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GLOBAL WELL-POSEDNESS OF THE KIRCHHOFF EQUATION

TOKIO MATSUYAMA

Abstract. The aim of this paper is to prove the global existence of solutions for
the Kirchhoff equation without any smallness condition on data both in Sobolev
spaces and in Gevrey ones. The approach to the construction of global solutions is
to obtain absolute integrability of time-derivative of the coefficient of the principal
term. The key of the proof is a uniform energy estimate in a suitable Sobolev
space for global in time analytic solutions. This estimate yields the boundedness
of solutions in Sobolev norm at the life span. The global existence of low regular
solutions is also proved.

1. Introduction

We consider the problem for the Kirchhoff-type equation of the form

(1.1)

∂2t u− φ

(∫
Ω

|∇u|2 dx
)
∆u = 0, t > 0, x ∈ Ω,

u(0, x) = u0(x), ∂tu(0, x) = u1(x), x ∈ Ω,

where Ω is the whole space Rn (n ≥ 1), or an open set with a smooth boundary ∂Ω
and u(t, x) satisfies the Dirichlet boundary condition

u|[0,∞)×∂Ω = 0.

We assume that φ(ρ) is a C1 real function on R satisfying

(1.2) φ(ρ) ≥ ν0 for all ρ ≥ 0 (ν0 > 0).

Equation (1.1) has been previously considered for various positive functions φ(ρ). In
the case when

n = 1, φ(ρ) = a+ bρ (a, b > 0),

Equation (1.1) was proposed by Kirchhoff in 1876 to describe the transversal motions
of the elastic string (see [10]). Several authors have investigated the global existence
for these equations with real analytic data. In 1940, Bernstein first studied the
global existence for analytic data in one space dimension (see [5]). After him, in
1975, Pohozaev extended Bernstein’s result to several space dimensions (see [15]).
Later, global solvability in real analytic class was studied by D’Ancona and Spagnolo
under the assumption that

φ is continuous on [0,∞),

φ(ρ) ≥ 0 (ρ ≥ 0)
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(see [6], and also Arosio and Spagnolo [3]). Kajitani and Yamaguti obtained the same
result under a more general principal term (see [8]). It is natural to ask whether (1.1)
admits a unique global solution with data in wider function spaces, say, quasi-analytic
class or Sobolev spaces. The global solvability for quasi-analytic data was studied
by Nishihara (see [14]), and a variant of his class in [14] was discussed by Manfrin
(see [11], and also Ghisi and Gobbino [7]). Recently, the large time existence of
solutions was proved in Gevrey spaces (see [13]). As is well known, the results on
global existence in Sobolev spaces H3/2, or H2 with small data are well established
(see [12], and the references therein). As to the existence of periodic solutions, there
is a result of Baldi (see [4]).

The Kirchhoff equation has a first integral (see Lemma 3.1 below). Nevertheless, it
has been a long-standing open problem whether or not, one can prove the existence of
time global solutions in Sobolev spaces or Gevrey ones without smallness condition
on data. Moreover, the existence of local solutions in low regular Sobolev spaces,
say, Hσ × Hσ−1, σ ∈ [1, 3/2), is still not known. The main point of the proof of
global existence of high regular solutions is to obtain boundedness of local solutions
in H3/2-norm at the life span. On one hand, the main difficulty lies in controlling
an intensive oscillation of the coefficient φ(∥∇u(t)∥2L2). On the other hand, when
data are very small, one can avoid such an oscillation problem to get global solutions
(again see [12] and the references therein). For data without any smallness condition
in Sobolev spaces, no one has any ideas to control H3/2-norm of solutions.
The aim in this paper is to give an affirmative answer to these open problems. If the

standard energy method is employed to get a priori estimates, one faces an estimate
involving time-derivative of φ(∥∇u(t)∥2L2). However, this kind of estimate is no use

to control H3/2-norm of solutions. Our crucial tool for control of time-derivative
of φ(∥∇u(t)∥2L2) is a uniform energy estimate for global in time analytic solutions
to (1.1), which is proved by a contradiction argument. This estimate enables us to
derive an absolute integrability of the time-derivative of φ(∥∇u(t)∥2L2) on the maximal
interval of existence of solutions. Hence, this allows us to obtain the boundedness of
H3/2-norm of solutions at the life span, and as a consequence, the solution globally
exists.

We conclude this section by stating our plan. In Section 2 we state main results.
In Section 3 local existence theorems together with Hσ-well-posedness in the sense
of Hadamard are discussed. In Section 4 a uniform energy estimate for global in
time analytic solutions in a suitable Sobolev space is proved. After that, absolute
integrability of time-derivative of the coefficient of equation is proved. Section 5
is devoted to proving main theorems: Theorems 2.1 and 2.2. In Section 6 energy
estimates are derived. In Section 7 the global existence of low regular solutions is
proved.

2. Statement of results

In this section we state main results. These consist of the Cauchy problem and the
initial-boundary value problem.



THE KIRCHHOFF EQUATION 3

2.1. The Cauchy problem. To begin with, let us consider the problem (1.1) in the
case when Ω is the whole space Rn. We recall the definition of fractional Sobolev
spaces

Hσ(Rn) = (1−∆)−
σ
2L2(Rn), σ ∈ R,

and their homogeneous version is

Ḣσ(Rn) = (−∆)−
σ
2L2(Rn), σ ∈ R.

We shall prove the following.

Theorem 2.1. Assume that φ(ρ) is C1 on R and satisfies (1.2). Let σ ≥ 3/2. Then
for any (u0, u1) ∈ Hσ(Rn) × Hσ−1(Rn), the Cauchy problem (1.1) admits a unique
global solution u(t, x) such that

u ∈ C([0,∞);Hσ(Rn)) ∩ C1([0,∞);Hσ−1(Rn)).

We have also the theorem on the global existence of Hσ-solutions for 1 ≤ σ < 3/2.
This topic is postponed until Section 7.

Next, we shall state a result on global solvability in Gevrey spaces. We recall the
definition of Gevrey class of L2 type. For s ≥ 1, we denote by γsL2(Rn) the Gevrey
space of order s:

γsL2(Rn) =
∪
η>0

γsη,L2(Rn).

Here, f belongs to γsη,L2(Rn) if ∥f∥γs
η,L2 (Rn) <∞, where

∥f∥γs
η,L2 (Rn) =

(∫
Rn

eη|ξ|
1
s |f̂(ξ)|2 dξ

) 1
2

,

and f̂(ξ) stands for the Fourier transform of f . The class γsL2(Rn) is endowed with
the inductive limit topology. In particular, we have

γ1L2(Rn) = AL2(Rn),

where AL2(Rn) is the space of real analytic functions f such that

∥∂αx f∥L2(Rn) ≤ CA|α|α!

for all α ∈ Nn ∪ {0} and for some constants A,C ≥ 0.

We shall prove the following.

Theorem 2.2. Assume that φ(ρ) is C1 on R and satisfies (1.2). Let s > 1. Then for
any (u0, u1) ∈ γsL2(Rn) × γsL2(Rn), the Cauchy problem (1.1) admits a unique global
solution u(t, x) such that

u ∈ C1([0,∞); γsL2(Rn)).
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2.2. Extension to the initial-boundary value problem. We extend Theorems
2.1 and 2.2 to the initial-boundary value problem. Replacing the Fourier transform
with the Fourier series or the generalized Fourier transform, and applying exactly the
same arguments of proofs of Theorems 2.1 and 2.2, we can prove similar results for
the initial-boundary value problem (1.1) on [0,∞)× Ω with the boundary condition

u|[0,∞)×∂Ω = 0

(see Theorems 2.3 and 2.4).

Let us recall the definition of Sobolev spaces of fractional order over a bounded
domain Ω with smooth boundary ∂Ω. Let {wk}∞k=1 be a complete orthonormal sys-
tem of eigenfunctions of the Laplace operator −∆ whose domain is H2(Ω) ∩H1

0 (Ω),
where H1

0 (Ω) is the completion of C∞
0 (Ω) in H1(Ω)-norm. Let λk be eigenvalues

corresponding to wk, i.e., {wk, λk} satisfy the elliptic equations:{−∆wk = λkwk in Ω,

wk = 0 on ∂Ω.

Then we have

0 < λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · and λk → ∞.

Let σ ≥ 0. Then we say that f ∈ Hσ(Ω) if

∥f∥Hσ(Ω) :=

(
∞∑
k=1

λ2σk
∣∣(f, wk)L2(Ω)

∣∣2) 1
2

<∞.

Here (f, wk)L2(Ω) stands for the inner product of f and wk in L2(Ω).

Next, let Ω be an exterior domain with a smooth compact boundary. Denoting by
∆D the Dirichlet Laplacian on Ω, we define inhomogeneous and homogeneous Sobolev
spaces over Ω as

Hσ(Ω) = (1−∆D)
−σ

2L2(Ω),

Ḣσ(Ω) = (−∆D)
−σ

2L2(Ω)

for σ ≥ 0, respectively. Here, the operators (1−∆D)
−σ/2 and (−∆D)

−σ/2 are defined
via the generalized Fourier transform F , which maps unitarily L2(Ω) to L2(Rn). For
its definition we refer to, e.g., our previous paper [13]. Hereafter, for the sake of
simplicity, we denote ∆D by ∆.

Finally, we recall the definition of Gevrey class of L2 type. For s ≥ 1, we denote
by γsL2(Ω) the Gevrey space of order s on Ω:

γsL2(Ω) =
∪
η>0

γsη,L2(Ω).
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Here, f belongs to γsη,L2(Ω) if ∥f∥γs
η,L2 (Ω) <∞, where

∥f∥γs
η,L2 (Ω) =



(
∞∑
k=1

eηλ
1
s
k

∣∣(f, wk)L2(Ω)

∣∣2) 1
2

, when Ω is a bounded domain,

(∫
Rn

eη|ξ|
1
s |(Ff)(ξ)|2 dξ

) 1
2

, when Ω is an exterior domain.

The space γsL2(Ω) is endowed with the inductive limit topology. In particular, we
have

γ1L2(Ω) = AL2(Ω),

where AL2(Ω) is the space of real analytic functions f such that

∥∂αx f∥L2(Ω) ≤ CA|α|α!

for all α ∈ Nn ∪ {0} and for some constants A,C ≥ 0.

We need the compatibility condition on data.

Compatibility condition. Let σ ≥ 1. Then f ∈ Hσ(Ω) is said to satisfy the compati-
bility condition if

∆kf ∈ H1
0 (Ω) for 0 ≤ k ≤ σ − 1

2
.

We have the following.

Theorem 2.3. Assume that Ω is an analytic domain with a compact boundary. Sup-
pose that φ(ρ) is C1 on R and satisfies (1.2). Let σ ≥ 3/2. Then for any (u0, u1) ∈
Hσ(Ω) × Hσ−1(Ω) satisfying the compatibility condition, the initial-boundary value
problem (1.1) admits a unique global solution u(t, x) such that

u ∈ C([0,∞);Hσ(Ω)) ∩ C1([0,∞);Hσ−1(Ω)).

Let us remark that the analyticity of the domain is necessary for the theorem. For,
we approximate local solutions in Sobolev spaces by a series of analytic solutions,
which is possible if Ω is analytic. For further details, see the proof of Proposition 4.2
in Section 4.

We have also the global solvability in Gevrey spaces. In this case we have to impose
the analytic compatibility condition on initial data.

Analytic compatibility condition. f ∈ γsL2(Ω) (s ≥ 1) is said to satisfy the analytic

compatibility condition if f is analytic in some neighbourhood of Ω such that

∆kf = 0 on ∂Ω for k = 0, 1, · · · .

We have the following.
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Theorem 2.4. Assume that Ω is an analytic domain. Suppose that φ(ρ) is C1 on
R and satisfies (1.2). Let s > 1. Then for any (u0, u1) ∈ γsL2(Ω)× γsL2(Ω) satisfying
the analytic compatibility condition, the initial-boundary value problem (1.1) admits
a unique global solution u(t, x) such that

u ∈ C1([0,∞); γsL2(Ω)).

3. Well-posedness in Sobolev spaces

In this section, assuming that Ω is the whole space Rn, or an open set of Rn with a
smooth boundary ∂Ω, we present local existence theorems for the problem (1.1) (see
Propositions 3.2 and 3.3). After those, we state Hσ-well-posedness for (1.1) in the
sense of Hadamard, i.e., the continuity of solutions in Sobolev spaces Hσ with respect
to data (see Propositions 3.6 and 3.7). When Ω is the whole space, the compatibility
condition is not required in all of results of this section, and statements are given
without any comment on this condition.

The Kirchhoff equation has a first integral. Namely, we have:

Lemma 3.1. Suppose that u ∈
1∩

j=0

Cj([0, T ];H(3/2)−j(Ω)) is the solution to (1.1).

Then we have

(3.1) H (u; t) = H (u; 0)

for all t ∈ [0, T ], where we put

H (u; t) := ∥∂tu(t, ·)∥2L2(Ω) +

∫ ∥∇u(t,·)∥2
L2(Ω)

0

φ(ρ) dρ.

Proof. Multiplying Equation (1.1) by ∂tu and integrating, we get

d

dt
H (u; t) = 0,

which implies (3.1). Integrating it with respect to t, we get (3.1). The proof of
Lemma 3.1 is complete. □

We introduce a local existence theorem in Sobolev spaces. Let us define a functional

(3.2) c(t) = cu(t) := φ

(∫
Ω

|∇u(t, x)|2 dx
)

and a σ-energy

(3.3) Eσ(u; t) =
∥∥(−∆)

σ−1
2 ∂tu(t, ·)

∥∥2
L2(Ω)

+ c(t)
∥∥(−∆)

σ
2 u(t, ·)

∥∥2
L2(Ω)

for σ ≥ 1.

The following result is our starting point.

Proposition 3.2 (Arosio and Galavaldi ([1])). Assume that φ(ρ) is C1 on R and
satisfies (1.2). Let σ ≥ 3/2. Then for any (u0, u1) ∈ Hσ(Ω)×Hσ−1(Ω) satisfying the
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compatibility condition, there exists a life span Tm = Tm(u0, u1) depending only on
H (u; 0) and E3/2(u; 0) such that the problem (1.1) admits a unique maximal solution

u ∈ C([0, Tm);H
σ(Ω)) ∩ C1([0, Tm);H

σ−1(Ω)),

and at least one of the following statements is valid:

(i) Tm = ∞;
(ii) Tm <∞ and lim sup

t→Tm−0
E3/2(u; t) = ∞.

We remark that the life span Tm is to be understood as follows:

Tm = sup
{
t : H

3
2 -norm of the solution u(τ, ·) to (1.1) exists for 0 ≤ τ < t

}
.

It should be noted that, however big the regularity of data is, Tm depends only on the
norm of data in H3/2×H1/2. This means that if one would show the global existence
of smooth, or even Gevrey space solutions to (1.1), it suffices to obtain that the norm
of solutions in H3/2×H1/2 is bounded on [0, Tm). Based on this observation, we shall
introduce a local existence theorem for Gevrey spaces.

Proposition 3.3. Assume that Ω is an analytic domain with a compact boundary.
Suppose that φ(ρ) is C1 on R and satisfies (1.2). Let s > 1. Then for any (u0, u1) ∈
γsL2(Ω)×γsL2(Ω) satisfying the analytic compatibility condition, there exists a life span
Tm = Tm(u0, u1) depending only on H (u; 0) and E3/2(u; 0) such that the problem
(1.1) admits a unique solution

u ∈ C1([0, Tm); γ
s
L2(Ω)),

and one of the following statements is valid:

(i) Tm = ∞;
(ii) Tm <∞ and lim sup

t→Tm−0
E3/2(u; t) = ∞.

In the rest of this section, we shall discuss several results on Hσ-well-posedness in
the sense of Hadamard. Given a constant Λ > 0, let (u0, u1) be satisfied with

ν−1
0 H (u; 0) ≤ Λ.

Combining (1.2) and (3.1), we see that the local solution u(t, x) to the problem (1.1)
satisfies

∥∇u(t, ·)∥2L2(Ω) ≤ ν−1
0 H (u; t) = ν−1

0 H (u; 0) ≤ Λ

for any t ∈ [0, Tm). This means that [0,Λ] is the actual domain of φ(ρ) which the
Hσ-solution u(t, x) to (1.1) exists on [0, Tm). Let us define a quantity

(3.4) M = sup{φ(ρ) : 0 ≤ ρ ≤ Λ}.
Then we have

(3.5) ν0 ≤ φ(ρ) ≤M

for any ρ ∈ [0,Λ]. Also, we put

(3.6) M1 = sup {|φ′(ρ)| : 0 ≤ ρ ≤ Λ} .
When M1 = 0, Equation (1.1) is reduced to the classical wave equation. Hence, we
may assume that M1 > 0.
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For the moment, we discuss a property related to the life span. For σ ≥ 3/2,
let u(t, x) be the maximal solution to (1.1) with data (u0, u1) ∈ Hσ(Ω) × Hσ−1(Ω)
satisfying the compatibility condition in the sense of Proposition 3.2, and let Tm be
the life span of u(t, x). Recalling the notation Eσ(u; t) (see (3.3)), we put

(3.7) T1 = T1(u0, u1) =

 ν
3/2
0

M1E3/2(u; 0)
, if (u0, u1) ̸= (0, 0);

∞, if (u0, u1) = (0, 0),

where ν0 is the lower bound of φ (see (1.2)) and M1 is the constant defined by (3.6).
Then Arosio and Panizzi proved that the problem (1.1) admits a unique solution
u(t, x) such that

(3.8) u ∈ C([0, T1);H
σ(Ω)) ∩ C1([0, T1);H

σ−1(Ω)),

and that (1.1) is Hσ-well-posed on [0, T1) (see Theorem 2.1 from [2]). The precise
statement is given in Lemma 3.5 below. It is easy to see that Tm is bounded from
below like

(3.9) Tm ≥ T1.

For, suppose that

(3.10) Tm < T1.

Then we see from (3.8) that E3/2(u; t) is bounded at t = Tm. Hence, we conclude
from Proposition 3.2 that Tm = ∞, which actually contradicts (3.10). Thus we get
(3.9).

We shall prove here the following.

Lemma 3.4. Assume that φ(ρ) is C1 on R and satisfies (1.2). Let σ ≥ 3/2. Suppose
that (u0, u1) ∈ Hσ(Ω)×Hσ−1(Ω) satisfy the compatibility condition. Let u(t, x) be a
maximal solution to (1.1) with data (u0, u1) in the sense of Proposition 3.2. Let T1
be as in (3.7). If T1 < Tm, then there exists a non-decreasing sequence {Tk}∞k=1 such
that

(3.11) T0 = 0, Tk − Tk−1 =
ν
3/2
0

M1E3/2(u;Tk−1)
, k = 1, 2, · · · .

Furthermore, if Tm <∞, we have

(3.12) Tk −→
k→∞

Tm.

Before proving Lemma 3.4, we remark that Kajitani and Satoh obtained a simi-
lar result to Lemma 3.4 for E2(u; t) (see [9]). However, it is not clear whether the
corresponding sequence {Tk} is convergent or not.

Proof of Lemma 3.4. We see from (3.7) that (3.11) holds true for k = 1. As to k = 2,
we regard the solution u(t, x) to the problem (1.1) as that with data

(3.13) (u(T1, ·), ∂tu(T1, ·)) ∈ Hσ(Ω)×Hσ−1(Ω)

on (T1, Tm)× Ω. Introducing a new time variable s as

s = t− T1,
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and defining a function

ũ(s, x) := u(t, x) = u(s+ T1, x),

we can write the problem (1.1) with data (3.13) as

(3.14)

∂2s ũ− φ

(∫
Ω

|∇ũ(s)|2 dx
)
∆ũ = 0, s > 0, x ∈ Ω,

ũ(0, x) = u(T1, x), ∂sũ(0, x) = ∂tu(T1, x), x ∈ Ω

and ũ satisfies the Dirichlet boundary condition

ũ|[0,∞)×∂Ω = 0.

Applying Theorem 2.1 from Arosio and Panizzi [2] to the problem (3.14), we find a
time S1 ∈ (0, Tm − T1] fulfilling

(3.15) S1 =
ν
3/2
0

M1E3/2(ũ; 0)
=

ν
3/2
0

M1E3/2(u;T1)

and ũ satisfies

ũ ∈ C([0, S1);H
σ(Ω)) ∩ C1([0, S1);H

σ−1(Ω)).

Hence, putting

T2 := S1 + T1,

we deduce from (3.15) that

T2 − T1 =
ν
3/2
0

M1E3/2(u;T1)
.

Since S1 ∈ (0, Tm − T1], it follows that T2 ∈ (T1, Tm].
If T2 = Tm, we put Tk = Tm for k ≥ 2. Then (3.12) holds true. If T2 < Tm, then

the sequence {Tk}∞k=1 satisfying (3.11) is constructed step by step. If there exists an
integer ℓ > 2 such that Tℓ = Tm, we put Tk = Tm for k ≥ ℓ. Then (3.12) holds true.
Otherwise, {Tk}∞k=1 is an infinite series. We show the convergence (3.12) in this case.
Suppose that

T∗ := lim
k→∞

Tk < Tm.

Since the sequence {Tk} is convergent, it follows that

Tk − Tk−1 −→
k→∞

0.

We notice that E3/2(u; t) is continuous in t ∈ [0, Tm). Then, letting k → ∞ in (3.11),
we get

E3/2(u;T∗) = lim
k→∞

E3/2(u;Tk−1) = ∞,

which leads to a contradiction, since E3/2(u; t) is finite at t = T∗. Thus we must have
T∗ = Tm. The proof of Lemma 3.4 is complete. □

We now turn to the proof of Hσ-well-posedness result on the interval [0, Tm). For
this purpose, we prepare the preliminary result on [0, T1), which is proved by Arosio
and Panizzi (see [2]). Since φ(ρ) is C1 and bounded (see (3.5)), the assumptions in
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Theorems 5.1 and 5.2 from [2] are fulfilled. Let us define a variant norm of Eσ(u; t)
as

Ẽσ(u; t) =
∥∥∂tu(t, ·)∥∥2Hσ−1(Ω)

+ c(t)
∥∥u(t, ·)∥∥2

Hσ(Ω)
.

We note that when Ω is a bounded domain, Ẽσ(u; t) coincides with Eσ(u; t). Then we
have the following.

Lemma 3.5 ([2]). Let σ ≥ 3/2. Assume that φ is C1 on R and satisfies (1.2).
Let u(t, x) be a maximal solution to (1.1) with data (u0, u1) ∈ Hσ(Ω) × Hσ−1(Ω)
satisfying the compatibility condition in the sense of Proposition 3.2. Let T1 be as in
(3.7). Then the following assertions hold for every T ∈ (0, T1):

(i) (Theorem 2.1 from [2]) The mapping

(u0, u1) 7−→ u

∈ ∈

Hσ(Ω)×Hσ−1(Ω) −→ C([0, T ];Hσ(Ω)) ∩ C1([0, T ];Hσ−1(Ω))

is continuous at the point (u0, u1).

More precisely, we have:

(ii) (Theorems 5.1 and 5.2 from [2]) Let M and M1 be the constants as in (3.4)
and (3.6), respectively. For every ε > 0, there exists a real δ > 0 depending
on ε, ν0, M , M1, u0, u1, T and T1 such that

Ẽσ0(u− v; 0) < δ =⇒ Ẽσ0(u− v; t) < ε (t ∈ [0, T ])

for every σ0 ∈ [1, σ], where

v ∈ C([0, T ];Hσ(Ω)) ∩ C1([0, T ];Hσ−1(Ω))

solves (1.1) with data (v(0, ·), ∂tv(0, ·)) ∈ Hσ(Ω) × Hσ−1(Ω) satisfying the
compatibility condition.

Remark 3.1. In Theorem 5.1 from [2], given a bounded setW in H3/2(Ω)×H1/2(Ω),
Arosio and Panizzi introduced the limit of existence time of solutions as follows:

T ∗ =
ν
3/2
0

M1 sup{E3/2(u; 0); (u0, u1) ∈ W}
.

This means that T ∗ is less than T1 in Lemma 3.5. However, it is possible to take
W as a singleton {(u0, u1)} in the proof of [2], and as a result, it is sufficient for our
purpose to adopt the statement of Lemma 3.5.

For the convenience of terminology, let us give a notion of Hσ-well-posedness in
the sense of Hadamard.

Definition 3.1. Let u(t, x) be an Hσ-solution to the problem (1.1) on [0, T ] with
data (u0, u1) ∈ Hσ(Ω) ×Hσ−1(Ω) for σ ≥ 3/2. Then we say that the problem (1.1)
is Hσ-well-posed at (u0, u1) on [0, T ] if u(t, x) satisfies the assertion (ii) from Lemma
3.5 on [0, T ].
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It is possible to extend the interval [0, T1) in Lemma 3.5 to [0, Tm). More precisely,
we have the following.

Proposition 3.6. Let σ ≥ 3/2. Suppose that φ is C1 on R and satisfies (1.2).
Let u(t, x) be a maximal solution to the problem (1.1) with data (u0, u1) ∈ Hσ(Ω) ×
Hσ−1(Ω) satisfying the compatibility condition in the sense of Proposition 3.2. As-
sume that Tm <∞. Then the problem (1.1) is Hσ-well-posed at (u0, u1) on [0, T ] for
every T ∈ (0, Tm).

Proof. If T1 = Tm, the proposition is entirely Lemma 3.5. We consider the case when
T1 < Tm. It follows from Lemma 3.5 that the problem (1.1) is Hσ-well-posed at
(u0, u1) on [0, T1). We claim that the problem (1.1) is Hσ-well-posed even at t = T1.
In fact, thanks to Lemma 3.5, for any ε > 0 there exists a real δ > 0 depending on
ε,M,M1, ν0, u0, u1 and T1 such that if

(3.16) Ẽσ0(u− v; 0) < δ

for every σ0 ∈ [1, σ], then

(3.17) Ẽσ0(u− v; t) < ε (t ∈ [0, T1)).

Here, the function

v ∈ C([0, T1);H
σ(Ω)) ∩ C1([0, T1);H

σ−1(Ω))

solves (1.1) with data (v(0, ·), ∂tv(0, ·)) ∈ Hσ(Ω) ×Hσ−1(Ω) satisfying the compati-
bility condition. It is possible that the Hσ-solution v(t, ·) is extended beyond t = T1.
Indeed, we suppose that

lim
t→T1−0

Ẽσ(v; t) = ∞.

Then Ẽσ(u− v; t) is unbounded near t = T1. However, this contradicts (3.17). Hence,
v(t, ·) exists beyond t = T1. Therefore, we deduce that

v ∈ C([0, T1];H
σ(Ω)) ∩ C1([0, T1];H

σ−1(Ω)).

Now, we regard the problem (1.1) as that with data

(3.18) (u(T1 − η, ·), ∂tu(T1 − η, ·)) ∈ Hσ(Ω)×Hσ−1(Ω)

for sufficiently small η > 0. We use the idea of the proof of Lemma 3.4. Introducing
a new time variable s as

s = t− (T1 − η),

and defining a function

ũ(s, x) := u(t, x) = u(s+ T1 − η, x),

we can write the problem (1.1) with data (3.18) as

(3.19)

∂2s ũ− φ

(∫
Ω

|∇ũ(s)|2 dx
)
∆ũ = 0, s > 0, x ∈ Ω,

ũ(0, x) = u(T1 − η, x), ∂sũ(0, x) = ∂tu(T1 − η, x) x ∈ Ω

and ũ satisfies the Dirichlet boundary condition

ũ|[0,∞)×∂Ω = 0.
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Applying Lemma 3.5 to the problem (3.19), we find a time S1 ∈ (0, Tm−T1] fulfilling

S1 =
ν
3/2
0

M1E3/2(ũ; 0)
=

ν
3/2
0

M1E3/2(u;T1 − η)

and ũ satisfies

ũ ∈ C([0, S1);H
σ(Ω)) ∩ C1([0, S1);H

σ−1(Ω)).

Furthermore, for any ε > 0 there exists a real δ̃ > 0 depending on ε, ν0,M,M1, ũ(0),
∂sũ(0) and S1 such that

(3.20) Ẽσ0(ũ− ṽ; 0) < δ̃ =⇒ Ẽσ0(ũ− ṽ; s) < ε (s ∈ [0, S1))

for every σ0 ∈ [1, σ], where we put

ṽ(s, x) = v(s+ T1 − η, x).

We notice that δ̃ ≤ ε. If we define

T̃ := S1 + (T1 − η),

the assertion (3.20) is written as

(3.21) Ẽσ0(u− v;T1 − η) < δ̃ =⇒ Ẽσ0(u− v; t) < ε (t ∈ [T1 − η, T̃ ))

for every σ0 ∈ [1, σ]. By the arbitrariness of ε, it is possible to choose ε in (3.17) as δ̃,
and some δ1 as δ in (3.16), respectively. Namely, we find a real δ1 ∈ (0, δ) such that

(3.22) Ẽσ0(u− v; 0) < δ1 =⇒ Ẽσ0(u− v; t) < δ̃ (t ∈ [0, T1 − η])

for every σ0 ∈ [1, σ]. Thus, recalling δ̃ ≤ ε, and combining (3.21) and (3.22), we
deduce that

Ẽσ0(u− v; 0) < δ1 =⇒ Ẽσ0(u− v; t) < ε (t ∈ [0, T̃ )).

Since T1 < T̃1, we conclude that (1.1) is Hσ-well-posed at (u0, u1) on [0, T1].
Summarizing the above argument, we arrive at the following: For any ε > 0 there

exists a real δ1 > 0 such that

(3.23) Ẽσ0(u− v; 0) < δ1 =⇒ Ẽσ0(u− v; t) < ε (t ∈ [0, T1])

for every σ0 ∈ [1, σ], where v(t, x) is the Hσ-solution to the problem (1.1) with data

(v(0, ·), ∂tv(0, ·)) ∈ Hσ(Ω)×Hσ−1(Ω)

satisfying the compatibility condition.
Next, we extend the time interval in which (1.1) is Hσ-well-posed at (u0, u1). Let

{Tk}∞k=1 be the sequence satisfying (3.11) and (3.12) in Lemma 3.4. We consider the
problem (1.1) on (T1, T2)× Ω with data

(u(T1, ·), ∂tu(T1, ·)) ∈ Hσ(Ω)×Hσ−1(Ω).

We may assume that T2 < Tm. By Lemma 3.5 together with the time translation
method to get (3.20), we have the corresponding assertion to (3.21): There exists a

real δ̃1 > 0 such that

(3.24) Ẽσ0(u− v;T1) < δ̃1 =⇒ Ẽσ0(u− v; t) < ε (t ∈ [T1, T2))
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for every σ0 ∈ [1, σ]. Actually, by the continuation argument as above, the assertion

(3.24) holds even at the end point T2. We notice that δ̃1 ≤ ε. Next, let us choose ε

in (3.23) as δ̃1. Then there exists a real δ2 ∈ (0, δ1) such that

(3.25) Ẽσ0(u− v; 0) < δ2 =⇒ Ẽσ0(u− v; t) < δ̃1 (t ∈ [0, T1])

for every σ0 ∈ [1, σ]. Combining (3.24) and (3.25), we have the following: For any
ε > 0, there exist a real δ2 > 0 such that

Ẽσ0(u− v; 0) < δ2 =⇒ Ẽσ0(u− v; t) < ε (t ∈ [0, T2])

for every σ0 ∈ [1, σ]. Therefore, by the successive argument, for every k ≥ 3 there
exists a real δk ∈ (0, δk−1) such that

(3.26) Ẽσ0(u− v; 0) < δk =⇒ Ẽσ0(u− v; t) < ε (t ∈ [0, Tk])

for every σ0 ∈ [1, σ].
Let T ∈ (0, Tm), and take an integer k = k(T ) such that T ∈ [Tk−1, Tk]. Then,

thanks to (3.26), there exists a real δT > 0 such that

Ẽσ0(u− v; 0) < δT =⇒ Ẽσ0(u− v; t) < ε (t ∈ [0, T ])

for every σ0 ∈ [1, σ]. Thus, we conclude that (1.1) is Hσ-well-posed at (u0, u1) on
every interval [0, T ]. This completes the proof of Proposition 3.6. □

Hσ-well-posedness holds also for analytic solutions under an assumption that Ω is
an analytic domain. We shall prove here the following.

Proposition 3.7. Assume that Ω is an analytic domain with a compact boundary.
Suppose that φ(ρ) is C1 on R and satisfies (1.2). Let M and M1 be the constants
as in (3.4) and (3.6), respectively. Let u(t, x) be a global in time analytic solution
to the problem (1.1) with data (u0, u1) ∈ AL2(Ω) × AL2(Ω) satisfying the analytic
compatibility condition. Then for every T > 0, the mapping

(u0, u1)
U(t)7−→ u

∈ ∈

AL2(Ω)×AL2(Ω) −→ C([0, T ];Hσ(Ω)) ∩ C1([0, T ];Hσ−1(Ω))

is continuous at the point (u0, u1) for every σ ≥ 1, where AL2(Ω)×AL2(Ω) is endowed
with the induced topology of Hσ(Ω)×Hσ−1(Ω). More precisely, for every ε > 0 there
exists a δ > 0 depending on ε, ν0, M , M1, u0, u1 and T such that

Ẽσ(u− v; 0) < δ =⇒ Ẽσ(u− v; t) < ε (t ∈ [0, T ])

for every σ ≥ 1, where

v ∈ C1([0, T ];AL2(Ω))

solves (1.1) with data (v(0, ·), ∂tv(0, ·)) ∈ AL2(Ω) × AL2(Ω) satisfying the analytic
compatibility condition.

Proof. The proof is similar to that of Proposition 3.6. To make the argument self-
contained, we perform it carefully by the repetition of the previous lemmas and
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propositions. We fix data (u0, u1) ∈ AL2(Ω) × AL2(Ω). Let σ1 be an arbitrary real
such that

σ1 ≥ max

(
σ,

3

2

)
.

We construct a sequence {T k}∞k=1 fulfilling a similar property to that in Lemma 3.4.
Since

AL2(Ω)×AL2(Ω) ⫋ Hσ1(Ω) ∩Hσ1−1(Ω),

thanks to Theorem 2.1 from Arosio and Panizzi [2] (cf. (3.8)), we deduce that the
global in time analytic solution u(t, x) to the problem (1.1) satisfies

u ∈ C([0, T 1);H
σ1(Ω)) ∩ C([0, T 1);H

σ1−1(Ω)),

where T 1 is defined as in (3.7):

T 1 =
ν
3/2
0

M1E3/2(u; 0)
.

Actually, u(t, ·) exists at t = T 1. Next, as in the proof of Lemma 3.4, there exists a
T 2 ∈ (T 1,∞) such that the global in time analytic solution u(t, x) satisfies

u ∈ C([T 1, T 2);H
σ1(Ω)) ∩ C([T 1, T 2);H

σ1−1(Ω))

and

T 2 − T 1 =
ν
3/2
0

M1E3/2(u;T 1)
.

Actually, u(t, ·) exists at t = T 2. Hence, by the successive argument, it is possible to
construct an increasing sequence {T k}∞k=1 satisfying

(3.27) T 0 = 0, T k − T k−1 =
ν
3/2
0

M1E3/2(u;T k−1)
, k = 1, 2, · · · .

Now, we claim that

(3.28) T k −→
k→∞

∞.

The proof is similar to that of Lemma 3.4. Suppose that {T k} is convergent. Then
we see that

(3.29) T k − T k−1 −→
k→∞

0,

and there exists the finite limit:

T ∗ := lim
k→∞

T k <∞.

By the continuity of E3/2(u; t) in t, we deduce from (3.27) and (3.29) that

E3/2(u;T ∗) = lim
k→∞

E3/2(u;T k−1) = ∞.

This contradicts that E3/2(u; t) is finite at t = T ∗, since u(t, x) is the global in time
analytic solution. Thus (3.28) is true.

We turn to the proof of well-posedness. If T 1 = ∞, then (u0, u1) = (0, 0), and
hence, the proposition is entirely Lemma 3.5. We consider the case when T 1 < ∞.
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We claim that for every ε > 0 there exists a real δ1 > 0 depending on ε, ν0,M,M1,
u0, u1 and T 1 such that if v ∈ C1([0,∞);AL2(Ω)) solves (1.1) with data

(v(0, ·), ∂tv(0, ·)) ∈ AL2(Ω)×AL2(Ω)

satisfying the analytic compatibility condition and

Ẽσ(u− v; 0) < δ1

for every σ ∈ [1, σ1], then

Ẽσ(u− v; t) < ε (t ∈ [0, T 1]).

In fact, by using Lemma 3.5, we deduce that (1.1) is Hσ-well-posed at (u0, u1) on
[0, T 1) in the above sense. Furthermore, employing the continuation argument as
in the proof of Proposition 3.6, we conclude that Hσ-well-posedness holds even at
t = T 1. Next, we consider the problem (1.1) on (T 1, T 2)× Ω with data

(u(T 1, ·), ∂tu(T 1, ·)) ∈ AL2(Ω)×AL2(Ω) ⫋ Hσ1(Ω)×Hσ1−1(Ω).

Then, from Lemma 3.5 together with the time translation method, we deduce that the
problem (1.1) is Hσ-well-posed at (u(T 1, ·), ∂tu(T 1, ·)) on [T 1, T 2] for every σ ∈ [1, σ1].

Hence, by adjusting the smallness of Ẽσ(u−v; 0), we conclude that the problem (1.1) is
Hσ-well-posed at (u0, u1) on [0, T 2] for every σ ∈ [1, σ1]. Therefore, by the successive
argument, the problem (1.1) is Hσ-well-posed at (u0, u1) on [0, T k] for all positive
integer k and every σ ∈ [1, σ1]. In conclusion, the above argument implies that
the problem (1.1) is Hσ-well-posed at (u0, u1) on every interval [0, T ]. The proof of
Proposition 3.7 is now finished. □

4. Absolute integrability of time-derivative of the coefficient

In this section we prove that time-derivative of the coefficient φ(∥∇u∥2L2) of prin-
cipal term is absolutely integrable on the maximal interval of existence of solutions.
For this purpose, we need a uniform energy estimate for analytic solutions.

We shall prove here the following.

Lemma 4.1. Assume that Ω is the whole space Rn, or an analytic domain with a
compact boundary. Suppose that φ(ρ) is C1 on R and satisfies (1.2). Let M and
M1 be the constants as in (3.4) and (3.6), respectively. Let σ ≥ 1, T > 0, and let
K be a compact subset of Hσ(Ω) × Hσ−1(Ω). Then there exists a positive constant
CK(M,M1, ν0, T ) depending on M , M1, ν0, T and K such that

(4.1) ∥(u(t, ·), ∂tu(t, ·))∥Hσ(Ω)×Hσ−1(Ω) ≤ CK(M,M1, ν0, T )∥(u0, u1)∥Hσ(Ω)×Hσ−1(Ω)

for any t ∈ [0, T ], and for any (u0, u1) ∈ (AL2(Ω)×AL2(Ω)) ∩ K satisfying the
analytic compatibility condition, where u(t, x) is a global in time analytic solution to
(1.1) with data (u0, u1).

Proof. Obviously, (4.1) is true for (u0, u1) = (0, 0). Hence, we have only to prove
(4.1) for (u0, u1) ̸= (0, 0). We divide the proof into two cases:

(i) K is a finite set.
(ii) K is an infinite set.



16 TOKIO MATSUYAMA

Case (i). We consider the case when K is a finite set. We may assume that K is a
singleton, i.e.,

K = {(u0, u1)}
without loss of generality. Suppose that (4.1) is not true. Then for every k = 1, 2, . . .,
there exists a sequence {tk} ⫋ [0, T ] such that

(4.2) ∥(u(tk, ·), ∂tu(tk, ·))∥Hσ(Ω)×Hσ−1(Ω) > k∥(u0, u1)∥Hσ(Ω)×Hσ−1(Ω).

By the compactness of [0, T ] we can extract a subsequence {tk′} such that

tk′ −→
k′→∞

t∗

for some t∗ ∈ [0, T ]. Since the sequence

{k′∥(u0, u1)∥Hσ(Ω)×Hσ−1(Ω)}
is unbounded, it follows from (4.2) that

{∥(u(tk′ , ·), ∂tu(tk′ , ·))∥Hσ(Ω)×Hσ−1(Ω)}
is unbounded, which implies that the function

∥(u(t, ·), ∂tu(t, ·))∥Hσ(Ω)×Hσ−1(Ω)

is unbounded near a neighbourhood of t = t∗. This contradicts the fact that

u ∈ C([0, T ];Hσ(Ω) ∩ C1([0, T ];Hσ−1(Ω)).

Hence, (4.1) is true in this case.

Case (ii). We consider the case when K is an infinite set. Suppose that (4.1)
is not true. Then for every k = 1, 2, . . ., there exists a pair of non-trivial functions
(uk0, u

k
1) in (AL2(Ω)×AL2(Ω))∩K satisfying the analytic compatibility condition and

a sequence {tk} ⫋ [0, T ] such that

(4.3) ∥(uk(tk, ·), ∂tuk(tk, ·))∥Hσ(Ω)×Hσ−1(Ω) > k∥(uk0, uk1)∥Hσ(Ω)×Hσ−1(Ω),

where uk(t, x) are global in time analytic solutions to (1.1) with data (uk0, u
k
1). By

the compactness of [0, T ] we can extract a subsequence {tk′} such that

tk′ −→
k′→∞

t∗

for some t∗ ∈ [0, T ]. Let U(t) be the solution operator associated to (1.1), i.e., U(t)
is the continuous mapping introduced in Proposition 3.7. Here, AL2(Ω)×AL2(Ω) is
endowed with the induced topology of Hσ(Ω)×Hσ−1(Ω) for σ ≥ 1. Since

{(uk′0 , uk
′

1 )} ⊂ (AL2(Ω)×AL2(Ω)) ∩ K,
it follows that the image {uk′(t, ·)} = {U(t)(uk′0 , uk

′
1 )} is bounded in the solution space

C([0, T ];Hσ(Ω)) ∩ C1([0, T ];Hσ−1(Ω))

for every T > 0. For the sake of convenience, k′ is denoted by k.
We claim that the sequence

{k∥(uk0, uk1)∥Hσ(Ω)×Hσ−1(Ω)}
is bounded. In fact, if this is not true, it follows from (4.3) that the sequence

{∥(uk(tk, ·), ∂tuk(tk, ·))∥Hσ(Ω)×Hσ−1(Ω)}
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is unbounded. Therefore, the sequence of functions

{∥(uk(t, ·), ∂tuk(t, ·))∥Hσ(Ω)×Hσ−1(Ω)}

is unbounded at t = t∗. This contradicts the boundedness of {uk(t, ·)} in the space

C([0, T ];Hσ(Ω)) ∩ C1([0, T ];Hσ−1(Ω)).

Therefore, there exists a positive constant A such that

(4.4) k∥(uk0, uk1)∥Hσ(Ω)×Hσ−1(Ω) ≤ A

for all k.

Put

(ũk0, ũ
k
1) =

1

k∥(uk0, uk1)∥Hσ(Ω)×Hσ−1(Ω)

(uk0, u
k
1) for k = 1, 2, · · · .

Then we have

(4.5) ∥(ũk0, ũk1)∥Hσ(Ω)×Hσ−1(Ω) −→
k→∞

0.

Let us define

ũk(t, x) =
1

k∥(uk0, uk1)∥Hσ(Ω)×Hσ−1(Ω)

uk(t, x).

Then each ũk(t, x) satisfies the Kirchhoff equation with a new coefficient φ̃k:

(4.6)

{
∂2t ũ

k − φ̃k(∥∇ũk(t, ·)∥2L2(Ω))∆ũ
k = 0, t ∈ [0, T ], x ∈ Ω,

ũk(0, x) = ũk0(x), ∂tũ
k(0, x) = ũk1(x), x ∈ Ω

with the boundary condition

ũk|[0,T ]×∂Ω = 0,

where

φ̃k(∥∇ũk(t, ·)∥2L2(Ω)) := φ
(
k2∥(uk0, uk1)∥2Hσ(Ω)×Hσ−1(Ω)∥∇ũk(t, ·)∥2L2(Ω)

)
.

We observe that functions φ̃k(ρ) have a common domain [0, ν−1
0 C0] for all k, where

C0 is a positive constant satisfying

(4.7) H (ũk; 0) ≤ C0 for k = 1, 2, · · · ,
which is possible on account of (4.5). In fact, we see from Lemma 3.1 that

(4.8) H (ũk; t) = ∥∂tũk(t, ·)∥2L2(Ω) +

∫ ∥∇ũk(t,·)∥2
L2(Ω)

0

φ̃k(ρ) dρ = H (ũk; 0)

for all k. It follows from assumption (1.2) that

φ̃k(ρ) = φ
(
k2∥(uk0, uk1)∥2Hσ(Ω)×Hσ−1(Ω)ρ

)
≥ ν0

for any ρ ≥ 0 and all k. Hence, this inequality together with (4.7) and (4.8) imply
that

∥∇ũk(t, ·)∥2L2(Ω) ≤ ν−1
0 H (ũk; t) = ν−1

0 H (ũk; 0) ≤ ν−1
0 C0

for all k and t ∈ [0, T ]. This proves the assertion.
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We need to check the boundedness and Lipschitz continuity of φ̃k(ρ) uniformly in
k to use Proposition 3.7. Indeed, we can show that {φ̃′

k(ρ)} is uniformly bounded on
[0, ν−1

0 C0]. Namely, we claim that

(i) {φ̃k(ρ)} is uniformly bounded on [0, ν−1
0 C0], and satisfies

(4.9) ν0 ≤ φ̃k(ρ) ≤ M̃

for any ρ ∈ [0, ν−1
0 C0] and all k, where we put

M̃ = sup{φ(ρ) : 0 ≤ ρ ≤ A2ν−1
0 C0}.

Here A is the constant appearing in (4.4).
(ii) {φ̃′

k(ρ)} is uniformly bounded on [0, ν−1
0 C0], and satisfies

(4.10) |φ̃′
k(ρ)| ≤ M̃1A

2

for any ρ ∈ [0, ν−1
0 C0] and all k, where we put

(4.11) M̃1 = sup
{
|φ′(ρ)| : 0 ≤ ρ ≤ A2ν−1

0 C0

}
.

In fact, (4.9) is an immediate consequence of assumption (1.2) and the following:

sup{φ̃k(ρ) : 0 ≤ ρ ≤ ν−1
0 C0} ≤ sup{φ(ρ) : 0 ≤ ρ ≤ A2ν−1

0 C0}.
This proves the assertion (i). As to the assertion (ii), it follows from (4.4) and (4.11)
that

|φ̃′
k(ρ)| =

∣∣∣φ′
(
k2∥(uk0, uk1)∥2Hσ(Ω)×Hσ−1(Ω)ρ

)∣∣∣ · k2∥(uk0, uk1)∥2Hσ(Ω)×Hσ−1(Ω) ≤ M̃1A
2

for any ρ ∈ [0, ν−1
0 C0] and all k. This proves (4.10).

We are now in a position to lead to a contradiction. Obviously, the zero function
w(t, x) = 0 solves the problems (4.6) with zero initial condition:

(4.12)

{
∂2tw − φ̃k(∥∇w(t, ·)∥2L2(Ω))∆w = 0, t ∈ [0, T ], x ∈ Ω,

w(0, x) = 0, ∂tw(0, x) = 0, x ∈ Ω,

and satisfies the Dirichlet boundary condition

w|[0,T ]×∂Ω = 0

for all k, where

φ̃k(∥∇w(t, ·)∥2L2(Ω)) = φ
(
k2∥(uk0, uk1)∥2Hσ(Ω)×Hσ−1(Ω)∥∇w(t, ·)∥2L2(Ω)

)
.

Now, thanks to the convergence (4.5), applying Proposition 3.7 to the problems
(4.12), we find an integer k0 such that

(4.13) ∥(ũk(t, ·), ∂tũk(t, ·))∥Hσ(Ω)×Hσ−1(Ω) ≤ 1

on [0, T ] for all k ≥ k0. However, it follows from (4.3) that the sequence {ũk(tk, ·)}
satisfies

∥(ũk(tk, ·), ∂tũk(tk, ·))∥Hσ(Ω)×Hσ−1(Ω) > 1, k = 1, 2, · · · .
This inequality contradicts (4.13). Thus, the estimate (4.1) is true. The proof of
Lemma 4.1 is now finished. □
We conclude this section by proving the absolute integrability of time-derivative of

the functional c(t) defined by (3.2).
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Proposition 4.2. Let Ω,M,M1 and ν0 be as in Lemma 4.1, and let u(t, x) be the
maximal solution to the problem (1.1) in the sense of Proposition 3.2 with data
(u0, u1) ∈ Hσ(Ω) × Hσ−1(Ω) for σ ≥ 3/2. Suppose that Tm < ∞. Then for the
functional c(t) defined by (3.2), the time-derivative c′(t) is absolutely integrable on
[0, Tm], and there exists a positive constant L(M,M1, ν0, Tm) depending on M,M1, ν0
and Tm such that

(4.14)

∫ t

0

|c′(τ)| dτ ≤ L(M,M1, ν0, Tm)∥(u0, u1)∥2
H

3
2 (Ω)×H

1
2 (Ω)

t

for any t ∈ [0, Tm].

Proof. We note that AL2(Ω) is dense in Hσ(Ω) for any σ ≥ 0 (see Lemma A.1 in
appendix A). Let uj(t, x) be global in time analytic solutions to (1.1) with data
(uj0, u

j
1) ∈ AL2(Ω) × AL2(Ω), j = 1, 2, . . . , satisfying the analytic compatibility con-

dition and

(4.15) (uj0, u
j
1) −→

j→∞
(u0, u1) in Hσ(Ω)×Hσ−1(Ω)

for σ ≥ 3/2. We note that {(uj0, u
j
1)} ∪ {(u0, u1)} is an infinite compact subset of

Hσ0(Ω)×Hσ0−1(Ω) for every σ0 ∈ [1, σ]. Define a sequence of functionals

cj(t) = φ

(∫
Ω

|∇uj(t, x)|2 dx
)
, j = 1, 2, · · · .

For every T ∈ (0, Tm), thanks to Proposition 3.6, the convergence (4.15) implies that

c′j(t) = φ′
(∫

Ω

|∇uj(t, x)|2 dx
)
· 2Re

(
(−∆)

1
4∂tu

j(t, ·), (−∆)
3
4uj(t, ·)

)
L2(Ω)

−→
j→∞

φ′
(∫

Ω

|∇u(t, x)|2 dx
)
· 2Re

(
(−∆)

1
4∂tu(t, ·), (−∆)

3
4u(t, ·)

)
L2(Ω)

= c′(t)

(4.16)

for all t ∈ [0, T ]. Here, there exists a positive constant C1 such that

∥(uj0, u
j
1)∥H 3

2 (Ω)×H
1
2 (Ω)

≤ C1∥(u0, u1)∥H 3
2 (Ω)×H

1
2 (Ω)

for all j. By using the upper boundM1 of φ
′ (see (3.6)), and by applying the estimate

(4.1) from Lemma 4.1 for K = {(uj0, u
j
1)} ∪ {(u0, u1)} to uj(t, x) on [0, Tm], we find a

positive constant C(M,M1, ν0, Tm), independent of j, such that

|c′j(t)| ≤ 2
∣∣φ′(∥∇uj(t, ·)∥2L2(Ω))

∣∣∥∂tuj(t, ·)∥H 1
2 (Ω)

∥uj(t, ·)∥
H

3
2 (Ω)

≤ 2M1C(M,M1, ν0, Tm)
2∥(uj0, u

j
1)∥2H 3

2 (Ω)×H
1
2 (Ω)

≤ 2C1M1C(M,M1, ν0, Tm)
2∥(u0, u1)∥2

H
3
2 (Ω)×H

1
2 (Ω)

for all t ∈ [0, Tm] and j. Thus, thanks to (4.16), Lebesgue’s dominated convergence
theorem implies that c′(t) is absolutely integrable on [0, T ] and satisfies∫ t

0

|c′(τ)| dτ ≤ 2C1M1C(M,M1, ν0, Tm)
2∥(u0, u1)∥2

H
3
2 (Ω)×H

1
2 (Ω)

t
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for all t ∈ [0, T ]. Since T ∈ (0, Tm) is arbitrary, we conclude (4.14). The proof of
Proposition 4.2 is finished. □

5. Proofs of Theorems 2.1 and 2.2

In this section we prove Theorems 2.1 and 2.2. Our goal is to show that the local
Hσ-solution u(t, x) is bounded in H3/2(Rn) at t = Tm; this allows us that part (ii) in
Proposition 3.2 never occurs, and hence, u(t, x) exists globally on [0,∞).

Proof of Theorem 2.1. Let u(t, x) be the maximalHσ-solution in Proposition 3.2 with
data (u0, u1) ∈ Hσ(Rn) × Hσ−1(Rn). Suppose that Tm < ∞. We adopt an energy
density as

E(t, ξ) =
{
|û′(t)|2 + c(t)|ξ|2|û(t)|2

}
|ξ|,

where û(t) = û(t, ξ) stands for the Fourier transform of u(t, x) and we put

c(t) = φ

(∫
Rn

|∇u(t, x)|2 dx
)
.

Then we can write

E3/2(u; t) =
∫
Rn

E(t, ξ) dξ.

We notice that û(t) satisfies the equation

(5.1) û′′(t) + c(t)|ξ|2û(t) = 0.

By using the equation (5.1), we compute the time-derivative of E(t, ξ):

E ′(t, ξ) =
[
2Re

{
û′′(t)û′(t)

}
+ c′(t)|ξ|2|û(t)|2 + 2c(t)|ξ|2Re

{
û′(t)û(t)

}]
|ξ|

= c′(t)|ξ|3|û(t)|2

≤ |c′(t)|
c(t)

E(t, ξ).

Hence, we find from Gronwall’s lemma that

(5.2) E3/2(u; t) ≤ E3/2(u; 0)e
∫ t
0

|c′(τ)|
c(τ)

dτ

for any t ∈ [0, Tm). Therefore, it follows from Proposition 4.2 that

lim sup
t→Tm−0

E3/2(u; t) ≤ E3/2(u; 0)e
ν−1
0 L(M,M1,ν0,Tm)∥(u0,u1)∥2

H3/2(Rn)×H1/2(Rn)
Tm

<∞.

Thus, the assertion (ii) in Proposition 3.2 never occurs, and hence, we conclude that
Tm = ∞. The proof of Theorem 2.1 is complete. □
We prove Theorem 2.2.

Proof of Theorem 2.2. Let u(t, x) be a maximal solution to (1.1) with data (u0, u1) ∈
γsL2(Rn)× γsL2(Rn) in the sense of Proposition 3.3. It is sufficient to prove that

lim sup
t→Tm−0

E3/2(u; t) <∞.

The finiteness of this superior limit is proved in the completely same way as in proof of
Theorem 2.1. Thus we conclude from Proposition 3.3 that the Gevrey class solution
u(t, x) exists globally on [0,∞). The proof of Theorem 2.2 is complete. □
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6. Energy estimates

In this section we prove energy estimates for global solutions to the Cauchy problem
(1.1) obtained in Theorems 2.1 and 2.2. These kinds of estimates for global solutions
to the initial-boundary value problem are proved in a completely similar manner to
the Cauchy problem.

We prepare global Hσ-well-posedness for (1.1).

Proposition 6.1. Let σ ≥ 3/2. Assume that φ is C1 on R and satisfies (1.2).
Let u(t, x) be a global in time Hσ-solution to the Cauchy problem (1.1) with data
(u0, u1) ∈ Hσ(Rn)×Hσ−1(Rn) in the sense of Theorem 2.1. Then the problem (1.1)
is Hσ-well-posed at (u0, u1) on [0, T ] for every T > 0.

Proof. In Lemma 3.4 we constructed a sequence {Tk} satisfying

T0 = 0, Tk − Tk−1 =
ν
2/3
0

M1E3/2(u;Tk−1)
, k = 1, 2, · · · .

Then, according to the proof of Proposition 3.6, (1.1) is Hσ-well-posed at (u0, u1) on
[0, Tk] for all k. Hence, if we prove that {Tk} is divergent, then (1.1) is Hσ-well-posed
at (u0, u1) on [0, T ] for every T > 0. Thus, all we have to do is to show that {Tk} is
divergent. However, the proof is completely the same as that of Proposition 3.7, and
we omit it. The proof of Proposition 6.1 is complete. □
We shall prove here the following.

Theorem 6.2. Suppose that φ(ρ) is C1 on R and satisfies (1.2). LetM andM1 be as
in (3.4) and (3.6), respectively. Let u(t, x) be the global Hσ-solution in Theorem 2.1
for σ ≥ 3/2. Then for every T > 0, there exists a positive constant C(M,M1, ν0, T )
depending on M , M1, ν0 and T such that

∥u(t, ·)∥Hσ(Rn) + ∥∂tu(t, ·)∥Hσ−1(Rn)

≤C(M,M1, ν0, T )
(
∥u0∥Hσ(Rn) + ∥u1∥Hσ−1(Rn)

)(6.1)

for any t ∈ [0, T ].

Proof. For any (u0, u1) ∈ Hσ(Rn) × Hσ−1(Rn) let us take (uk0, u
k
1) ∈ AL2(Rn) ×

AL2(Rn) such that

(6.2) (uk0, u
k
1) −→

k→∞
(u0, u1) in Hσ(Rn)×Hσ−1(Rn).

Since {(uk0, uk1)} ∪ {(u0, u1)} is an infinite compact subset of Hσ(Rn) × Hσ−1(Rn),
thanks to Lemma 4.1, there exists a positive constant C(M,M1, ν0, T ), independent
of k, such that

∥(uk(t, ·), ∂tuk(t, ·))∥Hσ(Rn)×Hσ−1(Rn)

≤C(M,M1, ν0, T )∥(uk0, uk1)∥Hσ(Rn)×Hσ−1(Rn)

(6.3)

for any t ∈ [0, T ] and all k, where uk(t, x) are global in time analytic solutions to
(1.1) with data (uk0, u

k
1). Thanks to (6.2), we deduce from Proposition 6.1 that

uk −→
k→∞

u strongly in C([0, T ];Hσ(Rn)) ∩ C1([0, T ];Hσ−1(Rn))
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for every T > 0. Thus, taking the limit in (6.3) as k → ∞ , we get the required
estimate (6.1). The proof of Theorem 6.2 is complete. □

We have also an energy estimate in Gevrey spaces.

Theorem 6.3. Let φ(ρ), M and M1 be as in Theorem 6.2. Let s > 1 and T > 0.
Suppose that there exists an η > 0 such that (u0, u1) ∈ (−∆)1/2γsη,L2(Rn)× γsη,L2(Rn).

Let u(t, x) be the global solution with data (u0, u1) in the sense of Theorem 2.2. Then
there exists a constant η0(M,M1, ν0, T ) depending on M , M1, ν0 and T such that

φ(∥∇u(t, ·)∥2L2(Rn))∥∇u(t, ·)∥2γs
η,L2 (Rn) + ∥∂tu(t, ·)∥2γs

η,L2 (Rn)

≤ e
η0(M,M1,ν0,T )∥(u0,u1)∥2

H3/2(Rn)×H1/2(Rn)
t×(

φ(∥∇u0∥2L2(Rn))∥∇u0∥2γs
η,L2 (Rn) + ∥u1∥2γs

η,L2 (Rn)

)(6.4)

for any t ∈ [0, T ].

Proof. Defining the energy density as

E(t, ξ) =
{
|û′(t)|2 + c(t)|ξ|2|û(t)|2

}
eη|ξ|

1
s ,

we can write

∥∂tu(t, ·)∥2γs
η,L2 (Rn) + c(t)∥∇u(t, ·)∥2γs

η,L2 (Rn) =

∫
Rn

E(t, ξ) dξ.

Then, by the same argument of the derivation of (5.2), we deduce that

∥∂tu(t, ·)∥2γs
η,L2 (Rn) + c(t)∥∇u(t, ·)∥2γs

η,L2 (Rn)

≤
(
∥u1∥2γs

η,L2 (Rn) + c(0)∥∇u0∥2γs
η,L2 (Rn)

)
e
∫ t
0

|c′(τ)|
c(τ)

dτ

for any t ∈ [0, T ]. This estimate together with Proposition 4.2 for Tm replaced by T
imply (6.4). The proof of Theorem 6.3 is complete. □

7. Global existence of low regular solutions

In this section we prove the global existence theorem for low regular solutions to
the problem (1.1). To begin with, we define a notion of low regular solutions.

Definition 7.1. Let σ ∈ [1, 3/2). The function u(t, x) is said to be an Hσ-solution
to (1.1) iff it satisfies the following:

u ∈ C([0,∞);Hσ(Ω)) ∩ C1([0,∞);Hσ−1(Ω))

and

X⟨∂tu(t), ψ⟩X′ − X⟨u1, ψ⟩X′ +

∫ t

0

φ(∥∇u(τ)∥2L2(Ω))X⟨∇u(τ),∇ψ⟩X′ dτ = 0

for any ψ ∈ C∞
0 (Ω) and t ≥ 0. Here, X⟨f, g⟩X′ denotes the duality pair of f ∈ X and

g ∈ X ′, and we put

X = Hσ−1(Ω) and X ′ = H−(σ−1)(Ω).

We shall prove here the following.
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Theorem 7.1. Assume that Ω is the whole space Rn, or an analytic domain with a
compact boundary. Suppose that φ(ρ) is C1 on R and satisfies (1.2). Let σ ∈ [1, 3/2).
Then for any (u0, u1) ∈ (Hσ(Ω) ∩ H1

0 (Ω)) × Hσ−1(Ω), the problem (1.1) admits a
unique global solution u(t, x) such that

u ∈ C([0,∞);Hσ(Ω)) ∩ C1([0,∞);Hσ−1(Ω)).

We have also an energy estimate.

Theorem 7.2. Suppose that φ(ρ) is C1 on R and satisfies (1.2). Let M and M1

be as in (3.4) and (3.6), respectively. Let u(t, x) be the global Hσ-solution in The-
orem 7.1 for σ ∈ [1, 3/2). Then for every T > 0, there exists a positive constant
C(M,M1, ν0, T ) depending on M,M1, ν0 and T such that

(7.1) ∥(u(t, ·), ∂tu(t, ·))∥Hσ(Ω)×Hσ−1(Ω) ≤ C(M,M1, ν0, T )∥(u0, u1)∥Hσ(Ω)×Hσ−1(Ω)

for all t ∈ [0, T ]. In particular, we have

(7.2) H (u; t) = H (u; 0)

for all t ≥ 0.

We prove these theorems.

Proof of Theorem 7.1. Let uj(t, x) be global in time analytic solutions to (1.1) with
data (uj0, u

j
1) ∈ AL2(Ω) × AL2(Ω), j = 1, 2, . . . , satisfying the analytic compatibility

condition and

(7.3) (uj0, u
j
1) −→

j→∞
(u0, u1) in Hσ(Ω)×Hσ−1(Ω)

for σ ∈ [1, 3/2). Since {(uj0, u
j
1)} is the Cauchy sequence in Hσ(Ω) × Hσ−1(Ω), it

follows from Proposition 3.7 that {uj(t, x)} is also a Cauchy sequence:

Ẽσ(uj − uk; t) −→
j,k→∞

0

for all t ∈ [0, T ]. Hence, there exists the limit

(7.4) u := s− lim
j→∞

uj in C([0, T ];Hσ(Ω)) ∩ C1([0, T ];Hσ−1(Ω)).

Obviously, uj(t, x) satisfy the following identity:

(7.5) X⟨∂tuj(t), ψ⟩X′ − X⟨uj1, ψ⟩X′ +

∫ t

0

φ(∥∇uj(τ)∥2L2(Ω))X⟨∇uj(τ),∇ψ⟩X′ dτ = 0

for any ψ ∈ C∞
0 (Ω) and t ≥ 0. Letting j → ∞ in (7.5), thanks to (7.4), we conclude

that

X⟨∂tu(t), ψ⟩X′ − X⟨u1, ψ⟩X′ +

∫ t

0

φ(∥∇u(τ)∥2L2(Ω))X⟨∇u(τ),∇ψ⟩X′ dτ = 0

for any ψ ∈ C∞
0 (Ω) and t ≥ 0. Thus, u(t, x) is a unique Hσ-solution to the problem

(1.1). The proof of Theorem 7.1 is finished. □
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Proof of Theorem 7.2. Let uj(t, x) be as in the proof of Theorem 7.1. Since K :=
{(uj0, u

j
1)} ∪ {(u0, u1)} is an infinite compact subset of Hσ(Ω) × Hσ−1(Ω), applying

Lemma 4.1 for uj(t, x) and K, we find a positive constant C(M,M1, ν0, T ), indepen-
dent of j, such that

∥(uj(t, ·), ∂tuj(t, ·))∥Hσ(Ω)×Hσ−1(Ω)

≤C(M,M1, ν0, T )∥(uj0, u
j
1)∥Hσ(Ω)×Hσ−1(Ω)

(7.6)

for any t ∈ [0, T ] and j. Therefore, thanks to (7.3) and (7.4), letting j → ∞ in (7.6),
we get the required estimate (7.1).

For analytic solutions uj(t, x), we have, by using (3.1),

(7.7) H (uj; t) = H (uj; 0)

for all t ≥ 0 and j. Hence, letting j → ∞ in (7.7), we conclude from (7.3) and (7.4)
that (7.2) holds. The proof of Theorem 7.2 is complete. □

Appendix A.

Lemma A.1. Let Ω be the whole space Rn, or an exterior domain with analytic
boundary. Then AL2(Ω) is dense in Ḣσ(Ω) for any σ ≥ 0. In particular, AL2(Ω) is
dense in Hσ(Ω).

Proof. It is sufficient to prove the case when Ω = Rn. If Ω is an exterior domain, we
can perform the argument by using generalized Fourier transform in place of Fourier
transform on Rn. If Ω is a bounded domain, Fourier series expansion method is
employed.

Define
Ac(Rn) = {f ∈ L2(Rn) : supp f̂(ξ) is compact in Rn}.

We claim that Ac(Rn) is dense in Ḣσ(Rn). In fact, let f ∈ Ḣσ(Rn), and put

Bj = {ξ ∈ Rn : |ξ| < j}, j = 1, 2, · · · ,
and

fj = 1Bj
(D)f, j = 1, 2, · · · ,

where 1E(D) is an operator with symbol 1E(ξ) which is a characteristic function of
a measurable set E in Rn. Then {fj} is a sequence in Ac(Rn) such that

∥f − fj∥Ḣσ(Rn) =
∥∥|ξ|σ(f̂ − 1Bj

f̂
)∥∥

L2(Rn)
−→
j→∞

0.

In a similar way, let g ∈ Aη,L2(Rn) for some η > 0, and

gj = 1Bj
(D)g, j = 1, 2, · · · .

Then {gj} is a sequence in Ac(Rn) such that

∥g − gj∥Aη,L2 (Rn) =
∥∥e η|ξ|

2

(
ĝ − 1Bj

ĝ
)∥∥

L2(Rn)
−→
j→∞

0.

Hence, Ac(Rn) is dense in AL2(Rn). Since

Ac(Rn) ⫋ AL2(Rn) ⫋ Hσ(Rn) ⫋ Ḣσ(Rn),

we conclude the proof of Lemma A.1. □
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