Selection for linear structure models with different variances

Junji Moriya＊，Takakazu Sugiyama＊and
Yasunori Fujikoshi＊

Abstract

This paper is concerned with selection of some linear structure models with different variances． The models are based on the study of relationships between two fracture toughness testing methods of dental luting cemments．The measurements are made by using several kinds of materials．They are assumed to have different variances depending on the materials，but they have the same vari－ ance between two testing methods．For such data，we consider three types of structures between two methods：（1）proportionality，（2）linearity，and（3）no structure．We give Akaike information criterion，AIC，to evaluate these models．Then，we derive corrected AIC（CAIC）which is useful for small samples．By simulation experiments，we find that CAIC is more effective than AIC in the case of small samples．Our results are applied to a real data of dental luting cements．

1 Introduction

This paper is concerned with selection of linear structure models with different variances．The models are based on the study of relationships between two fracture toughness testing methods of dental luting cemments，by using several kinds of materials．Such an example is given in Section 5.

Suppose that two testing methods are examined by using m materials．Let

$$
\begin{equation*}
X_{i j k}, i=1,2 ; j=1, \ldots, m ; k=1, \ldots, n_{i j} \tag{1.1}
\end{equation*}
$$

be the k th measurement of the j th material by the i th testing method．It is assumed that $X_{i j 1}, \ldots$ ， $X_{i j n_{i j}}$ are independently and identically distributed as $N\left(\mu_{i j}, \sigma_{j}^{2}\right)$ ，i．e．，for $i=1,2$ and $j=1, \ldots, m$ ，

$$
\begin{equation*}
X_{i j k} \sim N\left(\mu_{i j}, \sigma_{j}^{2}\right), k=1, \ldots, n_{i j} \tag{1.2}
\end{equation*}
$$

The data are expressed as in Table 1 below．

Table 1．The data on toughness testing methods by using diffent dental luting cements

method i	material j	sample			mean	variance
1	1	x_{111}	\cdots	$x_{11 n_{11}}$	μ_{11}	σ_{1}^{2}
	\vdots	\vdots		\vdots	\vdots	\vdots
	m	$x_{1 m 1}$	\ldots	$x_{1 m n_{1 j}}$	$\mu_{1 m}$	σ_{m}^{2}
2	1	x_{211}	\cdots	$x_{21 n_{21}}$	μ_{21}	σ_{1}^{2}
	\vdots	\vdots		\vdots	\vdots	\vdots
	m	$x_{2 m 1}$	\cdots	$x_{2 m n_{2 j}}$	$\mu_{2 m}$	σ_{m}^{2}

[^0]Now we are intersting wheter there is a linear structure between $\left(\mu_{11}, \ldots, \mu_{1 m}\right)$ and $\left(\mu_{21}, \ldots, \mu_{2 m}\right)$ or not. For that purpose we consider three types of structure models:

$$
\begin{align*}
& M_{1}: \mu_{2 j}=\gamma \mu_{1 j}, \quad \gamma \neq 0, \quad j=1, \cdots, m \\
& M_{2}: \mu_{2 j}=\beta \mu_{1 j}+\alpha, \beta \neq 0, \quad j=1, \cdots, m \tag{1.3}\\
& M_{3}: \text { otherwise }
\end{align*}
$$

where γ, α and β are unknown. The models M_{1} and M_{2} show that two methods are essentially the same, though their relationships are different. We apply Akaike information criterion (AIC, Akaike (1973)) to evaluate these models. Various linear functional relationships have been considered, see e.g. Anderson (1984), Fuller (1987). However, it may be noted that the linear functional relationship as in M_{1} and M_{2} has not been discussed.
The AIC is given in Section 2. In Section 3 we study the risk and the bias of AIC, and propose a corrected AIC, i.e., CAIC. In Section 4, two criteria AIC and CAIC are compared by simulation experiments. It is shown that CAIC is more effective than AIC in the case of small samples. In Section 5, we give an example of two fracture toughness testing methods by using six dental luting cemments.

2 Derivation of AIC

In general, AIC was proposed as a criterion of evaluating a model by Akaike (1973). Let \boldsymbol{x} and $\boldsymbol{\theta}$ be the column vectors of all the observations $x_{i j k}$ and the parameters $\mu_{i j}$ and σ_{j}^{2}, respectively. Let the log-likelihood be denoted by $\ell(\boldsymbol{\theta} \mid \boldsymbol{x})$. Then, AIC is given by

$$
\begin{equation*}
A I C=-2 \ell(\hat{\boldsymbol{\theta}} \mid \boldsymbol{x})+2 d, \tag{2.1}
\end{equation*}
$$

where $\hat{\boldsymbol{\theta}}$ is the maximum likelihood estimator (MLE) of $\boldsymbol{\theta}$, and d is the dimension of a model, or the number of independent parameters involved in a model.
Let d_{1}, d_{2} and d_{3} be the dimension d for models M_{1}, M_{2} and M_{3} given in (1.3), respectively. Then, the dimensions are as follows:

$$
\begin{equation*}
d_{1}=2 m+1, d_{2}=2 m+2, d_{3}=3 m . \tag{2.2}
\end{equation*}
$$

The density function of $X_{i j k}$ is

$$
f\left(x_{i j k} \mid \mu_{i j}, \sigma_{j}^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma_{j}^{2}}} \exp \left\{-\frac{1}{2} \frac{\left(x_{i j k}-\mu_{i j}\right)^{2}}{\sigma_{j}^{2}}\right\}
$$

since $X_{i j k}$ is distributed as $N\left(\mu_{i j}, \sigma_{j}^{2}\right)$. Then, the log-likelihood function of $\boldsymbol{\theta}$ is

$$
\begin{align*}
\ell(\boldsymbol{\theta} \mid \boldsymbol{x})= & \log \prod_{i=1}^{2} \prod_{j=1}^{m} \prod_{k=1}^{n} f\left(x_{i j k} \mid \mu_{i j}, \sigma_{j}^{2}\right) \\
= & -\frac{1}{2} \sum_{j=1}^{m}\left\{n_{j} \log 2 \pi+n_{j} \log \sigma_{j}^{2}\right\} \tag{2.3}\\
& -\frac{1}{2} \sum_{i=1}^{2} \sum_{j=1}^{m} \frac{1}{\sigma_{j}^{2}} \sum_{k=1}^{n_{i j}}\left(x_{i j k}-\mu_{i j}\right)^{2},
\end{align*}
$$

where $n_{j}=n_{1 j}+n_{2 j}, j=1, \ldots, m$. Let $\hat{\sigma}_{j ; a}^{2}$ be the MLE of σ_{j}^{2} under the model M_{a}. Then, the AIC for M_{a} is expressed as

$$
\begin{equation*}
A I C_{a}=\sum_{j=1}^{m} n_{j} \log \hat{\sigma}_{j ; a}^{2}+n\{\log (2 \pi)+1\}+2 d_{a}, a=1,2,3 \tag{2.4}
\end{equation*}
$$

where $n=n_{1}+\cdots+n_{m}$. In the following, we give the MLE's of the unknown parameters as well as σ_{j}^{2} under M_{1}, M_{2} and M_{3}. Let

$$
\bar{x}_{i j}=\frac{1}{n_{i j}} \sum_{k=1}^{n_{i j}} x_{i j k}, \quad s_{i j}^{2}=\frac{1}{n_{i j}} \sum_{k=1}^{n_{i j}}\left(x_{i j k}-\bar{x}_{i j}\right)^{2}
$$

For simplicity, first consider the case M_{3}. The independent unknown parameters are $\mu_{1 j}, \mu_{2 j}$ and σ_{j}^{2}, and it is easy to see that their MLE's are given by

$$
\begin{equation*}
\hat{\mu}_{1 j}=\bar{x}_{1 j}, \hat{\mu}_{2 j}=\bar{x}_{2 j}, \hat{\sigma}_{j}^{2}=\frac{1}{n_{j}}\left(n_{1 j} s_{1 j}^{2}+n_{2 j} s_{2 j}^{2}\right) \tag{2.5}
\end{equation*}
$$

Therefore, the $\hat{\sigma}_{j ; 3}^{2}$ in (2.4) is given by

$$
\begin{equation*}
\hat{\sigma}_{j ; 3}^{2}=\frac{1}{n_{j}}\left(n_{1 j} s_{1 j}^{2}+n_{2 j} s_{2 j}^{2}\right), j=1, \ldots, m \tag{2.6}
\end{equation*}
$$

Next consider the case M_{1}. The independent unknown parameters are $\mu_{1 j}, \gamma$ and σ_{j}^{2}. It is shown that the MLE's are solutions of the following likelihood equations:

$$
\frac{\partial}{\partial \mu_{i j}} \ell(\boldsymbol{\theta} \mid \boldsymbol{x})=0, \frac{\partial}{\partial \sigma_{j}^{2}} \ell(\boldsymbol{\theta} \mid \boldsymbol{x})=0, \frac{\partial}{\partial \gamma} \ell(\boldsymbol{\theta} \mid \boldsymbol{x})=0 .
$$

Solving the likelihood equations $\left(\partial / \partial \mu_{1 j}\right) \ell(\boldsymbol{\theta} \mid \boldsymbol{x})=0$,

$$
\begin{align*}
& -\frac{1}{2} \frac{1}{\sigma_{j}^{2}}\left\{-2 \sum_{k=1}^{n_{1 j}}\left(x_{1 j k}-\mu_{1 j}\right)-2 \gamma \sum_{k=1}^{n_{2 j}}\left(x_{2 j k}-\gamma \mu_{1 j}\right)\right\}=0, \\
& \Leftrightarrow\left(n_{1 j} \bar{x}_{1 j}+\gamma n_{2 j} \bar{x}_{2 j}\right)-\left(n_{1 j}+\gamma^{2} n_{2 j}\right) \mu_{1 j}=0, \\
& \Leftrightarrow \mu_{1 j}=\frac{1}{n_{1 j}+\gamma^{2} n_{2 j}}\left(n_{1 j} \bar{x}_{1 j}+\gamma n_{2 j} \bar{x}_{2 j}\right) . \tag{2.7}
\end{align*}
$$

Similarly, solving $\left(\partial / \partial \sigma_{j}^{2}\right) \ell(\boldsymbol{\theta} \mid \boldsymbol{x})=0$,

$$
\begin{align*}
& -\frac{n_{j}}{2} \frac{1}{\sigma_{j}^{2}}+\frac{1}{2} \frac{1}{\left(\sigma_{j}^{2}\right)^{2}}\left\{\sum_{k=1}^{n_{1 j}}\left(x_{1 j k}-\mu_{1 j}\right)^{2}+\sum_{k=1}^{n_{2 j}}\left(x_{2 j k}-\gamma \mu_{1 j}\right)^{2}\right\}=0 \\
& \Leftrightarrow \sigma_{j}^{2}=\frac{1}{n_{j}}\left\{\sum_{k=1}^{n_{1 j}}\left(x_{1 j k}-\mu_{1 j}\right)^{2}+\sum_{k=1}^{n_{2 j}}\left(x_{2 j k}-\gamma \mu_{1 j}\right)^{2}\right\} \tag{2.8}
\end{align*}
$$

Sustituting (2.7) for (2.8), we have

$$
\begin{gather*}
\left.\sigma_{j}^{2}=\frac{1}{n_{j}\left(n_{1 j}+\right.}+\gamma^{2} n_{2 j}\right)
\end{gather*}\left(n_{1 j}+\gamma^{2} n_{2 j}\right)\left(n_{1 j} s_{1 j}^{2}+n_{2 j} s_{2 j}^{2}\right)
$$

Substituting (2.7) and (2.9) for the likelihood equation $(\partial / \partial \gamma) \ell(\boldsymbol{\theta} \mid \boldsymbol{x})=0$, and simplfying the resultant equation, we find that the MLE $\hat{\gamma}$ of γ is a solution of

$$
\begin{gather*}
\sum_{j=1}^{m} \frac{\left(n_{1 j} \bar{x}_{1 j}+\gamma n_{2 j} \bar{x}_{2 j}\right)\left(\gamma \bar{x}_{1 j}-\bar{x}_{2 j}\right)}{\left(n_{1 j}+\gamma^{2} n_{2 j}\right)\left(n_{1 j} s_{1 j}^{2}+n_{2 j} s_{2 j}^{2}\right)+n_{1 j} n_{2 j}\left(\gamma \bar{x}_{1 j}-\bar{x}_{2 j}\right)^{2}} \\
\times \frac{n_{j} n_{1 j} n_{2 j}}{n_{1 j}+\gamma^{2} n_{2 j}}=0 \tag{2.10}
\end{gather*}
$$

Note that $\hat{\mu}_{1 j}$ and $\hat{\sigma}_{j}^{2}=\hat{\sigma}_{j ; 1}^{2}$ are given by (2.7) and (2.9) with $\gamma=\hat{\gamma}$, respectively.
Finally consider the case M_{2}. The independent unknown parameters are $\mu_{1 j}, \alpha, \beta$ and σ_{j}^{2}. The MLE's are solutions of the following likelihood equations:

$$
\frac{\partial}{\partial \mu_{1 j}} \ell(\boldsymbol{\theta} \mid \boldsymbol{x})=0, \frac{\partial}{\partial \sigma_{j}^{2}} \ell(\boldsymbol{\theta} \mid \boldsymbol{x})=0, \frac{\partial}{\partial \alpha} \ell(\boldsymbol{\theta} \mid \boldsymbol{x})=0, \frac{\partial}{\partial \beta} \ell(\boldsymbol{\theta} \mid \boldsymbol{x})=0 .
$$

Solving the likelihood equations $\left(\partial / \partial \mu_{1 j}\right) \ell(\boldsymbol{\theta} \mid \boldsymbol{x})=0$,

$$
\begin{align*}
& -\frac{1}{2} \frac{1}{\sigma_{j}^{2}}\left\{-2 \sum_{k=1}^{n_{1 j}}\left(x_{1 j k}-\mu_{1 j}\right)-2 \beta \sum_{k=1}^{n_{2 j}}\left(x_{2 j k}-\alpha-\beta \mu_{1 j}\right)\right\}=0 \\
& \Leftrightarrow\left(n_{1 j} \bar{x}_{1 j}+\beta n_{2 j} \bar{x}_{2 j}-\alpha \beta n_{2 j}\right)-\left(n_{1 j}+\beta^{2} n_{2 j}\right) \mu_{1 j}=0 \\
& \Leftrightarrow \mu_{1 j}=\frac{1}{n_{1 j}+\beta^{2} n_{2 j}}\left(n_{1 j} \bar{x}_{1 j}+\beta n_{2 j} \bar{x}_{2 j}-\alpha \beta n_{2 j}\right) \tag{2.11}
\end{align*}
$$

Similarly, solving $\left(\partial / \partial \sigma_{j}^{2}\right) \ell(\boldsymbol{\theta} \mid \boldsymbol{x})=0$,

$$
\begin{align*}
& -\frac{n_{j}}{2} \frac{1}{\sigma_{j}^{2}}+\frac{1}{2} \frac{1}{\left(\sigma_{j}^{2}\right)^{2}}\left\{\sum_{k=1}^{n_{1 j}}\left(x_{1 j k}-\mu_{1 j}\right)^{2}+\sum_{k=1}^{n_{2 j}}\left(x_{2 j k}-\alpha-\beta \mu_{1 j}\right)^{2}\right\}=0 \\
& \Leftrightarrow \sigma_{j}^{2}=\frac{1}{n_{j}}\left\{\sum_{k=1}^{n_{1 j}}\left(x_{1 j k}-\mu_{1 j}\right)^{2}+\sum_{k=1}^{n_{2 j}}\left(x_{2 j k}-\alpha-\beta \mu_{1 j}\right)^{2}\right\} \tag{2.12}
\end{align*}
$$

Sustituting (2.11) for (2.12), we have

$$
\begin{gather*}
\sigma_{j}^{2}=\frac{1}{n_{j}\left(n_{1 j}+\beta^{2} n_{2 j}\right)}\left\{\left(n_{1 j}+\beta^{2} n_{2 j}\right)\left(n_{1 j} s_{1 j}^{2}+n_{2 j} s_{2 j}^{2}\right)\right. \\
\left.+n_{1 j} n_{2 j}\left(\bar{x}_{2}-\alpha-\beta \bar{x}_{1 j}\right)^{2}\right\} . \tag{2.13}
\end{gather*}
$$

Substituting (2.11) and (2.13) for the likelihood equations $(\partial / \partial \alpha) \ell(\boldsymbol{\theta} \mid \boldsymbol{x})=0$ and $(\partial / \partial \beta) \ell(\boldsymbol{\theta} \mid \boldsymbol{x})=0$, and simplfying the resultant equations, we find that the MLE's $\hat{\alpha}$ and $\hat{\beta}$ of α and β are solutions of

$$
\begin{align*}
& \sum_{j=1}^{m} \frac{n_{j} n_{1 j} n_{2 j}\left(\bar{x}_{2 j}-\alpha-\beta \bar{x}_{1 j}\right)}{\left(n_{1 j}+\beta^{2} n_{2 j}\right)\left(n_{1 j} s_{1 j}^{2}+n_{2 j} s_{2 j}^{2}\right)+n_{1 j} n_{2 j}\left(\bar{x}_{2 j}-\alpha-\beta \bar{x}_{1 j}\right)^{3}}=0 . \tag{2.14}\\
& \sum_{j=1}^{m} \frac{\left(n_{1 j} \bar{x}_{1 j}+\beta n_{2 j} \bar{x}_{2 j}-\alpha \beta n_{2 j}\right)\left(\bar{x}_{2 j}-\alpha-\beta \bar{x}_{1 j}\right)}{\left(n_{1 j}+\beta^{2} n_{2 j}\right)\left(n_{1 j} s_{1 j}^{2}+n_{2 j} s_{2 j}^{2}\right)+n_{1 j} n_{2 j}\left(\bar{x}_{2 j}-\alpha-\beta \bar{x}_{1 j}\right)^{2}} \\
& \quad \times \frac{n_{j} n_{1 j} n_{2 j}}{n_{1 j}+\beta^{2} n_{2 j}}=0 \tag{2.15}
\end{align*}
$$

Note that $\hat{\mu}_{1 j}$ and $\hat{\sigma}_{j}^{2}=\hat{\sigma}_{j ; 2}^{2}$ are given by (2.11) and (2.13) with $\alpha=\hat{\alpha}$ and $\beta=\hat{\beta}$, respectively.

3 The bias of AIC and its correction

In general, AIC was introduced as an asymptotically unbiased estimator of the predictive risk function of a model. Let \boldsymbol{X} be a random vector whose components consists of all the random variables $X_{i j k}$. In our model the risk function is expressed as

$$
\begin{equation*}
R_{A}=E_{\boldsymbol{Y}}^{*} E_{\boldsymbol{X}}^{*}[-2 \ell(\hat{\boldsymbol{\theta}} \mid \boldsymbol{Y})] \tag{3.1}
\end{equation*}
$$

where \boldsymbol{Y} is a random vector whose componets consist of all the future variables $Y_{i j k}$ corresponding to $X_{i j k}$. It is assumed that \boldsymbol{Y} has the same distribution as \boldsymbol{X} and is independent of \boldsymbol{X}. The expectation E^{*} denotes the one with respect to the true model. The bias when we estimate the risk function by $-2 \ell(\hat{\boldsymbol{\theta}} \mid X)$ is written as

$$
\begin{equation*}
B_{A}=E_{\boldsymbol{Y}}^{*} E_{\boldsymbol{X}}^{*}[-2 \ell(\hat{\boldsymbol{\theta}} \mid \boldsymbol{Y})+2 \ell(\hat{\boldsymbol{\theta}} \mid \boldsymbol{X})] . \tag{3.2}
\end{equation*}
$$

AIC uses $2 d$ as an estimator of B_{A}. Sugiura (1978) obtained more precise expressions of B_{A} for some models, assuming that the true model is included in the model considered. The AIC with such biases is called CAIC. Further, Fujikoshi and Satoh (1997) proposed to estimate B_{A}, relaxing the assumption that the true model is included in the candidate model. The bias of AIC in our model is

$$
\begin{align*}
B_{A}= & \sum_{j=1}^{m}\left(n_{j} \sigma_{j}^{2}\right) E\left[\frac{1}{\hat{\sigma}_{j}^{2}}\right]-n \\
& +E\left[\frac{1}{\hat{\sigma}_{j}^{2}}\left\{n_{1 j}\left(\mu_{1 j}-\hat{\mu}_{1 j}\right)^{2}+n_{2 j}\left(\mu_{2 j}-\hat{\mu}_{2 j}\right)^{2}\right\}\right] \tag{3.3}
\end{align*}
$$

where the $\hat{\mu}_{2 j}$ in the cases M_{1} and M_{2} are $\hat{\gamma} \hat{\mu}_{1 j}$ and $\hat{\alpha}+\hat{\beta} \hat{\mu}_{1 j}$, respectively.
Let $B_{A ; a}$ be the bias B_{A} for model M_{a}. Assume that $n_{i j}=n_{0}$ for all $i=1,2$ and $j=1, \ldots, m$. Then, it is shown that $B_{A ; a}$ can be expanded as follows:

$$
\begin{align*}
& B_{A ; 1}=d_{1}+\frac{1}{n_{0}} c_{1}+O\left(n_{0}^{-2}\right) \\
& B_{A ; 2}=d_{2}+\frac{1}{n_{0}} c_{2}+O\left(n_{0}^{-2}\right) \tag{3.4}\\
& B_{A ; 2}=d_{3}+\frac{1}{n_{0}} c_{3}+O\left(n_{0}^{-2}\right)
\end{align*}
$$

where

$$
\begin{aligned}
& c_{1}=4(m+2)+\frac{4(m-1)}{1+\gamma^{2}} \frac{1}{t_{2,2}}-2 \frac{t_{4,4}}{t_{2,2}^{2}} \\
& c_{2}=4(m+4)+\frac{4(m-2)}{1+\beta^{2}} \frac{t_{0,2}}{t_{0,2} t_{2,2}-t_{1,2}^{2}}-\frac{2 R}{\left(t_{0,2} t_{2,2}-t_{1,2}^{2}\right)^{2}}, \\
& c_{3}=10 m .
\end{aligned}
$$

and $t_{p, q}=\sum_{j=1}^{m} \mu_{1 j}^{p} / \sigma_{j}^{q}$,

$$
R=t_{4,4} t_{0,2}^{2}+2 t_{2,2} t_{2,4} t_{0,2}-4 t_{1,2} t_{3,4} t_{0,2}+t_{0,4} t_{2,2}^{2}-4 t_{1,2} t_{1,4} t_{2,2}+4 t_{1,2}^{2} t_{2,4}
$$

Using the above results, a corrected AIC is defined as

$$
\begin{equation*}
C A I C_{a}=A I C_{a}+\frac{1}{n_{0}} \hat{c}_{a}, a=1,2,3, \tag{3.5}
\end{equation*}
$$

where \hat{c}_{a} is defined from c_{a} by substituting MLE's for the unknown parameters.

4 Simulation study

In order to investigate the actual behavior of AIC and CAIC, we examined their average biases and frequencies selected by simulation experiments. The simulations were made for the cases where the sample sizes $n_{i j}$ are the same as n_{0}, and $n_{0}=6,10,30,50,100$. The parameters are defined as follows:

$$
\begin{aligned}
& \gamma=1.05, \quad \beta=1.05, \quad \alpha=0.05 \\
& \mu_{11}=0.07, \quad \mu_{12}=0.10, \quad \mu_{13}=0.20 \\
& \mu_{14}=0.70, \quad \mu_{15}=1.00, \quad \mu_{16}=2.00 \\
& \sigma_{1}^{2}=0.00007, \quad \sigma_{2}^{2}=0.00100, \quad \sigma_{3}^{2}=0.00400 \\
& \sigma_{4}^{2}=0.00600, \quad \sigma_{5}^{2}=0.01000, \quad \sigma_{6}^{2}=0.03000
\end{aligned}
$$

The numbers of iterations were set as 10,000. Tables 2 and 3 are frequencies of model selected by AIC and CAIC in the case that M_{1} is true. Tables 4 and 5 show the ones in the case that M_{2} is true. Figures 1 and 2 show the differences between the average of the true risk and the average of each of AIC and CAIC. Figure 1 shows the case that M_{1} is true, and Figure 2 shows the case that M_{2} is true. From these experiments, we can see that CAIC is more effective than AIC in the case of small samples.

	M1	M2	M3	M1(CAIC)	M1	M2	M3
$n_{0}=6$	7559	1271	1170	$n_{0}=6$	9017	732	251
$n_{0}=10$	7883	1244	873	$n_{0}=10$	8838	847	315
$n_{0}=30$	7820	1480	700	$n_{0}=30$	8222	1319	459
$n_{0}=50$	7935	1392	673	$n_{0}=50$	8169	1301	530
$n_{0}=100$	8018	1359	623	$n_{0}=100$	8123	1312	565

Table 4. AIC when M_{2} is true			
	M 1	M 2	M 3
$n_{0}=6$	0	8166	1834
$n_{0}=10$	0	8615	1385
$n_{0}=30$	0	8955	1045
$n_{0}=50$	0	9020	980
$n_{0}=100$	0	9034	966

Table 5. CAIC when M_{2} is true

	M1	M2	M3
$n_{0}=6$	0	9425	575
$n_{0}=10$	0	9374	626
$n_{0}=30$	0	9195	805
$n_{0}=50$	0	9187	813
$n_{0}=100$	0	9121	879

Figure 1. Diferences between risks when M_{1} is true

Figure 2. Diferences between risks when M_{2} is true

5 An example

We consider the data (Kanai et al. (2007)) measured for different 6 materials by two fracture toughness testing methods. The sample sizes are all 6 . The sample means and variances are given in Table 6. It may be noted that the variances are different between 6 materials, but are almost the same between testing methods. For the data, we examined three models M_{1}, M_{2} and M_{3}. The results on MLE's, AIC and CAIC are given in Table 7. The sample sizes $n_{i j}$ are all 6, and are relatively small. So, we use CAIC. As a result, it is concluded that M_{2} is appropriate.

Table 6. Means and variances

i	j	n_{0}	mean	variance
1	1	6	0.07627	0.00007
	2	6	0.20938	0.00131
	3	6	0.21278	0.00428
	4	6	0.71098	0.02323
	5	6	1.92135	0.03125
	6	6	1.10768	0.03085
2	1	6	0.06138	0.00016
	2	6	0.15183	0.00146
	3	6	0.24127	0.00315
	4	6	0.77772	0.00428
	5	6	2.34835	0.11399
	6	6	1.17220	0.13070

Table 7. MLE, AIC and CAIC

	d	α	γ or β	AIC	CAIC
M_{1}	13		1.039820	-130.5692	-125.5097
M_{2}	14	-0.029578	1.161379	-140.6882	-134.4448
M_{3}	18			-140.9095	-130.9095

6 Conclusion

In this paper, we considered some linear structure models with different variances, based on the data (Kanai et al. (2007)) measured for different materials by two fracture toughness testing methods. More precisely, we considered three types of structures between two testing methods, which are denoted by M_{1}, M_{2} and M_{3}. For selection of these models, we gave AIC, and further, we derived its corrected version, CAIC. It was pointed that CAIC is more effective than AIC in the case of small samples, based on simulation experiments. Based on our results, it was pointed that there is a linear structure between two fracture toughness testing methods.

Acknowledgments

The authors would like to thank a referee for his many valuable comments and careful readings.

References

[1] Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In International Symposium on Information Theory, (B. N. Petrov and F. Csáki, eds.), 267-281, Budapest: Akadémia Kiado.
[2] Anderson, T. W. (1984). Estimating linear statistical relationships. Ann. Statist., 12, 1-45.
[3] Fujikoshi. Y. and Satoh, K. (1997). Modified AIC and Cp in multivariate linear regression. Biometrica, 84, 707-716.
[4] Fuller, W. (1987). Measurement Error Models. Wiley, New York.
[5] Kanai, F., Komatsu, S. and Hata, Y. (2007). Relationship between different fracture toughness tests using dental luting cements. The Journal of the Japanese Society for Dental Materials and Devices, 26, 247-255.
[6] Sugiura, N. (1978). Further analysis of the data by Akaike's information criterion and the finite corrections. Commun. Statist., A7, 13-26.

[^0]: ＊Department of Mathematics，Graduate School of Science and Engineering，Chuo University，Bunkyo－ku，Tokyo 112－8551，Japan

