CHUO MATH NO.131(2020)

Global well-posedness of the Kirchhoff equation

by
Tokio Matsuyama

DEPARTMENT OF MATHEMATICS
 CHUO UNIVERSITY
 BUNKYOKU TOKYO JAPAN

JULY. 10, 2020

GLOBAL WELL-POSEDNESS OF THE KIRCHHOFF EQUATION

TOKIO MATSUYAMA

Abstract

The aim of this paper is to prove the global existence of solutions for the Kirchhoff equation without any smallness condition on data both in Sobolev spaces and in Gevrey ones. The approach to the construction of global solutions is to obtain absolute integrability of time-derivative of the coefficient of the principal term. The key of the proof is a uniform energy estimate in a suitable Sobolev space for global in time analytic solutions. This estimate yields the boundedness of solutions in Sobolev norm at the life span. The global existence of low regular solutions is also proved.

1. Introduction

We consider the problem for the Kirchhoff-type equation of the form

$$
\begin{cases}\partial_{t}^{2} u-\varphi\left(\int_{\Omega}|\nabla u|^{2} d x\right) \Delta u=0, & t>0, \tag{1.1}\\ u \in \Omega \\ u(0, x)=u_{0}(x), \quad \partial_{t} u(0, x)=u_{1}(x), & x \in \Omega\end{cases}
$$

where Ω is the whole space $\mathbb{R}^{n}(n \geq 1)$, or an open set with a smooth boundary $\partial \Omega$ and $u(t, x)$ satisfies the Dirichlet boundary condition

$$
\left.u\right|_{[0, \infty) \times \partial \Omega}=0 .
$$

We assume that $\varphi(\rho)$ is a C^{1} real function on \mathbb{R} satisfying

$$
\begin{equation*}
\varphi(\rho) \geq \nu_{0} \quad \text { for all } \rho \geq 0 \quad\left(\nu_{0}>0\right) \tag{1.2}
\end{equation*}
$$

Equation (1.1) has been previously considered for various positive functions $\varphi(\rho)$. In the case when

$$
n=1, \quad \varphi(\rho)=a+b \rho \quad(a, b>0)
$$

Equation (1.1) was proposed by Kirchhoff in 1876 to describe the transversal motions of the elastic string (see [10]). Several authors have investigated the global existence for these equations with real analytic data. In 1940, Bernstein first studied the global existence for analytic data in one space dimension (see [5]). After him, in 1975, Pohozaev extended Bernstein's result to several space dimensions (see [15]). Later, global solvability in real analytic class was studied by D'Ancona and Spagnolo under the assumption that

$$
\begin{gathered}
\varphi \text { is continuous on }[0, \infty), \\
\varphi(\rho) \geq 0 \quad(\rho \geq 0)
\end{gathered}
$$

[^0](see [6], and also Arosio and Spagnolo [3]). Kajitani and Yamaguti obtained the same result under a more general principal term (see [8]). It is natural to ask whether (1.1) admits a unique global solution with data in wider function spaces, say, quasi-analytic class or Sobolev spaces. The global solvability for quasi-analytic data was studied by Nishihara (see [14]), and a variant of his class in [14] was discussed by Manfrin (see [11], and also Ghisi and Gobbino [7]). Recently, the large time existence of solutions was proved in Gevrey spaces (see [13]). As is well known, the results on global existence in Sobolev spaces $H^{3 / 2}$, or H^{2} with small data are well established (see [12], and the references therein). As to the existence of periodic solutions, there is a result of Baldi (see [4]).

The Kirchhoff equation has a first integral (see Lemma 3.1 below). Nevertheless, it has been a long-standing open problem whether or not, one can prove the existence of time global solutions in Sobolev spaces or Gevrey ones without smallness condition on data. Moreover, the existence of local solutions in low regular Sobolev spaces, say, $H^{\sigma} \times H^{\sigma-1}, \sigma \in[1,3 / 2)$, is still not known. The main point of the proof of global existence of high regular solutions is to obtain boundedness of local solutions in $H^{3 / 2}$-norm at the life span. On one hand, the main difficulty lies in controlling an intensive oscillation of the coefficient $\varphi\left(\|\nabla u(t)\|_{L^{2}}^{2}\right)$. On the other hand, when data are very small, one can avoid such an oscillation problem to get global solutions (again see [12] and the references therein). For data without any smallness condition in Sobolev spaces, no one has any ideas to control $H^{3 / 2}$-norm of solutions.

The aim in this paper is to give an affirmative answer to these open problems. If the standard energy method is employed to get a priori estimates, one faces an estimate involving time-derivative of $\varphi\left(\|\nabla u(t)\|_{L^{2}}^{2}\right)$. However, this kind of estimate is no use to control $H^{3 / 2}$-norm of solutions. Our crucial tool for control of time-derivative of $\varphi\left(\|\nabla u(t)\|_{L^{2}}^{2}\right)$ is a uniform energy estimate for global in time analytic solutions to (1.1), which is proved by a contradiction argument. This estimate enables us to derive an absolute integrability of the time-derivative of $\varphi\left(\|\nabla u(t)\|_{L^{2}}^{2}\right)$ on the maximal interval of existence of solutions. Hence, this allows us to obtain the boundedness of $H^{3 / 2}$-norm of solutions at the life span, and as a consequence, the solution globally exists.

We conclude this section by stating our plan. In Section 2 we state main results. In Section 3 local existence theorems together with H^{σ}-well-posedness in the sense of Hadamard are discussed. In Section 4 a uniform energy estimate for global in time analytic solutions in a suitable Sobolev space is proved. After that, absolute integrability of time-derivative of the coefficient of equation is proved. Section 5 is devoted to proving main theorems: Theorems 2.1 and 2.2. In Section 6 energy estimates are derived. In Section 7 the global existence of low regular solutions is proved.

2. Statement of results

In this section we state main results. These consist of the Cauchy problem and the initial-boundary value problem.
2.1. The Cauchy problem. To begin with, let us consider the problem (1.1) in the case when Ω is the whole space \mathbb{R}^{n}. We recall the definition of fractional Sobolev spaces

$$
H^{\sigma}\left(\mathbb{R}^{n}\right)=(1-\Delta)^{-\frac{\sigma}{2}} L^{2}\left(\mathbb{R}^{n}\right), \quad \sigma \in \mathbb{R}
$$

and their homogeneous version is

$$
\dot{H}^{\sigma}\left(\mathbb{R}^{n}\right)=(-\Delta)^{-\frac{\sigma}{2}} L^{2}\left(\mathbb{R}^{n}\right), \quad \sigma \in \mathbb{R}
$$

We shall prove the following.
Theorem 2.1. Assume that $\varphi(\rho)$ is C^{1} on \mathbb{R} and satisfies (1.2). Let $\sigma \geq 3 / 2$. Then for any $\left(u_{0}, u_{1}\right) \in H^{\sigma}\left(\mathbb{R}^{n}\right) \times H^{\sigma-1}\left(\mathbb{R}^{n}\right)$, the Cauchy problem (1.1) admits a unique global solution $u(t, x)$ such that

$$
u \in C\left([0, \infty) ; H^{\sigma}\left(\mathbb{R}^{n}\right)\right) \cap C^{1}\left([0, \infty) ; H^{\sigma-1}\left(\mathbb{R}^{n}\right)\right)
$$

We have also the theorem on the global existence of H^{σ}-solutions for $1 \leq \sigma<3 / 2$. This topic is postponed until Section 7.

Next, we shall state a result on global solvability in Gevrey spaces. We recall the definition of Gevrey class of L^{2} type. For $s \geq 1$, we denote by $\gamma_{L^{2}}^{s}\left(\mathbb{R}^{n}\right)$ the Gevrey space of order s :

$$
\gamma_{L^{2}}^{s}\left(\mathbb{R}^{n}\right)=\bigcup_{\eta>0} \gamma_{\eta, L^{2}}^{s}\left(\mathbb{R}^{n}\right)
$$

Here, f belongs to $\gamma_{\eta, L^{2}}^{s}\left(\mathbb{R}^{n}\right)$ if $\|f\|_{\gamma_{\eta, L^{2}}^{s}\left(\mathbb{R}^{n}\right)}<\infty$, where

$$
\|f\|_{\gamma_{\eta, L^{2}}^{s}\left(\mathbb{R}^{n}\right)}=\left(\int_{\mathbb{R}^{n}} e^{\eta|\xi|^{\frac{1}{s}}}|\widehat{f}(\xi)|^{2} d \xi\right)^{\frac{1}{2}}
$$

and $\widehat{f}(\xi)$ stands for the Fourier transform of f. The class $\gamma_{L^{2}}^{s}\left(\mathbb{R}^{n}\right)$ is endowed with the inductive limit topology. In particular, we have

$$
\gamma_{L^{2}}^{1}\left(\mathbb{R}^{n}\right)=\mathcal{A}_{L^{2}}\left(\mathbb{R}^{n}\right)
$$

where $\mathcal{A}_{L^{2}}\left(\mathbb{R}^{n}\right)$ is the space of real analytic functions f such that

$$
\left\|\partial_{x}^{\alpha} f\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \leq C A^{|\alpha|} \alpha!
$$

for all $\alpha \in \mathbb{N}^{n} \cup\{0\}$ and for some constants $A, C \geq 0$.
We shall prove the following.
Theorem 2.2. Assume that $\varphi(\rho)$ is C^{1} on \mathbb{R} and satisfies (1.2). Let $s>1$. Then for any $\left(u_{0}, u_{1}\right) \in \gamma_{L^{2}}^{s}\left(\mathbb{R}^{n}\right) \times \gamma_{L^{2}}^{s}\left(\mathbb{R}^{n}\right)$, the Cauchy problem (1.1) admits a unique global solution $u(t, x)$ such that

$$
u \in C^{1}\left([0, \infty) ; \gamma_{L^{2}}^{s}\left(\mathbb{R}^{n}\right)\right)
$$

2.2. Extension to the initial-boundary value problem. We extend Theorems 2.1 and 2.2 to the initial-boundary value problem. Replacing the Fourier transform with the Fourier series or the generalized Fourier transform, and applying exactly the same arguments of proofs of Theorems 2.1 and 2.2 , we can prove similar results for the initial-boundary value problem (1.1) on $[0, \infty) \times \Omega$ with the boundary condition

$$
\left.u\right|_{[0, \infty) \times \partial \Omega}=0
$$

(see Theorems 2.3 and 2.4).
Let us recall the definition of Sobolev spaces of fractional order over a bounded domain Ω with smooth boundary $\partial \Omega$. Let $\left\{w_{k}\right\}_{k=1}^{\infty}$ be a complete orthonormal system of eigenfunctions of the Laplace operator $-\Delta$ whose domain is $H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$, where $H_{0}^{1}(\Omega)$ is the completion of $C_{0}^{\infty}(\Omega)$ in $H^{1}(\Omega)$-norm. Let λ_{k} be eigenvalues corresponding to w_{k}, i.e., $\left\{w_{k}, \lambda_{k}\right\}$ satisfy the elliptic equations:

$$
\left\{\begin{aligned}
-\Delta w_{k} & =\lambda_{k} w_{k} & & \text { in } \Omega \\
w_{k} & =0 & & \text { on } \partial \Omega .
\end{aligned}\right.
$$

Then we have

$$
0<\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{k} \leq \cdots \quad \text { and } \quad \lambda_{k} \rightarrow \infty
$$

Let $\sigma \geq 0$. Then we say that $f \in H^{\sigma}(\Omega)$ if

$$
\|f\|_{H^{\sigma}(\Omega)}:=\left(\sum_{k=1}^{\infty} \lambda_{k}^{2 \sigma}\left|\left(f, w_{k}\right)_{L^{2}(\Omega)}\right|^{2}\right)^{\frac{1}{2}}<\infty
$$

Here $\left(f, w_{k}\right)_{L^{2}(\Omega)}$ stands for the inner product of f and w_{k} in $L^{2}(\Omega)$.
Next, let Ω be an exterior domain with a smooth compact boundary. Denoting by Δ_{D} the Dirichlet Laplacian on Ω, we define inhomogeneous and homogeneous Sobolev spaces over Ω as

$$
\begin{aligned}
H^{\sigma}(\Omega) & =\left(1-\Delta_{D}\right)^{-\frac{\sigma}{2}} L^{2}(\Omega) \\
\dot{H}^{\sigma}(\Omega) & =\left(-\Delta_{D}\right)^{-\frac{\sigma}{2}} L^{2}(\Omega)
\end{aligned}
$$

for $\sigma \geq 0$, respectively. Here, the operators $\left(1-\Delta_{D}\right)^{-\sigma / 2}$ and $\left(-\Delta_{D}\right)^{-\sigma / 2}$ are defined via the generalized Fourier transform \mathscr{F}, which maps unitarily $L^{2}(\Omega)$ to $L^{2}\left(\mathbb{R}^{n}\right)$. For its definition we refer to, e.g., our previous paper [13]. Hereafter, for the sake of simplicity, we denote Δ_{D} by Δ.

Finally, we recall the definition of Gevrey class of L^{2} type. For $s \geq 1$, we denote by $\gamma_{L^{2}}^{s}(\Omega)$ the Gevrey space of order s on Ω :

$$
\gamma_{L^{2}}^{s}(\Omega)=\bigcup_{\eta>0} \gamma_{\eta, L^{2}}^{s}(\Omega)
$$

Here, f belongs to $\gamma_{\eta, L^{2}}^{s}(\Omega)$ if $\|f\|_{\gamma_{\eta, L^{2}}^{s}(\Omega)}<\infty$, where

$$
\|f\|_{\gamma_{\eta, L^{2}}^{s}(\Omega)}= \begin{cases}\left(\sum_{k=1}^{\infty} e^{\eta \lambda_{k}^{\frac{1}{s}}}\left|\left(f, w_{k}\right)_{L^{2}(\Omega)}\right|^{2}\right)^{\frac{1}{2}}, & \text { when } \Omega \text { is a bounded domain } \\ \left(\int_{\mathbb{R}^{n}} e^{\eta|\xi|^{\frac{1}{s}}}|(\mathscr{F} f)(\xi)|^{2} d \xi\right)^{\frac{1}{2}}, & \text { when } \Omega \text { is an exterior domain. }\end{cases}
$$

The space $\gamma_{L^{2}}^{s}(\Omega)$ is endowed with the inductive limit topology. In particular, we have

$$
\gamma_{L^{2}}^{1}(\Omega)=\mathcal{A}_{L^{2}}(\Omega)
$$

where $\mathcal{A}_{L^{2}}(\Omega)$ is the space of real analytic functions f such that

$$
\left\|\partial_{x}^{\alpha} f\right\|_{L^{2}(\Omega)} \leq C A^{|\alpha|} \alpha!
$$

for all $\alpha \in \mathbb{N}^{n} \cup\{0\}$ and for some constants $A, C \geq 0$.
We need the compatibility condition on data.
Compatibility condition. Let $\sigma \geq 1$. Then $f \in H^{\sigma}(\Omega)$ is said to satisfy the compatibility condition if

$$
\Delta^{k} f \in H_{0}^{1}(\Omega) \quad \text { for } 0 \leq k \leq \frac{\sigma-1}{2}
$$

We have the following.
Theorem 2.3. Assume that Ω is an analytic domain with a compact boundary. Suppose that $\varphi(\rho)$ is C^{1} on \mathbb{R} and satisfies (1.2). Let $\sigma \geq 3 / 2$. Then for any $\left(u_{0}, u_{1}\right) \in$ $H^{\sigma}(\Omega) \times H^{\sigma-1}(\Omega)$ satisfying the compatibility condition, the initial-boundary value problem (1.1) admits a unique global solution $u(t, x)$ such that

$$
u \in C\left([0, \infty) ; H^{\sigma}(\Omega)\right) \cap C^{1}\left([0, \infty) ; H^{\sigma-1}(\Omega)\right)
$$

Let us remark that the analyticity of the domain is necessary for the theorem. For, we approximate local solutions in Sobolev spaces by a series of analytic solutions, which is possible if Ω is analytic. For further details, see the proof of Proposition 4.2 in Section 4.

We have also the global solvability in Gevrey spaces. In this case we have to impose the analytic compatibility condition on initial data.

Analytic compatibility condition. $f \in \gamma_{L^{2}}^{s}(\Omega)(s \geq 1)$ is said to satisfy the analytic compatibility condition if f is analytic in some neighbourhood of $\bar{\Omega}$ such that

$$
\Delta^{k} f=0 \quad \text { on } \partial \Omega \quad \text { for } k=0,1, \cdots
$$

We have the following.

Theorem 2.4. Assume that Ω is an analytic domain. Suppose that $\varphi(\rho)$ is C^{1} on \mathbb{R} and satisfies (1.2). Let $s>1$. Then for any $\left(u_{0}, u_{1}\right) \in \gamma_{L^{2}}^{s}(\Omega) \times \gamma_{L^{2}}^{s}(\Omega)$ satisfying the analytic compatibility condition, the initial-boundary value problem (1.1) admits a unique global solution $u(t, x)$ such that

$$
u \in C^{1}\left([0, \infty) ; \gamma_{L^{2}}^{s}(\Omega)\right)
$$

3. Well-posedness in Sobolev spaces

In this section, assuming that Ω is the whole space \mathbb{R}^{n}, or an open set of \mathbb{R}^{n} with a smooth boundary $\partial \Omega$, we present local existence theorems for the problem (1.1) (see Propositions 3.2 and 3.3). After those, we state H^{σ}-well-posedness for (1.1) in the sense of Hadamard, i.e., the continuity of solutions in Sobolev spaces H^{σ} with respect to data (see Propositions 3.6 and 3.7). When Ω is the whole space, the compatibility condition is not required in all of results of this section, and statements are given without any comment on this condition.

The Kirchhoff equation has a first integral. Namely, we have:
Lemma 3.1. Suppose that $u \in \bigcap_{j=0}^{1} C^{j}\left([0, T] ; H^{(3 / 2)-j}(\Omega)\right)$ is the solution to (1.1). Then we have

$$
\begin{equation*}
\mathscr{H}(u ; t)=\mathscr{H}(u ; 0) \tag{3.1}
\end{equation*}
$$

for all $t \in[0, T]$, where we put

$$
\mathscr{H}(u ; t):=\left\|\partial_{t} u(t, \cdot)\right\|_{L^{2}(\Omega)}^{2}+\int_{0}^{\|\nabla u(t, \cdot)\|_{L^{2}(\Omega)}^{2}} \varphi(\rho) d \rho
$$

Proof. Multiplying Equation (1.1) by $\partial_{t} u$ and integrating, we get

$$
\frac{d}{d t} \mathscr{H}(u ; t)=0
$$

which implies (3.1). Integrating it with respect to t, we get (3.1). The proof of Lemma 3.1 is complete.

We introduce a local existence theorem in Sobolev spaces. Let us define a functional

$$
\begin{equation*}
c(t)=c_{u}(t):=\varphi\left(\int_{\Omega}|\nabla u(t, x)|^{2} d x\right) \tag{3.2}
\end{equation*}
$$

and a σ-energy

$$
\begin{equation*}
\mathcal{E}_{\sigma}(u ; t)=\left\|(-\Delta)^{\frac{\sigma-1}{2}} \partial_{t} u(t, \cdot)\right\|_{L^{2}(\Omega)}^{2}+c(t)\left\|(-\Delta)^{\frac{\sigma}{2}} u(t, \cdot)\right\|_{L^{2}(\Omega)}^{2} \tag{3.3}
\end{equation*}
$$

for $\sigma \geq 1$.
The following result is our starting point.
Proposition 3.2 (Arosio and Galavaldi ([1])). Assume that $\varphi(\rho)$ is C^{1} on \mathbb{R} and satisfies (1.2). Let $\sigma \geq 3 / 2$. Then for any $\left(u_{0}, u_{1}\right) \in H^{\sigma}(\Omega) \times H^{\sigma-1}(\Omega)$ satisfying the
compatibility condition, there exists a life span $T_{m}=T_{m}\left(u_{0}, u_{1}\right)$ depending only on $\mathscr{H}(u ; 0)$ and $\mathcal{E}_{3 / 2}(u ; 0)$ such that the problem (1.1) admits a unique maximal solution

$$
u \in C\left(\left[0, T_{m}\right) ; H^{\sigma}(\Omega)\right) \cap C^{1}\left(\left[0, T_{m}\right) ; H^{\sigma-1}(\Omega)\right)
$$

and at least one of the following statements is valid:
(i) $T_{m}=\infty$;
(ii) $T_{m}<\infty$ and $\limsup _{t \rightarrow T_{m}-0} \mathcal{E}_{3 / 2}(u ; t)=\infty$.

We remark that the life span T_{m} is to be understood as follows:

$$
T_{m}=\sup \left\{t: H^{\frac{3}{2}} \text {-norm of the solution } u(\tau, \cdot) \text { to (1.1) exists for } 0 \leq \tau<t\right\}
$$

It should be noted that, however big the regularity of data is, T_{m} depends only on the norm of data in $H^{3 / 2} \times H^{1 / 2}$. This means that if one would show the global existence of smooth, or even Gevrey space solutions to (1.1), it suffices to obtain that the norm of solutions in $H^{3 / 2} \times H^{1 / 2}$ is bounded on $\left[0, T_{m}\right)$. Based on this observation, we shall introduce a local existence theorem for Gevrey spaces.

Proposition 3.3. Assume that Ω is an analytic domain with a compact boundary. Suppose that $\varphi(\rho)$ is C^{1} on \mathbb{R} and satisfies (1.2). Let $s>1$. Then for any $\left(u_{0}, u_{1}\right) \in$ $\gamma_{L^{2}}^{s}(\Omega) \times \gamma_{L^{2}}^{s}(\Omega)$ satisfying the analytic compatibility condition, there exists a life span $T_{m}=T_{m}\left(u_{0}, u_{1}\right)$ depending only on $\mathscr{H}(u ; 0)$ and $\mathcal{E}_{3 / 2}(u ; 0)$ such that the problem (1.1) admits a unique solution

$$
u \in C^{1}\left(\left[0, T_{m}\right) ; \gamma_{L^{2}}^{s}(\Omega)\right)
$$

and one of the following statements is valid:
(i) $T_{m}=\infty$;
(ii) $T_{m}<\infty$ and $\limsup _{t \rightarrow T_{m}-0} \mathcal{E}_{3 / 2}(u ; t)=\infty$.

In the rest of this section, we shall discuss several results on H^{σ}-well-posedness in the sense of Hadamard. Given a constant $\Lambda>0$, let $\left(u_{0}, u_{1}\right)$ be satisfied with

$$
\nu_{0}^{-1} \mathscr{H}(u ; 0) \leq \Lambda
$$

Combining (1.2) and (3.1), we see that the local solution $u(t, x)$ to the problem (1.1) satisfies

$$
\|\nabla u(t, \cdot)\|_{L^{2}(\Omega)}^{2} \leq \nu_{0}^{-1} \mathscr{H}(u ; t)=\nu_{0}^{-1} \mathscr{H}(u ; 0) \leq \Lambda
$$

for any $t \in\left[0, T_{m}\right)$. This means that $[0, \Lambda]$ is the actual domain of $\varphi(\rho)$ which the H^{σ}-solution $u(t, x)$ to (1.1) exists on $\left[0, T_{m}\right)$. Let us define a quantity

$$
\begin{equation*}
M=\sup \{\varphi(\rho): 0 \leq \rho \leq \Lambda\} \tag{3.4}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\nu_{0} \leq \varphi(\rho) \leq M \tag{3.5}
\end{equation*}
$$

for any $\rho \in[0, \Lambda]$. Also, we put

$$
\begin{equation*}
M_{1}=\sup \left\{\left|\varphi^{\prime}(\rho)\right|: 0 \leq \rho \leq \Lambda\right\} \tag{3.6}
\end{equation*}
$$

When $M_{1}=0$, Equation (1.1) is reduced to the classical wave equation. Hence, we may assume that $M_{1}>0$.

For the moment, we discuss a property related to the life span. For $\sigma \geq 3 / 2$, let $u(t, x)$ be the maximal solution to (1.1) with data $\left(u_{0}, u_{1}\right) \in H^{\sigma}(\Omega) \times H^{\sigma-1}(\Omega)$ satisfying the compatibility condition in the sense of Proposition 3.2, and let T_{m} be the life span of $u(t, x)$. Recalling the notation $\mathcal{E}_{\sigma}(u ; t)$ (see (3.3)), we put

$$
T_{1}=T_{1}\left(u_{0}, u_{1}\right)=\left\{\begin{array}{cl}
\frac{\nu_{0}^{3 / 2}}{M_{1} \mathcal{E}_{3 / 2}(u ; 0)}, & \text { if }\left(u_{0}, u_{1}\right) \neq(0,0) \tag{3.7}\\
\infty, & \text { if }\left(u_{0}, u_{1}\right)=(0,0)
\end{array}\right.
$$

where ν_{0} is the lower bound of φ (see (1.2)) and M_{1} is the constant defined by (3.6). Then Arosio and Panizzi proved that the problem (1.1) admits a unique solution $u(t, x)$ such that

$$
\begin{equation*}
u \in C\left(\left[0, T_{1}\right) ; H^{\sigma}(\Omega)\right) \cap C^{1}\left(\left[0, T_{1}\right) ; H^{\sigma-1}(\Omega)\right) \tag{3.8}
\end{equation*}
$$

and that (1.1) is H^{σ}-well-posed on $\left[0, T_{1}\right.$) (see Theorem 2.1 from [2]). The precise statement is given in Lemma 3.5 below. It is easy to see that T_{m} is bounded from below like

$$
\begin{equation*}
T_{m} \geq T_{1} \tag{3.9}
\end{equation*}
$$

For, suppose that

$$
\begin{equation*}
T_{m}<T_{1} \tag{3.10}
\end{equation*}
$$

Then we see from (3.8) that $\mathcal{E}_{3 / 2}(u ; t)$ is bounded at $t=T_{m}$. Hence, we conclude from Proposition 3.2 that $T_{m}=\infty$, which actually contradicts (3.10). Thus we get (3.9).

We shall prove here the following.
Lemma 3.4. Assume that $\varphi(\rho)$ is C^{1} on \mathbb{R} and satisfies (1.2). Let $\sigma \geq 3 / 2$. Suppose that $\left(u_{0}, u_{1}\right) \in H^{\sigma}(\Omega) \times H^{\sigma-1}(\Omega)$ satisfy the compatibility condition. Let $u(t, x)$ be a maximal solution to (1.1) with data $\left(u_{0}, u_{1}\right)$ in the sense of Proposition 3.2. Let T_{1} be as in (3.7). If $T_{1}<T_{m}$, then there exists a non-decreasing sequence $\left\{T_{k}\right\}_{k=1}^{\infty}$ such that

$$
\begin{equation*}
T_{0}=0, \quad T_{k}-T_{k-1}=\frac{\nu_{0}^{3 / 2}}{M_{1} \mathcal{E}_{3 / 2}\left(u ; T_{k-1}\right)}, \quad k=1,2, \cdots \tag{3.11}
\end{equation*}
$$

Furthermore, if $T_{m}<\infty$, we have

$$
\begin{equation*}
T_{k} \underset{k \rightarrow \infty}{\longrightarrow} T_{m} \tag{3.12}
\end{equation*}
$$

Before proving Lemma 3.4, we remark that Kajitani and Satoh obtained a similar result to Lemma 3.4 for $\mathcal{E}_{2}(u ; t)$ (see [9]). However, it is not clear whether the corresponding sequence $\left\{T_{k}\right\}$ is convergent or not.

Proof of Lemma 3.4. We see from (3.7) that (3.11) holds true for $k=1$. As to $k=2$, we regard the solution $u(t, x)$ to the problem (1.1) as that with data

$$
\begin{equation*}
\left(u\left(T_{1}, \cdot\right), \partial_{t} u\left(T_{1}, \cdot\right)\right) \in H^{\sigma}(\Omega) \times H^{\sigma-1}(\Omega) \tag{3.13}
\end{equation*}
$$

on $\left(T_{1}, T_{m}\right) \times \Omega$. Introducing a new time variable s as

$$
s=t-T_{1}
$$

and defining a function

$$
\widetilde{u}(s, x):=u(t, x)=u\left(s+T_{1}, x\right)
$$

we can write the problem (1.1) with data (3.13) as

$$
\left\{\begin{array}{lr}
\partial_{s}^{2} \widetilde{u}-\varphi\left(\int_{\Omega}|\nabla \widetilde{u}(s)|^{2} d x\right) \Delta \widetilde{u}=0, & s>0, \tag{3.14}\\
\widetilde{u}(0, x)=u\left(T_{1}, x\right), \quad \partial_{s} \widetilde{u}(0, x)=\partial_{t} u\left(T_{1}, x\right), & x \in \Omega
\end{array}\right.
$$

and \widetilde{u} satisfies the Dirichlet boundary condition

$$
\left.\widetilde{u}\right|_{[0, \infty) \times \partial \Omega}=0 .
$$

Applying Theorem 2.1 from Arosio and Panizzi [2] to the problem (3.14), we find a time $S_{1} \in\left(0, T_{m}-T_{1}\right]$ fulfilling

$$
\begin{equation*}
S_{1}=\frac{\nu_{0}^{3 / 2}}{M_{1} \mathcal{E}_{3 / 2}(\widetilde{u} ; 0)}=\frac{\nu_{0}^{3 / 2}}{M_{1} \mathcal{E}_{3 / 2}\left(u ; T_{1}\right)} \tag{3.15}
\end{equation*}
$$

and \widetilde{u} satisfies

$$
\widetilde{u} \in C\left(\left[0, S_{1}\right) ; H^{\sigma}(\Omega)\right) \cap C^{1}\left(\left[0, S_{1}\right) ; H^{\sigma-1}(\Omega)\right)
$$

Hence, putting

$$
T_{2}:=S_{1}+T_{1}
$$

we deduce from (3.15) that

$$
T_{2}-T_{1}=\frac{\nu_{0}^{3 / 2}}{M_{1} \mathcal{E}_{3 / 2}\left(u ; T_{1}\right)}
$$

Since $S_{1} \in\left(0, T_{m}-T_{1}\right]$, it follows that $T_{2} \in\left(T_{1}, T_{m}\right]$.
If $T_{2}=T_{m}$, we put $T_{k}=T_{m}$ for $k \geq 2$. Then (3.12) holds true. If $T_{2}<T_{m}$, then the sequence $\left\{T_{k}\right\}_{k=1}^{\infty}$ satisfying (3.11) is constructed step by step. If there exists an integer $\ell>2$ such that $T_{\ell}=T_{m}$, we put $T_{k}=T_{m}$ for $k \geq \ell$. Then (3.12) holds true. Otherwise, $\left\{T_{k}\right\}_{k=1}^{\infty}$ is an infinite series. We show the convergence (3.12) in this case. Suppose that

$$
T_{*}:=\lim _{k \rightarrow \infty} T_{k}<T_{m}
$$

Since the sequence $\left\{T_{k}\right\}$ is convergent, it follows that

$$
T_{k}-T_{k-1} \underset{k \rightarrow \infty}{\longrightarrow} 0
$$

We notice that $\mathcal{E}_{3 / 2}(u ; t)$ is continuous in $t \in\left[0, T_{m}\right)$. Then, letting $k \rightarrow \infty$ in (3.11), we get

$$
\mathcal{E}_{3 / 2}\left(u ; T_{*}\right)=\lim _{k \rightarrow \infty} \mathcal{E}_{3 / 2}\left(u ; T_{k-1}\right)=\infty
$$

which leads to a contradiction, since $\mathcal{E}_{3 / 2}(u ; t)$ is finite at $t=T_{*}$. Thus we must have $T_{*}=T_{m}$. The proof of Lemma 3.4 is complete.

We now turn to the proof of H^{σ}-well-posedness result on the interval $\left[0, T_{m}\right)$. For this purpose, we prepare the preliminary result on $\left[0, T_{1}\right)$, which is proved by Arosio and Panizzi (see [2]). Since $\varphi(\rho)$ is C^{1} and bounded (see (3.5)), the assumptions in

Theorems 5.1 and 5.2 from [2] are fulfilled. Let us define a variant norm of $\mathcal{E}_{\sigma}(u ; t)$ as

$$
\widetilde{\mathcal{E}}_{\sigma}(u ; t)=\left\|\partial_{t} u(t, \cdot)\right\|_{H^{\sigma-1}(\Omega)}^{2}+c(t)\|u(t, \cdot)\|_{H^{\sigma}(\Omega)}^{2} .
$$

We note that when Ω is a bounded domain, $\widetilde{\mathcal{E}}_{\sigma}(u ; t)$ coincides with $\mathcal{E}_{\sigma}(u ; t)$. Then we have the following.

Lemma 3.5 ([2]). Let $\sigma \geq 3 / 2$. Assume that φ is C^{1} on \mathbb{R} and satisfies (1.2). Let $u(t, x)$ be a maximal solution to (1.1) with data $\left(u_{0}, u_{1}\right) \in H^{\sigma}(\Omega) \times H^{\sigma-1}(\Omega)$ satisfying the compatibility condition in the sense of Proposition 3.2. Let T_{1} be as in (3.7). Then the following assertions hold for every $T \in\left(0, T_{1}\right)$:
(i) (Theorem 2.1 from [2]) The mapping

$$
\begin{array}{ccc}
\left(u_{0}, u_{1}\right) & \longmapsto & u \\
\cap & & \oplus \\
H^{\sigma}(\Omega) \times H^{\sigma-1}(\Omega) & \longrightarrow & C\left([0, T] ; H^{\sigma}(\Omega)\right) \cap C^{1}\left([0, T] ; H^{\sigma-1}(\Omega)\right)
\end{array}
$$

is continuous at the point $\left(u_{0}, u_{1}\right)$.
More precisely, we have:
(ii) (Theorems 5.1 and 5.2 from [2]) Let M and M_{1} be the constants as in (3.4) and (3.6), respectively. For every $\varepsilon>0$, there exists a real $\delta>0$ depending on $\varepsilon, \nu_{0}, M, M_{1}, u_{0}, u_{1}, T$ and T_{1} such that

$$
\widetilde{\mathcal{E}}_{\sigma_{0}}(u-v ; 0)<\delta \quad \Longrightarrow \quad \widetilde{\mathcal{E}}_{\sigma_{0}}(u-v ; t)<\varepsilon \quad(t \in[0, T])
$$

for every $\sigma_{0} \in[1, \sigma]$, where

$$
v \in C\left([0, T] ; H^{\sigma}(\Omega)\right) \cap C^{1}\left([0, T] ; H^{\sigma-1}(\Omega)\right)
$$

solves (1.1) with data $\left(v(0, \cdot), \partial_{t} v(0, \cdot)\right) \in H^{\sigma}(\Omega) \times H^{\sigma-1}(\Omega)$ satisfying the compatibility condition.

Remark 3.1. In Theorem 5.1 from [2], given a bounded set W in $H^{3 / 2}(\Omega) \times H^{1 / 2}(\Omega)$, Arosio and Panizzi introduced the limit of existence time of solutions as follows:

$$
T^{*}=\frac{\nu_{0}^{3 / 2}}{M_{1} \sup \left\{\mathcal{E}_{3 / 2}(u ; 0) ;\left(u_{0}, u_{1}\right) \in W\right\}}
$$

This means that T^{*} is less than T_{1} in Lemma 3.5. However, it is possible to take W as a singleton $\left\{\left(u_{0}, u_{1}\right)\right\}$ in the proof of [2], and as a result, it is sufficient for our purpose to adopt the statement of Lemma 3.5.

For the convenience of terminology, let us give a notion of H^{σ}-well-posedness in the sense of Hadamard.

Definition 3.1. Let $u(t, x)$ be an H^{σ}-solution to the problem (1.1) on $[0, T]$ with data $\left(u_{0}, u_{1}\right) \in H^{\sigma}(\Omega) \times H^{\sigma-1}(\Omega)$ for $\sigma \geq 3 / 2$. Then we say that the problem (1.1) is H^{σ}-well-posed at $\left(u_{0}, u_{1}\right)$ on $[0, T]$ if $u(t, x)$ satisfies the assertion (ii) from Lemma 3.5 on $[0, T]$.

It is possible to extend the interval $\left[0, T_{1}\right)$ in Lemma 3.5 to $\left[0, T_{m}\right)$. More precisely, we have the following.

Proposition 3.6. Let $\sigma \geq 3 / 2$. Suppose that φ is C^{1} on \mathbb{R} and satisfies (1.2). Let $u(t, x)$ be a maximal solution to the problem (1.1) with data $\left(u_{0}, u_{1}\right) \in H^{\sigma}(\Omega) \times$ $H^{\sigma-1}(\Omega)$ satisfying the compatibility condition in the sense of Proposition 3.2. Assume that $T_{m}<\infty$. Then the problem (1.1) is H^{σ}-well-posed at $\left(u_{0}, u_{1}\right)$ on $[0, T]$ for every $T \in\left(0, T_{m}\right)$.
Proof. If $T_{1}=T_{m}$, the proposition is entirely Lemma 3.5. We consider the case when $T_{1}<T_{m}$. It follows from Lemma 3.5 that the problem (1.1) is H^{σ}-well-posed at $\left(u_{0}, u_{1}\right)$ on $\left[0, T_{1}\right)$. We claim that the problem (1.1) is H^{σ}-well-posed even at $t=T_{1}$. In fact, thanks to Lemma 3.5, for any $\varepsilon>0$ there exists a real $\delta>0$ depending on $\varepsilon, M, M_{1}, \nu_{0}, u_{0}, u_{1}$ and T_{1} such that if

$$
\begin{equation*}
\widetilde{\mathcal{E}}_{\sigma_{0}}(u-v ; 0)<\delta \tag{3.16}
\end{equation*}
$$

for every $\sigma_{0} \in[1, \sigma]$, then

$$
\begin{equation*}
\widetilde{\mathcal{E}}_{\sigma_{0}}(u-v ; t)<\varepsilon \quad\left(t \in\left[0, T_{1}\right)\right) \tag{3.17}
\end{equation*}
$$

Here, the function

$$
v \in C\left(\left[0, T_{1}\right) ; H^{\sigma}(\Omega)\right) \cap C^{1}\left(\left[0, T_{1}\right) ; H^{\sigma-1}(\Omega)\right)
$$

solves (1.1) with data $\left(v(0, \cdot), \partial_{t} v(0, \cdot)\right) \in H^{\sigma}(\Omega) \times H^{\sigma-1}(\Omega)$ satisfying the compatibility condition. It is possible that the H^{σ}-solution $v(t, \cdot)$ is extended beyond $t=T_{1}$. Indeed, we suppose that

$$
\lim _{t \rightarrow T_{1}-0} \widetilde{\mathcal{E}}_{\sigma}(v ; t)=\infty
$$

Then $\widetilde{\mathcal{E}}_{\sigma}(u-v ; t)$ is unbounded near $t=T_{1}$. However, this contradicts (3.17). Hence, $v(t, \cdot)$ exists beyond $t=T_{1}$. Therefore, we deduce that

$$
v \in C\left(\left[0, T_{1}\right] ; H^{\sigma}(\Omega)\right) \cap C^{1}\left(\left[0, T_{1}\right] ; H^{\sigma-1}(\Omega)\right)
$$

Now, we regard the problem (1.1) as that with data

$$
\begin{equation*}
\left(u\left(T_{1}-\eta, \cdot\right), \partial_{t} u\left(T_{1}-\eta, \cdot\right)\right) \in H^{\sigma}(\Omega) \times H^{\sigma-1}(\Omega) \tag{3.18}
\end{equation*}
$$

for sufficiently small $\eta>0$. We use the idea of the proof of Lemma 3.4. Introducing a new time variable s as

$$
s=t-\left(T_{1}-\eta\right)
$$

and defining a function

$$
\widetilde{u}(s, x):=u(t, x)=u\left(s+T_{1}-\eta, x\right)
$$

we can write the problem (1.1) with data (3.18) as

$$
\left\{\begin{array}{lr}
\partial_{s}^{2} \widetilde{u}-\varphi\left(\int_{\Omega}|\nabla \widetilde{u}(s)|^{2} d x\right) \Delta \widetilde{u}=0, & s>0, \tag{3.19}\\
\widetilde{u}(0, x)=u\left(T_{1}-\eta, x\right), \quad \partial_{s} \widetilde{u}(0, x)=\partial_{t} u\left(T_{1}-\eta, x\right) & x \in \Omega
\end{array}\right.
$$

and \widetilde{u} satisfies the Dirichlet boundary condition

$$
\left.\widetilde{u}\right|_{[0, \infty) \times \partial \Omega}=0 .
$$

Applying Lemma 3.5 to the problem (3.19), we find a time $S_{1} \in\left(0, T_{m}-T_{1}\right]$ fulfilling

$$
S_{1}=\frac{\nu_{0}^{3 / 2}}{M_{1} \mathcal{E}_{3 / 2}(\widetilde{u} ; 0)}=\frac{\nu_{0}^{3 / 2}}{M_{1} \mathcal{E}_{3 / 2}\left(u ; T_{1}-\eta\right)}
$$

and \widetilde{u} satisfies

$$
\widetilde{u} \in C\left(\left[0, S_{1}\right) ; H^{\sigma}(\Omega)\right) \cap C^{1}\left(\left[0, S_{1}\right) ; H^{\sigma-1}(\Omega)\right)
$$

Furthermore, for any $\varepsilon>0$ there exists a real $\widetilde{\delta}>0$ depending on $\varepsilon, \nu_{0}, M, M_{1}, \widetilde{u}(0)$, $\partial_{s} \widetilde{u}(0)$ and S_{1} such that

$$
\begin{equation*}
\widetilde{\mathcal{E}}_{\sigma_{0}}(\widetilde{u}-\widetilde{v} ; 0)<\widetilde{\delta} \quad \Longrightarrow \quad \widetilde{\mathcal{E}}_{\sigma_{0}}(\widetilde{u}-\widetilde{v} ; s)<\varepsilon \quad\left(s \in\left[0, S_{1}\right)\right) \tag{3.20}
\end{equation*}
$$

for every $\sigma_{0} \in[1, \sigma]$, where we put

$$
\widetilde{v}(s, x)=v\left(s+T_{1}-\eta, x\right)
$$

We notice that $\widetilde{\delta} \leq \varepsilon$. If we define

$$
\widetilde{T}:=S_{1}+\left(T_{1}-\eta\right),
$$

the assertion (3.20) is written as

$$
\begin{equation*}
\widetilde{\mathcal{E}}_{\sigma_{0}}\left(u-v ; T_{1}-\eta\right)<\widetilde{\delta} \quad \Longrightarrow \quad \widetilde{\mathcal{E}}_{\sigma_{0}}(u-v ; t)<\varepsilon \quad\left(t \in\left[T_{1}-\eta, \widetilde{T}\right)\right) \tag{3.21}
\end{equation*}
$$

for every $\sigma_{0} \in[1, \sigma]$. By the arbitrariness of ε, it is possible to choose ε in (3.17) as $\widetilde{\delta}$, and some δ_{1} as δ in (3.16), respectively. Namely, we find a real $\delta_{1} \in(0, \delta)$ such that

$$
\begin{equation*}
\widetilde{\mathcal{E}}_{\sigma_{0}}(u-v ; 0)<\delta_{1} \quad \Longrightarrow \quad \widetilde{\mathcal{E}}_{\sigma_{0}}(u-v ; t)<\widetilde{\delta} \quad\left(t \in\left[0, T_{1}-\eta\right]\right) \tag{3.22}
\end{equation*}
$$

for every $\sigma_{0} \in[1, \sigma]$. Thus, recalling $\widetilde{\delta} \leq \varepsilon$, and combining (3.21) and (3.22), we deduce that

$$
\widetilde{\mathcal{E}}_{\sigma_{0}}(u-v ; 0)<\delta_{1} \quad \Longrightarrow \quad \widetilde{\mathcal{E}}_{\sigma_{0}}(u-v ; t)<\varepsilon \quad(t \in[0, \widetilde{T}))
$$

Since $T_{1}<\widetilde{T}_{1}$, we conclude that (1.1) is H^{σ}-well-posed at $\left(u_{0}, u_{1}\right)$ on $\left[0, T_{1}\right]$.
Summarizing the above argument, we arrive at the following: For any $\varepsilon>0$ there exists a real $\delta_{1}>0$ such that

$$
\begin{equation*}
\widetilde{\mathcal{E}}_{\sigma_{0}}(u-v ; 0)<\delta_{1} \quad \Longrightarrow \quad \widetilde{\mathcal{E}}_{\sigma_{0}}(u-v ; t)<\varepsilon \quad\left(t \in\left[0, T_{1}\right]\right) \tag{3.23}
\end{equation*}
$$

for every $\sigma_{0} \in[1, \sigma]$, where $v(t, x)$ is the H^{σ}-solution to the problem (1.1) with data

$$
\left(v(0, \cdot), \partial_{t} v(0, \cdot)\right) \in H^{\sigma}(\Omega) \times H^{\sigma-1}(\Omega)
$$

satisfying the compatibility condition.
Next, we extend the time interval in which (1.1) is H^{σ}-well-posed at $\left(u_{0}, u_{1}\right)$. Let $\left\{T_{k}\right\}_{k=1}^{\infty}$ be the sequence satisfying (3.11) and (3.12) in Lemma 3.4. We consider the problem (1.1) on ($\left.T_{1}, T_{2}\right) \times \Omega$ with data

$$
\left(u\left(T_{1}, \cdot\right), \partial_{t} u\left(T_{1}, \cdot\right)\right) \in H^{\sigma}(\Omega) \times H^{\sigma-1}(\Omega)
$$

We may assume that $T_{2}<T_{m}$. By Lemma 3.5 together with the time translation method to get (3.20), we have the corresponding assertion to (3.21): There exists a real $\widetilde{\delta}_{1}>0$ such that

$$
\begin{equation*}
\widetilde{\mathcal{E}}_{\sigma_{0}}\left(u-v ; T_{1}\right)<\widetilde{\delta}_{1} \quad \Longrightarrow \quad \widetilde{\mathcal{E}}_{\sigma_{0}}(u-v ; t)<\varepsilon \quad\left(t \in\left[T_{1}, T_{2}\right)\right) \tag{3.24}
\end{equation*}
$$

for every $\sigma_{0} \in[1, \sigma]$. Actually, by the continuation argument as above, the assertion (3.24) holds even at the end point T_{2}. We notice that $\widetilde{\delta}_{1} \leq \varepsilon$. Next, let us choose ε in (3.23) as $\widetilde{\delta}_{1}$. Then there exists a real $\delta_{2} \in\left(0, \delta_{1}\right)$ such that

$$
\begin{equation*}
\widetilde{\mathcal{E}}_{\sigma_{0}}(u-v ; 0)<\delta_{2} \quad \Longrightarrow \quad \widetilde{\mathcal{E}}_{\sigma_{0}}(u-v ; t)<\widetilde{\delta}_{1} \quad\left(t \in\left[0, T_{1}\right]\right) \tag{3.25}
\end{equation*}
$$

for every $\sigma_{0} \in[1, \sigma]$. Combining (3.24) and (3.25), we have the following: For any $\varepsilon>0$, there exist a real $\delta_{2}>0$ such that

$$
\widetilde{\mathcal{E}}_{\sigma_{0}}(u-v ; 0)<\delta_{2} \quad \Longrightarrow \quad \widetilde{\mathcal{E}}_{\sigma_{0}}(u-v ; t)<\varepsilon \quad\left(t \in\left[0, T_{2}\right]\right)
$$

for every $\sigma_{0} \in[1, \sigma]$. Therefore, by the successive argument, for every $k \geq 3$ there exists a real $\delta_{k} \in\left(0, \delta_{k-1}\right)$ such that

$$
\begin{equation*}
\widetilde{\mathcal{E}}_{\sigma_{0}}(u-v ; 0)<\delta_{k} \quad \Longrightarrow \quad \widetilde{\mathcal{E}}_{\sigma_{0}}(u-v ; t)<\varepsilon \quad\left(t \in\left[0, T_{k}\right]\right) \tag{3.26}
\end{equation*}
$$

for every $\sigma_{0} \in[1, \sigma]$.
Let $T \in\left(0, T_{m}\right)$, and take an integer $k=k(T)$ such that $T \in\left[T_{k-1}, T_{k}\right]$. Then, thanks to (3.26), there exists a real $\delta_{T}>0$ such that

$$
\widetilde{\mathcal{E}}_{\sigma_{0}}(u-v ; 0)<\delta_{T} \quad \Longrightarrow \quad \widetilde{\mathcal{E}}_{\sigma_{0}}(u-v ; t)<\varepsilon \quad(t \in[0, T])
$$

for every $\sigma_{0} \in[1, \sigma]$. Thus, we conclude that (1.1) is H^{σ}-well-posed at $\left(u_{0}, u_{1}\right)$ on every interval $[0, T]$. This completes the proof of Proposition 3.6.
H^{σ}-well-posedness holds also for analytic solutions under an assumption that Ω is an analytic domain. We shall prove here the following.

Proposition 3.7. Assume that Ω is an analytic domain with a compact boundary. Suppose that $\varphi(\rho)$ is C^{1} on \mathbb{R} and satisfies (1.2). Let M and M_{1} be the constants as in (3.4) and (3.6), respectively. Let $u(t, x)$ be a global in time analytic solution to the problem (1.1) with data $\left(u_{0}, u_{1}\right) \in \mathcal{A}_{L^{2}}(\Omega) \times \mathcal{A}_{L^{2}}(\Omega)$ satisfying the analytic compatibility condition. Then for every $T>0$, the mapping

$$
\begin{array}{ccc}
\left(u_{0}, u_{1}\right) & \stackrel{U(t)}{\longmapsto} & u \\
\cap & \oplus \\
\mathcal{A}_{L^{2}}(\Omega) \times \mathcal{A}_{L^{2}}(\Omega) & \longrightarrow & C\left([0, T] ; H^{\sigma}(\Omega)\right) \cap \\
C^{1}\left([0, T] ; H^{\sigma-1}(\Omega)\right)
\end{array}
$$

is continuous at the point $\left(u_{0}, u_{1}\right)$ for every $\sigma \geq 1$, where $\mathcal{A}_{L^{2}}(\Omega) \times \mathcal{A}_{L^{2}}(\Omega)$ is endowed with the induced topology of $H^{\sigma}(\Omega) \times H^{\sigma-1}(\Omega)$. More precisely, for every $\varepsilon>0$ there exists $a \delta>0$ depending on $\varepsilon, \nu_{0}, M, M_{1}, u_{0}, u_{1}$ and T such that

$$
\widetilde{\mathcal{E}}_{\sigma}(u-v ; 0)<\delta \quad \Longrightarrow \quad \widetilde{\mathcal{E}}_{\sigma}(u-v ; t)<\varepsilon \quad(t \in[0, T])
$$

for every $\sigma \geq 1$, where

$$
v \in C^{1}\left([0, T] ; \mathcal{A}_{L^{2}}(\Omega)\right)
$$

solves (1.1) with data $\left(v(0, \cdot), \partial_{t} v(0, \cdot)\right) \in \mathcal{A}_{L^{2}}(\Omega) \times \mathcal{A}_{L^{2}}(\Omega)$ satisfying the analytic compatibility condition.

Proof. The proof is similar to that of Proposition 3.6. To make the argument selfcontained, we perform it carefully by the repetition of the previous lemmas and
propositions. We fix data $\left(u_{0}, u_{1}\right) \in \mathcal{A}_{L^{2}}(\Omega) \times \mathcal{A}_{L^{2}}(\Omega)$. Let σ_{1} be an arbitrary real such that

$$
\sigma_{1} \geq \max \left(\sigma, \frac{3}{2}\right)
$$

We construct a sequence $\left\{\bar{T}_{k}\right\}_{k=1}^{\infty}$ fulfilling a similar property to that in Lemma 3.4. Since

$$
\mathcal{A}_{L^{2}}(\Omega) \times \mathcal{A}_{L^{2}}(\Omega) \varsubsetneqq H^{\sigma_{1}}(\Omega) \cap H^{\sigma_{1}-1}(\Omega),
$$

thanks to Theorem 2.1 from Arosio and Panizzi [2] (cf. (3.8)), we deduce that the global in time analytic solution $u(t, x)$ to the problem (1.1) satisfies

$$
u \in C\left(\left[0, \bar{T}_{1}\right) ; H^{\sigma_{1}}(\Omega)\right) \cap C\left(\left[0, \bar{T}_{1}\right) ; H^{\sigma_{1}-1}(\Omega)\right)
$$

where \bar{T}_{1} is defined as in (3.7):

$$
\bar{T}_{1}=\frac{\nu_{0}^{3 / 2}}{M_{1} \mathcal{E}_{3 / 2}(u ; 0)}
$$

Actually, $u(t, \cdot)$ exists at $t=\bar{T}_{1}$. Next, as in the proof of Lemma 3.4, there exists a $\bar{T}_{2} \in\left(\bar{T}_{1}, \infty\right)$ such that the global in time analytic solution $u(t, x)$ satisfies

$$
u \in C\left(\left[\bar{T}_{1}, \bar{T}_{2}\right) ; H^{\sigma_{1}}(\Omega)\right) \cap C\left(\left[\bar{T}_{1}, \bar{T}_{2}\right) ; H^{\sigma_{1}-1}(\Omega)\right)
$$

and

$$
\bar{T}_{2}-\bar{T}_{1}=\frac{\nu_{0}^{3 / 2}}{M_{1} \mathcal{E}_{3 / 2}\left(u ; \bar{T}_{1}\right)}
$$

Actually, $u(t, \cdot)$ exists at $t=\bar{T}_{2}$. Hence, by the successive argument, it is possible to construct an increasing sequence $\left\{\bar{T}_{k}\right\}_{k=1}^{\infty}$ satisfying

$$
\begin{equation*}
\bar{T}_{0}=0, \quad \bar{T}_{k}-\bar{T}_{k-1}=\frac{\nu_{0}^{3 / 2}}{M_{1} \mathcal{E}_{3 / 2}\left(u ; \bar{T}_{k-1}\right)}, \quad k=1,2, \cdots \tag{3.27}
\end{equation*}
$$

Now, we claim that

$$
\begin{equation*}
\bar{T}_{k} \underset{k \rightarrow \infty}{\longrightarrow} \infty \tag{3.28}
\end{equation*}
$$

The proof is similar to that of Lemma 3.4. Suppose that $\left\{\bar{T}_{k}\right\}$ is convergent. Then we see that

$$
\begin{equation*}
\bar{T}_{k}-\bar{T}_{k-1} \underset{k \rightarrow \infty}{\longrightarrow} 0 \tag{3.29}
\end{equation*}
$$

and there exists the finite limit:

$$
T^{*}:=\lim _{k \rightarrow \infty} \bar{T}_{k}<\infty
$$

By the continuity of $\mathcal{E}_{3 / 2}(u ; t)$ in t, we deduce from (3.27) and (3.29) that

$$
\mathcal{E}_{3 / 2}\left(u ; T^{*}\right)=\lim _{k \rightarrow \infty} \mathcal{E}_{3 / 2}\left(u ; \bar{T}_{k-1}\right)=\infty
$$

This contradicts that $\mathcal{E}_{3 / 2}(u ; t)$ is finite at $t=T^{*}$, since $u(t, x)$ is the global in time analytic solution. Thus (3.28) is true.

We turn to the proof of well-posedness. If $\bar{T}_{1}=\infty$, then $\left(u_{0}, u_{1}\right)=(0,0)$, and hence, the proposition is entirely Lemma 3.5. We consider the case when $\bar{T}_{1}<\infty$.

We claim that for every $\varepsilon>0$ there exists a real $\delta_{1}>0$ depending on $\varepsilon, \nu_{0}, M, M_{1}$, u_{0}, u_{1} and \bar{T}_{1} such that if $v \in C^{1}\left([0, \infty) ; \mathcal{A}_{L^{2}}(\Omega)\right)$ solves (1.1) with data

$$
\left(v(0, \cdot), \partial_{t} v(0, \cdot)\right) \in \mathcal{A}_{L^{2}}(\Omega) \times \mathcal{A}_{L^{2}}(\Omega)
$$

satisfying the analytic compatibility condition and

$$
\widetilde{\mathcal{E}}_{\sigma}(u-v ; 0)<\delta_{1}
$$

for every $\sigma \in\left[1, \sigma_{1}\right]$, then

$$
\widetilde{\mathcal{E}}_{\sigma}(u-v ; t)<\varepsilon \quad\left(t \in\left[0, \bar{T}_{1}\right]\right) .
$$

In fact, by using Lemma 3.5, we deduce that (1.1) is H^{σ}-well-posed at $\left(u_{0}, u_{1}\right)$ on $\left[0, \bar{T}_{1}\right)$ in the above sense. Furthermore, employing the continuation argument as in the proof of Proposition 3.6, we conclude that H^{σ}-well-posedness holds even at $t=\bar{T}_{1}$. Next, we consider the problem (1.1) on $\left(\bar{T}_{1}, \bar{T}_{2}\right) \times \Omega$ with data

$$
\left(u\left(\bar{T}_{1}, \cdot\right), \partial_{t} u\left(\bar{T}_{1}, \cdot\right)\right) \in \mathcal{A}_{L^{2}}(\Omega) \times \mathcal{A}_{L^{2}}(\Omega) \varsubsetneqq H^{\sigma_{1}}(\Omega) \times H^{\sigma_{1}-1}(\Omega)
$$

Then, from Lemma 3.5 together with the time translation method, we deduce that the problem (1.1) is H^{σ}-well-posed at $\left(u\left(\bar{T}_{1}, \cdot\right), \partial_{t} u\left(\bar{T}_{1}, \cdot\right)\right)$ on $\left[\bar{T}_{1}, \bar{T}_{2}\right]$ for every $\sigma \in\left[1, \sigma_{1}\right]$. Hence, by adjusting the smallness of $\widetilde{\mathcal{E}}_{\sigma}(u-v ; 0)$, we conclude that the problem (1.1) is H^{σ}-well-posed at $\left(u_{0}, u_{1}\right)$ on $\left[0, \bar{T}_{2}\right]$ for every $\sigma \in\left[1, \sigma_{1}\right]$. Therefore, by the successive argument, the problem (1.1) is H^{σ}-well-posed at $\left(u_{0}, u_{1}\right)$ on $\left[0, \bar{T}_{k}\right]$ for all positive integer k and every $\sigma \in\left[1, \sigma_{1}\right]$. In conclusion, the above argument implies that the problem (1.1) is H^{σ}-well-posed at $\left(u_{0}, u_{1}\right)$ on every interval $[0, T]$. The proof of Proposition 3.7 is now finished.

4. Absolute integrability of time-Derivative of the coefficient

In this section we prove that time-derivative of the coefficient $\varphi\left(\|\nabla u\|_{L^{2}}^{2}\right)$ of principal term is absolutely integrable on the maximal interval of existence of solutions. For this purpose, we need a uniform energy estimate for analytic solutions.

We shall prove here the following.
Lemma 4.1. Assume that Ω is the whole space \mathbb{R}^{n}, or an analytic domain with a compact boundary. Suppose that $\varphi(\rho)$ is C^{1} on \mathbb{R} and satisfies (1.2). Let M and M_{1} be the constants as in (3.4) and (3.6), respectively. Let $\sigma \geq 1, T>0$, and let \mathcal{K} be a compact subset of $H^{\sigma}(\Omega) \times H^{\sigma-1}(\Omega)$. Then there exists a positive constant $C_{\mathcal{K}}\left(M, M_{1}, \nu_{0}, T\right)$ depending on M, M_{1}, ν_{0}, T and \mathcal{K} such that

$$
\begin{equation*}
\left\|\left(u(t, \cdot), \partial_{t} u(t, \cdot)\right)\right\|_{H^{\sigma}(\Omega) \times H^{\sigma-1}(\Omega)} \leq C_{\mathcal{K}}\left(M, M_{1}, \nu_{0}, T\right)\left\|\left(u_{0}, u_{1}\right)\right\|_{H^{\sigma}(\Omega) \times H^{\sigma-1}(\Omega)} \tag{4.1}
\end{equation*}
$$

for any $t \in[0, T]$, and for any $\left(u_{0}, u_{1}\right) \in\left(\mathcal{A}_{L^{2}}(\Omega) \times \mathcal{A}_{L^{2}}(\Omega)\right) \cap \mathcal{K}$ satisfying the analytic compatibility condition, where $u(t, x)$ is a global in time analytic solution to (1.1) with data $\left(u_{0}, u_{1}\right)$.

Proof. Obviously, (4.1) is true for $\left(u_{0}, u_{1}\right)=(0,0)$. Hence, we have only to prove (4.1) for $\left(u_{0}, u_{1}\right) \neq(0,0)$. We divide the proof into two cases:
(i) \mathcal{K} is a finite set.
(ii) \mathcal{K} is an infinite set.

Case (i). We consider the case when \mathcal{K} is a finite set. We may assume that \mathcal{K} is a singleton, i.e.,

$$
\mathcal{K}=\left\{\left(u_{0}, u_{1}\right)\right\}
$$

without loss of generality. Suppose that (4.1) is not true. Then for every $k=1,2, \ldots$, there exists a sequence $\left\{t_{k}\right\} \varsubsetneqq[0, T]$ such that

$$
\begin{equation*}
\left\|\left(u\left(t_{k}, \cdot\right), \partial_{t} u\left(t_{k}, \cdot\right)\right)\right\|_{H^{\sigma}(\Omega) \times H^{\sigma-1}(\Omega)}>k\left\|\left(u_{0}, u_{1}\right)\right\|_{H^{\sigma}(\Omega) \times H^{\sigma-1}(\Omega)} . \tag{4.2}
\end{equation*}
$$

By the compactness of $[0, T]$ we can extract a subsequence $\left\{t_{k^{\prime}}\right\}$ such that

$$
t_{k^{\prime}} \underset{k^{\prime} \rightarrow \infty}{\longrightarrow} t^{*}
$$

for some $t^{*} \in[0, T]$. Since the sequence

$$
\left\{k^{\prime}\left\|\left(u_{0}, u_{1}\right)\right\|_{H^{\sigma}(\Omega) \times H^{\sigma-1}(\Omega)}\right\}
$$

is unbounded, it follows from (4.2) that

$$
\left\{\left\|\left(u\left(t_{k^{\prime}}, \cdot\right), \partial_{t} u\left(t_{k^{\prime}}, \cdot\right)\right)\right\|_{H^{\sigma}(\Omega) \times H^{\sigma-1}(\Omega)}\right\}
$$

is unbounded, which implies that the function

$$
\left\|\left(u(t, \cdot), \partial_{t} u(t, \cdot)\right)\right\|_{H^{\sigma}(\Omega) \times H^{\sigma-1}(\Omega)}
$$

is unbounded near a neighbourhood of $t=t^{*}$. This contradicts the fact that

$$
u \in C\left([0, T] ; H^{\sigma}(\Omega) \cap C^{1}\left([0, T] ; H^{\sigma-1}(\Omega)\right)\right.
$$

Hence, (4.1) is true in this case.
Case (ii). We consider the case when \mathcal{K} is an infinite set. Suppose that (4.1) is not true. Then for every $k=1,2, \ldots$, there exists a pair of non-trivial functions $\left(u_{0}^{k}, u_{1}^{k}\right)$ in $\left(\mathcal{A}_{L^{2}}(\Omega) \times \mathcal{A}_{L^{2}}(\Omega)\right) \cap \mathcal{K}$ satisfying the analytic compatibility condition and a sequence $\left\{t_{k}\right\} \varsubsetneqq[0, T]$ such that

$$
\begin{equation*}
\left\|\left(u^{k}\left(t_{k}, \cdot\right), \partial_{t} u^{k}\left(t_{k}, \cdot\right)\right)\right\|_{H^{\sigma}(\Omega) \times H^{\sigma-1}(\Omega)}>k\left\|\left(u_{0}^{k}, u_{1}^{k}\right)\right\|_{H^{\sigma}(\Omega) \times H^{\sigma-1}(\Omega)}, \tag{4.3}
\end{equation*}
$$

where $u^{k}(t, x)$ are global in time analytic solutions to (1.1) with data $\left(u_{0}^{k}, u_{1}^{k}\right)$. By the compactness of $[0, T]$ we can extract a subsequence $\left\{t_{k^{\prime}}\right\}$ such that

$$
t_{k^{\prime}} \underset{k^{\prime} \rightarrow \infty}{\longrightarrow} t_{*}
$$

for some $t_{*} \in[0, T]$. Let $U(t)$ be the solution operator associated to (1.1), i.e., $U(t)$ is the continuous mapping introduced in Proposition 3.7. Here, $\mathcal{A}_{L^{2}}(\Omega) \times \mathcal{A}_{L^{2}}(\Omega)$ is endowed with the induced topology of $H^{\sigma}(\Omega) \times H^{\sigma-1}(\Omega)$ for $\sigma \geq 1$. Since

$$
\left\{\left(u_{0}^{k^{\prime}}, u_{1}^{k^{\prime}}\right)\right\} \subset\left(\mathcal{A}_{L^{2}}(\Omega) \times \mathcal{A}_{L^{2}}(\Omega)\right) \cap \mathcal{K},
$$

it follows that the image $\left\{u^{k^{\prime}}(t, \cdot)\right\}=\left\{U(t)\left(u_{0}^{k^{\prime}}, u_{1}^{k^{\prime}}\right)\right\}$ is bounded in the solution space

$$
C\left([0, T] ; H^{\sigma}(\Omega)\right) \cap C^{1}\left([0, T] ; H^{\sigma-1}(\Omega)\right)
$$

for every $T>0$. For the sake of convenience, k^{\prime} is denoted by k.
We claim that the sequence

$$
\left\{k\left\|\left(u_{0}^{k}, u_{1}^{k}\right)\right\|_{H^{\sigma}(\Omega) \times H^{\sigma-1}(\Omega)}\right\}
$$

is bounded. In fact, if this is not true, it follows from (4.3) that the sequence

$$
\left\{\left\|\left(u^{k}\left(t_{k}, \cdot\right), \partial_{t} u^{k}\left(t_{k}, \cdot\right)\right)\right\|_{H^{\sigma}(\Omega) \times H^{\sigma-1}(\Omega)}\right\}
$$

is unbounded. Therefore, the sequence of functions

$$
\left\{\left\|\left(u^{k}(t, \cdot), \partial_{t} u^{k}(t, \cdot)\right)\right\|_{H^{\sigma}(\Omega) \times H^{\sigma-1}(\Omega)}\right\}
$$

is unbounded at $t=t_{*}$. This contradicts the boundedness of $\left\{u^{k}(t, \cdot)\right\}$ in the space

$$
C\left([0, T] ; H^{\sigma}(\Omega)\right) \cap C^{1}\left([0, T] ; H^{\sigma-1}(\Omega)\right)
$$

Therefore, there exists a positive constant A such that

$$
\begin{equation*}
k\left\|\left(u_{0}^{k}, u_{1}^{k}\right)\right\|_{H^{\sigma}(\Omega) \times H^{\sigma-1}(\Omega)} \leq A \tag{4.4}
\end{equation*}
$$

for all k.
Put

$$
\left(\widetilde{u}_{0}^{k}, \widetilde{u}_{1}^{k}\right)=\frac{1}{k\left\|\left(u_{0}^{k}, u_{1}^{k}\right)\right\|_{H^{\sigma}(\Omega) \times H^{\sigma-1}(\Omega)}}\left(u_{0}^{k}, u_{1}^{k}\right) \quad \text { for } k=1,2, \cdots .
$$

Then we have

$$
\begin{equation*}
\left\|\left(\widetilde{u}_{0}^{k}, \widetilde{u}_{1}^{k}\right)\right\|_{H^{\sigma}(\Omega) \times H^{\sigma-1}(\Omega)}^{\longrightarrow} 0 \tag{4.5}
\end{equation*}
$$

Let us define

$$
\widetilde{u}^{k}(t, x)=\frac{1}{k\left\|\left(u_{0}^{k}, u_{1}^{k}\right)\right\|_{H^{\sigma}(\Omega) \times H^{\sigma-1}(\Omega)}} u^{k}(t, x)
$$

Then each $\widetilde{u}^{k}(t, x)$ satisfies the Kirchhoff equation with a new coefficient $\widetilde{\varphi}_{k}$:

$$
\left\{\begin{array}{lr}
\partial_{t}^{2} \widetilde{u}^{k}-\widetilde{\varphi}_{k}\left(\left\|\nabla \widetilde{u}^{k}(t, \cdot)\right\|_{L^{2}(\Omega)}^{2}\right) \Delta \widetilde{u}^{k}=0, & t \in[0, T], \tag{4.6}\\
\widetilde{u}^{k}(0, x)=\widetilde{u}_{0}^{k}(x), & \partial_{t} \widetilde{u}^{k}(0, x)=\widetilde{u}_{1}^{k}(x),
\end{array}\right.
$$

with the boundary condition

$$
\left.\widetilde{u}^{k}\right|_{[0, T] \times \partial \Omega}=0,
$$

where

$$
\widetilde{\varphi}_{k}\left(\left\|\nabla \widetilde{u}^{k}(t, \cdot)\right\|_{L^{2}(\Omega)}^{2}\right):=\varphi\left(k^{2}\left\|\left(u_{0}^{k}, u_{1}^{k}\right)\right\|_{H^{\sigma}(\Omega) \times H^{\sigma-1}(\Omega)}^{2}\left\|\nabla \widetilde{u}^{k}(t, \cdot)\right\|_{L^{2}(\Omega)}^{2}\right)
$$

We observe that functions $\widetilde{\varphi}_{k}(\rho)$ have a common domain $\left[0, \nu_{0}^{-1} C_{0}\right]$ for all k, where C_{0} is a positive constant satisfying

$$
\begin{equation*}
\mathscr{H}\left(\widetilde{u}_{k} ; 0\right) \leq C_{0} \quad \text { for } k=1,2, \cdots \tag{4.7}
\end{equation*}
$$

which is possible on account of (4.5). In fact, we see from Lemma 3.1 that

$$
\begin{equation*}
\mathscr{H}\left(\widetilde{u}^{k} ; t\right)=\left\|\partial_{t} \widetilde{u}^{k}(t, \cdot)\right\|_{L^{2}(\Omega)}^{2}+\int_{0}^{\left\|\nabla \widetilde{u}^{k}(t,)\right\|_{L^{2}(\Omega)}^{2}} \widetilde{\varphi}_{k}(\rho) d \rho=\mathscr{H}\left(\widetilde{u}^{k} ; 0\right) \tag{4.8}
\end{equation*}
$$

for all k. It follows from assumption (1.2) that

$$
\widetilde{\varphi}_{k}(\rho)=\varphi\left(k^{2}\left\|\left(u_{0}^{k}, u_{1}^{k}\right)\right\|_{H^{\sigma}(\Omega) \times H^{\sigma-1}(\Omega)}^{2} \rho\right) \geq \nu_{0}
$$

for any $\rho \geq 0$ and all k. Hence, this inequality together with (4.7) and (4.8) imply that

$$
\left\|\nabla \widetilde{u}^{k}(t, \cdot)\right\|_{L^{2}(\Omega)}^{2} \leq \nu_{0}^{-1} \mathscr{H}\left(\widetilde{u}^{k} ; t\right)=\nu_{0}^{-1} \mathscr{H}\left(\widetilde{u}^{k} ; 0\right) \leq \nu_{0}^{-1} C_{0}
$$

for all k and $t \in[0, T]$. This proves the assertion.

We need to check the boundedness and Lipschitz continuity of $\widetilde{\varphi}_{k}(\rho)$ uniformly in k to use Proposition 3.7. Indeed, we can show that $\left\{\widetilde{\varphi}_{k}^{\prime}(\rho)\right\}$ is uniformly bounded on $\left[0, \nu_{0}^{-1} C_{0}\right]$. Namely, we claim that
(i) $\left\{\widetilde{\varphi}_{k}(\rho)\right\}$ is uniformly bounded on $\left[0, \nu_{0}^{-1} C_{0}\right]$, and satisfies

$$
\begin{equation*}
\nu_{0} \leq \widetilde{\varphi}_{k}(\rho) \leq \widetilde{M} \tag{4.9}
\end{equation*}
$$

for any $\rho \in\left[0, \nu_{0}^{-1} C_{0}\right]$ and all k, where we put

$$
\widetilde{M}=\sup \left\{\varphi(\rho): 0 \leq \rho \leq A^{2} \nu_{0}^{-1} C_{0}\right\}
$$

Here A is the constant appearing in (4.4).
(ii) $\left\{\widetilde{\varphi}_{k}^{\prime}(\rho)\right\}$ is uniformly bounded on $\left[0, \nu_{0}^{-1} C_{0}\right]$, and satisfies

$$
\begin{equation*}
\left|\widetilde{\varphi}_{k}^{\prime}(\rho)\right| \leq \widetilde{M}_{1} A^{2} \tag{4.10}
\end{equation*}
$$

for any $\rho \in\left[0, \nu_{0}^{-1} C_{0}\right]$ and all k, where we put

$$
\begin{equation*}
\widetilde{M}_{1}=\sup \left\{\left|\varphi^{\prime}(\rho)\right|: 0 \leq \rho \leq A^{2} \nu_{0}^{-1} C_{0}\right\} . \tag{4.11}
\end{equation*}
$$

In fact, (4.9) is an immediate consequence of assumption (1.2) and the following:

$$
\sup \left\{\widetilde{\varphi}_{k}(\rho): 0 \leq \rho \leq \nu_{0}^{-1} C_{0}\right\} \leq \sup \left\{\varphi(\rho): 0 \leq \rho \leq A^{2} \nu_{0}^{-1} C_{0}\right\}
$$

This proves the assertion (i). As to the assertion (ii), it follows from (4.4) and (4.11) that

$$
\left|\widetilde{\varphi}_{k}^{\prime}(\rho)\right|=\left|\varphi^{\prime}\left(k^{2}\left\|\left(u_{0}^{k}, u_{1}^{k}\right)\right\|_{H^{\sigma}(\Omega) \times H^{\sigma-1}(\Omega)}^{2} \rho\right)\right| \cdot k^{2}\left\|\left(u_{0}^{k}, u_{1}^{k}\right)\right\|_{H^{\sigma}(\Omega) \times H^{\sigma-1}(\Omega)}^{2} \leq \widetilde{M}_{1} A^{2}
$$

for any $\rho \in\left[0, \nu_{0}^{-1} C_{0}\right]$ and all k. This proves (4.10).
We are now in a position to lead to a contradiction. Obviously, the zero function $w(t, x)=0$ solves the problems (4.6) with zero initial condition:

$$
\begin{cases}\partial_{t}^{2} w-\widetilde{\varphi}_{k}\left(\|\nabla w(t, \cdot)\|_{L^{2}(\Omega)}^{2}\right) \Delta w=0, & t \in[0, T], \tag{4.12}\\ w(0, x)=0, \quad \partial_{t} w(0, x)=0, & x \in \Omega\end{cases}
$$

and satisfies the Dirichlet boundary condition

$$
\left.w\right|_{[0, T] \times \partial \Omega}=0
$$

for all k, where

$$
\widetilde{\varphi}_{k}\left(\|\nabla w(t, \cdot)\|_{L^{2}(\Omega)}^{2}\right)=\varphi\left(k^{2}\left\|\left(u_{0}^{k}, u_{1}^{k}\right)\right\|_{H^{\sigma}(\Omega) \times H^{\sigma-1}(\Omega)}^{2}\|\nabla w(t, \cdot)\|_{L^{2}(\Omega)}^{2}\right)
$$

Now, thanks to the convergence (4.5), applying Proposition 3.7 to the problems (4.12), we find an integer k_{0} such that

$$
\begin{equation*}
\left\|\left(\widetilde{u}^{k}(t, \cdot), \partial_{t} \widetilde{u}^{k}(t, \cdot)\right)\right\|_{H^{\sigma}(\Omega) \times H^{\sigma-1}(\Omega)} \leq 1 \tag{4.13}
\end{equation*}
$$

on $[0, T]$ for all $k \geq k_{0}$. However, it follows from (4.3) that the sequence $\left\{\widetilde{u}^{k}\left(t_{k}, \cdot\right)\right\}$ satisfies

$$
\left\|\left(\widetilde{u}^{k}\left(t_{k}, \cdot\right), \partial_{t} \widetilde{u}^{k}\left(t_{k}, \cdot\right)\right)\right\|_{H^{\sigma}(\Omega) \times H^{\sigma-1}(\Omega)}>1, \quad k=1,2, \cdots
$$

This inequality contradicts (4.13). Thus, the estimate (4.1) is true. The proof of Lemma 4.1 is now finished.

We conclude this section by proving the absolute integrability of time-derivative of the functional $c(t)$ defined by (3.2).

Proposition 4.2. Let Ω, M, M_{1} and ν_{0} be as in Lemma 4.1, and let $u(t, x)$ be the maximal solution to the problem (1.1) in the sense of Proposition 3.2 with data $\left(u_{0}, u_{1}\right) \in H^{\sigma}(\Omega) \times H^{\sigma-1}(\Omega)$ for $\sigma \geq 3 / 2$. Suppose that $T_{m}<\infty$. Then for the functional $c(t)$ defined by (3.2), the time-derivative $c^{\prime}(t)$ is absolutely integrable on $\left[0, T_{m}\right]$, and there exists a positive constant $L\left(M, M_{1}, \nu_{0}, T_{m}\right)$ depending on M, M_{1}, ν_{0} and T_{m} such that

$$
\begin{equation*}
\int_{0}^{t}\left|c^{\prime}(\tau)\right| d \tau \leq L\left(M, M_{1}, \nu_{0}, T_{m}\right)\left\|\left(u_{0}, u_{1}\right)\right\|_{H^{\frac{3}{2}}(\Omega) \times H^{\frac{1}{2}}(\Omega)}^{2} t \tag{4.14}
\end{equation*}
$$

for any $t \in\left[0, T_{m}\right]$.
Proof. We note that $\mathcal{A}_{L^{2}}(\Omega)$ is dense in $H^{\sigma}(\Omega)$ for any $\sigma \geq 0$ (see Lemma A. 1 in appendix A). Let $u^{j}(t, x)$ be global in time analytic solutions to (1.1) with data $\left(u_{0}^{j}, u_{1}^{j}\right) \in \mathcal{A}_{L^{2}}(\Omega) \times \mathcal{A}_{L^{2}}(\Omega), j=1,2, \ldots$, satisfying the analytic compatibility condition and

$$
\begin{equation*}
\left(u_{0}^{j}, u_{1}^{j}\right) \underset{j \rightarrow \infty}{\longrightarrow}\left(u_{0}, u_{1}\right) \quad \text { in } H^{\sigma}(\Omega) \times H^{\sigma-1}(\Omega) \tag{4.15}
\end{equation*}
$$

for $\sigma \geq 3 / 2$. We note that $\left\{\left(u_{0}^{j}, u_{1}^{j}\right)\right\} \cup\left\{\left(u_{0}, u_{1}\right)\right\}$ is an infinite compact subset of $H^{\sigma_{0}}(\Omega) \times H^{\sigma_{0}-1}(\Omega)$ for every $\sigma_{0} \in[1, \sigma]$. Define a sequence of functionals

$$
c_{j}(t)=\varphi\left(\int_{\Omega}\left|\nabla u^{j}(t, x)\right|^{2} d x\right), \quad j=1,2, \cdots
$$

For every $T \in\left(0, T_{m}\right)$, thanks to Proposition 3.6, the convergence (4.15) implies that

$$
\begin{align*}
c_{j}^{\prime}(t) & =\varphi^{\prime}\left(\int_{\Omega}\left|\nabla u^{j}(t, x)\right|^{2} d x\right) \cdot 2 \operatorname{Re}\left((-\Delta)^{\frac{1}{4}} \partial_{t} u^{j}(t, \cdot),(-\Delta)^{\frac{3}{4}} u^{j}(t, \cdot)\right)_{L^{2}(\Omega)} \\
& \underset{j \rightarrow \infty}{\longrightarrow} \varphi^{\prime}\left(\int_{\Omega}|\nabla u(t, x)|^{2} d x\right) \cdot 2 \operatorname{Re}\left((-\Delta)^{\frac{1}{4}} \partial_{t} u(t, \cdot),(-\Delta)^{\frac{3}{4}} u(t, \cdot)\right)_{L^{2}(\Omega)} \tag{4.16}\\
& =c^{\prime}(t)
\end{align*}
$$

for all $t \in[0, T]$. Here, there exists a positive constant C_{1} such that

$$
\left\|\left(u_{0}^{j}, u_{1}^{j}\right)\right\|_{H^{\frac{3}{2}}(\Omega) \times H^{\frac{1}{2}}(\Omega)} \leq C_{1}\left\|\left(u_{0}, u_{1}\right)\right\|_{H^{\frac{3}{2}}(\Omega) \times H^{\frac{1}{2}}(\Omega)}
$$

for all j. By using the upper bound M_{1} of φ^{\prime} (see (3.6)), and by applying the estimate (4.1) from Lemma 4.1 for $\mathcal{K}=\left\{\left(u_{0}^{j}, u_{1}^{j}\right)\right\} \cup\left\{\left(u_{0}, u_{1}\right)\right\}$ to $u^{j}(t, x)$ on $\left[0, T_{m}\right]$, we find a positive constant $C\left(M, M_{1}, \nu_{0}, T_{m}\right)$, independent of j, such that

$$
\begin{aligned}
\left|c_{j}^{\prime}(t)\right| & \leq 2 \left\lvert\, \varphi^{\prime}\left(\left\|\nabla u^{j}(t, \cdot)\right\|_{L^{2}(\Omega)}^{2}\right)\left\|\partial_{t} u^{j}(t, \cdot)\right\|_{H^{\frac{1}{2}}(\Omega)}\left\|u^{j}(t, \cdot)\right\|_{H^{\frac{3}{2}}(\Omega)}\right. \\
& \leq 2 M_{1} C\left(M, M_{1}, \nu_{0}, T_{m}\right)^{2}\left\|\left(u_{0}^{j}, u_{1}^{j}\right)\right\|_{H^{\frac{3}{2}}(\Omega) \times H^{\frac{1}{2}}(\Omega)}^{2} \\
& \leq 2 C_{1} M_{1} C\left(M, M_{1}, \nu_{0}, T_{m}\right)^{2}\left\|\left(u_{0}, u_{1}\right)\right\|_{H^{\frac{3}{2}}(\Omega) \times H^{\frac{1}{2}}(\Omega)}^{2}
\end{aligned}
$$

for all $t \in\left[0, T_{m}\right]$ and j. Thus, thanks to (4.16), Lebesgue's dominated convergence theorem implies that $c^{\prime}(t)$ is absolutely integrable on $[0, T]$ and satisfies

$$
\int_{0}^{t}\left|c^{\prime}(\tau)\right| d \tau \leq 2 C_{1} M_{1} C\left(M, M_{1}, \nu_{0}, T_{m}\right)^{2}\left\|\left(u_{0}, u_{1}\right)\right\|_{H^{\frac{3}{2}}(\Omega) \times H^{\frac{1}{2}}(\Omega)}^{2} t
$$

for all $t \in[0, T]$. Since $T \in\left(0, T_{m}\right)$ is arbitrary, we conclude (4.14). The proof of Proposition 4.2 is finished.

5. Proofs of Theorems 2.1 and 2.2

In this section we prove Theorems 2.1 and 2.2. Our goal is to show that the local H^{σ}-solution $u(t, x)$ is bounded in $H^{3 / 2}\left(\mathbb{R}^{n}\right)$ at $t=T_{m}$; this allows us that part (ii) in Proposition 3.2 never occurs, and hence, $u(t, x)$ exists globally on $[0, \infty)$.
Proof of Theorem 2.1. Let $u(t, x)$ be the maximal H^{σ}-solution in Proposition 3.2 with data $\left(u_{0}, u_{1}\right) \in H^{\sigma}\left(\mathbb{R}^{n}\right) \times H^{\sigma-1}\left(\mathbb{R}^{n}\right)$. Suppose that $T_{m}<\infty$. We adopt an energy density as

$$
E(t, \xi)=\left\{\left|\widehat{u}^{\prime}(t)\right|^{2}+c(t)|\xi|^{2}|\widehat{u}(t)|^{2}\right\}|\xi|
$$

where $\widehat{u}(t)=\widehat{u}(t, \xi)$ stands for the Fourier transform of $u(t, x)$ and we put

$$
c(t)=\varphi\left(\int_{\mathbb{R}^{n}}|\nabla u(t, x)|^{2} d x\right)
$$

Then we can write

$$
\mathcal{E}_{3 / 2}(u ; t)=\int_{\mathbb{R}^{n}} E(t, \xi) d \xi
$$

We notice that $\widehat{u}(t)$ satisfies the equation

$$
\begin{equation*}
\widehat{u}^{\prime \prime}(t)+c(t)|\xi|^{2} \widehat{u}(t)=0 \tag{5.1}
\end{equation*}
$$

By using the equation (5.1), we compute the time-derivative of $E(t, \xi)$:

$$
\begin{aligned}
E^{\prime}(t, \xi) & =\left[2 \operatorname{Re}\left\{\widehat{u}^{\prime \prime}(t) \overline{\widehat{u}^{\prime}(t)}\right\}+c^{\prime}(t)|\xi|^{2}|\widehat{u}(t)|^{2}+2 c(t)|\xi|^{2} \operatorname{Re}\left\{\widehat{u}^{\prime}(t) \overline{\widehat{u}(t)}\right\}\right]|\xi| \\
& =c^{\prime}(t)|\xi|^{3}|\widehat{u}(t)|^{2} \\
& \leq \frac{\left|c^{\prime}(t)\right|}{c(t)} E(t, \xi)
\end{aligned}
$$

Hence, we find from Gronwall's lemma that

$$
\begin{equation*}
\mathcal{E}_{3 / 2}(u ; t) \leq \mathcal{E}_{3 / 2}(u ; 0) e^{\int_{0}^{t} \frac{\left\lvert\, \frac{c^{\prime}(\tau) \mid}{c(\tau)} d \tau\right.}{d \tau}} \tag{5.2}
\end{equation*}
$$

for any $t \in\left[0, T_{m}\right)$. Therefore, it follows from Proposition 4.2 that

$$
\limsup _{t \rightarrow T_{m}-0} \mathcal{E}_{3 / 2}(u ; t) \leq \mathcal{E}_{3 / 2}(u ; 0) e^{\nu_{0}^{-1} L\left(M, M_{1}, \nu_{0}, T_{m}\right)\left\|\left(u_{0}, u_{1}\right)\right\|_{H^{3 / 2}\left(\mathbb{R}^{n}\right) \times H^{1 / 2}\left(\mathbb{R}^{n}\right)} T_{m}}<\infty
$$

Thus, the assertion (ii) in Proposition 3.2 never occurs, and hence, we conclude that $T_{m}=\infty$. The proof of Theorem 2.1 is complete.

We prove Theorem 2.2.
Proof of Theorem 2.2. Let $u(t, x)$ be a maximal solution to (1.1) with data $\left(u_{0}, u_{1}\right) \in$ $\gamma_{L^{2}}^{s}\left(\mathbb{R}^{n}\right) \times \gamma_{L^{2}}^{s}\left(\mathbb{R}^{n}\right)$ in the sense of Proposition 3.3. It is sufficient to prove that

$$
\limsup _{t \rightarrow T_{m}-0} \mathcal{E}_{3 / 2}(u ; t)<\infty
$$

The finiteness of this superior limit is proved in the completely same way as in proof of Theorem 2.1. Thus we conclude from Proposition 3.3 that the Gevrey class solution $u(t, x)$ exists globally on $[0, \infty)$. The proof of Theorem 2.2 is complete.

6. Energy estimates

In this section we prove energy estimates for global solutions to the Cauchy problem (1.1) obtained in Theorems 2.1 and 2.2. These kinds of estimates for global solutions to the initial-boundary value problem are proved in a completely similar manner to the Cauchy problem.

We prepare global H^{σ}-well-posedness for (1.1).
Proposition 6.1. Let $\sigma \geq 3 / 2$. Assume that φ is C^{1} on \mathbb{R} and satisfies (1.2). Let $u(t, x)$ be a global in time H^{σ}-solution to the Cauchy problem (1.1) with data $\left(u_{0}, u_{1}\right) \in H^{\sigma}\left(\mathbb{R}^{n}\right) \times H^{\sigma-1}\left(\mathbb{R}^{n}\right)$ in the sense of Theorem 2.1. Then the problem (1.1) is H^{σ}-well-posed at $\left(u_{0}, u_{1}\right)$ on $[0, T]$ for every $T>0$.

Proof. In Lemma 3.4 we constructed a sequence $\left\{T_{k}\right\}$ satisfying

$$
T_{0}=0, \quad T_{k}-T_{k-1}=\frac{\nu_{0}^{2 / 3}}{M_{1} \mathcal{E}_{3 / 2}\left(u ; T_{k-1}\right)}, \quad k=1,2, \cdots
$$

Then, according to the proof of Proposition 3.6, (1.1) is H^{σ}-well-posed at $\left(u_{0}, u_{1}\right)$ on $\left[0, T_{k}\right]$ for all k. Hence, if we prove that $\left\{T_{k}\right\}$ is divergent, then (1.1) is H^{σ}-well-posed at $\left(u_{0}, u_{1}\right)$ on $[0, T]$ for every $T>0$. Thus, all we have to do is to show that $\left\{T_{k}\right\}$ is divergent. However, the proof is completely the same as that of Proposition 3.7, and we omit it. The proof of Proposition 6.1 is complete.

We shall prove here the following.
Theorem 6.2. Suppose that $\varphi(\rho)$ is C^{1} on \mathbb{R} and satisfies (1.2). Let M and M_{1} be as in (3.4) and (3.6), respectively. Let $u(t, x)$ be the global H^{σ}-solution in Theorem 2.1 for $\sigma \geq 3 / 2$. Then for every $T>0$, there exists a positive constant $C\left(M, M_{1}, \nu_{0}, T\right)$ depending on M, M_{1}, ν_{0} and T such that

$$
\begin{align*}
& \|u(t, \cdot)\|_{H^{\sigma}\left(\mathbb{R}^{n}\right)}+\left\|\partial_{t} u(t, \cdot)\right\|_{H^{\sigma-1}\left(\mathbb{R}^{n}\right)} \\
\leq & C\left(M, M_{1}, \nu_{0}, T\right)\left(\left\|u_{0}\right\|_{H^{\sigma}\left(\mathbb{R}^{n}\right)}+\left\|u_{1}\right\|_{H^{\sigma-1}\left(\mathbb{R}^{n}\right)}\right) \tag{6.1}
\end{align*}
$$

for any $t \in[0, T]$.
Proof. For any $\left(u_{0}, u_{1}\right) \in H^{\sigma}\left(\mathbb{R}^{n}\right) \times H^{\sigma-1}\left(\mathbb{R}^{n}\right)$ let us take $\left(u_{0}^{k}, u_{1}^{k}\right) \in \mathcal{A}_{L^{2}}\left(\mathbb{R}^{n}\right) \times$ $\mathcal{A}_{L^{2}}\left(\mathbb{R}^{n}\right)$ such that

$$
\begin{equation*}
\left(u_{0}^{k}, u_{1}^{k}\right) \underset{k \rightarrow \infty}{\longrightarrow}\left(u_{0}, u_{1}\right) \quad \text { in } H^{\sigma}\left(\mathbb{R}^{n}\right) \times H^{\sigma-1}\left(\mathbb{R}^{n}\right) \tag{6.2}
\end{equation*}
$$

Since $\left\{\left(u_{0}^{k}, u_{1}^{k}\right)\right\} \cup\left\{\left(u_{0}, u_{1}\right)\right\}$ is an infinite compact subset of $H^{\sigma}\left(\mathbb{R}^{n}\right) \times H^{\sigma-1}\left(\mathbb{R}^{n}\right)$, thanks to Lemma 4.1, there exists a positive constant $C\left(M, M_{1}, \nu_{0}, T\right)$, independent of k, such that

$$
\begin{align*}
& \left\|\left(u^{k}(t, \cdot), \partial_{t} u^{k}(t, \cdot)\right)\right\|_{H^{\sigma}\left(\mathbb{R}^{n}\right) \times H^{\sigma-1}\left(\mathbb{R}^{n}\right)} \tag{6.3}\\
\leq & C\left(M, M_{1}, \nu_{0}, T\right)\left\|\left(u_{0}^{k}, u_{1}^{k}\right)\right\|_{H^{\sigma}\left(\mathbb{R}^{n}\right) \times H^{\sigma-1}\left(\mathbb{R}^{n}\right)}
\end{align*}
$$

for any $t \in[0, T]$ and all k, where $u^{k}(t, x)$ are global in time analytic solutions to (1.1) with data $\left(u_{0}^{k}, u_{1}^{k}\right)$. Thanks to (6.2), we deduce from Proposition 6.1 that

$$
u^{k} \underset{k \rightarrow \infty}{\longrightarrow} u \quad \text { strongly in } C\left([0, T] ; H^{\sigma}\left(\mathbb{R}^{n}\right)\right) \cap C^{1}\left([0, T] ; H^{\sigma-1}\left(\mathbb{R}^{n}\right)\right)
$$

for every $T>0$. Thus, taking the limit in (6.3) as $k \rightarrow \infty$, we get the required estimate (6.1). The proof of Theorem 6.2 is complete.

We have also an energy estimate in Gevrey spaces.
Theorem 6.3. Let $\varphi(\rho), M$ and M_{1} be as in Theorem 6.2. Let $s>1$ and $T>0$. Suppose that there exists an $\eta>0$ such that $\left(u_{0}, u_{1}\right) \in(-\Delta)^{1 / 2} \gamma_{\eta, L^{2}}^{s}\left(\mathbb{R}^{n}\right) \times \gamma_{\eta, L^{2}}^{s}\left(\mathbb{R}^{n}\right)$. Let $u(t, x)$ be the global solution with data $\left(u_{0}, u_{1}\right)$ in the sense of Theorem 2.2. Then there exists a constant $\eta_{0}\left(M, M_{1}, \nu_{0}, T\right)$ depending on M, M_{1}, ν_{0} and T such that

$$
\begin{align*}
& \quad \varphi\left(\|\nabla u(t, \cdot)\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2}\right)\|\nabla u(t, \cdot)\|_{\gamma_{\eta, L^{2}}^{s}\left(\mathbb{R}^{n}\right)}^{2}+\left\|\partial_{t} u(t, \cdot)\right\|_{\gamma_{n, L^{2}}^{s}\left(\mathbb{R}^{n}\right)}^{2} \\
& \leq e^{\eta_{0}\left(M, M_{1}, \nu_{0}, T\right)\left\|\left(u_{0}, u_{1}\right)\right\|_{H^{3 / 2}\left(\mathbb{R}^{n}\right) \times H^{1 / 2}\left(\mathbb{R}^{n}\right)}^{t} \times} \quad\left(\varphi\left(\left\|\nabla u_{0}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2}\right)\left\|\nabla u_{0}\right\|_{\gamma_{n, L^{2}}^{s}}^{2}\left(\mathbb{R}^{n}\right)+\left\|u_{1}\right\|_{\gamma_{n, L^{2}}^{s}}^{2}\left(\mathbb{R}^{n}\right)\right) \tag{6.4}
\end{align*}
$$

for any $t \in[0, T]$.
Proof. Defining the energy density as

$$
E(t, \xi)=\left\{\left|\widehat{u}^{\prime}(t)\right|^{2}+c(t)|\xi|^{2}|\widehat{u}(t)|^{2}\right\} e^{\eta|\xi|^{\frac{1}{s}}}
$$

we can write

$$
\left\|\partial_{t} u(t, \cdot)\right\|_{\gamma_{n, L^{2}}^{s}}^{2}\left(\mathbb{R}^{n}\right)+c(t)\|\nabla u(t, \cdot)\|_{\gamma_{n, L^{2}}^{s}\left(\mathbb{R}^{n}\right)}^{2}=\int_{\mathbb{R}^{n}} E(t, \xi) d \xi
$$

Then, by the same argument of the derivation of (5.2), we deduce that

$$
\begin{aligned}
&\left\|\partial_{t} u(t, \cdot)\right\|_{\gamma_{\eta, L^{2}}^{s}\left(\mathbb{R}^{n}\right)}^{2}+c(t)\|\nabla u(t, \cdot)\|_{\gamma_{\eta, L^{2}}^{s}}^{2}\left(\mathbb{R}^{n}\right) \\
& \leq\left(\left\|u_{1}\right\|_{\gamma_{\eta, L^{2}}^{s}}^{2}\left(\mathbb{R}^{n}\right)\right. \\
&\left.+c(0)\left\|\nabla u_{0}\right\|_{\gamma_{\eta, L^{2}}^{s}}^{2}\left(\mathbb{R}^{n}\right)\right) e^{\int_{0}^{t} \frac{L^{\prime}(\tau) \mid}{c(\tau)} d \tau} d \tau
\end{aligned}
$$

for any $t \in[0, T]$. This estimate together with Proposition 4.2 for T_{m} replaced by T imply (6.4). The proof of Theorem 6.3 is complete.

7. Global existence of low regular solutions

In this section we prove the global existence theorem for low regular solutions to the problem (1.1). To begin with, we define a notion of low regular solutions.
Definition 7.1. Let $\sigma \in[1,3 / 2)$. The function $u(t, x)$ is said to be an H^{σ}-solution to (1.1) iff it satisfies the following:

$$
u \in C\left([0, \infty) ; H^{\sigma}(\Omega)\right) \cap C^{1}\left([0, \infty) ; H^{\sigma-1}(\Omega)\right)
$$

and

$$
{ }_{x}\left\langle\partial_{t} u(t), \psi\right\rangle_{X^{\prime}}-{ }_{X}\left\langle u_{1}, \psi\right\rangle_{X^{\prime}}+\int_{0}^{t} \varphi\left(\|\nabla u(\tau)\|_{L^{2}(\Omega)}^{2}\right)_{X}\langle\nabla u(\tau), \nabla \psi\rangle_{X^{\prime}} d \tau=0
$$

for any $\psi \in C_{0}^{\infty}(\Omega)$ and $t \geq 0$. Here, ${ }_{x}\langle f, g\rangle_{X^{\prime}}$ denotes the duality pair of $f \in X$ and $g \in X^{\prime}$, and we put

$$
X=H^{\sigma-1}(\Omega) \quad \text { and } \quad X^{\prime}=H^{-(\sigma-1)}(\Omega)
$$

We shall prove here the following.

Theorem 7.1. Assume that Ω is the whole space \mathbb{R}^{n}, or an analytic domain with a compact boundary. Suppose that $\varphi(\rho)$ is C^{1} on \mathbb{R} and satisfies (1.2). Let $\sigma \in[1,3 / 2)$. Then for any $\left(u_{0}, u_{1}\right) \in\left(H^{\sigma}(\Omega) \cap H_{0}^{1}(\Omega)\right) \times H^{\sigma-1}(\Omega)$, the problem (1.1) admits a unique global solution $u(t, x)$ such that

$$
u \in C\left([0, \infty) ; H^{\sigma}(\Omega)\right) \cap C^{1}\left([0, \infty) ; H^{\sigma-1}(\Omega)\right)
$$

We have also an energy estimate.
Theorem 7.2. Suppose that $\varphi(\rho)$ is C^{1} on \mathbb{R} and satisfies (1.2). Let M and M_{1} be as in (3.4) and (3.6), respectively. Let $u(t, x)$ be the global H^{σ}-solution in Theorem 7.1 for $\sigma \in[1,3 / 2)$. Then for every $T>0$, there exists a positive constant $C\left(M, M_{1}, \nu_{0}, T\right)$ depending on M, M_{1}, ν_{0} and T such that

$$
\begin{equation*}
\left\|\left(u(t, \cdot), \partial_{t} u(t, \cdot)\right)\right\|_{H^{\sigma}(\Omega) \times H^{\sigma-1}(\Omega)} \leq C\left(M, M_{1}, \nu_{0}, T\right)\left\|\left(u_{0}, u_{1}\right)\right\|_{H^{\sigma}(\Omega) \times H^{\sigma-1}(\Omega)} \tag{7.1}
\end{equation*}
$$

for all $t \in[0, T]$. In particular, we have

$$
\begin{equation*}
\mathscr{H}(u ; t)=\mathscr{H}(u ; 0) \tag{7.2}
\end{equation*}
$$

for all $t \geq 0$.
We prove these theorems.
Proof of Theorem 7.1. Let $u^{j}(t, x)$ be global in time analytic solutions to (1.1) with data $\left(u_{0}^{j}, u_{1}^{j}\right) \in \mathcal{A}_{L^{2}}(\Omega) \times \mathcal{A}_{L^{2}}(\Omega), j=1,2, \ldots$, satisfying the analytic compatibility condition and

$$
\begin{equation*}
\left(u_{0}^{j}, u_{1}^{j}\right) \underset{j \rightarrow \infty}{\longrightarrow}\left(u_{0}, u_{1}\right) \quad \text { in } H^{\sigma}(\Omega) \times H^{\sigma-1}(\Omega) \tag{7.3}
\end{equation*}
$$

for $\sigma \in[1,3 / 2)$. Since $\left\{\left(u_{0}^{j}, u_{1}^{j}\right)\right\}$ is the Cauchy sequence in $H^{\sigma}(\Omega) \times H^{\sigma-1}(\Omega)$, it follows from Proposition 3.7 that $\left\{u^{j}(t, x)\right\}$ is also a Cauchy sequence:

$$
\widetilde{\mathcal{E}}_{\sigma}\left(u^{j}-u^{k} ; t\right) \underset{j, k \rightarrow \infty}{\longrightarrow} 0
$$

for all $t \in[0, T]$. Hence, there exists the limit

$$
\begin{equation*}
u:=\mathrm{s}-\lim _{j \rightarrow \infty} u^{j} \quad \text { in } C\left([0, T] ; H^{\sigma}(\Omega)\right) \cap C^{1}\left([0, T] ; H^{\sigma-1}(\Omega)\right) . \tag{7.4}
\end{equation*}
$$

Obviously, $u^{j}(t, x)$ satisfy the following identity:

$$
\begin{equation*}
{ }_{x}\left\langle\partial_{t} u^{j}(t), \psi\right\rangle_{X^{\prime}}-{ }_{X}\left\langle u_{1}^{j}, \psi\right\rangle_{X^{\prime}}+\int_{0}^{t} \varphi\left(\left\|\nabla u^{j}(\tau)\right\|_{L^{2}(\Omega)}^{2}\right)_{X}\left\langle\nabla u^{j}(\tau), \nabla \psi\right\rangle_{X^{\prime}} d \tau=0 \tag{7.5}
\end{equation*}
$$

for any $\psi \in C_{0}^{\infty}(\Omega)$ and $t \geq 0$. Letting $j \rightarrow \infty$ in (7.5), thanks to (7.4), we conclude that

$$
{ }_{X}\left\langle\partial_{t} u(t), \psi\right\rangle_{X^{\prime}}-{ }_{x}\left\langle u_{1}, \psi\right\rangle_{X^{\prime}}+\int_{0}^{t} \varphi\left(\|\nabla u(\tau)\|_{L^{2}(\Omega)}^{2}\right)_{X}\langle\nabla u(\tau), \nabla \psi\rangle_{X^{\prime}} d \tau=0
$$

for any $\psi \in C_{0}^{\infty}(\Omega)$ and $t \geq 0$. Thus, $u(t, x)$ is a unique H^{σ}-solution to the problem (1.1). The proof of Theorem 7.1 is finished.

Proof of Theorem 7.2. Let $u^{j}(t, x)$ be as in the proof of Theorem 7.1. Since $\mathcal{K}:=$ $\left\{\left(u_{0}^{j}, u_{1}^{j}\right)\right\} \cup\left\{\left(u_{0}, u_{1}\right)\right\}$ is an infinite compact subset of $H^{\sigma}(\Omega) \times H^{\sigma-1}(\Omega)$, applying Lemma 4.1 for $u^{j}(t, x)$ and \mathcal{K}, we find a positive constant $C\left(M, M_{1}, \nu_{0}, T\right)$, independent of j, such that

$$
\begin{align*}
& \left\|\left(u^{j}(t, \cdot), \partial_{t} u^{j}(t, \cdot)\right)\right\|_{H^{\sigma}(\Omega) \times H^{\sigma-1}(\Omega)} \tag{7.6}\\
\leq & C\left(M, M_{1}, \nu_{0}, T\right)\left\|\left(u_{0}^{j}, u_{1}^{j}\right)\right\|_{H^{\sigma}(\Omega) \times H^{\sigma-1}(\Omega)}
\end{align*}
$$

for any $t \in[0, T]$ and j. Therefore, thanks to (7.3) and (7.4), letting $j \rightarrow \infty$ in (7.6), we get the required estimate (7.1).

For analytic solutions $u^{j}(t, x)$, we have, by using (3.1),

$$
\begin{equation*}
\mathscr{H}\left(u^{j} ; t\right)=\mathscr{H}\left(u^{j} ; 0\right) \tag{7.7}
\end{equation*}
$$

for all $t \geq 0$ and j. Hence, letting $j \rightarrow \infty$ in (7.7), we conclude from (7.3) and (7.4) that (7.2) holds. The proof of Theorem 7.2 is complete.

Appendix A.

Lemma A.1. Let Ω be the whole space \mathbb{R}^{n}, or an exterior domain with analytic boundary. Then $\mathcal{A}_{L^{2}}(\Omega)$ is dense in $\dot{H}^{\sigma}(\Omega)$ for any $\sigma \geq 0$. In particular, $\mathcal{A}_{L^{2}}(\Omega)$ is dense in $H^{\sigma}(\Omega)$.

Proof. It is sufficient to prove the case when $\Omega=\mathbb{R}^{n}$. If Ω is an exterior domain, we can perform the argument by using generalized Fourier transform in place of Fourier transform on \mathbb{R}^{n}. If Ω is a bounded domain, Fourier series expansion method is employed.

Define

$$
\mathcal{A}_{c}\left(\mathbb{R}^{n}\right)=\left\{f \in L^{2}\left(\mathbb{R}^{n}\right): \operatorname{supp} \widehat{f}(\xi) \text { is compact in } \mathbb{R}^{n}\right\}
$$

We claim that $\mathcal{A}_{c}\left(\mathbb{R}^{n}\right)$ is dense in $\dot{H}^{\sigma}\left(\mathbb{R}^{n}\right)$. In fact, let $f \in \dot{H}^{\sigma}\left(\mathbb{R}^{n}\right)$, and put

$$
B_{j}=\left\{\xi \in \mathbb{R}^{n}:|\xi|<j\right\}, \quad j=1,2, \cdots,
$$

and

$$
f_{j}=\mathbb{1}_{B_{j}}(D) f, \quad j=1,2, \cdots,
$$

where $\mathbb{1}_{E}(D)$ is an operator with symbol $\mathbb{1}_{E}(\xi)$ which is a characteristic function of a measurable set E in \mathbb{R}^{n}. Then $\left\{f_{j}\right\}$ is a sequence in $\mathcal{A}_{c}\left(\mathbb{R}^{n}\right)$ such that

$$
\left\|f-f_{j}\right\|_{\dot{H}^{\sigma}\left(\mathbb{R}^{n}\right)}=\left\||\xi|^{\sigma}\left(\widehat{f}-\mathbb{1}_{B_{j}} \widehat{f}\right)\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \underset{j \rightarrow \infty}{\longrightarrow} 0
$$

In a similar way, let $g \in \mathcal{A}_{\eta, L^{2}}\left(\mathbb{R}^{n}\right)$ for some $\eta>0$, and

$$
g_{j}=\mathbb{1}_{B_{j}}(D) g, \quad j=1,2, \cdots
$$

Then $\left\{g_{j}\right\}$ is a sequence in $\mathcal{A}_{c}\left(\mathbb{R}^{n}\right)$ such that

$$
\left\|g-g_{j}\right\|_{\mathcal{A}_{\eta, L^{2}}\left(\mathbb{R}^{n}\right)}=\left\|e^{\frac{\eta|\xi|}{2}}\left(\widehat{g}-\mathbb{1}_{B_{j}} \widehat{g}\right)\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \underset{j \rightarrow \infty}{\longrightarrow} 0
$$

Hence, $\mathcal{A}_{c}\left(\mathbb{R}^{n}\right)$ is dense in $\mathcal{A}_{L^{2}}\left(\mathbb{R}^{n}\right)$. Since

$$
\mathcal{A}_{c}\left(\mathbb{R}^{n}\right) \varsubsetneqq \mathcal{A}_{L^{2}}\left(\mathbb{R}^{n}\right) \varsubsetneqq H^{\sigma}\left(\mathbb{R}^{n}\right) \varsubsetneqq \dot{H}^{\sigma}\left(\mathbb{R}^{n}\right)
$$

we conclude the proof of Lemma A.1.

References

[1] A. Arosio and S. Garavaldi, On the mildly degenerate Kirchhoff string, Math. Methods Appl. Sci. 14 (1991), 177-195.
[2] A. Arosio and S. Panizzi, On the well-posedness of the Kirchhoff string, Trans. Amer. Math. Soc. 348 (1996), 305-330.
[3] A. Arosio and S. Spagnolo, Global solutions to the Cauchy problem for a nonlinear hyperbolic equation, Nonlinear partial differential equations and their applications, Collège de France seminar, Vol. VI (Paris, 1982/1983), pp. 1-26, Res. Notes in Math., 109, Pitman, Boston, MA, 1984.
[4] P. Baldi, Periodic solutions of forced Kirchhoff equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. 8 (2009), 117-141.
[5] S. Bernstein, Sur une classe d'équations fonctionnelles aux dérivéees partielles, Izv. Akad. Nauk SSSR Ser. Mat. 4 (1940), 17-27.
[6] P. D'Ancona and S. Spagnolo, Global solvability for the degenerate Kirchhoff equation with real analytic data, Invent. Math. 108 (1992), 247-262.
[7] M. Ghisi and M. Gobbino, Kirchhoff equation from quasi-analytic to spectral-gap data, Bull. London Math. Soc. 43 (2011), 374-385.
[8] K. Kajitani and K. Yamaguti, On global analytic solutions of the degenerate Kirchhoff equation, Ann. Sc. Norm. Sup. Pisa Cl. Sci. (4) 21 (1994), 279-297.
[9] K. Kajitani and A. Satoh, On extension of solutions of Kirchhoff equations, J. Math. Soc. Japan 56 (2004), no. 2, 405-416.
[10] G. Kirchhoff, Vorlesungen über Mechanik, Teubner, Leibzig, 1876.
[11] R. Manfrin, On the global solvability of Kirchhoff equation for non-analytic initial data, J. Differential Equations 211 (2005), 38-60.
[12] T. Matsuyama and M. Ruzhansky, Global well-posedness of Kirchhoff systems, J. Math. Pures Appl. 100 (2013), 220-240.
[13] T. Matsuyama and M. Ruzhansky, On the Gevrey well-posedness of the Kirchhoff equation, J. Anal. Math. 137 (2019), 449-468.
[14] K. Nishihara, On a global solution of some quasilinear hyperbolic equation, Tokyo J. Math. 7(1984), 437-459 .
[15] S. I. Pohozaev, A class of quasilinear hyperbolic equations, Math. USSR Sb. 25 (1975), 145-158.

```
Tokio Matsuyama
Department of Mathematics
Chuo University
1-13-27, Kasuga, Bunkyo-ku
TOKYO 112-8551
Japan
E-mail address: tokio@math.chuo-u.ac.jp
```


PREPRINT SERIES

DEPARTMENT OF MATHEMATICS CHUO UNIVERSITY BUNKYOKU TOKYO JAPAN

番号刊行年月
論文名
No． 11988 ON THE DEFORMATIONS OF WITT GROUPS TO TORI II
No． 21988 On minimal Einstein submanifold with codimension two
No． 31988 Minimal Einstein submanifolds
No． 41988 Submanifolds with parallel Ricci tensor
No． 51988 A CASE OF EXTENSIONS OF GROUP SCHEMES OVER
A DISCRETE VALUATION RING
No． 61989 ON THE PRODUCT OF TRANSVERSE INVARIANT MEASURES

No． 71989 ON OBLIQUE DERIVATIVE PROBLEMS FOR FULLY NONLINEAR SECOND－ORDER ELLIPTIC PDE＇S ON NONSMOOTH DOMAINS

No． 81989 SOME CASES OF EXTENSIONS OF GREOUP SCHEMES OVER A DI SCRETE VALUATION RING I

No． 91989 ON OBLIQUE DERIVATIVE PROBLEMS FOR FULLY NONLINEAR SECOND－ORDER ELLIPTIC PDE＇S ON DOMAINS WITH CORNERS

No． 101989 MILNOR＇S INEQUALITY FOR 2－DIMENSIONAL ASYMPTOTIC CYCLES

No． 111989 ON THE SELF－INTERSECTIONS OF FOLIATION CYCLES
No． 121989 On curvature pinching of minimal submanifolds
No． 131990 The Intersection Product of Transverse Invariant Measures

No． 141990 The Transverse Euler Class for Amenable Foliations

No． 141989 The Maximum Principle for Semicontinuous Functions
No． 151989 Fully Nonliear Oblique DerivativeProblems for Nonlinear Second－Order Elliptic PDE＇s．
No． 151990 On Bundle Structure Theorem for Topological Semigroups．

No． 161990 On Linear Orthogonal Semigroup \mathfrak{O}_{n}
－Sphere bundle structure，homotopy type and Lie algebra－

No． 171990 On a hypersurface with birecurrent second fundametal tensor
No． 181990 User＇s guide to viscosity solutions of second order partial differential equationd．

No． 191991 Viscosity solutions for a class of Hamilton－Jacobi equations in Hilbert spaces
No． 201991 Perron＇s methods for monotone systems of second－order elliptic PDEs．
No． 211991 Viscosity solutions for monotone systems of second－order elliptic PDEs．
No． 221991 Viscosity solutions of nonlinear second－order partial differential equations in Hilbert spaces．

No． 23
No． 241992 On some pinching of minimal submanifolds．
No． 251992 Transverse Euler Class of Foliations on Almost Compact Foliation Cycles．

No． 261992 Local Homeo－and Diffeomorphisms：Invertibility and Convex Image．

著者
Tsutomu SEKIGUCHI
Yoshio MATSUYAMA
Yoshio MATSUYAMA
Yoshio MATSUYAMA
Tsutomu SEKIGUCHI and Noriyuki SUWA

S．HURDER and Y．MITSUMATSU

Paul DUPUIS and Hitoshi ISHII

Tsutomu SEKIGUCHI and Noriyuki SUWA

Paul DUPUIS
and Hitoshi ISHII
Yoshihiko MITSUMATSU

Yoshihiko MITSUMATSU
Yoshio MATSUYAMA
S．HURDER
and Y．MITSUMATSU
S．HURDER and Y．MITSUMATSU
M．G．Crandall and H．ISHII
Hitoshi ISHII

Yoichi NADUMO， Masamichi TOKIZAWA and Shun SATO

Masamichi TOKIZAWA and Shun SATO Yoshio MATSUYAMA

M．G．CRANDALL，H．ISHII and P．L．LIONS
H．ISHII

H．ISHII
H．ISHII and S．KOIKE
H．ISHII

Y．MATSUYAMA

．HURDER and Y．MITSUMATSU
G．ZAMPIERI and G．GORNI

No. 271992 Injectivity onto a Star-shaped Set for Local Homeomorphisms in n-Space. G. ZAMPIERI and G. GORNI
No. 281992 Uniqueness of solutions to the Cauchy problems for $u_{t}-\Delta u+r|\nabla u|^{2}=0 \mathrm{I}$. FUKUDA, H. ISHII and M. TSUTSUMI

No. 291992 Viscosity solutions of functional differential equations.
No. 301993 On submanifolds of sphere with bounded second fundamental form
No. 311993 On the equivalence of two notions of weak solutions, viscosty solutions and distributional solutions.
No. 321993 On curvature pinching for totally real submanifolds of $C P^{n}(c)$
No. 331993 On curvature pinching for totally real submanifolds of $H P^{n}(c)$
No. 341993 On curvature pinching for totally complex submanifolds of $H P^{n}(c)$
No. 351993 A new formulation of state constracts problems for first-order PDEs.
No. 361993 On Multipotent Invertible Semigroups.
No. 371993 On the uniquess and existence of sulutions of fully nonlinear parabolic PDEs underthe Osgood type condition
No. 381993 Curvatura pinching for totally real submanifolds of $C P^{n}(c)$
No. 391993 Critical Gevrey index for hypoellipticity of parabolic operators and Newton polygones

No. 401993 Generalized motion of noncompact hypersurfaces with velocity having arbitray growth on the curvature tensor.

No. 411994 On the unified Kummer-Artin-Schreier-Witt theory
No. 421995 Uniqueness results for a class of Hamilton-Jacobi equations with singular coefficients.
No. 431995 A genaralization of Bence, Merriman and Osher algorithm for motion by mean curvature.
No. 441995 Degenerate parabolic PDEs with discontinuities and generalized

No. 451995 Normal forms of pseudodifferential operators on tori and diophantine phenomena.
No. 461996 On the dustributions of likelihood ratio criterion for equality of characteristic vectors in two populations.
No. 471996 On a quantization phenomenon for totally real submanifolds of $C P^{n}(c)$
No. 481996 A charactarization of real hypersurfaces of complex projective space.
No. 491999 A Note on Extensions of Algebraic and Formal Groups, IV.
No. 501999 On the extensions of the formal group schemes $\widehat{\mathcal{G}}^{(\lambda)}$ by $\widehat{\mathbb{G}}_{a}$ over a $\mathbb{Z}_{(p)}$-algebra
No. 512003 On the descriptions of $\mathbb{Z} / p^{n} \mathbb{Z}$-torsors by the Kummer-Artin-Schreier-Witt theory
No. 522003 ON THE RELATION WITH THE UNIT GROUP SCHEME $U\left(\mathbb{Z} / p^{n}\right)$ AND THE KUMMER-ARTIN-SCHREIER-WITT GROUP SCHEME
No. 542004 ON NON-COMMUTATIVE EXTENTIONS OF $\mathbb{G}_{a, A}$ BY $\mathbb{G}_{m, A}$ OVER AN \mathbb{F}_{p}-ALGEBRA
No. 552004 ON THE EXTENSIONS OF \widehat{W}_{n} BY $\widehat{\mathcal{G}}^{(\mu)}$ OVER A $\mathbb{Z}_{(p)}$-ALGEBRA
No. 562005 On inverse multichannel scattering

No. 572005 On Thurston's inequality for spinnable foliations
H. ISHII and S. KOIKE
Y. MATSUYAMA
H. ISHII
Y. MATSUYAMA
Y. MATSUYAMA
Y. MATSUYAMA
H. ISHII and S. KOIKE
M. TOKIZAWA
H. ISHII and K. KOBAYASHI
Y. MATSUYAMA
T. GRAMCHEV
P.POPIVANOV
and M.YOSHINO
H. ISHII
and P. E.SOUGANIDIS
T. SEKIGUCHI and N. SUWA

Hitoshi ISHII
and Mythily RAMASWARY

Todor GRAMCHEV
and Masafumi YOSHINO
Todor GRAMCHEV
and Masafumi YOSHINO
Shin-ichi TSUKADA
and Takakazu SUGIYAMA
Yoshio MATSUYAMA
Yoshio MATSUYAMA
T. SEKIGUCHI and N. SUWA

Mitsuaki YATO

Kazuyoshi TSUCHIYA

Noritsugu ENDO

Yuki HARAGUCHI

Yasuhiro NIITSUMA
V.MARCHENKO
K.MOCHIZUKI
and I.TROOSHIN
H.KODAMA, Y.MITSUMATSU
S.MIYOSHI and A.MORI

No． 582006 Tables of Percentage Points for Multiple Comparison Procedures

No． 592006 COUTING POINTS OF THE CURVE $y^{4}=x^{3}+a$ OVER A FINITE FIELD

No． 602006 TWISTED KUMMER AND KUMMER－ARTIN－SCHREIER THEORIES Noriyuki SUWA
No． 612006 Embedding a Gaussian discrete－time ARMA（3，2）process in a Gaussian continuous－time $\operatorname{ARMA}(3,2)$ process
No． 622006 Statistical test of randomness for cryptographic applications

No． 632006 ON NON－COMMUTATIVE EXTENSIONS OF $\widehat{\mathbb{G}}_{a}$ BY $\widehat{\mathcal{G}}^{(M)}$ OVER AN \mathbb{F}_{p}－algebra
No． 642006 Asymptotic distribution of the contribution ratio in high dimensional principal component analysis

No． 652006 Convergence of Contact Structures to Foliations
No． 662006 多様体上の流体力学への幾何学的アプローチ
No． 672006 Linking Pairing，Foliated Cohomology，and Contact Structures
No． 682006 On scattering for wave equations with time dependent coefficients
No． 692006 On decay－nondecay and scattering for Schrödinger equations with time dependent complex potentials
No． 702006 Counting Points of the Curve $y^{2}=x^{12}+a$ over a Finite Field
No． 712006 Quasi－conformally flat manifolds satisfying certain condition on the Ricci tensor

No． 722006 Symplectic volumes of certain symplectic quotients associated with the special unitary group of degree three
No． 732007 Foliations and compact leaves on 4－manifolds I Realization and self－intersection of compact leaves
No． 742007 ON A TYPE OF GENERAL RELATIVISTIC SPACETIME WITH W_{2}－CURVATURE TENSOR

No． 752008 Remark on TVD schemes to nonstationary convection equation
No． 762008 THE COHOMOLOGY OF THE LIE ALGEBRAS OF FORMAL POISSON VECTOR FIELDS AND LAPLACE OPERATORS
No． 772008 Reeb components and Thurston＇s inequality
No． 782008 Permutation test for equality of individual eigenvalues from covariance matrix in high－dimension
No． 792008 Asymptotic Distribution of the Studentized Cumulative Contribution Ratio in High－Dimensional PrincipalComponent Analysis
No． 802008 Table for exact critical values of multisample Lepage type statistics when $k=3$
No． 812008 AROUND KUMMER THEORIES
No． 822008 DEFORMATIONS OF THE KUMMER SEQUENCE
No． 832008 ON BENNEQUIN＇S ISOTOPY LEMMA

AND THURSTON＇S INEQUALITY

No． 842009 On solvability of Stokes problems in special Morrey space $L_{3, \text { unif }}$
No． 852009 On the Cartier Duality of Certain Finite Group Schemes of type（ p^{n}, p^{n} ）

Y．MAEDA，
T．SUGIYAMA
and Y．FUJIKOSHI
Eiji OZAKI

Mituaki HUZII

Mituaki HUZII，Yuichi TAKEDA
Norio WATANABE
Toshinari KAMAKURA
and Takakazu SUGIYAMA
Yuki HARAGUCHI

Y．FUJIKOSHI
T．SATO and T．SUGIYAMA
Yoshihiko MITSUMATSU
三松 佳彦
Yoshihiko MITSUMATSU
Kiyoshi MOCHIZUKI
K．MOCHIZUKI and T．MOTAI

Yasuhiro NIITSUMA
U．C．De and Y．MATSUYAMA

T．SUZUKI and T．TAKAKURA

Y．MITSUMATSU and E．VOGT

A．A．SHAIKH
and Y．MATSUYAMA
Hirota NISHIYAMA
Masashi TAKAMURA

S．MIYOSHI and A．MORI
H．MURAKAMI，E．HINO and T．SUGIYAMA
M．HYODO，T．YAMADA and T．SUGIYAMA

Hidetoshi MURAKAMI

Noriyuki SUWA
Yuji TSUNO
Yoshihiko MITSUMATSU

N．KIKUCHI and G．A．SEREGIN
N．AKI and M．AMANO

No． 862010 Construction of solutions to the Stokes equations

No． 872010 RICCI SOLITONS AND GRADIENT RICCI SOLITONS IN A KENMOTSU MANIFOLD

No． 882010 On the group of extensions $\operatorname{Ext}^{1}\left(\mathcal{G}^{\left(\lambda_{0}\right)}, \mathcal{E}^{\left(\lambda_{1}, \ldots, \lambda_{n}\right)}\right)$ over a discrete valuation ring
No． 892010 Normal basis problem for torsors under a finite flat group scheme
No． 902010 On the homomorphism of certain type of models of algebraic tori
No． 912011 Leafwise Symplectic Structures on Lawson＇s Foliation
No． 922011 Symplectic volumes of double weight varieties associated with $S U(3) / T$
No． 932011 On vector partition functions with negative weights
No． 942011 Spectral representations and scattering for
Schrodinger operators on star graphs
No． 952011 Normally contracting Lie group actions

No． 962012 Homotopy invariance of higher K－theory for abelian categories
No． 972012 CYCLE CLASSES FOR p－ADIC ÉTALE TATE TWISTS AND THE IMAGE OF p－ADIC REGULATORS

No． 982012 STRONG CONVERGENCE THEOREMS FOR GENERALIZED EQUILIBRIUM PROBLEMS AND RELATIVELY NONEXPANSIVE MAPPINGS IN BANACH SPACES

No． 992013 Global solutions for the Navier－Stokes equations in the ratational framework
No． 1002013 On the cyclotomic twisted torus and some torsors

No． 1012013 Helicity in differential topology and incompressible fluids on foliated 3－manifolds
No． 1022013 LINKS AND SUBMERSIONS TO THE PLANE ON AN OPEN 3－MANIFOLD
この論文には改訂版（No．108）があります。そちらを参照してください。
No． 1032013 GROUP ALGEBRAS AND NORMAL BASIS PROBLEM
No． 1042013 Symplectic volumes of double weight varieties associated with $S U(3)$ ，II
No． 1052013 REAL HYPERSURFACES OF A PSEUDO RICCI SYMMETRIC COMPLEX PROJECTIVE SPACE
No． 1062014 CONTINUOUS INFINITESIMAL GENERATORS OF A CLASS OF NONLINEAR EVOLUTION OPERATORS IN BANACH SPACES

No． 1072014 Thurston＇s h－principle for 2－dimensional Foliations of Codimension Greater than One
No． 1082015 LINKS AND SUBMERSIONS TO THE PLANE ON AN OPEN 3－MANIFOLD

No． 1092015 KUMMER THEORIES FOR ALGEBRAIC TORI AND NORMAL BASIS PROBLEM
No． $1102015 L^{p}$－MAPPING PROPERTIES FOR SCHRÖDINGER OPERATORS IN OPEN SETS OF \mathbb{R}^{d}

No． 1112015 Nonautonomous differential equations and Lipschitz evolution operators in Banach spaces
No． 1122015 Global solvability of the Kirchhoff equation with Gevrey data

Norio KIKUCHI

U．C．De and Y．MATSUYAMA

Takashi KONDO

Yuji TSUNO
Nobuhiro AKI
Yoshihiko MITSUMATSU
Taro SUZUKI
Tatsuru TAKAKURA
K．MOCHIZUKI
and I．TOROOSHIN
T．INABA，S．MATSUMOTO
and Y．MITSUMATSU
S．MOCHIZUKI and A．SANNAI
Kanetomo SATO

YUKINO TOMIZAWA

Tsukasa Iwabuchi
and Ryo Takada
Tsutomu Sekiguchi
and Yohei Toda
Yoshihiko Mitsumatsu

SHIGEAKI MIYOSHI

NORIYUKI SUWA
Taro Suzuki
SHYAMAL KUMAR HUI
AND YOSHIO MATSUYAMA
YUKINO TOMIZAWA

Yoshihiko MITSUMATSU and Elmar VOGT
SHIGEAKI MIYOSHI

NORIYUKI SUWA

TSUKASA IWABUCHI，
TOKIO MATSUYAMA
AND KOICHI TANIGUCHI
Yoshikazu Kobayashi，Naoki Tanaka
and Yukino Tomizawa
Tokio Matsuyama
and Michael Ruzhansky

No. 1132015	A small remark on flat functions	Kazuo MASUDA and Yoshihiko MITSUMATSU
No. 1142015	Reeb components of leafwise complex foliations and their symmetries I	Tomohiro HORIUCHI and Yoshihiko MITSUMATSU
No. 1152015	Reeb components of leafwise complex foliations and their symmetries II	Tomohiro HORIUCHI
No. 1162015	Reeb components of leafwise complex foliations and their symmetries III	Tomohiro HORIUCHI and Yoshihiko MITSUMATSU
No. 1172016	Besov spaces on open sets	Tsukasa Iwabuchi,Tokio Matsuyama and Koichi Taniguchi
No. 1182016	Decay estimates for wave equation with a potential on exterior domains	Vladimir Georgiev and Tokio Matsuyama
No. 1192016	WELL-POSEDNESS FOR MUTATIONAL EQUATIONS UNDER A GENERAL TYPE OF DISSIPATIVITY CONDITIONS	YOSHIKAZU KOBAYASHI AND NAOKI TANAKA
No. 1202017	COMPLETE TOTALLY REAL SUBMANIFOLDS OF A COMPLEX PROJECTIVE SPACE	YOSHIO MATSUYAMA
No. 1212017	Bilinear estimates in Besov spaces generated by the Dirichlet Laplacian	Tsukasa Iwabuchi,Tokio Matsuyama and Koichi Taniguchi
No. 1222018	Geometric aspects of Lucas sequences, I	Noriyuki Suwa
No. 1232018	Derivatives of flat functions	Hiroki KODAMA, Kazuo MASUDA, and Yoshihiko MITSUMATSU
No. 1242018	Geometry and dynamics of Engel structures	Yoshihiko MITSUMATSU
No. 1252018	Geometric aspects of Lucas sequences, II	Noriyuki Suwa
No. 1262018	On volume functions of special flow polytopes	Takayuki NEGISHI, Yuki SUGIYAMA and Tatsuru TAKAKURA
No. 1272019	GEOMETRIC ASPECTS OF LUCAS SEQUENCES, A SURVEY	Noriyuki Suwa
No. 1282019	On syntomic complex with modulus for semi-stable reduction case	Kento YAMAMOTO
No. 1292019	GEOMETRIC ASPECTS OF CULLEN-BALLOT SEQUENCES	Noriyuki Suwa
No. 1302020	Étale cohomology of arithmetic schemes and zeta values of arithmetic surfaces	Kanetomo Sato
No. 1312020	Global well-posedness of the Kirchhoff equation	Tokio Matsuyama

DEPARTMENT OF MATHEMATICS CHUO UNIVERSITY BUNKYOKU TOKYO JAPAN

[^0]: 2010 Mathematics Subject Classification. Primary 35L20; Secondary 35L72.
 Key words and phrases. Kirchhoff equation; well-posedness; Gevrey spaces.
 The author was supported by Grant-in-Aid for Scientific Research (C) (18K03377), Japan Society for the Promotion of Science.

