
中 央 大 学 理 工 学 研 究 所 論 文 集 　 第 9号 　 2004年

Journal of the Institute of Science and Engineering. Chuo University

Wind Flow Simulation in City using Computational

Fluid Dynamics and Parallel Computing

Kazuya NOJIMA∗ and Mutsuto KAWAHARA∗

abstract

In this study, simulation of wind flow in the city is investigated. For the reduction of the calculation

time and storage requirement, the parallel computation which based on the domain decomposition

method is employed. The wind flow is assumed as incompressible viscous flow. The Navier-Stokes

equation is used as basic equation. For the spatial discretization, a mixed interpolation using the

bubble function element is employed. The fractional step method introducing an intermediate velocity

is applied. The computational methodology relies on the following ingredients: space discretization

of the Navier-Stokes equations by the finite element approximations using tetrahedral element, time

discretization by the second order accurate Crank-Nicolson scheme. The computation is carried out

stably with the stabilising method. From the result of calculation time, it can be said that the parallel

computing is effective for the reduction of the calculation time. The high performance computing is

obtained by using parallel computing. In the case of calculation by the super computer (IBM pSeries

690), the parallel efficiency becomes higher than 100%. Thus the cause of this problem is investigated

in this paper.

1 Introduction

The wind flow among buildings is an important problem in civil engineering. The estimation of the

influence of the building to wind environment is necessary before the construction of the buildings.

Especially, high-rise buildings cause very serious wind problems after the construction. Ordinary

the estimations are carried out by model tests. However, the experiment of this problem and the

field observation are very expensive and very time-consuming task. Recently the CFD is used for the

estimation of the wind environment before the model test. CFD is able to estimate the wind flow with

lower cost than measurement or model experiment. However, there are some difficulty to simulate the

wind flow in city with CFD. The first problem is the modelling of the wind field. The modelling is very

hard work because area in a city is very complicate. The second is large storage requirement. The

computational domain are very large because huge number of the nodes are required in flow problems

and computational fields of wind analysis are large. The third is that the phenomenon continues long

time. The fourth is that the wind direction changes. Thus, it is necessary to simulate the various

wind directions. In previous research, the modelling and meshing technique are proposed [1]. It uses

the three-dimensional Delaunay triangulation and adaptive remeshing technique. In this research,

the parallel computing for the large scale computation is employed. As for calculation technique, the

stabilized scheme based on bubble function element is applied. As temporal and spatial discretization,

Crank-Nicolson method and mixed interpolation is employed, respectively. In case of using the mixed

interpolation, linear element is applied to pressure field and the bubble function element [2] [3] [4] [5]

is applied to flow field.

∗ Dept. of Civil Engineering, Chuo Univ. 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan

– 17 –

Kazuya NOJIMA Mutsuto KAWAHARA

In order to obtain the high performance computation, the parallel computing is indispensable. The

parallel computing technique based on the domain decomposition technique is developed in order

to reduce the computational time and storage requirement. The parallel computing can reduce the

computational time dramatically. Thus the parallel computing is introduced in this research.

2 Incompressible Navier-Stokes Equation

As basic equation of an incompressible viscous flow, the incompressible Navier-Stokes equation is

employed. The incompressible Navier-Stokes equation is expressed by

∂u

∂t
+ u · ∇u + ∇p −∇ · ν

(
(∇u) + (∇u)T

)
= f , in Ω, (1)

∇ · u = 0, in Ω, (2)

where Ω is the computational domain enclosed by the boundary Γ. u and p represent the velocity and

pressure, respectively. The term f is the source term, and ν is the kinematic viscosity. The function

ν is equal to inverse of the Reynolds number. The boundary Γ is divided into subsets Γ1 and Γ2,

where the boundary condition is prescribed as

u = û, on Γ1, (3){
−pI + ν

(
(∇u) + (∇u)T

)}
· n = t̂, on Γ2, (4)

in which I denotes the identity tensor, n is the outward normal on the boundary Γ, û is the given

value of velocity and t̂ is the given value of traction.

3 Temporal Discretization

For temporal discretization an implicit scheme, which can use long time increment and has stability,

is applied.
un+1

i − un
i

∆t
+ u∗

ju
n+ 1

2
i,j + pn+1

,i − ν
(
u

n+ 1
2

i,j + u
n+ 1

2
j,i

)
,j

= fi. (5)

The continuity equation is implicitly expressed as

un+1
,ii = 0, (6)

where

u
n+ 1

2
i =

un+1
i + un

i

2
,

u∗
i =

1

2

(
3un

i − un−1
i

)
,

in which u∗
i is a linear approximation of advection and is obtained by the Adams-Bash-forth formula

of second order. The scheme is a linear scheme which has accuracy of second order in time.

4 Fractional Step Method and Spatial Discretization

The Navier-Stokes equation can be solved by the fractional step method, where flow and pressure

fields are separated by deriving the pressure Poisson equation from the momentum and continuity

equation. The pressure Poisson equation is derived introducing an intermediate velocity which may

not satisfy the continuity equation(2). The Galerkin formulation is used in space.

– 18 –

Wind Flow Simulation in City using Computational Fluid Dynamics and Parallel Computing

The mixed interpolation is applied to the spatial discretization. A bubble element is employed as

an interpolation for the flow field. A linear element is employed as an interpolation for the pressure

field.

If the pressure pn of the previous time step is regarded as an approximated pressure, the pressure

pn+1 is replaced with pn in Eq.(5). The unknown velocity ui
n+1 is replaced by the intermediate

velocity ũi
n+1. The momentum equation(5) can be rewritten as

ũn+1
i − un

i

∆t
+ u∗

j · ∇ũ
n+ 1

2
i,j + pn

,i − ν
(
ũ

n+ 1
2

i,j + ũ
n+ 1

2
j,i

)
,j

= fi, in Ω. (7)

by taking residual between Eq.(7) and Eq.(5), the following equation can be obtained.

un+1
i − ũn+1

i

∆t
+

1

2
u∗

j (un+1
i,j − ũn+1

i,j) + (pn+1
i − pn

i)

−1

2
ν
{
(un+1

i,j − ũn+1
i,j) + (un+1

j,i − ũn+1
j,i)

}
= 0, in Ω. (8)

The pressure Poisson equation is obtained taking divergence of Eq.(8) and substituting the resulting

equation into Eq.(6). The unknown velocity ui
n+1 is approximated by the intermediate ũi

n+1, and

then the second and forth term of Eq.(8) is neglected. The pressure Poisson equation is obtained as

∆t(pn+1
,ii − pn

,ii) = ũn+1
i,i , in Ω. (9)

5 Finite Element Formulation

5.1 Mixed Interpolation
As the spatial discretization of equations (1) where (r, s, t) are the iso-parametric coordinates,

the mixed interpolation is applied. The bubble function element is shown in Fig. 1. The mixed

interpolations for velocity and pressure can be expressed as follows:

r

s

t

1 2

3

4

5

Fig. 1 Bubble Function Element

r

s

t

1 2

3

4

Fig. 2 Linear Element

uh
ie = Φ1ui1 + Φ2ui2 + Φ3ui3 + Φ4ui4 + Φ5u

′
i5, (10)

u
′
i5 = ui5 − 1

4
(ui1 + ui2 + ui3 + ui4),

– 19 –

Kazuya NOJIMA Mutsuto KAWAHARA

Φ1 = 1 − r − s − t, Φ2 = r, Φ3 = s, Φ4 = t, Φ5 = φB ,

ph
e = Ψ1p1 + Ψ2p2 + Ψ3p3 + Ψ4p4, (11)

Ψ1 = 1 − r − s − t, Ψ2 = r, Ψ3 = s, Ψ4 = t, (12)

Here φB is the bubble function which satisfies C0 continuity and Φα(α = 1 ∼ 5) is the bubble element

for velocity in five-node tetrahedral element. Ψλ(λ = 1 ∼ 4) is the linear element and uiα and pλ

represent the nodal values at the α th node of each finite element. Eq. (10) is divided from the linear

interpolation and the bubble function interpolation as follows:

uh
ie = ūh

ie + u
′h
ie , ūh

ie = Φ1ui1 + Φ2ui2 + Φ3ui3 + Φ4ui4, u
′h
ie = φBbie, bie = u

′
i5. (13)

5.2 The Stabilized Control Method for The Bubble Function Element

w1

w3

w2

0 1

1

r

s

t

w4

1

Fig. 3 Subdivision of Element

The linear bubble function is defined using the iso-parametric coordinates (r, s, t) as is shown in

Fig. 3. four four tetrahedra w1 −w4 in Fig. 3 is divided at the center of gravity. The bubble function

of C0 continuity can be considered on each sub-tetrahedron as the following equation:

φξ
B =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4ξ (1 − r − s − t)ξ in ω1,

4ξ rξ in ω2,

4ξ sξ in ω3,

4ξ tξ in ω4,

(14)

where ξ is the shape parameter of the bubble function. It is used so as to introduce the suitable

stabilisation effect by changing the shape. The range of the parameter is a positive real number

because Eq. (14) satisfies the condition that Eq.(14) is 0 on each boundary of element.

The criteria for the steady problem is used. in which the discretized form derived from the bubble

element is equivalent to those from the SUPG. Thus, the stabilisation parameter τeB defined as

τeB =
{∫

Ωe
φξ

edΩ}2

ν
∫
Ωe

(φξ
e,i)

2dΩVe

, (15)

– 20 –

Administrator
線

Wind Flow Simulation in City using Computational Fluid Dynamics and Parallel Computing

where Ve is the element volume and φξ
e is the bubble function defined on each element. From the

criteria for the stabilized parameter in the SUPG, we selected the optimal parameter τeS

τeS =

[(
2|ui|
he

)2

+

(
4ν

h2
e

)2
]− 1

2

, (16)

where h2
e is width of element. Eq. (15) is not equal to Eq. (16). The bubble function is improved as

the follow equation

τeB =
{∫

Ωe
φξ

edΩ}2

(ν + ν′)
∫
Ωe

(φξ
e,i)

2dΩVe

, (17)

τeB = τeS, (18)

where ν
′

the stabilized operator control parameter. Substituting Equations (15), (16) and (17) into

finite element equation, the following term is added to the equation of motion:

Ne∑
e=1

ν
′
∫
Ωe

(φξ
e,i)

2dΩbe, (19)

where Ne and be are the total number of the elements and barycenter point, respectively.

6 Parallel Computing

6.1 Parallel Computer
The parallel computer is bundled some computers using network. Each computer has more than one

processor and memory, respectively. In this research, two kinds of parallel computers are used. One is

IBM pSeries 690 super computer and the other is PC cluster. IBM pSeries 690 has high speed network

and high power CPU (Power4). Therefore, it is possible to compute with high parallel efficiency. On

the other hand, the PC cluster uses network which is constructed with Giga-Bit Ethernet. In generally,

PC cluster has low parallel efficiency because of slow network. However, PC cluster is much cheaper

than super computer. In this research, massage passing interface (MPI) is used for massage passing

library. The massage passing library is important for parallel computing.

6.2 Domain Decomposition
The parallel computing technique based on the domain decomposition technique is developed. The

computational time of parallel computing is the sum of the general computational time, communication

time and time to wait synchronisation. For the efficient parallel computing, the communication time

and the time for waiting synchronisation must be reduced. In this research, non-overlap domain

decomposition method is applied. Domain decomposition is carried out using METIS [6]. The METIS

works fast and can be applied to the partitioning of finite element mesh which has large size. Parallel

algorithm is applied to the element-by-element conjugate gradient method. The CG method is used as

a solver for symmetric system of simultaneous linear equations. The Bi-CG stable method is used as

a solver for unsymmetric system of simultaneous linear equations. The algorithm of CG method and

Bi-CG stable method are improved for parallel computing. The improved points are in calculation

of inner product and superposition. The algorithms of CG method and Bi-CG stable method are as

follows:

– 21 –

Kazuya NOJIMA Mutsuto KAWAHARA

CG method

1,Put x0.

2,Compute r0 = b − Ax0 = b −
∑

e

A(e)x0︸ ︷︷ ︸
(A)

.

3,p0 = r0.

4,Compute qk = Apk =
∑

e

A(e)pk︸ ︷︷ ︸
(A)

.

α = (rk, rk)︸ ︷︷ ︸
(B)

/ (pk, qk)︸ ︷︷ ︸
(B)

xk+1 = xk + αpk

rk+1 = xk − αqk

5,if rk+1 < ε STOP

6,Compute β = (rk+1, rk+1)︸ ︷︷ ︸
(B)

/ (rk, rk)︸ ︷︷ ︸
(B)

7,Compute pk+1 = rk+1 + βpk go to 4.

Bi-CG Stable method

1,Put x0.

2,Compute r0 = b − Ax0 = b −
∑

e

A(e)x0︸ ︷︷ ︸
(A)

.

3,p0 = r0.

4,Compute q1
k = Apk =

∑
e

A(e)pk︸ ︷︷ ︸
(A)

.

α = (r0, rk)︸ ︷︷ ︸
(B)

/ (r0, q
1
k)︸ ︷︷ ︸

(B)

tk = rk − αq1
k

5,Compute q2
k = Atk =

∑
e

A(e)tk︸ ︷︷ ︸
(A)

.

ζ = (tk, q2
k)︸ ︷︷ ︸

(B)

/ (q2
k, q2

k)︸ ︷︷ ︸
(B)

xk+1 = xk + αpk + ζtk

rk+1 = tk − ζq2
k

6,if rk+1 < ε STOP

7,Compute β = α (r0, rk+1)︸ ︷︷ ︸
(B)

/ζ (r0, rk)︸ ︷︷ ︸
(B)

8,Compute pk+1 = rk+1 + βpk go to 4.

In the algorithm, A, xk and b are the stiffness matrix, solution at kth iterations and right-hand-side

vector, respectively. The functions rk, pk and qk are vectors and the functions α, β and ζ are scalar.

The underlined terms need communication among processors in the algorithm. An example for the

domain decomposition is shown in Fig. 4.

Ω

Ω1 Ω2

1 2 3 4 5

1 2 3

1©

1©

2©

2©

3© 4©

3 4 5

3© 4©

Fig. 4 Non-overlap Domain Decomposition : There is no overlap of elements.

– 22 –

Wind Flow Simulation in City using Computational Fluid Dynamics and Parallel Computing

Ω

q1 1©

q2 1© + q1 2©

q2 2© + q1 3©

q2 3© + q1 4©

q2 4©

Ω1 Ω1Ω2 Ω2

q1 1©

q2 1© + q1 2©

q2 2©

q1 1©

q2 1© + q1 2©

q2 2© + q1 3© q2 2© + q1 3©

q2 3© + q1 4©

q2 4©

q1 3©

q2 3© + q1 4©

q2 4©

(a) (b) (c)

Communication

Communication

Fig. 5 Complement of Vectors on Each Sub-domain

(A) Neighboring Communication

This operation occurs on the interface of the sub-domain. The state value is communicated with

each neighboring sub-domain. The complement of the element of vector q is required at the calculation

of matrix-vector product as illustrated in Fig. 5. The matrix-vector product is expressed as follows

qk = Apk =
∑

e

A(e)pk

(
=
∑

e

q
(e)
k

)
,

where the superscribed e represents element number. The matrix-vector product is carried out by

element-by-element process. The local product on each element such as(
q
(2)
k 2

q
(2)
k 3

)
=

(
a
(2)
2,2 a

(2)
2,3

a
(2)
3,2 a

(2)
3,3

)(
pk 2

pk 3

)
,

where subscribed number represents the number of node, is superposed onto global vector. In the

case of single computer, an element of the global vector is expressed as follows,

qk 3 = q
(2)
k 3 + q

(3)
k 3.

In the case of parallel computing, an element qk 3 on each sub-domain is expressed as follows,

q
′
k 3 = q

(2)
k 3 on the domain1,

q
′′
k 3 = q

(3)
k 3 on the domain2.

Therefore to get correct value, these values, q
′
k 3 and q

′′
k 3, must be added together as follows,

qk 3 = q
′
k 3 + q

′′
3.

In this calculation, the communication between neighboring sub-domains is required.

(B) Global Communication

This operation occurs within all sub-domains. The inner product is associated with all sub-domains.

rr =

n∑
i=1

riri,

– 23 –

Kazuya NOJIMA Mutsuto KAWAHARA

where n and subscribed i are total number of nodes and the number of node, respectively. In the case

of single computer, an element of the function is expressed as follows,

rr = r1r1 + r2r2 + r3r3 + r4r4 + r5r5

In the case of parallel computing, the function on each sub-domain is expressed as follows,

rr
′
= r1r1 + r2r2 + r3r3 on the domain1,

rr
′′

= r3r3 + r4r4 + r5r5 on the domain2.

The sum of rr
′
and rr

′′
is as follows

rr
′′′

= rr
′
+ rr

′′
= r1r1 + r2r2 + m × r3r3 + r4r4 + r5r5,

where m is total number of sub-domains, which are adjacent to the communication point. In this

case, m is equal to 2. To obtain the rr, the rr
′
and rr

′′
are modified as follows,

rr
′
= r1r1 + r2r2 +

r3r3

m
on the domain1,

rr
′′

=
r3r3

m
+ r4r4 + r5r5 on the domain2.

Then the rr is calculated correctly by adding all local inner products, rr
′
and rr

′′
.

7 Numerical Example

7.1 Computational Model
For computational example, computed the wind environment around the buildings in Korakuen cam-

pus of Chuo University is analized. The finite element mesh is constructed by Delaunay method. The

mesh is shown in Fig. 6. The scale of the computational domain of this model is 182 m radius and

234 m height. The wind direction and the boundary condition are set as shown in Fig. 7. Non-slip

condition is assumed on the wall of the building and on the ground. The total number of the nodes

and the elements become 253,896 and 1447,491, respectively.

The domain is divided into some sub domains by the domain decomposition technique. Five cases

which are two, four, eight and sixteen sub-domains shown in Figs.8, 9, 10 and 11 are calculated.

The total number of nodes and the total number of communication points on each sub-domain are

shown in Tabs. 1 and 2. Two computers, which are IBM pSeries 690 and PC Cluster, are used. The

specification of each computer is shown in Tab. 6.

7.2 Results
The computational result of state of wind flow is shown in Fig. 12. This figure shows the pressure

iso-surface and streamlines. It is verified that the calculation is carried out stably. Table 3 shows

comparison of the computational time of each parallel computing with the computing by single pro-

cessor at one time loop. The total calculation times by both computers are reduced as the number

of CPUs increases. Tab. 4 shows the parallel efficiency. In general, The parallel efficiency becomes

smaller as the number of CPUs increases. On the other hand, the parallel efficiency of PC cluster is

falls. However in case of IBM pSeries 690, the parallel efficiency increases as the number of CPUs

increases.

The iterative number in CG method is almost same in each case as shown in Tab. 5. Therefore,

– 24 –

Wind Flow Simulation in City using Computational Fluid Dynamics and Parallel Computing

Fig. 6 Finite Element Mesh

N

Wind DirectionWind Direction

Fig. 7 Wind Direction and Boundary Conditions

the influence of the iterative number to the CPU time is considered to be small. The point which

should be noted is the size of cash-memory. As shown in Tab. 6, IBM pSeries 690 has much larger

size of the level 1 and level 2 cash-memories than PC cluster. Moreover IBM pSeries 690 has level

3 cash-memory. In the case that the domain is divided into more than seven sub-domains, the data

which is required for an operation becomes so small enough that it is on the cash memory. Then

the operation can be carried out with high speed because the access to the main memory, which is

low-speed, is not necessary. In this case, influence of reduction of the access in main memory on the

calculation time is larger than that of the increment of the amount of communications. Thus the

parallel efficiency becomes higher than 100%. It can be said that the balance of cash-memory size

– 25 –

Kazuya NOJIMA Mutsuto KAWAHARA

Fig. 8 2 Sub-domains Fig. 9 4 Sub-domains

Fig. 10 8 Sub-domains Fig. 11 16 Sub-domains

and the number of subdivisions is important for efficient parallel computing.

8 CONCLUSION

In this research, wind flow outside of a group of buildings is investigated. For the reduction of

the calculation time and storage requirement, the parallel computation which based on the domain

decomposition method is employed. The wind flow is assumed as incompressible viscous flow. The

Navier-Stokes equation is used as basic equation. For the spatial discretization, a mixed interpolation

using the bubble function element is employed.

It is mentioned that the computation is carried out successfully and stably from the computational

result. From the result of calculation time, it can be said that the parallel computing is effective for

the reduction of the calculation time. In this research, a special case in which the parallel efficiency

becomes higher than 100% was found. As the reason why parallel efficiency is over 100%, it is

considered that the IBM pSeries 690 has a high-speed network between each processor and has a large

cash-memory. Thus the balance of cash-memory size and the number of subdivisions is important for

efficient parallel computing.

– 26 –

Wind Flow Simulation in City using Computational Fluid Dynamics and Parallel Computing

Fig. 12 Result : Pressure Distribution

Table 1 Number of Nodes in Each Sub-domain

1 CPU 2 CPU 4 CPU 8 CPU 16 CPU

Domain 1 253,896 128,238 64,861 33,514 17,342

Domain 2 - 128,398 65,610 32,333 16,501

Domain 3 - - 65,043 32,694 16,562

Domain 4 - - 64,727 33,339 17,675

Domain 5 - - - 32,959 16,778

Domain 6 - - - 32,717 17,037

Domain 7 - - - 33,623 16,846

Domain 8 - - - 33,079 16,514

Domain 9 - - - - 17,044

Domain 10 - - - - 16,878

Domain 11 - - - - 16,184

Domain 12 - - - - 17,213

Domain 13 - - - - 15,862

Domain 14 - - - - 16,916

Domain 15 - - - - 17,411

Domain 16 - - - - 17,343

Average 253,896 128,318 65,060 33,026 16,882

– 27 –

Kazuya NOJIMA Mutsuto KAWAHARA

Table 2 Number of Communication Points on Boundary of Each Sub-domain

2 CPU 4 CPU 8 CPU 16 CPU

Domain 1 2,740 2,923 2,899 1,652

Domain 2 2,740 4,313 2,441 1,838

Domain 3 - 2,266 2,850 1,830

Domain 4 - 3,332 2,681 2,614

Domain 5 - - 2,554 1,688

Domain 6 - - 3,022 2,405

Domain 7 - - 2,723 2,327

Domain 8 - - 2,010 2,304

Domain 9 - - - 1,704

Domain 10 - - - 2,268

Domain 11 - - - 1,915

Domain 12 - - - 2,488

Domain 13 - - - 1,811

Domain 14 - - - 1,863

Domain 15 - - - 1,814

Domain 16 - - - 3,211

Average 2,740 2,648 3,026 2,107

Table 3 Comparison of the computational time of the parallel computing with that of single processor

single processor 2 processors 4 processors 8 processors 16 processors

Cal. 6m43.448s 3m56.609s 1m27.629s 35.957s 16.142s

IBM Com.Min − 1.545s(No.1) 2.742s(No.1) 1.480s(No.7) 1.877s(No.10)

pSeries 690 Com.Max − 8.142s(No.2) 23.057s(No.3) 9.117s(No.6) 7.030s(No.7)

T.T. 6m43.448s 3m58.154s 1m29.371s 37.437s 17.019s

Cal. 7m26.850s 3m40.479s 1m97.286s 1m 1.662s −
PC Cluster Com. − 3.979s(No.2) 3.545s(No.3) 10.949s(No.7) −

Com. − 15.238s(No.1) 25.608s(No.4) 26.887s(No.8) −
T.T. 7m26.850s 3m44.458s 2m 0.821s 1m12.611s −

Cal. : General Calculation Time, Com. : Communication Time, T.T. : Total Time

(No.n) : Number of Sub-domain

Table 4 Comparison of the parallel efficiency

single processor 2 processors 4 processors 8 processors 16 processors

IBM pSeries 690 100.00% 84.70% 112.86% 134.71% 148.16%

PC Cluster 100.00% 99.54% 92.65% 76.93% −

– 28 –

Wind Flow Simulation in City using Computational Fluid Dynamics and Parallel Computing

Table 5 Iterative Number in CG and Bi-CG Stable Method

Number of processor CG method Bi-CG Stable

1CPU (IBM pSeries 690) 1044 11

2CPU (IBM pSeries 690) 1042 11

4CPU (IBM pSeries 690) 1046 11

8CPU (IBM pSeries 690) 1048 11

16CPU (IBM pSeries 690) 1048 11

1CPU (PC Cluster) 1041 11

2CPU (PC Cluster) 1044 11

4CPU (PC Cluster) 1037 11

8CPU (PC Cluster) 1040 11

Table 6 Specification of Computer

Power4(IBM pSeries 690) Pentium4(PC Cluster)

CPU Power4 1.3G Hz Pentium4 1.8G Hz

Level 1 32K byte 8K byte

Cash Memory Level 2 1.5M byte 256K byte

/ CPU Level 3 32M byte −
Main Memory / CPU 2G byte 1G byte

Network 10G bytes/sec 1G bits/sec

参考文献

[1] Kazuya Nojima and Mutsuto Kawahara, An analysis of wind environment around buildings with

unstructured mesh generation technique, Computational Fluid and Solid Mechanics 2003, Vol.

1, pp.1066-1071,(2003)

[2] T. Yamada: A Bubble Element for Inviscid Flow”,Finite Elements in Fluids Vol.9, 1995, pp.1567-

1576.

[3] T. Yamada: A Bubble Element for the Compressible Euler Equations ”, IJCFD, Vol.9, pp.273-

283, 1998.

[4] Junichi Matsumoto, Tsuyoshi Umetsu and Mutsuto Kawahara, Incompressible Viscous Flow

Analysis and Adaptive Finite Element Method Using Linear Bubble Function,(1999)

[5] Junichi Matsumoto and Mutsuto Kawahara, Shape Identification for Fluid-Structure Interaction

Problem Using Improved Bubble Element, IJCFD, Vol. 15, pp.33-45,(2001)

[6] http://www-users.cs.umn.edu/ karypis/metis/

– 29 –

