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abstract
This paper is concerned with selection of some linear structure models with different variances.

The models are based on the study of relationships between two fracture toughness testing methods
of dental luting cemments. The measurements are made by using several kinds of materials. They
are assumed to have different variances depending on the materials, but they have the same vari-
ance between two testing methods. For such data, we consider three types of structures between
two methods: (1) proportionality, (2) linearity, and (3) no structure. We give Akaike information
criterion, AIC, to evaluate these models. Then, we derive corrected AIC (CAIC) which is useful for
small samples. By simulation experiments, we find that CAIC is more effective than AIC in the case
of small samples. Our results are applied to a real data of dental luting cements.

1 Introduction

This paper is concerned with selection of linear structure models with different variances. The
models are based on the study of relationships between two fracture toughness testing methods of
dental luting cemments, by using several kinds of materials. Such an example is given in Section 5.

Suppose that two testing methods are examined by using m materials. Let

Xijk, i = 1, 2; j = 1, . . . ,m; k = 1, . . . , nij , (1.1)

be the kth measurement of the jth material by the ith testing method. It is assumed that Xij1, . . . ,

Xijnij are independently and identically distributed as N(μij , σ
2
j ), i.e., for i = 1, 2 and j = 1, . . . ,m,

Xijk ∼ N(μij , σ
2
j ), k = 1, . . . , nij . (1.2)

The data are expressed as in Table 1 below.

Table 1. The data on toughness testing methods by using diffent dental luting cements

method i material j sample mean variance

1 x111 · · · x11n11 μ11 σ2
1

1
...

...
...

...
...

m x1m1 · · · x1mn1j μ1m σ2
m

1 x211 · · · x21n21 μ21 σ2
1

2
...

...
...

...
...

m x2m1 · · · x2mn2j μ2m σ2
m
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Now we are intersting wheter there is a linear structure between (μ11, . . . , μ1m) and (μ21, . . . , μ2m)
or not. For that purpose we consider three types of structure models:

M1 : μ2j = γμ1j , γ �= 0, j = 1, · · · ,m,

M2 : μ2j = βμ1j + α, β �= 0, j = 1, · · · ,m, (1.3)

M3 : otherwise,

where γ, α and β are unknown. The models M1 and M2 show that two methods are essentially the
same, though their relationships are different. We apply Akaike information criterion (AIC, Akaike
(1973)) to evaluate these models. Various linear functional relationships have been considered, see
e.g. Anderson (1984), Fuller (1987). However, it may be noted that the linear functional relationship
as in M1 and M2 has not been discussed.

The AIC is given in Section 2. In Section 3 we study the risk and the bias of AIC, and propose
a corrected AIC, i.e., CAIC. In Section 4, two criteria AIC and CAIC are compared by simulation
experiments. It is shown that CAIC is more effective than AIC in the case of small samples. In
Section 5, we give an example of two fracture toughness testing methods by using six dental luting
cemments.

2 Derivation of AIC

In general, AIC was proposed as a criterion of evaluating a model by Akaike (1973). Let x and
θ be the column vectors of all the observations xijk and the parameters μij and σ2

j , respectively. Let
the log-likelihood be denoted by �(θ|x). Then, AIC is given by

AIC = −2�(θ̂|x) + 2d, (2.1)

where θ̂ is the maximum likelihood estimator (MLE) of θ, and d is the dimension of a model, or the
number of independent parameters involved in a model.

Let d1, d2 and d3 be the dimension d for models M1, M2 and M3 given in (1.3), respectively. Then,
the dimensions are as follows:

d1 = 2m + 1 , d2 = 2m + 2 , d3 = 3m. (2.2)

The density function of Xijk is

f(xijk|μij , σ
2
j ) =

1√
2πσ2

j

exp
{
−1

2
(xijk − μij)2

σ2
j

}
,

since Xijk is distributed as N(μij , σ
2
j ). Then, the log-likelihood function of θ is

�(θ|x) = log
2∏

i=1

m∏
j=1

n∏
k=1

f(xijk|μij , σ
2
j )

= −1
2

m∑
j=1

{
nj log 2π + nj log σ2

j

}
(2.3)

−1
2

2∑
i=1

m∑
j=1

1
σ2

j

nij∑
k=1

(xijk − μij)2,
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where nj = n1j + n2j , j = 1, . . . ,m. Let σ̂2
j;a be the MLE of σ2

j under the model Ma. Then, the
AIC for Ma is expressed as

AICa =
m∑

j=1

nj log σ̂2
j;a + n{log(2π) + 1} + 2da, a = 1, 2, 3, (2.4)

where n = n1 + · · ·+ nm. In the following, we give the MLE’s of the unknown parameters as well as
σ2

j under M1,M2 and M3. Let

x̄ij =
1

nij

nij∑
k=1

xijk, s2
ij =

1
nij

nij∑
k=1

(xijk − x̄ij)2.

For simplicity, first consider the case M3. The independent unknown parameters are μ1j , μ2j and
σ2

j , and it is easy to see that their MLE’s are given by

μ̂1j = x̄1j , μ̂2j = x̄2j , σ̂2
j =

1
nj

(n1js
2
1j + n2js

2
2j). (2.5)

Therefore, the σ̂2
j;3 in (2.4) is given by

σ̂2
j;3 =

1
nj

(n1js
2
1j + n2js

2
2j), j = 1, . . . ,m. (2.6)

Next consider the case M1. The independent unknown parameters are μ1j , γ and σ2
j . It is shown

that the MLE’s are solutions of the following likelihood equations:

∂

∂μij
�(θ|x) = 0,

∂

∂σ2
j

�(θ|x) = 0,
∂

∂γ
�(θ|x) = 0.

Solving the likelihood equations (∂/∂μ1j)�(θ|x) = 0,

−1
2

1
σ2

j

{
−2

n1j∑
k=1

(x1jk − μ1j) − 2γ

n2j∑
k=1

(x2jk − γμ1j)

}
= 0,

⇔ (n1j x̄1j + γn2j x̄2j) − (n1j + γ2n2j)μ1j = 0,

⇔ μ1j =
1

n1j + γ2n2j
(n1j x̄1j + γn2j x̄2j). (2.7)

Similarly, solving (∂/∂σ2
j )�(θ|x) = 0,

−nj

2
1
σ2

j

+
1
2

1
(σ2

j )2

{
n1j∑
k=1

(x1jk − μ1j)2 +
n2j∑
k=1

(x2jk − γμ1j)2
}

= 0,

⇔ σ2
j =

1
nj

{
n1j∑
k=1

(x1jk − μ1j)2 +
n2j∑
k=1

(x2jk − γμ1j)2
}

. (2.8)

Sustituting (2.7) for (2.8), we have

σ2
j =

1
nj(n1j + γ2n2j)

{
(n1j + γ2n2j)(n1js

2
1j + n2js

2
2j)

+n1jn2j(γx̄1j − x̄2j)2
}

. (2.9)
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Substituting (2.7) and (2.9) for the likelihood equation (∂/∂γ)�(θ|x) = 0, and simplfying the resul-
tant equation, we find that the MLE γ̂ of γ is a solution of

m∑
j=1

(n1j x̄1j + γn2j x̄2j)(γx̄1j − x̄2j)
(n1j + γ2n2j)(n1js2

1j + n2js2
2j) + n1jn2j(γx̄1j − x̄2j)2

× njn1jn2j

n1j + γ2n2j
= 0. (2.10)

Note that μ̂1j and σ̂2
j = σ̂2

j;1 are given by (2.7) and (2.9) with γ = γ̂, respectively.
Finally consider the case M2. The independent unknown parameters are μ1j , α, β and σ2

j . The
MLE’s are solutions of the following likelihood equations:

∂

∂μ1j
�(θ|x) = 0,

∂

∂σ2
j

�(θ|x) = 0,
∂

∂α
�(θ|x) = 0,

∂

∂β
�(θ|x) = 0.

Solving the likelihood equations (∂/∂μ1j)�(θ|x) = 0,

−1
2

1
σ2

j

{
−2

n1j∑
k=1

(x1jk − μ1j) − 2β

n2j∑
k=1

(x2jk − α − βμ1j)

}
= 0,

⇔ (n1j x̄1j + βn2j x̄2j − αβn2j) − (n1j + β2n2j)μ1j = 0,

⇔ μ1j =
1

n1j + β2n2j
(n1j x̄1j + βn2j x̄2j − αβn2j). (2.11)

Similarly, solving (∂/∂σ2
j )�(θ|x) = 0,

−nj

2
1
σ2

j

+
1
2

1
(σ2

j )2

{
n1j∑
k=1

(x1jk − μ1j)2 +
n2j∑
k=1

(x2jk − α − βμ1j)2
}

= 0,

⇔ σ2
j =

1
nj

{
n1j∑
k=1

(x1jk − μ1j)2 +
n2j∑
k=1

(x2jk − α − βμ1j)2
}

. (2.12)

Sustituting (2.11) for (2.12), we have

σ2
j =

1
nj(n1j + β2n2j)

{
(n1j + β2n2j)(n1js

2
1j + n2js

2
2j)

+n1jn2j(x̄2 − α − βx̄1j)2
}

. (2.13)

Substituting (2.11) and (2.13) for the likelihood equations (∂/∂α)�(θ|x) = 0 and (∂/∂β)�(θ|x) = 0,
and simplfying the resultant equations, we find that the MLE’s α̂ and β̂ of α and β are solutions of

m∑
j=1

njn1jn2j(x̄2j − α − βx̄1j)
(n1j + β2n2j)(n1js2

1j + n2js2
2j) + n1jn2j(x̄2j − α − βx̄1j)3

= 0. (2.14)

m∑
j=1

(n1j x̄1j + βn2j x̄2j − αβn2j)(x̄2j − α − βx̄1j)
(n1j + β2n2j)(n1js2

1j + n2js2
2j) + n1jn2j(x̄2j − α − βx̄1j)2

× njn1jn2j

n1j + β2n2j
= 0. (2.15)

Note that μ̂1j and σ̂2
j = σ̂2

j;2 are given by (2.11) and (2.13) with α = α̂ and β = β̂, respectively.
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3 The bias of AIC and its correction

In general, AIC was introduced as an asymptotically unbiased estimator of the predictive risk
function of a model. Let X be a random vector whose components consists of all the random
variables Xijk. In our model the risk function is expressed as

RA = E∗
Y E∗

X [−2�(θ̂|Y )] (3.1)

where Y is a random vector whose componets consist of all the future variables Yijk corresponding to
Xijk. It is assumed that Y has the same distribution as X and is independent of X. The expectation
E∗ denotes the one with respect to the true model. The bias when we estimate the risk function by
−2�(θ̂|X) is written as

BA = E∗
Y E∗

X [−2�(θ̂|Y ) + 2�(θ̂|X)]. (3.2)

AIC uses 2d as an estimator of BA. Sugiura (1978) obtained more precise expressions of BA for
some models, assuming that the true model is included in the model considered. The AIC with such
biases is called CAIC. Further, Fujikoshi and Satoh (1997) proposed to estimate BA, relaxing the
assumption that the true model is included in the candidate model. The bias of AIC in our model is

BA =
m∑

j=1

(njσ
2
j )E

[ 1
σ̂2

j

]
−n

+E
[ 1
σ̂2

j

{
n1j(μ1j − μ̂1j)2 + n2j(μ2j − μ̂2j)2

}]
, (3.3)

where the μ̂2j in the cases M1 and M2 are γ̂μ̂1j and α̂ + β̂μ̂1j , respectively.
Let BA;a be the bias BA for model Ma. Assume that nij = n0 for all i = 1, 2 and j = 1, . . . ,m.

Then, it is shown that BA;a can be expanded as follows:

BA;1 = d1 +
1
n0

c1 + O(n−2
0 ),

BA;2 = d2 +
1
n0

c2 + O(n−2
0 ), (3.4)

BA;2 = d3 +
1
n0

c3 + O(n−2
0 ),

where

c1 = 4(m + 2) +
4(m − 1)
1 + γ2

1
t2,2

− 2
t4,4

t22,2

,

c2 = 4(m + 4) +
4(m − 2)
1 + β2

t0,2

t0,2t2,2 − t21,2

− 2R(
t0,2t2,2 − t21,2

)2 ,

c3 = 10m.

and tp,q =
∑m

j=1 μp
1j/σq

j ,

R = t4,4t
2
0,2 + 2t2,2t2,4t0,2 − 4t1,2t3,4t0,2 + t0,4t

2
2,2 − 4t1,2t1,4t2,2 + 4t21,2t2,4.

Using the above results, a corrected AIC is defined as

CAICa = AICa +
1
n0

ĉa, a = 1, 2, 3, (3.5)
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where ĉa is defined from ca by substituting MLE’s for the unknown parameters.

4 Simulation study

In order to investigate the actual behavior of AIC and CAIC, we examined their average biases
and frequencies selected by simulation experiments. The simulations were made for the cases where
the sample sizes nij are the same as n0, and n0 = 6, 10, 30, 50, 100. The parameters are defined as
follows:

γ = 1.05, β = 1.05, α = 0.05

μ11 = 0.07, μ12 = 0.10, μ13 = 0.20,

μ14 = 0.70, μ15 = 1.00, μ16 = 2.00,

σ2
1 = 0.00007, σ2

2 = 0.00100, σ2
3 = 0.00400,

σ2
4 = 0.00600, σ2

5 = 0.01000, σ2
6 = 0.03000.

The numbers of iterations were set as 10,000. Tables 2 and 3 are frequencies of model selected by
AIC and CAIC in the case that M1 is true. Tables 4 and 5 show the ones in the case that M2 is
true. Figures 1 and 2 show the differences between the average of the true risk and the average of
each of AIC and CAIC. Figure 1 shows the case that M1 is true, and Figure 2 shows the case that
M2 is true. From these experiments, we can see that CAIC is more effective than AIC in the case of
small samples.

Table 2. AIC when M1 is true Table 3. CAIC when M1 is true

M1 M2 M3 M1(CAIC) M1 M2 M3
n0=6 7559 1271 1170 n0=6 9017 732 251
n0=10 7883 1244 873 n0=10 8838 847 315
n0=30 7820 1480 700 n0=30 8222 1319 459
n0=50 7935 1392 673 n0=50 8169 1301 530
n0=100 8018 1359 623 n0=100 8123 1312 565

Table 4. AIC when M2 is true Table 5. CAIC when M2 is true

M1 M2 M3 M1 M2 M3
n0=6 0 8166 1834 n0=6 0 9425 575
n0=10 0 8615 1385 n0=10 0 9374 626
n0=30 0 8955 1045 n0=30 0 9195 805
n0=50 0 9020 980 n0=50 0 9187 813
n0=100 0 9034 966 n0=100 0 9121 879
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Figure 1. Diferences between risks when M1 is true
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Figure 2. Diferences between risks when M2 is true
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5 An example

We consider the data (Kanai et al. (2007)) measured for different 6 materials by two fracture
toughness testing methods. The sample sizes are all 6. The sample means and variances are given
in Table 6. It may be noted that the variances are different between 6 materials, but are almost
the same between testing methods. For the data, we examined three models M1,M2 and M3. The
results on MLE’s, AIC and CAIC are given in Table 7. The sample sizes nij are all 6, and are
relatively small. So, we use CAIC. As a result, it is concluded that M2 is appropriate.

Table 6. Means and variances

i j n0 mean variance

1

1 6 0.07627 0.00007
2 6 0.20938 0.00131
3 6 0.21278 0.00428
4 6 0.71098 0.02323
5 6 1.92135 0.03125
6 6 1.10768 0.03085

2

1 6 0.06138 0.00016
2 6 0.15183 0.00146
3 6 0.24127 0.00315
4 6 0.77772 0.00428
5 6 2.34835 0.11399
6 6 1.17220 0.13070

Table 7. MLE, AIC and CAIC

d α γ or β AIC CAIC

M1 13 1.039820 -130.5692 -125.5097

M2 14 -0.029578 1.161379 -140.6882 -134.4448

M3 18 -140.9095 -130.9095

6 Conclusion

In this paper, we considered some linear structure models with different variances, based on
the data (Kanai et al. (2007)) measured for different materials by two fracture toughness testing
methods. More precisely, we considered three types of structures between two testing methods, which
are denoted by M1,M2 and M3. For selection of these models, we gave AIC, and further, we derived
its corrected version, CAIC. It was pointed that CAIC is more effective than AIC in the case of small
samples, based on simulation experiments. Based on our results, it was pointed that there is a linear
structure between two fracture toughness testing methods.
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