X)) −→

⊕
x∈X1

κ(x)× −→
⊕
x∈X2

Z

(deg 0) (deg 1) (deg 2)

for any m ≧ 2. In particular, we have H4
M (X,Z(2)) ∼= CH0(X), the Chow group of

0-cycles modulo rational equivalence.

(3) Assume that r ≧ 2, and that p ≧ 3 or B(R) = ∅. Then the cycle class map (see §2.3)

clm,rΛn
: Hm

M (X,Λn(r)) −→ Hm(X,Tn(r))

is bijective for anym ∈ Z and n ≧ 1. Consequently, there exists a short exact sequence

0 −→ Hm
M (X,Z(r))/pn −→ Hm(X,Tn(r)) −→ pnHm+1

M (X,Z(r)) −→ 0

for the same m and n.

Proof. There exists a coniveau spectral sequence

Ea,m
1 =

⊕
x∈Xa

Hm−a
M (x,Z(r − a)) =⇒ Ha+m

M (X,Z(r)) (7.1.1)

by [Ge] Proposition 2.1, whoseEa,m
1 -term is zero in each of the following cases for the reason

of the dimension of cycles and the codimension of points:

◦ m > r ◦ a < 0 ◦ a > 2 ◦ m < a = r ◦ m ≦ a = r − 1

See [B2] Theorem 6.1 for the vanishing in the last case. The assertions (1) and (2) follow
from these facts and the Nesterenko-Suslin-Totaro theorem

H q
M (Spec(F ),Z(q)) ∼= KM

q (F )

for any field F and any q ≧ 0, see [NS], [To].
To prove the assertion (3), we consider a coniveau spectral sequence analogous to (7.1.1)

Ea,m
1 =

⊕
x∈Xa

Hm−a
M (x, Λn(r − a)) =⇒ Ha+m

M (X,Λn(r)), (7.1.2)

whose Ea,m
1 -terms are zero in each of the following cases:

◦ m > r ◦ a < 0 ◦ a > 2

On the other hand, since r ≧ 2, there is a coniveau spectral sequence of étale cohomology
(see [JSS] (5.10.1))

Ea,m
1 =

⊕
x∈Xa

Hm−a(x, Λn(r − a)) =⇒ Ha+m(X,Tn(r)), (7.1.3)

where the coefficients Λn(s) (s ∈ Z) on the points are those in (2.2.2). The Ea,m
1 -terms of

(7.1.3) are zero in each of the following cases:
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◦ m > 3 ◦ m < a ◦ a < 0 ◦ a > 2.

Here we have used the well-known fact that the cdp(κ(x)) = 3 − a with for any a ≧ 0 and
x ∈ Xa (see e.g., [T] Theorem 3.1, [Se] Chapter II, §4.2 Proposition 11). There is a map of
spectral sequences from (7.1.2) to (7.1.3) induced by cycle class maps of motivic cohomology
groups by the commutative diagrams (2.3.3) and (2.3.4) in §2.3. The cycle class map

Hm−a
M (x, Λn(r − a)) −→ Hm−a(x, Λn(r − a))

is bijective for any a ≧ 0, any point x ∈ Xa and any m ≦ r by Rost-Voevodsky [V1],
[V2] Theorem 6.16 and Geisser-Levine [GL2] Theorem 7.5 (resp. Bloch-Gabber-Kato [BK1]
Theorem 2.1 and Geisser-Levine [GL1] Theorem 1.1), when ch(x) 6= p (resp. when ch(x) =
p). If r ≧ 3, then the map clm,rΛn

in question is bijective by these facts. As for the case
r = 2, it remains to check that the Ea,3

∞ -term of (7.1.3) is zero for any a = 0, 1, 2, which is a
consequence of Kato’s Hasse principle [KCT] p. 145, Corollary. □

Remark 7.2 If we assume the Beilinson-Soulé vanishing conjecture ([So2] p. 501, Conjec-
ture) for points of X , then we would have

Hm
M (X,Z(r)) ∼=

{
H1

M (K(X),Z(r)) (m = 1)

0 (m ≦ 0)

up to small torsion for any r ≧ 2, by the same arguments as in the proof of Lemma 7.1 (1).

7.2 p-adic Abel-Jacobi mappings and finiteness results
Let r be an integer with r ≧ 2. We define a p-adic cycle class map

clm,rp : Hm
M (X,Z(r)) ⊗̂Zp −→ Hm(X,Zp(r))

as the projective limit with respect to n ≧ 1 of the cycle class map

clm,r/pn : Hm
M (X,Z(r))/pn −→ Hm

M (X,Λn(r))
clmΛn−→
≃

Hm(X,Tn(r)).

See Lemma 7.1 (3) for the isomorphism clm,rΛn
. Since XK is a curve, Hm(XK ,Zp(r)) is

torsion-free, and
H0(B,Hm(X,Zp(r))) ⊂ Hm(XK ,Zp(r))

GK = 0 (7.2.1)

by Proposition 3.6 (1) and for the reason of weights. We define a p-adic Abel-Jacobi mapping

ajm,rp : Hm
M (X,Z(r)) ⊗̂Zp −→ H1(B,Hm−1(X,Zp(r)))

as the map induced by clm,rp and an edge map of the spectral sequence (4.1.1):

Ea,b
2 = Ha(B,Hb(X,Zp(r))) =⇒ Ha+b(X,Zp(r)). (7.2.2)

We first observe the following abstract nonsense:
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Proposition 7.3 Let m and r be integers with r ≧ 2, and assume that p ≧ 3 or B(R) = ∅.
Then the following five conditions are equivalent to one another:

(i) ajm,rp has finite cokernel.

(ii) clm,rp has finite cokernel.

(iii) clm,rp is surjective.

(iv) Hm+1
M (X,Z(r)){p} is finite.

(v) Hm+1
M (X,Z(r))p-Div is uniquely p-divisible.

Moreover if m ≦ 1, these conditions are equivalent to

(i′) ajm,rp is surjective.

Proof. The E2-term Ea,m
2 of (7.2.2) is finite for any a ≧ 2 by Theorems 6.1 (1) and 6.6,

which shows (iii)⇒(i). The assertion (i)⇒(ii) is a consequnece of the following fact (a), and
the assertion (ii)⇒(iii) is a consequnece of the following (b), where Tp denotes the p-Tate
module:

(a) The canonical map

Hm(X,Zp(r)) −→ H1(B,Hm−1(X,Zp(r)))

has finite kernel by Theorem 6.6.

(b) By taking the projective limit with respect to n ≧ 1 of the short exact sequence of
Lemma 7.1 (3), we see that Coker(clm,rp ) ∼= Tp(Hm+1

M (X,Z(r))), where the latter group
is torsion-free.

We next prove (iii)⇔(iv). Indeed, by taking the inductive limit with respect to n ≧ 1 of the
short exact sequence of Lemma 7.1 (3), we get an exact sequence

0→ Hm
M (X,Z(r))⊗Qp/Zp → Hm(X,Qp/Zp(r))→ Hm+1

M (X,Z(r)){p} → 0, (7.2.3)

which imply that Hm+1
M (X,Z(r)){p} is cofinitely generated over Zp, see Theorem 4.2 (2).

Hence
(iii) (b)⇐⇒ Tp(Hm+1

M (X,Z(r))) = 0 ⇐⇒ (iv).

The assertion (iv)⇒(v) is obvious, and the assertion (v)⇒(iv) also follows from the fact that
Hm+1

M (X,Z(r)){p} is cofinitely generated over Zp. Finally, if m ≦ 1, the canonical map in
(a) is bijective by (7.2.1), which shows that (iii) is equivalent to (i′). □

The following lemma will be useful in what follows.

Lemma 7.4 Assume that p ≧ 3 or B(R) = ∅. Then:

(1) clm,rp is injective for any m ∈ Z and r ≧ 2.
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(2) We have H5(X,Tn(2)) ∼= Λn for any n ≧ 1, and Hm(X,Tn(r)) = 0 for any m ≧ 5,
r ≧ 2 and n ≧ 1 with (m, r) 6= (5, 2).

Proof. The assertion (1) follows from Lemma 7.1 (3). The assertions in (5) follow from the
duality (see Corollary 2.10 (2), (3.1.2))

Hm(X,Tn(r)) ∼= H5−m(X,Tn(2− r))∗.

The details are straight-forward and left to the reader. □

The following result gives an extension of the vanishing assertion in Lemma 7.1 (1):

Proposition 7.5 Assume that p ≧ 3 or B(R) = ∅. Then

Hm
M (X,Z(r)){p}, Hm

M (X,Z(r)) ⊗̂Zp and Hm(X,Zp(r))

are zero for any m ≧ 5 and r ≧ 3. In particular, Hm
M (X,Z(r)) is uniquely p-divisible for the

same m and r.

Proof. We have Hm(X,Zp(r)) = 0 by Lemma 7.4 (2), so Hm
M (X,Z(r)) ⊗̂Zp = 0 by Lemma

7.4 (1). To show that Hm
M (X,Z(r)){p} = 0, we use the surjectivity of the boundary map

Hm−1(X,Qp/Zp(r)) ↠ Hm
M (X,Z(r)){p}

of (7.2.3). By Lemma 7.4 (2), we have Hm−1(X,Qp/Zp(r)) = 0 for any m ≧ 6, which
implies that Hm

M (X,Z(r)){p} is zero for any m ≧ 6 by (7.2.3). As for the case m = 5, we
have H4(X,Qp/Zp(r)) = 0. Indeed, it is finite by Corollary 6.7, and p-divisible by the exact
sequence obtained from Proposition 2.4

· · · −→ H4(X,Qp/Zp(r))
×p−→ H4(X,Qp/Zp(r)) −→ H5(X,T1(r)) −→ · · ·

and Lemma 7.4 (2). Thus H5
M (X,Z(r)){p} is zero. □

Proposition 7.6 Assume that p ≧ 3 or B(R) = ∅. Then for any r ≧ 3, we have

H4
M (X,Z(r)){p} ∼= H4

M (X,Z(r)) ⊗̂Zp
≃−→

cl4,rp

H4(X,Zp(r)),

which are all finite.

Proof. The cycle class map cl4,rp is injective by Lemma 7.4 (1), and surjective by Proposition
7.3 (iv)⇒(iii) and the vanishing of H5

M (X,Z(r)){p} in Proposition 7.5. The finiteness of
H4(X,Zp(r)) follows from Corollary 6.7.

We next prove that H4
M (X,Z(r)){p} is finite. By Proposition 7.3 (i)⇒(iv), it is enough to

check that the map

aj3,rp : H3
M (X,Z(r)) ⊗̂Zp −→ H1(B,H2(X,Zp(r))) ∼= H1(B[p−1],Zp(r − 1))
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has finite cokernel, where the last isomorphism follows from Proposition 3.4 (2) and Lemma
2.1 (2) for B. The finiteness of Coker(aj3,rp ) follows from [Ka] Theorem 5.3 and a standard
norm argument (see also [So1] Theorem 1 for the case p ≧ 3). Thus H4

M (X,Z(r)){p} is
finite.

Finally, the natural map H4
M (X,Z(r)){p} → H4

M (X,Z(r)) ⊗̂Zp is injective by the finite-
ness of H4

M (X,Z(r)){p}. To show the surjectivity of this map, consider the following com-
mutative triangle:

H3(X,Qp/Zp(r)) δ // //

δ′ ))SSS
SSSS

SSSS
SSS

H4
M (X,Z(r)){p}

cl4,rp |tors
��

H4(X,Zp(r)),

where the arrow δ denotes the boundary map of (7.2.3), and the arrow δ′ denotes the boundary
map of the long exact sequence obtained from Proposition 2.4

· · · → H3(X,Qp(r))→ H3(X,Qp/Zp(r))
δ′−→ H4(X,Zp(r))→ H4(X,Qp(r))→ · · · .

The arrow cl4,rp |tors means the restriction of cl4,rp to H4
M (X,Z(r)){p}. Since δ′ is surjective by

the finiteness of H4(X,Zp(r)), cl4,rp |tors is surjective as well, which completes the proof. □

The following corollary is a summary of known facts and our results on clm,rp and ajm,rp :

Corollary 7.7 Let r be an integer ≧ 2, and assume that p ≧ 3 or B(R) = ∅. Then:

(0) Hm
M (X,Z(r)) is uniquely p-divisible for any m ≦ 0 and any m ≧ 5, and zero for any
m > r + 2.

(1) cl1,rp and aj1,rp are injective.

(2) cl2,rp is injective, and aj2,rp has finite kernel.

(3) cl3,rp is bijective, and aj3,rp has finite kernel and cokernel.

(4) cl4,rp is bijective, and H4
M (X,Z(r)){p} is finite. Moreover, cl4,rp induces an isomorphism

H4
M (X,Z(r)){p} ∼= H4(X,Zp(r)), and aj4,rp is zero.

Proof. The assertion (0) for m ≦ 0 follows from Lemmas 7.1 (3) (for m < 0) and 7.4 (1)
(for m = 0) and the vanishing of Hm(X,Tn(r)) for m < 0 and H0(X,Zp(r)). See Lemma
7.1 (1) and Proposition 7.5 for the other claims in (0). The injectivity of clm,rp in (1)–(4)
is the same as Lemma 7.4 (1), and the finiteness of Ker(ajm,rp ) in (2)–(4) follows from (a)
in the proof of Proposition 7.3. The injectivity of aj1,rp in (1) is that of cl1,rp . By Proposi-
tion 7.3, the surjectivity of clm,rp and the finiteness of Coker(ajm,rp ) are both equivalent to
the finiteness of Hm+1

M (X,Z(r)){p}. This last finiteness for the case (m, r) = (3, 2) (resp.
the case (m, r) = (4, 2), the case m ≧ 4 and r ≧ 3) is a consequence of Lemma 7.1 (2)
and the finiteness of H4

M (X,Z(2)) ∼= CH0(X) due to Bloch [B1], Kato-Saito [KSa] (resp.
Lemma 7.1 (1), Propositions 7.5 and 7.6). Finally, aj4,rp is zero for any r ≧ 2, because
H1(B,H3(X,Zp(r))) = 0 by (3.1.4). □
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7.3 p-Tate-Shafarevich groups
Let r be an integer with r ≧ 2. We put

H1
/f (K,H

m(XK ,Qp/Zp(r))) :=
H1(K,Hm(XK ,Qp/Zp(r)))

Image of H1
f (K,Hm(XK ,Qp(r)))

.

Let P (resp. P∞) be the set of all places ofK (resp. all infinite places ofK). We often identify
a finite place of K with a closed point of B. For each v ∈ P , we put

H1
/f (Kv,Hm(XK ,Qp/Zp(r))) :=

H1(Kv,Hm(XK ,Qp/Zp(r)))
Image of H1

f (Kv,Hm(XK ,Qp(r)))

where we defined H1
f (Kv,Hm(XK ,Qp(r))) := 0 for any v ∈ P∞. This group for v ∈ B0

has been (defined and) used in the proof of Theorem 6.6. For m ≧ 0 and r ≧ 2 with
(m, r) 6= (2, 2), the natural map

αm,r : H1
/f (K,H

m(XK ,Qp/Zp(r))) −→
⊕
v∈P

H1
/f (Kv,Hm(XK ,Qp/Zp(r))) (7.3.1)

has finite kernel and cokernel, and we have

Coker(αm,r) ∼= (H2−m(XK ,Qp/Zp(2− r))GK )∗ (7.3.2)

by [BK2] Proposition 5.14 (i), (ii). The p-Tate-Shafarevich group of the motive Hm(XK)(r)
is defined as Ker(αm,r) and often denoted by III(p)(Hm(XK)(r)). We fix a finite subset
S ′ ⊂ B0 containing all points of characteristic p and all points where X has bad reduction.

Theorem 7.8 Assume that p ≧ 3 or B(R) = ∅, and assume further that H3
M (X,Z(r)){p} is

finite. For each v ∈ S ′ and a = 2, 3, we put

ea,m,rv := #Ha(Bv,H
m(Xv,Zp(r))),

which is finite by Corollary 5.6 (2). Then we have

χ(α1,2)

χ(α0,2)
=
χ(aj3,2p )

χ(aj2,2p )
· #CH0(X){p}
#Pic(OK){p}

·
∏
v∈S′

e2,1,2v ·e3,0,2v

e2,0,2v ·e3,1,2v

(r = 2)

χ(α1,r)

χ(α0,r) ·χ(α2,r)
=

χ(aj3,rp )

χ(aj2,rp )
·#H4

M (X,Z(r)){p} ·
∏
v∈S′

e2,1,rv ·e3,0,rv ·e3,2,rv

e2,0,rv ·e2,2,rv ·e3,1,rv

(r ≧ 3),

where we put χ(f) := #Coker(f)/#Ker(f) for homomorphisms f : M → N of abelian
groups with finite kernel and cokernel.

See Proposition 7.6 for the finiteness of H4
M (X,Z(r)){p}. The alternate products of local

terms ea,m,rv will be computed in §8 below. To prove Theorem 7.8, we first prove Lemma 7.9
below as a preparation, which relies on the assumption that d = 2. We put

H1
/f (B,H

m(X,Qp/Zp(r))) :=
H1(B,Hm(X,Qp/Zp(r)))

Image of H1
f (K,Hm(XK ,Qp(r)))
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using Corollary 6.4. For each v ∈ B0, we put

H1
/f (Bv,H

m(X,Qp/Zp(r))) :=
H1(Bv,H

m(X,Qp/Zp(r)))
Image of H1

f (Kv,Hm(XK ,Qp(r)))

cf. Corollary 5.6 (1).

Lemma 7.9 There are canonical isomorphisms of finite p-groups

H1
/f (B,H

m(X,Qp/Zp(r))) ∼= H2(B,Hm(X,Zp(r))), (7.3.3)

H2(B,Hm(X,Qp/Zp(r))) ∼= H3(B,Hm(X,Zp(r))), (7.3.4)

for any m ≧ 0 and r ≧ 2. Similarly, there are canonical isomorphisms of finite p-groups

H1
/f (Bv,H

m(Xv,Qp/Zp(r))) ∼= H2(Bv,H
m(Xv,Zp(r))), (7.3.5)

H2(Bv,H
m(Xv,Qp/Zp(r))) ∼= H3(Bv,H

m(Xv,Zp(r))). (7.3.6)

for any m ≧ 0, r ≧ 2 and v ∈ B0. Moreover, the groups in (7.3.5) and (7.3.6) are zero for
any v ∈ B0 ∖ S ′.

Proof. We prove only (7.3.3) and (7.3.4), and omit the proof of (7.3.5) and (7.3.6). We start
with the following short exact sequence on Xét, which is a simple case of Proposition 2.4:

0 −→ Tn′(2− r) −→ Tn′+n(2− r) −→ Tn(2− r) −→ 0.

Since the fibers of πX/B : X → B are proper curves, the associated long exact sequence of
higher direct image sheaves breaks up into short exact sequneces on Bét

0→ R2−mπX/B∗Tn′(2− r)→ R2−mπX/B∗Tn′+n(2− r)→ R2−mπX/B∗Tn(2− r)→ 0

for m = 0, 1, 2, which yield distinguished triangles in D(Bét)

Hm(X,Tn(r)) −→ Hm(X,Tn+n′(r)) −→ Hm(X,Tn′(r)) −→ Hm(X,Tn(r))[1].

One obtains the following long exact sequence by the finiteness in Proposition 4.1 and a
standard argument:

· · · → Ha(B,Hm(X,Qp(r)))→ Ha(B,Hm(X,Qp/Zp(r)))→ Ha+1(B,Hm(X,Zp(r)))

→ Ha+1(B,Hm(X,Qp(r)))→ · · ·

Now (7.3.4) follows from the finiteness of H2(B,Hm(X,Qp/Zp(r))) (Theorem 6.6) and the
vanishing of H3(B,Hm(X,Qp(r))) (Theorem 6.1 (1)). Similarly, (7.3.3) follows from The-
orems 4.2 (2) and 6.1 (2) and the vanishing of H2(B,Hm(X,Qp(r))).Finally, the groups on
the right hand side of (7.3.5) and (7.3.6) are zero for any v ∈ B0 ∖ S ′ by Lemma 5.2. □
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Proof of Theorem 7.8. The map clm,rp is bijective for m = 2 by the finiteness assumption
on H3

M (X,Z(r)){p} (see Proposition 7.3 (iv)⇒(iii)), and bijective for m = 3, 4 by Corollary
7.7 (3), (4). In particular for m = 2, 3, the map ajm,rp is identified with the canonical map

Hm(X,Zp(r)) −→ H1(B,Hm−1(X,Zp(r))).

We put ea,m,r := #Ha(B,Hm(X,Zp(r))) for each a ≧ 2, m ≧ 0 and r ≧ 2 with (a,m, r) 6=
(3, 2, 2), which is finite by Theorems 6.1 (1) and 6.6. One can easily derive an equality

χ(aj3,rp )

χ(aj2,rp )
=

e2,0,r ·e2,2,r ·e3,1,r

e2,1,r ·e3,0,r ·#H4(X,Zp(r))

for any r ≧ 2, from the spectral sequence (7.2.2) and the vanishing (7.2.1). Therefore by
Corollary 7.7 (4) and the isomorphisms

H2(B,H2(X,Zp(2)))
(3.1.7)∼= H2(B,Zp(1)) ∼= Pic(OK)⊗ Zp ∼= Pic(OK){p},

H3(B,H2(X,Zp(r))) ∼= H3(B,Zp(r − 1)) ∼= H3(B[p−1],Zp(r − 1)) = 0 (r ≧ 3)

we are reduced to showing that

χ(αm,r) =
e3,m,r

e2,m,r
×

∏
v∈S′

e2,m,rv

e3,m,rv

for ∀(m, r) 6= (2, 2), r ≧ 2. (7.3.7)

To prove (7.3.7), we use the same notation as in the proof of Theorem 6.6, and consider
the following commutative diagram with exact rows for (m, r) 6= (2, 2) with r ≧ 2, where
the coefficients Hm(X,Qp/Zp(r)) in the upper row and Hm(Xv,Qp/Zp(r)) in the lower row
are omitted:

H1
/f (B) �

� //

��

H1
/f (K) //

αm,r

��

⊕
v∈B0

H2
v(B)

(∗)

δ ≀

��⊕
v∈B0

H1
/f (Bv)

� � //
⊕
v∈B0

H1
/f (Kv) //

⊕
v∈B0

H2
v(Bv)

(∗∗)

(∗) // H2(B) //

β

��

H2(K) //

γ ≀

��

⊕
v∈B0

H3
v(B)

δ ≀

��
(∗∗) //

⊕
v∈B0

H2(Bv) //
⊕
v∈B0

H2(Kv) //
⊕
v∈B0

H3
v(Bv)

In this diagram, the arrows δ are bijective as explained in the proof of Theorem 6.6. The
arrow γ is bijective by the Hasse principle of Jannsen ([J] p. 337, Theorem 3 (d)) and the
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fact that Hm(XK ,Qp/Zp(r)) is divisible. From the above commutative diagram, we obtain a
six-term exact sequence

0→ Ker(αm,r)→ H1
/f (B,H

m(X,Qp/Zp(r)))→
⊕
v∈B0

H1
/f (Bv,H

m(Xv,Qp/Zp(r)))

→ Coker(αm,r)→ H2(B,Hm(X,Qp/Zp(r)))→
⊕
v∈B0

H2(Bv,H
m(Xv,Qp/Zp(r)))→ 0.

By Lemma 7.9, this sequence yields an exact sequence of the following from:

0 −→ Ker(αm,r) −→ H2(B,Hm(X,Zp(r))) −→
⊕
v∈S′

H2(Bv,H
m(Xv,Zp(r)))

−→ Coker(αm,r) −→ H3(B,Hm(X,Zp(r))) −→
⊕
v∈S′

H3(Bv,H
m(Xv,Zp(r))) −→ 0,

which implies the formula (7.3.7). □

8 Local terms and zeta values (d = 2)
In this section, we compute the local terms e2,m,rv and e3,m,rv that appear in Theorem 7.8. The
results in §§8.1–8.2 below were obtained in discussions with Takao Yamazaki.

The setting and the notation remain as in §7. In particular, we assume d = 2. We further
fix the following notation. For a finite place v of K, we write kv (resp. Yv, Yv) for the residue
field at v (resp. X ⊗OK

kv, X ⊗OK
kv), and Xv (resp. Xv) for X ⊗OK

Ov (resp. X ⊗OK
Osh
v ),

where Ov (resp. Osh
v ) denotes the completion of OK at v (resp. the strict henselization of Ov

at its maximal ideal). We put qv := #kv.

8.1 Comparison with local points
We first show the following lemma, which refines the case of q = 1 of Theorem 5.3 under the
assumption that d = 2:

Lemma 8.1 We have

H1(Bv,H
m(Xv,Zp(r))) = H1

f (Kv,Hm(XK ,Zp(r)))

as subgroups of H1(Kv,Hm(XK ,Zp(r))), for any finite place v of K, m ≧ 0 and r ≧ 2.

Proof. Consider a commutative diagram

H1(Kv,H
m(Xv,Zp(r))) d // H2

v(Bv,H
m(Xv,Zp(r)))

b
��

H1(Kv,Hm(XK ,Zp(r)))
a // H1

/f (Kv,Hm(XK ,Qp(r)))
� � d′ // H2

v(Bv,H
m(Xv,Qp(r))),
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where the arrows d and d′ are connecting maps of localization sequences of cohomology of
Bv, and the existence and the injectivity of d′ is a consequence of Theorem 5.3 for q = 1.
The arrow a is a natural map, and we have

Ker(a) = H1
f (Kv,Hm(XK ,Zp(r))).

On the other hand, since H1
v(Bv,H

m(Xv,Zp(r))) = 0 by Proposition 3.6 (1), we have

Ker(d) = H1(Bv,H
m(Xv,Zp(r))).

Thus it remains to check that the arrow b is injective, which follows from the facts that

H2
v(Bv,H

m(Xv,Zp(r))) = 0 if v|p and r ≧ 3 (Corollary 3.7 (1))

and that otherwise

H2
v(Bv,H

m(Xv,Zp(r))) ∼= H1(kv,H2−m(Yv,Qp/Zp(2− r)))∗ ([Ma] (2.4))

is torsion-free because dim(Yv) = 1 and cd(kv) = 1. □

The following corollary follows from Proposition 3.6 (1), Lemma 8.1 and a similar argu-
ment as in the proof of Lemma 6.2:

Corollary 8.2 We have

H1(B,Hm(X,Zp(r))) = H1
f (K,H

m(XK ,Zp(r)))

as subgroups of H1(K,Hm(XK ,Zp(r))), for any m ≧ 0 and r ≧ 2.

8.2 Comparison with zeta values of the fibers (the case v6 |p)
In this subsection, we always assume that v6 |p and r ≧ 2. Note that Ha(Bv,H

m(Xv,Zp(r)))
is finite for any (a,m, r) by Theorems 4.2 (1) and 5.3, and zero unless a = 0, 1, 2, 3 and
m = 0, 1, 2. We put

ea,m,rv := #Ha(Bv,H
m(Xv,Zp(r)))

for each (a,m, r). Note that ζ(Yv, r) is a non-zero rational number, since dim(Yv) = 1. Let
| |p be the p-adic absolute value on Qp such that |p|p = p−1.

Lemma 8.3 We have
|ζ(Yv, r)|−1

p =
∏
(a,m)

(ea,m,rv )(−1)a+m

,

where (a,m) on the right hand side runs through all pairs with 0 ≦ a ≦ 3 and 0 ≦ m ≦ 2.

Proof. Let Gv be the absolute Galois group of kv, and let Tp be a free Zp-module of finite
rank on which Gv acts continuously and Zp-linearly. It is well-known that

#H1(kv, Tp) =
∣∣detQp(1− ϕ−1

v |Tp ⊗Zp Qp)
∣∣−1

p
, (8.2.1)
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where ϕv ∈ Gv denotes the arithmetic Frobenius element. Now let Frv be the geometric
Frobenius operator acting on H i(Yv,Qp). We have ϕv = qrv ·Fr−1

v on H i(Yv,Qp(r)), and

|ζ(Yv, r)|−1
p =

∏
i≧0

∣∣detQp(1− q−rv ·Frv |H i(Yv,Qp))
∣∣(−1)i

p
(trace formula [G], §2)

=
∏
i≧0

(#H1(kv,H i(Yv,Zp(r))))(−1)i+1

(by (8.2.1))

(⋆)
=

∏
i≧0

(#H i(Yv,Zp(r)))(−1)i (see below)

=
∏
i≧0

(#H i(Xv,Zp(r)))(−1)i (proper base change)

=
∏
(a,m)

(ea,m,rv )(−1)a+m

(spectral sequence (4.1.1))

as claimed, where the equality (?) follows from the fact that H i(Yv,Zp(r))Gv = 0 for any
i ≧ 0 (because dim(Yv) = 1 and r ≧ 2). □

As a consequence of Lemma 8.1 and (8.2.1) we obtain:

Corollary 8.4 Assume that Xv is smooth over Ov. Then we have

#H1
f (Kv,H1(XK ,Zp(r))) =

∣∣detQp(1− q−rv ·Frv |H1(Yv,Qp))
∣∣−1

p
.

The following theorem extends Corollary 8.4 to the general v6 |p case (see also Lemma 5.2):

Theorem 8.5 We have ea,2,rv = 1 for a = 2, 3, and

#H1
f (Kv,H1(XK ,Zp(r)))∣∣ζ(Yv, r)(1− q1−rv )(1− q−rv )

∣∣−1

p

=
e2,1,rv ·e3,0,rv

e2,0,rv ·e3,1,rv

.

Proof. We first show that ea,2,rv = 1 for a = 2, 3. Indeed, we have

Ha(Bv,H
2(Xv,Zp(r)))

(3.1.7)∼= Ha(Bv,Zp(r − 1)) ∼= Ha(v,Zp(r − 1)) = 0

for any a ≧ 2. To prove the second assertion, we note the following facts:

(a) e0,m,rv = 1 for any m ≧ 0, by Proposition 3.6 (1), Theorem 5.3 and the fact that
Hm(XK ,Zp) is torsion-free.

(b) e1,m,rv = #H1
f (Kv,Hm(XK ,Zp(r))) by Lemma 8.1.

(c) e1,0,rv = |1− q−rv |−1
p and e1,2,rv = |1− q1−rv |−1

p , by (b) and [BK2] Theorem 4.1 (i).
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Combining these facts with Lemma 8.3, we have∣∣ζ(Yv, r)(1− q1−rv )(1− q−rv )
∣∣−1

p

=
∣∣(1− q1−rv )(1− q−rv )

∣∣−1

p
· e1,1,rv ·e2,2,rv

e1,0,rv ·e1,2,rv ·e3,2,rv

· e
2,0,r
v ·e3,1,rv

e2,1,rv ·e3,0,rv

(Lemma 8.3 and (a))

= #H1
f (Kv,H1(XK ,Zp(r))) ·

e2,0,rv ·e3,1,rv

e2,1,rv ·e3,0,rv

, ((b), (c), e2,2,rv = e3,2,rv = 1)

which shows the assertion. □

8.3 Comparison with zeta values of the fibers (the case v|p)
Let v be a finite place of K dividing p. For each m = 0, 1, 2, we fix a Haar measure µmv on
Hm

dR(XKv/Kv) such that
µmv (H

m
dR(Xv/Ov)) = 1.

Via the exponential isomorphism of Corollary 5.11:

exp : Hm
dR(XKv/Kv)

≃−→ H1
f (Kv,Hm(XK ,Qp(r))) (r ≧ 2),

we regard µmv as a Haar measure on H1
f (Kv,Hm(XK ,Qp(r))). Let K0 = Kv,0 be the fraction

field of the Witt ring W := W(kv), and let σ be the Frobenius automorphism of K0. Let | |p
be the p-adic absolute value on Q such that |p|p = p−1. We prove here a p-adic counterpart
of Theorem 8.5 under some assumptions.

Theorem 8.6 Assume that p− 2 ≧ r ≧ 2, Kv/Qp is unramified, and that Xv is smooth over
Ov. Then we have ea,2,rv = 1 for a = 2, 3, and

µ1
v(H

1
f (Kv,H1(XK ,Zp(r))))∣∣ζ(Yv, r)(1− q1−rv )(1− q−rv )

∣∣−1

p

=
e2,1,rv ·e3,0,rv

e2,0,rv ·e3,1,rv

,

where we put ea,m,rv := #Ha(Bv,H
m(Xv,Zp(r))) for a 6= 1.

To prove this theorem, we need Lemma 8.7 below, which is a p-adic analogue of Lemma
8.3. For a homomorphism φ :M → N of locally compact Zp-modules with finite kernel and
with open image, and for a Haar measure ν on N , we define a Haar measure µ′ on M by

µ′(Z) :=
r∑
i=1

ν(φ(Zi))

for any Borel subset Z ⊂ M , where Z = Z1 q Z2 q · · · q Zr is a partition of Z by Borel
subsets Z1, Z2, . . . , Zr with each φ|Zi

injective. We call µ′ the measure induced by ν and
often denote it by ν.
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Lemma 8.7 Under the same assumptions as in Theorem 8.6, we have

|ζ(Yv, r)|−1
p =

∏
(a,m)

(ea,m,rv )(−1)a+m

where (a,m) on the right hand side runs through all pairs with 0 ≦ a ≦ 3 and 0 ≦ m ≦ 2;
we put

e1,m,rv := µmv (H
1(Bv,H

m(X,Zp(r))))
with µmv the measure induced by µmv on H1

f (Kv,Hm(XK ,Qp(r))).

Proof. We first note that e0,m,rv = 1 for any m ≧ 0, by Proposition 3.6 (1), Theorem 5.3
and the fact that Hm(XK ,Zp) is torsion-free. Hence there exists an edge map induced by the
spectral sequence (4.1.1)

Hm+1(Xv,Zp(r)) −→ H1(Bv,H
m(X,Zp(r))),

which has finite kernel and cokernel by Theorem 5.3. We have the Haar measure µmv on
Hm+1(Xv,Zp(r)) induced by that on H1(Bv,H

m(X,Zp(r))), and∏
i≧0

µi−1
v (H i(Xv,Zp(r)))(−1)i =

∏
(a,m)

(ea,m,rv )(−1)a+m

by the spectral sequence (4.1.1). It remains to show that

|ζ(Yv, r)|−1
p =

∏
i≧0

µi−1
v (H i(Xv,Zp(r)))(−1)i . (8.3.1)

By the assumption on Ov, it is isomorphic to W := W (kv), the ring of Witt vectors in
kv. For each n ≧ 1, we put Xn := Xv ⊗W Wn, and let Sn(r)Xv be the syntomic complex
associated with the smooth scheme Xv over W = Ov. Let p(r)Ω•

Xn/Wn
(resp. p(r)Ω•

Xv/W
) be

the subcomplex

pr ·OXn

d−→ pr−1 ·Ω1
Xn/Wn

(
resp. pr ·OXv

d−→ pr−1 ·Ω1
Xv/W

)
of the de Rham complex Ω•

Xn/Wn
(resp. Ω•

Xv/W
). We note the following facts:

(a) There exists an isomorphism(
p(r)Ω•

Xn/Wn

)
n
[−1] ∼= (Sn(r)Xv)n

for any r with 2 ≦ r < p in the derived category of complexes of pro-sheaves on (Yv)ét,
by [BEK] Theorem 5.4.

(b) The Euler characteristic

χ(Xv,Ω
•
Xv/W/p(r)Ω

•
Xv/W ) :=

∏
i≧0

(#H i(Xv,Ω
•
Xv/W/p(r)Ω

•
Xv/W ))(−1)i

=
∏
(a,b)

(#Ha(Yv,Ω
b
Yv/kv))

(−1)a+b(r−m)

agrees with |ζ(Yv, r)|−1
p ([Mi2] Theorem 0.1).
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(c) We have Sn(r)Xv
∼= i∗Tn(r) in D(Yv, Λn) for any r with r < p − 1 and any n ≧ 1

([Ku] p. 275, Theorem), where i denotes the closed immersion Yv ↪→ Xv.

By these facts, we have

|ζ(Yv, r)|−1
p = χ(Xv,Ω

•
Xv/W/p(r)Ω

•
Xv/W ) (by (b))

=
∏
i≧0

µiv(H
i
dR(Xv/W ))(−1)i

µiv(H i(Xv, p(r)Ω•
Xv/W

))(−1)i

=
∏
i≧0

µiv(H
i(Xv, p(r)Ω

•
Xv/W ))(−1)i+1

(µiv(H
i
dR(Xv/W )) = 1)

=
∏
i≧0

µiv(H
i+1(Xv,Zp(r)))(−1)i+1

(by (a), (c)).

Thus we obtain (8.3.1) and Lemma 8.7. □

Proof of Theorem 8.6. We first show that ea,2,rv = 1 for any a ≧ 2. Indeed, we have

Ha(Bv,H
2(Xv,Zp(r)))

(3.1.7)∼= Ha(Bv,Zp(r − 1)).

If r = 2, then the last group is zero for any a ≧ 2 because Ha(Bv,Gm) = 0 for any a ≧ 1.
On the other hand, if r ≧ 3, then by the Tate duality, we have

Ha(Bv,Zp(r − 1)) ∼= Ha(Kv,Zp(r − 1)) ∼= H2−a(Kv,Qp/Zp(2− r))∗,

which is zero for any a ≧ 2 by the assumption that Kv is unramified over Qp. Noting that

(a+) e1,0,rv = |1−q−rv |−1
p and e1,2,rv = |1−q1−rv |−1

p by [BK2] Theorem 4.1 (iii) for V = Qp(r)
and Qp(r − 1), and again by the assumption that Kv is unramified over Qp,

one obtains the second assertion from the same computations as in Theorem 8.5. □

9 Global points and zeta values (d = 2)
The setting and the notation remain as in §7 (in particular, d = 2). In this section, we
relate the formula in Theorem 7.8 with zeta values assuming Conjecture 9.1 below for the
motives Hm(XK)(r) with m = 0, 1, 2, a weak version of p-Tamagawa number conjecture of
Bloch-Kato [BK2] §5. Let S ′ be a finite set of closed points of B containing all points of
characteristic p, and all points where X has bad reduction. For m = 0, 1, 2 and r ≧ 2 with
(m, r) 6= (2, 2), we put

LS′(Hm(XK), r) :=
∏

v∈B0∖S′

det(1− q−rv ·Frv |Hm(XK ,Qp))
−1 =

∏
v∈B0∖S′

(#Am,rp (Kv))
−1.

This infinite product on the right hand side converges, because m− 2r ≦ −3. Let Z(p) be the
localization of Z at the prime ideal (p).
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9.1 p-Tamagawa number conjecture
Conjecture 9.1 (Bloch-Kato) For any m = 0, 1, 2 and r ≧ 2 with (m, r) 6= (2, 2), there
exists a finite-dimensional Q-subspace Φm,r = Φm,r

p of the Q-space

Hm+1
M (XK ,Q(r))Z := Im

(
Hm+1

M (X,Q(r))→ Hm+1
M (XK ,Q(r))

)
satisfying the following conditions (i) and (ii):

(i) The p-adic Abel-Jacobi map

Hm+1
M (XK ,Q(r)) −→ H1(K,Hm(XK ,Qp(r)))

induces an isomorphism Φm,r ⊗Qp
∼= H1

f (K,H
m(XK ,Qp(r))), and Beilinson’s regu-

lator map to the real Deligne cohomology

Hm+1
M (XK ,Q(r)) −→ Hm+1

D (X/R,R(r))

induces an isomorphism Φm,r ⊗ R ∼= Hm+1
D (X/R,R(r)).

(ii) We define Am,rp (K), the group of p-global points as the pull-back of Φm,r under the
natural map

H1
f (K,H

m(XK ,Zp(r))) −→ H1
f (K,H

m(XK ,Qp(r))) ∼= Φm,r ⊗Qp,

which is a finitely generated Z(p)-module. We further fix an OK-lattice Lm of the de
Rham cohomology Hm

dR(XK/K), and define a number Rm,r
Φ ∈ R×/Z×

(p) to be the vol-
ume of the space

Hm+1
D (X/R,Z(p)(r))/Image of Am,rp (K)

with respect to Lm. See Remark 9.2 (1) below for an explicit description of the real
Deligne cohomology Hm+1

D (X/R,Z(p)(r)). On the other hand, for each v ∈ B0 we put

Am,rp (Kv) := H1
f (Kv,Hm(XK ,Zp(r))),

which we call the group of p-local points at v. Then we have

LS′(Hm(XK), r) ≡ χ(αm,r)−1 ·Rm,r
Φ ·

∏
v∈S′

µmv (A
m,r
p (Kv)) mod Z×

(p), (9.1.1)

where µmv for v6 |p means the cardinarity, and µmv for v|p denotes the Haar measure on
Am,rp (Kv) constructed from that on Hm

dR(XKv/Kv) such that µmv (L
m⊗OK

Ov) = 1; see
(7.3.1) for the map αm,r.

Remark 9.2 (1) The map Am,rp (K)→ Hm+1
D (X/R,Z(p)(r)) induced by the regulator map

is injective, by the condition (i) for Φm,r and [BK2] Lemma 5.10. Here

Hm+1
D (X/R,Z(p)(r)) =

(
Hm

dR(X/Z)⊗ C
Hm

sing(X ⊗Z C, (2πi)r ·Z(p))

)+
for any m = 0, 1, 2 and r ≧ 2, by definition.
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(2) The product on the right hand side of (9.1.1) is independent of the choice of Lm.

(3) Conjecture 9.1 for m = 0 (resp. m = 2) implies that

ζK(r) ≡ χ(α0,r)−1 ·R0,r
Φ (resp. ζK(r − 1) ≡ χ(α0,r−1)−1 ·R0,r−1

Φ )

modulo Z×
(p) if r ≧ 2 (resp. r ≧ 3) and p is unramified in K. Here we have used the

fact (c) in the proof of Theorem 8.5 for all v6 |p belonging to S ′, and the fact (a+) in the
proof of Theorem 8.6. See also [FM] §5.8.3.

(4) We have Rm,r
Φ = 1 for any m ≧ 3, because Hm+1

D (X/R,Z(p)(r)) is zero for such m’s.

(5) If (m, r) = (2, 2), there exists a Q-subspace Φ2,2 of H3
M (XK ,Q(2))Z which is isomor-

phic to H1
M (B,Q(1)) under the push-forward map

H3
M (XK ,Q(2)) −→ H1

M (Spec(K),Q(1)) ∼= K× ⊗Q.

Indeed, by a standard norm argument, the push-forward map

H3
M (X,Q(2)) −→ H1

M (B,Q(1)) ∼= O×
K ⊗Q

is surjective, and there is a Q-subspace Φ̃2,2 ⊂ H3
M (X,Q(2)) which maps bijectively

onto H1
M (B,Q(1)). One can define a desired space Φ2,2 by

Φ2,2 := Im
(
Φ̃2,2 → H3

M (XK ,Q(2))
)
.

By this construction of Φ2,2, we have

Φ2,2 ⊗Qp
∼= H1

f (K,H
2(XK ,Qp(2))) (= H1

f (K,Qp(1))).

See also Lemma 7.7 (3). For (m, r) = (2, 2), we will use the classical class number
formula instead of (9.2.1), later in Theorem 9.6 below.

Proposition 9.3 Let r be an integer, and let p be a prime number. Assume all the following
conditions:

(i) p− 2 ≧ r ≧ 2.

(ii) For any v ∈ B0 dividing p, v is absolutely unramified and X has good reduction at v.

(iii) Conjecture 9.1 holds for m = 0, 1 (resp. m = 0, 1, 2), if r = 2 (resp. r ≧ 3).

Then the equivalent conditions (i)–(v) of Proposition 7.3 are satisfied for m = 1, 2 (resp.
m = 1, 2, 3), if r = 2 (resp. if r ≧ 3). Moreover, we have

Res
s=2

ζ(X, s) ≡ Res
s=1

ζK(s) ·
χ(aj3,2p ) ·#CH0(X) ·R0,2

Φ

χ(aj2,2p ) ·#Pic(OK) ·R1,2
Φ

mod Z×
(p) (r = 2)

ζ(X, r) ≡
χ(aj3,rp ) ·#H4

M (X,Z(r)){p} ·R0,r
Φ ·R

2,r
Φ

χ(aj2,rp ) ·R1,r
Φ

mod Z×
(p) (r ≧ 3)
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Proof. The first assertion is obvious. For any r ≧ 2, we have

lim
s→r

ζ(X, s)

ζK(s)ζK(s− 1)
=

1

LS′(H1(XK), r)
·
∏
v∈S′

ζ(Yv, r)

(1− q−rv )−1(1− q1−rv )−1

≡ χ(α1,r)

R1,r
Φ

·
∏
v∈S′

1

µmv (A
1,r
p (Kv))

·
∏
v∈S′

e2,0,rv ·e3,1,rv ·µ1
v(A

1,r
p (Kv))

e2,1,rv ·e3,0,rv

mod Z×
(p)

=
χ(α1,r)

R1,r
Φ

·
∏
v∈S′

e2,0,rv ·e3,1,rv

e2,1,rv ·e3,0,rv

by the assumptions (i)–(iii) form = 1 and Theorems 8.5 and 8.6 (see Remark 9.2 (2)). Hence
for r = 2, we have

Res
s=2

ζ(X, s) ≡ Res
s=1

ζK(s) ·
R0,2

Φ ·χ(α1,2)

χ(α0,2) ·R1,2
Φ

·
∏
v∈S′

e2,0,2v ·e3,1,2v

e2,1,2v ·e3,0,2v

mod Z×
(p)

= Res
s=1

ζK(s) ·
χ(aj3,2p ) ·#CH0(X) ·R0,2

Φ

χ(aj2,2p ) ·#Pic(OK) ·R1,2
Φ

by the assumption (iii) for m = 0 and Theorem 7.8. See also Remark 9.2 (3). Similarly for
any r ≧ 3, we have

ζ(X, r) ≡ R0,r
Φ ·χ(α1,r) ·R2,r

Φ

χ(α0,r) ·R1,r
Φ ·χ(α2,r)

·
∏
v∈S′

e2,0,rv ·e3,1,rv

e2,1,rv ·e3,0,rv

mod Z×
(p)

=
χ(aj3,rp ) ·#H4

M (X,Z(r)){p} ·R0,r
Φ ·R

2,r
Φ

χ(aj2,rp ) ·R1,r
Φ

as claimed. □

9.2 Zeta value formula without étale cohomology
Let p be an arbitrary prime number. Assuming Conjecture 9.1 for p, we define a number
Rm,r

M = Rm,r
M,p ∈ R×/Z×

(p) (m ≧ 0, r ≧ 2) as follows. We first take the inverse image Ãm,rp of
Am,rp (K) under the composite map

Hm+1
M (X,Z(r))⊗ Z(p) → Hm+1

M (XK ,Z(r))⊗ Z(p) → H1(K,Hm(XK ,Zp(r))),

where for (m, r) = (2, 2), A2,2
p (K) is considered with respect to Φ2,2 constructed in Remark

9.2 (5). Since Am,rp (K) is finitely generated over Z(p), the canonical map Ãm,rp → Am,rp (K)
factors through a homomorphism

cm,r : Am,rp := Ãm,rp /(Ãm,rp )Div −→ Am,rp (K).

This map fits into a commutative diagram

Am,rp ⊗ Zp
γm,r

//

cm,r⊗id
��

Hm+1
M (X,Z(r)) ⊗̂Zp

ajm+1,r
p // H1(B,Hm(X,Zp(r)))

Am,rp (K)⊗ Zp ∼ H1
f (K,H

m(XK ,Zp(r))),

(9.2.1)
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where γm,r denotes the natural map. See Corollary 8.2 for the right vertical equality.

Lemma 9.4 Assume that p ≧ 3 or B(R) = ∅, and that Conjecture 9.1 holds. Then γm,r and
cm,r have finite cokernel.

Proof. Coker(cm,r) is finite, because it is finitely generated over Z(p) and torsion by the
definition of Ãm,rp . The map γm,r has finite cokernel as well, because cm,r ⊗ idZp has finite
cokernel and ajm+1,r

p has finite kernel by Lemma 7.7 (1) and (2). □

By the finiteness of Coker(cm,r), we define Rm,r
M ∈ R×/Z×

(p) to be the volume of the space{
Hm+1

D (X/R,Z(p)(r))/Image of Am,rp (for (m, r) 6= (2, 2))

H̃3
D(X/R,Z(p)(2))/Image of A2,2

p (for (m, r) = (2, 2))

with respect to Lm that we fixed in Conjecture 9.1, where H̃3
D(X/R,Z(p)(2)) denotes the

kernel of the canonical trace map

tr : H̃3
D(X/R,Z(p)(2)) −→ R.

We have Rm,r
M = 1 for any m ≧ 3 by definition.

Proposition 9.5 γm,r of (9.2.1) is bijective for (m, r) = (3, 2).

Proof. The assertion follows immediately from the facts that H4
M (X,Z(2)) ∼= CH0(X) is

finite (Lemma 7.7 (4)) and that A3,2
p (K) = 0. □

Theorem 9.6 Under the same assumptions as in Proposition 9.3, assume further that

(iv) γm,r of (9.2.1) is bijective for any m = 0, 1, 2, 3.

Then cm,r has finite kernel for any m = 0, 1, 2, 3, and we have

ζ∗(X, r) ≡
3∏

m=0

(
Rm,r

M

Ker(cm,r)

)(−1)m

mod Z×
(p),

where ζ∗(X, r) denotes Res
s=2

ζ(X, s) (resp. ζ(X, r)) if r = 2 (resp. r ≧ 3).

Remark 9.7 A stronger version of Conjecture 9.1 asserts that

(h1) The Q-vector space Φm,r agrees with Hm+1
M (XK ,Q(r))Z.

The above condition (iv) holds true, under this stronger hypothesis and a variant of Bass’
conjecture (cf. [Ba]) that

(h2) Hm+1
M (X,Z(r)) is finitely generated for m = 0, 1, 2, 3.
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Under the hypotheses (h1) and (h2), Ker(cm,r) agrees with the p-primary torsion part of the
kernel of the regulator map

regm+1,r
D : Hm+1

M (X,Z(r)) −→ Hm+1
D (X/R,Z(r))

by Remark 9.2 (1), and Rm,r
M is exactly the volume of its cokernel (modulo Z×

(p)).

Proof of Theorem 9.6. The map ajm+1,r
p has finite kernel for any m ≧ 0 (see Lemma 7.7 (1),

(2)). By this fact and the assumption (iv), cm,r⊗ id in the diagram (9.2.1) has finite kernel for
any m ≧ 0. Thus cm,r has finite kernel, because Zp is faithfully flat over Z(p).

We rewrite the number on the right hand side in the formulas in Proposition 9.3. By the
classical class number formula, we have

Res
s=1

ζK(s) = vol(Coker(%)) ·#Pic(OK),

where % = %K denotes the regulator map to (the reduced part of) the integral Deligne coho-
mology

% : O×
K −→ H̃1

D(B/R,Z(1)) := Ker
(
tr : H1

D(B/R,Z(1))→ R
)

and the volume of Coker(%) has been taken with respect to OK ⊂ K = H0
dR(Spec(K)/K)

(note that % is injective). To prove the formula in Theorem 9.6, it is enough to check

Rm,r
M

Ker(cm,r)
=



R0,r
Φ (m = 0)

χ(aj2,rp ) ·R1,r
Φ (m = 1)

χ(aj3,2p ) ·vol(Coker(%)) ((m, r) = (2, 2))

χ(aj3,rp ) ·R2,r
Φ (m = 2, r ≧ 3)

(#CH0(X){p})−1 ((m, r) = (3, 2))

(#H4
M (X,Z(r)){p})−1 (m = 3, r ≧ 3)

(9.2.2)

We have
Ker(ajm,rp ) = Ker(cm,r) and Coker(ajm,rp ) ∼= Coker(cm,r) (9.2.3)

for any (m, r) by the diagram (9.2.1) and the hypothesis (iv). See also Remark 9.5 for the
case (m, r) = (3, 2). This fact implies (9.2.2) for m = 0, 1, 2 with (m, r) 6= (2, 2). See also
Proposition 7.3 and Lemma 7.7 (1) for the fact that χ(aj1,rp ) = #Ker(c1,r) = 1. The formula
(9.2.2) for m = 3 follows from (9.2.3) and the fact that Rm,r

M = 1 for m ≧ 3. Finally, noting
that γ2,2 is bijective by assumption, consider the diagram (9.2.1) for (m, r) = (2, 2):

A2,2
p ⊗ Zp

c2,2⊗id //

aj3,2p

��

A2,2
p (K)⊗ Zp ∼

≀

O×
K ⊗ Zp

≀

H1(B,H2(X,Zp(2))) H1
f (K,H

2(XK ,Zp(2)))
∼ H1

f (K,Zp(1)),

which shows (9.2.2) for (m, r) = (2, 2). This completes the proof. □
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