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Abstract
　In supercritical fluid chromatography with a mixture of carbon dioxide and a modifier as the mobile 
phase, the relationship between retention factor k and modifier mole fraction x was derived as 1/kmix= 
xCO2/k0

CO2 + xmod/k0
mod, where kmix, k

0
CO2, and k0

mod　are the retention factors for the mixture solvent, pure 
CO2 and pure modifier, respectively, and xCO2 and xmod are the mole fractions of CO2 and a modifier, 
respectively. Since k0

CO2 and k0
mod are often difficult to determine due to too large of a value for k0

CO2 and 
an invalid value of k0

mod for the liquid phase, both values were estimated experimentally from the two 
retention factors available at the lowest and highest modifier mole fractions at each temperature and 
pressure. The equation was effective for the retention factors of the R- and S-forms of racemic trans-
stilbene oxide measured in the present study by supercritical fluid chromatography using a modifier such 
as methanol, ethanol or acetonitrile. Moreover, the equation was also valid for the retention data of various 
enantioselective separations as well as achiral separations reported in the literature.  

Key words: supercritical fluid chromatography, correlation, retention factor, modifier, enantioselective 
separation

Introduction

　Since enantiomers often exhibit significant differences in biological activities, accurate and efficient 
separation/fractionation of racemic compounds is increasingly demanded in analytical chemistry as 
well as in various industries such as bio, pharmaceutical, nutraceutical, cosmetic, fragrance, and food. 
Compared to other separation/fractionation methods, supercritical fluid chromatography (SFC) is 
attractive for a number of reasons [1-3]. For example, supercritical carbon dioxide, mainly employed 
as a mobile phase, has unique physical properties: it has low viscosity and readily solubilizes various 
compounds, and its properties can be tuned by changing the pressure. The pressure drop across 
analytical packed columns can be suppressed even when the flow rate of the solvent is increased, 
especially when using fine particles packed in separation columns, due to the lower viscosity of 
supercritical carbon dioxide compared to other liquids. Moreover, by adding particular organic solvents, 
i.e., a so-called modifier, co-solvent or entrainer such as a polar solvent like methanol, ethanol, 2-propanol, 
or acetonitrile, the polarity of the mobile phase can be changed extensively. 
　Various commercial columns for analyzing/separating enantiomers are available that use stationary 
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phases based on sugar derivatives. There has therefore been a large increase in both fundamental and 
application studies on the analysis and separation/fractionation of enantiomers by SFC using both packed 
[4-24] and open capillary [25-29] columns. In analysis/separation with SFC, a modifier is often added to 
the mobile phase of sub- and supercritical carbon dioxide. Consequently, exploring the optimum operation 
conditions of SFC is more difficult because the retention factors are sensitive to mobile phase density, as 
well as the temperature, flow rate, and modifier composition.
　Since density affects peak retention time significantly, the effects of solvent properties on peak 
retention times at certain temperatures and pressures should be determined to optimize the analytical/
separation conditions. Indeed, various approaches to estimate retention factors for chiral and achiral 
compounds have been investigated with either packed or open capillary columns: (1) by expressing 
k values by a polynomial function of temperature, pressure/density, or properties related to chemical 
structure [2,9,10,21,24,27,29-33], determining the constants involved statistically [6], and with an artificial 
neural network [34], (2) by a function of thermodynamic properties such as heat of vaporization and 
entropy [4,5,10,13,15,16,18,21,22,35], e.g., the van’t Hoff equation, (3) with fugacity coefficients and an 
equation of state under equilibrium conditions between a mobile phase and a stationary phase [36], and 
(4) by a mathematical model describing solute concentration in the packed [19,23] and open columns 
[33,37]. However, the relationship between retention factor and mobile phase composition is not well 
understood, and thus it is typically estimated experimentally. The relationship between k values and 
solvent composition must be known to optimize the separation/analytical conditions. In particular, the 
retention factor is sensitive to the modifier composition in the lean concentration region.
　In the present study, the objectives were to study the effects of modifier species and its composition on 
the enantioselective separation of racemic trans-stilbene oxide in supercritical fluid chromatography, and 
to demonstrate the effectiveness of the equation describing k with the derived solvent composition. 

Theoretical background

The relationship between the retention factor k and the retention time tR for the solute in chromatography 
is described in Eq. (1) [37].

　　　　 (1)

where t0 is the retention time of a marker having no adsorption onto the adsorbent particles. The k value is 
also defined in Eq. (2) [37] as the ratio of the amounts in number of moles for the solute in the stationary 
phase to those in the mobile phase, respectively.

　　　　 (2)

where ξ and ζ are the mole-fractions of the solute in the stationary phase and in the mobile phase, and ns 
and nm are the total number of moles in the two phases, respectively. When the mobile phase is pure CO2 
(retention factor k0

CO2), the amounts of the solute in the mobile phase (ζnm)CO2 is:

　　　　 (3)

Similarly, the amounts of the solute in a pure modifier and in the mixture mobile phase are expressed by 
Eqs (4) and (5), respectively.

　　　　 (4)
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　　　　 (5)

where the subscripts of mod and mix are modifier and mixture, respectively. When the mole fractions of 
CO2 and a modifier are xCO2 and xmod, respectively, the amount of the solute in the mixture ( ζ nm)mix can be 
expressed by

　　　　 (6)

From Eqs (4) to (6)

　　　　 (7)

In addition, the amounts of the solute in pure CO2, pure modifier, and the mixture can be assumed to be 
the same at the same temperature and pressure; namely those are dependent on the stationary phase 
species not the mobile phase species.

　　　　 (8)

Thus, 

　　　　 (9)

k0
CO2 and k0

mod are often difficult to determine due to too large of a value for k0
CO2 and an invalid value of k0

mod 
for the liquid phase. For instance, when a mixture of CO2 and the modifier is not a single phase at higher 
modifier compositions, and/or the retention factor k0

CO2 is too large, namely, not eluted without a modifier, 
k0

CO2 and k0
mod can be estimated using two kmix values at different xCO2’ s. In this study, those at the lowest 

and highest xCO2 were used. Moreover, since a volume fraction Φ of a modifier is often used, Eq. (9) can be 
alternatively rewritten as Eq. (10).

　　　　 (10)

Experimental

　Figure 1 shows a schematic diagram of the experimental apparatus, which consists of two syringe 
pumps (Models 260D and 100DM, Teledyne ISCO, Lincoln, U.S.A.), which were used for supplying CO2 
and the modifier, respectively, a preheater tube (1/16 inch O.D. × 2 m long), a packed adsorption column 

Figure 1. A schematic diagram of the experimental apparatus. 
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(Chiralpak AD-H, 4.6× 250 mm, 5 μm, 3, 5-dimethylphenylcarbamate derivative of amylose, Daicel, 
Tokyo, Japan), a UV-VIS multi photodiode-array detector (MD-1510 or MD-2018, JASCO, Tokyo, Japan), 
and a back pressure regulator (Model 880-81, JASCO). The adsorption column was installed vertically in 
the water bath, which was maintained within a ±0.2 K temperature range.
　Liquid CO2 and a modifier (methanol, ethanol, or acetonitrile) were used to fill the cylinder of each syringe 
pump, and were held until the temperatures of the cylinders reached room temperature. CO2 and the 
modifier were separately fed at constant flow rates from each syringe pump, and the two fluids were mixed 
upstream at the inlet to the preheating tube. When the flow rates, composition of mobile phase, temperature 
and pressure of the column were stabilized, 5 μL of a methanol solution of racemic trans-stilbene oxide was 
injected via an injector (Model: 7520, Rheodyne, California, U.S.A.). The time-concentration profile of the 
solute was monitored by the detector by scanning from 195 to 600 nm in increments of 1 nm at an interval 
of 0.2 to 1.6 s. The measurements were made at temperatures from 308.2 to 313.2 K, pressures of 10, 20, and 
30 MPa, and mole fractions of modifier of 0 to 0.35. 1,3,5-tri-tert-Butylbenzene was used as an inert marker 
to determine the residence times of the mobile phase. The measurement pressures at the inlet and outlet 
column were recorded by pressure sensors #1 and #2, respectively. The pressure drop between the inlet and 
outlet of the separation column was less than 1 MPa.
　The retention factors are known to be sensitive to modifier composition of the mobile phase in the lean 
modifier region. Thus, the modifier compositions should be carefully adjusted by setting the flow rates 
of the pumps. The modifier compositions were estimated from the flow rates of carbon dioxide and the 
modifier, and assumed that the inside temperatures of the syringe pump cylinders were equal to room 
temperature. The flow rates were confirmed by directly measuring the flow rate of carbon dioxide using a 
soap bubble film meter, and the flow rate of the modifier was determined by weighing the collected liquid 
mass obtained from the exit of the back pressure regulator. The flow rate settings in the two pumps were 
consistent within ± 2% with the values directly measured.

Results and discussion

　Figure 2 shows retention factors k1 and k2 (k1 < k2), corresponding to k1 and k2 for the R- and S-forms, 
respectively, vs. various compositions of modifiers such as methanol, ethanol and acetonitrile at 313.2 K 
and 10 MPa. Solid, broken and dotted-solid lines were obtained from Eq. (9). All the data were averaged 
from four or more measurements under each condition of k1 and k2 measured in the present study. Note 
that trans-stilbene oxide was not eluted for 250 min without methanol at a CO2 flow rate of 0.8 mL/min. 
All the values of the retention factors (k1 and k2) decreased with increasing modifier mole fractions xmod 
for the three modifiers. The siginificant changes in k1 and k2 values were seen up to xmod = 0.1, and the 
changes gradually decreased above xmod = 0.1. The tendency is commonly observed for many solutes in 
the literature [4,5,10,12,13,15-17,19,21]. Although the differencies in k1 values are not evident, the k2 values 
at xmod = 0.05 decreased in the order: ethanol > methanol > acetonitrile, corresponding to the inverse order 
of the dielectric constant values, which show the solvent polarities. Note that the dielectric constants at 
room temperature are 24.5, 32.7 and 37.5 for ethanol, methanol and acetonitrile, respectively [38]. 
　Table 1 presents the accuracy of Eq. (9), in terms of average absolute relative deviation (AARD) 
defined as Eq.(11), for k1 and k2 measured in the present study. The measured k1 and k2 decreased with 
increasing xmod for the three modifiers, consistent with the literature, as mentioned above, and Eq. (9) 
represented the k1 and k2 values well. 
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　　　　 (11)

Herein, N is the number of data points for examining accuracy, equal to Ntotal - 2; Ntotal is the number of 
data points reported, and the superscripts, prd and exp, are prediction and experiment, respectively. The 
accuracies in Eq. (9) were quite good for most of the conditions, except for acetonitrile. The reason for this 

Table 1. Accuracy of Eq. (9) for the k1 and k2 data (tR,1 for k1 < tR,2 for k2) measured in the present study.

k1 k2

T(K) P(MPa) Co-solvent N*a Max AARD Max AARD

ARD(%) (%) ARD(%) (%)
313.2 10 Acetonitrile 2 12.9 8.27 15.8 10.7

10 Ethanol 6 2.03 1.38 9.20 5.22
10 Methanol 5 4.22 2.54 6.87 3.81
20 Methanol 2 5.24 4.8 3.63 2.84
30 Methanol 2 4.05 2.44 4.36 2.62

308.2 10 Methanol 5 3.95 2.06 4.82 2.45
20 Methanol 2 8.32 6.12 7.00 4.49
30 Methanol 2 5.54 4.46 3.55 3.17

303.2 10 Methanol 5 3.99 2.20 4.75 3.29
20 Methanol 2 3.22 2.85 9.18 6.55
30 Methanol 2 6.81 6.13 3.67 2.08

*a: Number of data points for examining accuracy in Eq(9); namely,  N - 2
Max ARD: maximum absolute relative deviation
AARD: average absolute relative deviation

Figure 2.  Retention factors (a) k2 and (b) k1 for trans-stilbene oxide at 313.2 K and 10 MPa in a mixture of CO2 and a 
modifier, (○ ) methanol, (▲ ) ethanol and (□ ) acetonitrile. The solid, broken and solid-dotted lines were 
estimated by Eq. (9). 
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is not clear, but the assumption in Eq. (8) for the derivation of Eq. (9) could partially fail. Further studies 
on the phase diagram of the mixture of CO2 and acetonitrile and excess molar volume of the mixture may 
be required. 
　Figure 3 shows the composition dependence of separation factors α = k2/k1 determined from k1 and 
k2 values measured experimentally, where the solid lines were obtained from k1 and k2 values estimated 
by Eq. (9). The separation factors were also well predicted by Eq. (9). The composition dependences of 
methanol and acetonitrile were not evident, while that of ethanol slightly decreased with ethanol mole 
fraction at low ethanol mole fractions, corresponding to the region showing the significant decreases in 
k1 and k2 values. Whereas the α values with ethanol ranged from 2.6 to 3.3 and the peak sepration is good, 
it could be time consuming. The α values with methanol and acetonitrile were nearly equal to about 1.7 
and 1.4, respectively, over all xmod range studied. Thus, the separations with methanol and acetonitrile are 

Figure 3.  Separation factor α vs. modifier mole fraction for trans-stilbene oxide at 313.2 K and 10 MPa in a mixture of 
CO2 and a modifier, ( ○ ) methanol, (▲ ) ethanol, and ( □ ) acetonitrile. The solid lines were obtained from 
k1 and k2 values estimated by Eq. (9). 

Figure 4.  Retention factors (a) k2 and (b) k1 for paroxetine at 35 °C and 15 MPa in a mixture of CO2 and a modifier,  
( ○ ) methanol, (▲ ) ethanol and ( ◊ ) 2-propanol, obtained by Su et al. [16]. The solid, broken and dotted-
solid lines were estimated by Eq. (9). 
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good and fast separation can be achieved. However, it is notable that the peak separation between two 
enantiomers cannot be drastically changed by changing modifier concentration for the three modifiers. 
　Figure 4 demonstrates the validity of Eq. (9) for paroxetine at 35 °C and 15 MPa in a mixture of CO2 
and a modifier such as methanol, ethanol, and 2-propanol reported by Su et al. [16], whose data with 
the three modifiers are available over a wide range of the modifier mole fraction. Although both k1 and 
k2 values sharply decreased with increasing xmod in the lean modifier region, Eq. (9) represented the 
measured k1 and k2 data well. In the region showing significant decreases in k1 and k2 values, up to xmod = 
0.025, the values of k1 and k2 decreased in the order: 2-propanol > ethanol > methanol. As seen in Fig.2, 
the orders for k1 and k2 are consistent with the inverse order of the modifier polarity, represented by the 
dielectric constant values, where that of 2-propanol at room temperature is 17.9 [38].
　Table 2 shows the percentages of the maximum absolute relative deviation (ARD) ranges for the 
retention factors reported in the literature [5,10,12,13,15-17,19,21]. A total of 122 systems/conditions were 
examined for accuracy using Eq. (9), and there were 80 systems with maximum ARD lower than 20% 
and 49 lower than 10%. The large deviations result partly from low reproducibilities for each dataset, and 
in particular the k values at low xmod values, where the k values drastically decrease with increasing xmod. 
Note that Eq. (9) was also valid for the retention data [10] for separation of tocopherols, which are achiral 
compounds.

Range for Maximum Percentage of the 
system/condition

< 5% 16.4
5 to 10 % 23.8

10 to 15 % 14.8
15 to 20 % 10.7

20 % < 34.3

Total: 122 systems/conditions
Data sources: Bernal, J. L. et al. [5],
Jiang, C. et al. [10], Toribio, L. et al. [12],
Yang, Y. et al. [13], Toribio, L. et al. [15],
Su, B. et al. [16], Bao, Z. et al. [17],
Kamarei, F. et al. [19], Li, M. et al. [21]

Table 2. Accuracy of Eq.(9) for the retention data reported in the literature.

Conclusions

　The retention factors k1 and k2 for enantiomers were derived as a function of mobile phase compositions. 
The equation was valid for retention factors of the R- and S-forms in the enantioselective separation of 
racemic trans-stilbene oxide with methanol, ethanol and acetonitrile as a modifier measured. In addition, 
the equation was valid for data on various enantiomers as well as achiral compounds reported in the 
literature. 
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