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1 Introduction

The analysis of the scattering and diffraction by open-ended metallic waveguide cavities has been
of great interest recently in connection with the prediction and reduction of the radar cross section
(RCS) of a target. This problem serves as a simple model of duct structures such as jet engine
intakes of aircrafts and cracks occurring on surfaces of general complicated bodies. Therefore the
investigation of a scattering mechanism in case of the existence of open cavities is an important
subject in the field of the RCS prediction and reduction. Some of the cavity diffraction problems
have been analyzed thus far using a variety of different analytical and numerical methods. If the
cavity dimensions are small in comparison to the incident wavelength, numerical techniques such as
the method of moments and the finite element method can be applied efficiently. For large cavities
with uniform cross sections, the results based on the waveguide modal approach by the use of the
reciprocity relationship and the Kirchhoff approximation have been reported. In order to describe
systematically the scattering mechanism as related to a fairly general class of large cavities with
reasonable accuracy, the three ray-based approaches, namely, the method of shooting and bouncing
rays, the Gaussian beam method, and the generalized ray expansion method have been developed.
Furthermore, hybrid techniques such as the asymptotic/modal approach and the boundary inte-
gral/modal approach have also been established. These hybrid approaches take advantage of the
efficiency of the modal analysis as well as the flexibility of asymptotic or numerical techniques. Most
of these analysis methods incorporate the scattering from the interior of the cavity including the rim
diffraction at the open end, but they do not rigorously take into account the scattering effect arising
from the entire exterior surface of the cavity. Therefore, final solutions due to these approaches are
valid only for the restricted range of incidence and observation angles. In addition, these solutions
may not be uniformly valid for arbitrary dimensions of the cavity.
The Wiener-Hopf technique is known as a powerful tool for analyzing electromagnetic wave prob-

lems associated with canonical geometries, which is mathematically rigorous in the sense that the
edge condition is explicitly incorporated into the analysis. We have considered a finite parallel-plate
waveguide with a planar termination at the open end as an example of simple two-dimensional (2-D)
cavity structures, and solved the plane wave diffraction problem rigorously using the Wiener-Hopf
technique. As a result, an efficient approximate solution has been obtained, which is valid for the
cavity depth greater than the incident wavelength. We have further considered 2-D material-loaded
cavities formed by finite and semi-infinite parallel-plate waveguides, and carried out a rigorous RCS
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analysis by means of the Wiener-Hopf technique. It has been shown by numerical computation
that the results are valid over a broad frequency range and can be used as a reference solution for
validating more general-purpose computer codes based on approximate methods.
This paper gives a summary of our further research related to cavity diffraction problems, which

contains new Wiener-Hopf solutions to more complicated cavities composed of a circular waveguide.
Some of the results presented in this paper have already been reported in journals and conference
proceedings.

2 Wiener-Hopf Solution to the Diffraction by a Circular Waveguide Cavity
2.1 Vector diffraction problem
We shall generalize the technique, previously developed for a rigorous analysis of the 2-D diffraction

by parallel-plate waveguide cavities, to the analysis of the three-dimensional (3-D) vector diffraction
by open-ended cavity structures. Let us consider a semi-infinite circular waveguide with an interior
planar termination as shown in Fig. 1 [1-3], where (ρ, ϕ, z) are cylindrical coordinates. It is assumed
that the circular cavity is excited by non-symmetric electromagnetic waves of a hypothetical generator
with voltage of unit amplitude across an infinitesimally small gap at the interior cylindrical face.
The mixed boundary value problem mentioned above for the wave diffraction by a cylindrical

waveguide cavity involves the unknown TM and TE scalar potentials and the problem is stated as
follows: (

∆+ k2 0
0 ∆ + k2

)(
u1(ρ, z)
u2(ρ, z)

)
=

(
0
0

)
, (1)

Fig. 1 Semi-infinite cylinder with an interior planar termination

The boundary condition at the cylindrical surface:
z ∈ (−∞, L) with ρ = b+ 0 and z ∈ (−L,L)

with ρ = b− 0(
ϑ[∂2/∂z2 + k2] 0
ϑmρ−1∂/∂z ∂/∂ρ

)(
ut1

ut2

)
=

(
0
0

)
,

The boundary condition at the plate
termination: ρ ∈ (0, b), z = −L

(
ϑmρ−1∂/∂z ∂/∂ρ

ϑm∂2/∂ρ∂z m/ρ

)(
ut1

ut2

)
=

(
0
0

)
, (2)

Here ϑ = i(ωε)−1 and m is the number of the azimuth mode.
Taking the Fourier transform of (1) appropriately, we derive the transformed wave equations with

unknown inhomogeneous terms comprising the field potentials and their normal derivatives on the
surface of the interior planar termination, with the result that(

T̂ 0
0 T̂

)(
U1(ρ, α)
U2(ρ, α)

)
=

(
0
0

)
in ρ > b for |τ | < k2, (3)
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(
T̂ 0
0 T̂

)(
Φ1(ρ, α) + eiαLΨ+

1 (ρ, α)
Φ2(ρ, α) + eiαLΨ+

2 (ρ, α)

)
= e−iαL

(
g̃1(ρ)− iαf̃1(ρ)
g̃2(ρ)− iαf̃2(ρ)

)
in 0 < ρ < b for τ > −k2, (4)

where α = Reα + iImα(≡ σ + iτ) with l = 1, 2, T̂ =
[
d2/dρ2 + ρ−1d/dρ−

(
γ2 +m2/ρ2

)]
, γ =

(α2 − k2)1/2 with Reγ > 0, and f̃l(ρ), g̃l(ρ) are the unknown inhomogeneous terms defined by

f̃l(ρ) = (2π)−1/2utl(ρ,−L), g̃l(ρ) = (2π)−1/2∂utl(ρ, z)/∂z|z=−L. (5)

The terms on the left-hand sides of (3) and (4) are the Fourier transforms of the unknown functions
in (1) and (2), being defined by

Ul(ρ, α) = (2π)−1/2

∫ +∞

−∞
ul(ρ, z)eiαzdz, for ρ > b, (6a)

Ul(ρ, α) = (2π)−1/2

∫ +∞

−∞
ul(ρ, z)eiαzdz, for 0 < ρ < b, (6b)

U+
l (ρ, α) =

1√
2π

∫ +∞

+L

ul(ρ, z)eiα(z−L)dz, Φl(ρ, α) =
1√
2π

∫ +L

−L
utl(ρ, z)e

iαzdz. (6c)

It is found that U+
l (ρ, α) are regular in the half-plane τ > −k2 and Φl(ρ, α) with l = 1, 2 are entire

functions. Using the notation as given by (6), we may express Ul(ρ, α) as

Ul(ρ, α) = Φl(ρ, α) + eiαLΨ+
l (ρ, α)− U il (ρ, α) (7)

for 0 < ρ < b, where

Ψ(+)
l (ρ, α) = U+

l (ρ, α) +Q+
l (ρ, α), (8)

Q+
1 (ρ, α) =

ωε

(2π)3/2

∫ +∞+iε+

−∞+iε+

Im(γβρ)eiβ(d−L)

γ2
βIm(γβb)

dβ

α− β
, (9)

U i1(ρ, α) =
ωεe−iαL

(2π)3/2

∫ +∞+iε+

−∞+iε+

Im(γβρ)eiβ(d+L)

γ2
βIm(γβb)

dβ

α− β
, (10)

In (9) and (10) the constant ε+ is taken such that −k2 < ε+ < τ .
The main idea is to derive the expressions of the functions in (5) in terms of the Fourier-Bessel

and Dini series as well as the static terms with common unknown coefficients due to the correct
separation of the variables for (1) and (2) and then to account for the interaction of TM and TE
waves. This allows finding the field image in Fourier transform domain. Since the scattered field
for the region ρ > b must vanish as ρ → ∞ according to the radiation condition, we find by taking
into account the boundary conditions at the termination the solutions of (3) and (4). This leads
to a scattered field representation in the Fourier transform domain. Using the boundary conditions
for the field components ez(ρ, z), eϕ(ρ, z) at the cylindrical surfers with ρ = b and the conditions
of continuity for the field components hz(ρ, z), hϕ(ρ, z) with ρ = b and L < z < ∞ in the Fourier
transform domain, we derive the Wiener-Hopf equation as well as the set of linear algebraic equations
of the second kind after the factorization and decomposition procedure, which leads to a rigorous
solution for arbitrary physical parameters. An approximate solution is further derived for the case
where the dominant propagating TE and TM modes consecutively appear in the circular cavity of
large depth.
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2.2 Axially symmetric case (Scalar wave diffraction problem)
The scalar-type transition under co-phasal distribution of the electric voltage in the generator as

well as a generalization of the approach to a more realistic model involving an open-ended finite
circular waveguide cavity as shown in Fig. 2 are also investigated [4-6]. The axially symmetric
mixed boundary value problem for the above-mentioned problem of wave diffraction by a cylindrical
waveguide cavity now involves the unknown TM scalar potential and is stated as follows:

∆φ+ k2φ = 0. (11)

The boundary condition at the cylindrical
surface

z ∈ (−L,L) with ρ = b± 0 : [∂2/∂z2 + k2]φt = 0.

The boundary condition at the plate
termination

ρ ∈ (0, b) with z = −L± 0 : ∂2/∂ρ∂z[φt] = 0.
(12)

Taking the Fourier transform of (11), we derive the transformed wave equations with unknown
inhomogeneous terms which comprise the field potential on the opposite surfaces of the planar ter-
mination. Expanding these terms into the convergent Fourier-Bessel series and applying the above-
mentioned technique, we obtain the correct field image in the Fourier transform domain. This allows
to formulate the problem in terms of the Wiener-Hopf equation, which is solved via the factorization
and decomposition procedure. Finally we obtain the exact solution with the result that

E−(b, α) +M−(α)

[
J

(1)
E (α) +

∞∑
n=1

M+(iγn)E−(b,−iγn)
iγn(α− iγn)

]
= M−(α)R−(α), (13)

E+(b, α)−M+(α)

[
J

(2)
E (α) +

∞∑
n=1

e−4γnLM+(iγn)E+(b, iγn)
iγn(α+ iγn)

]
= M+(α)R+(α), (14)

where

J
(1,2)
E (α) =

1
2

∫ ±i∞±k

±k

e±2iνLM±(ν)E±(b, ν)
γ2
νK0(γνb)[K0(γνb)− iπI0(γνb)]

dν

ν − α
. (15)

Here E±(b, α) are the unknown functions in the transform domain for ez(b, z); R±(α) and M±(α)
are known functions which are regular in the half-planes τ>< ∓ k2. In (15), I0(·) and K0(·) are the
modified Bessel functions of the first and second kinds, respectively.
The solution is exact but formal, since singular infinite branch-cut integrals (15) with unknown in-

tegrands are involved. Then taking into account the exponentially decaying behavior of the integrand
(15), we can express J

(1,2)
E (α) for large |k|L by keeping only the leading term for the asymptotic

expansion with the result that

J
(1)
E (α) ∼ 1

2
e2ikLb2χ(α)M+(k)E+(b, k), J

(2)
E (α) ∼ 1

2
e2ikLb2χ(−α)M+(k)E−(b,−k), (16)

where

χ(α) =
∫ ∞

0

e−2tL

[t− i(k − α)]R0(t)
dt (17)

with

R0(t) = 2itkb2K0

(
i1/2

√
2ktb2

) [
K0

(
i1/2

√
2ktb2

)
− iπI0

(
i1/2

√
2ktb2

)]
, (18)
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Fig. 2 Geometry of the problem.

|α− k| > 0 and − π/2 < arg(α− k) < 3π/2. (19)

The integral (17) is uniformly convergent because of the integrable singularity R0(t) = O(t(ln t)2)
for t → 0 and the conditions (19).
Next we derive the approximate expressions of E−(α) and E+(α) which lead to the two sets of

2N + 2 equations, where N is a large positive integer. These equations can be solved numerically
with high accuracy. In numerical computation, the truncation number N has been chosen so that
it is greater than the number of propagating modes inside the waveguide. By careful numerical
experimentation, it has been clarified that the choice of N = 10 gives sufficient accuracy in numerical
results presented in this paper.
Approximation procedures based on a rigorous asymptotics are presented and an approximate

solution of the Wiener-Hopf equation is derived. The scattered field inside and outside the cav-
ity is evaluated by taking the inverse Fourier transform and applying the saddle point method of
integration.

3 Numerical results and discussion

Based on the mentioned above results, we have carried out numerical computations and give repre-
sentative numerical examples of the radiation patterns for the amplitude of the electric components
for various physical parameters. We have computed electric field components |e∗z| = |ez(ρ, z)R|
and |e∗ρ| = |eρ(ρ, z)R| as R → ∞, where (R, θ) are cylindrical coordinates defined by z = R cos θ,
ρ = R sin θ for 0 < θ < π. Figure 3 shows the far field amplitude of e∗z and e∗ρ as a function of
observation angle. It is seen from the figure that the radiated field oscillates rapidly with an increase
of the cavity dimension. This sharp oscillation for larger cavities is due to the effect of the multiple
diffraction between the aperture and the back corner. Next we evaluate the power of TM waves
radiated from the cavity through the elementary surface dS = sin θdθdϕ. The radiated power P is
found to be

P (θ) ∼ 0.5(ε/µ)1/2|ez(ρ, z)/ sin θ|2R2.

We investigate the power radiated from the cavities as a function of the observation angle and cavity
parameters. Figure 4 shows that, with an increase of the cross section of the cavity, dominant peaks
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(a) Far field amplitude |e∗z |. (b) Far field amplitude |e∗ρ|.

Fig.3 Radiation pattern of electric field components e∗z and e∗ρ for d/L = 0.

Line 1: 2b = 10λ, L/b = 1. Line 2: 2b = 2λ, L/b = 5.

(a) 1 − 2b = 2λ, L/b = 10; 2 − 2b = 4λ, L/b = 5;

(a) 3 − 2b = 10λ, L/b = 2

(b) 2b = 10λ; 1 − L/b = 0.1; 2 − L/b = 0.5;

(b) 3 − L/b = 1

Fig.4 Power of the radiation energy for d/L = 0.0

of oscillations of the radiated power are formed in the region 75◦ < θ < 105◦. The focusing effect of
the radiated power is found in the direction θ = 90◦ for short cavities.

4 Conclusions

We have analyzed the vector diffraction problem for a circular waveguide cavity rigorously using
the Wiener-Hopf technique. The method of solution is a generalization of the approach we have
established previously for the analysis of the parallel-plate waveguide with a planar termination
and it uses the infinite Fourier-Bessel and Dini series in the formulation, and rigorously involves
the interaction between TM and TE types of waves. The key equations for investigation of the
electromagnetic fields scattered by the cylindrical waveguide cavity in the vector case are derived.
For investigating the axial symmetric electromagnetic fields scattered by the cylindrical waveguide

cavity numerically, approximate procedures and an approximate solution of the Wiener-Hopf equa-
tion are derived. Based on these results, we have carried out numerical computations and showed
representative numerical examples of the radiation patterns for amplitude of the electric components
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and the power radiated from the cavities for various physical parameters. Some comparisons with
exact solution for infinite and semi infinite cylinders have also been made.
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