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abstract

MAX SAT (maximum satisfiability problem) is stated as follows: given a set of clauses with weights,

find a truth assignment that maximizes the sum of the weights of the satisfied clauses. In this paper, we

consider approximation algorithms for MAX SAT proposed by Yannakakis and Goemans-Williamson

and present an approximation algorithm which is an improvement of Yannakakis’ algorithm. Although

Yannakakis’ original algorithm has no better performance guarantee than Goemans-Williamson, our

improved algorithm has a better performance guarantee and leads to a 0.770-approximation algorithm.

1 Introduction

MAX SAT (maximum satisfiability problem) is stated as follows: given a set of clauses with weights,

find a truth assignment that maximizes the sum of the weights of the satisfied clauses. MAX SAT

is well known to be NP-hard and many researchers have proposed approximation algorithms for

MAX SAT. Johnson [9] proposed a 0.5-approximation algorithm for MAX SAT based on the prob-

abilistic method. Since then a lot of works had been done for MAX SAT and Yannakakis [12]

and Goemans-Williamson [7] finally proposed 0.75-approximation algorithms. On the other hand,

Goemans-Williamson proposed, based on semidefinite programming [6], a 0.878-approximation algo-

rithm for MAX 2SAT, the restricted version of MAX SAT where each clause has at most 2 literals,

and showed that their algorithm, if combined with Johnson’s algorithm and Goemans-Williamson’s

0.75-approximation algorithm, leads to a 0.7584-approximation algorithm for MAX SAT [8]. Asano-

Ono-Hirata also proposed a semidefinte programming approach to MAX SAT [3] and obtained a 0.765-

approximation algorithm by combining it with Yannakakis’ 0.75-approximation algorithm as well as

the algorithms of Johnson and Goemans-Williamson. More recently, Asano-Hori-Ono-Hirata [2] pre-

sented a refinement of Yannakakis’ algorithm based on network flows, and suggested that it might

lead to a 0.767-approximation algorithm.

In this paper, we present a further refinement of the 0.75-approximation algorithm of Yannakakis

for MAX SAT and show that it has a better bound and leads to a 0.770-approximation algorithm.1

To explain our result more precisely, we need some notations.

An instance of MAX SAT is defined by (C, w), where C is a set of boolean clauses such that each

clause C ∈ C is a disjunction of literals with a positive weight w(C). We sometimes write an instance

C instead of (C, w) if the weight function w is clear from the context. Let X = {x1, . . . , xn} be the

∗ The preliminary version of this paper was presented in the Proceedings of the 5th Israel Symposium on
Theory of Computing and Systems, 1997, pp.24–37, as a paper: Approximation algorithms for MAX SAT:
Yannakakis vs. Goemans-Williamson.

† Department of Information and System Engineering, Chuo University, Bunkyo-ku, Tokyo 112-8551, Japan.
email: asano@ise.chuo-u.ac.jp

1 Several progresses have been made since this paper was presented, and the current best one is a 0.7877-
approximation algorithm (see [1,4]), however, we believe the method proposed in this paper will be used as
a building block in making improvement of approximation algorithms for MAX SAT.
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set of variables in the weighted clauses of (C, w). For each xi ∈ X, let xi = 1 (xi = 0, resp.) if xi

is true (false, resp.). Then, x̄i = 1 − xi and a clause Cj ∈ C can be considered to be a function of

x = (x1, . . . , xn) as follows:

Cj = Cj(x) = 1 −
∏

xi∈X+
j

(1 − xi)
∏

xi∈X−
j

xi, (1)

where X+
j (X−

j , resp.) denotes the set of variables appearing unnegated (negated, resp.) in Cj . Thus,

Cj = Cj(x) = 0 or 1 for any truth assignment x ∈ {0, 1}n, and Cj is satisfied if Cj(x) = 1. The value

of a truth assignment x is defined to be

FC(x) =
∑

Cj∈C
w(Cj)Cj(x). (2)

That is, the value of x is the sum of the weights of the clauses in C satisfied by x. Thus, MAX SAT

is to find an optimal truth assignment, i.e., a truth assignment of maximum value.

Let A be an algorithm for MAX SAT and let FC(xA(C)) be the value of a truth assignment xA(C)

produced by A for an instance C. If FC(xA(C)) is at least α times the value FC(x∗(C)) of an optimal

truth assignment x∗(C) for any instance C, then A is called an approximation algorithm with perfor-

mance guarantee α. A polynomial time approximation algorithm A with performance guarantee α is

called an α-approximation algorithm.

The 0.75-approximation algorithm of Yannakakis is based on the probabilistic method. Let xp be

a random truth assignment with 0 ≤ xp
i = pi ≤ 1, that is, xp is obtained by setting independently

each variable xi ∈ X to be true with probability pi. Then the probability of a clause Cj ∈ C satisfied

by the assignment xp is

Cj(x
p) = 1 −

∏
xi∈X+

j

(1 − pi)
∏

xi∈X−
j

pi. (3)

Thus, the expected value of the random truth assignment xp is

FC(xp) =
∑

Cj∈C
w(Cj)Cj(x

p). (4)

The probabilistic method assures that there is a truth assignment xq ∈ {0, 1}n of value at least FC(xp).

Such a truth assignment xq can be obtained by the method of conditional probability [7], [12]. The

0.75-approximation algorithm of Yannakakis [12] finds, for a given instance (C, w), a random truth

assignment xp of value FC(xp) at least

0.75W ∗
1 + 0.75W ∗

2 + 0.75W ∗
3 + 0.765W ∗

4 + 0.762W ∗
5 + 0.822W ∗

6 +
∑
k≥7

(1 − (0.75)k)W ∗
k (5)

where

W ∗
k =

∑
C∈Ck

w(C)C(x∗)

for an optimal truth assignment x∗ of Ck, the set of clauses in C with k literals, and thus,

FC(x∗) =
∑
k≥1

W ∗
k .

On the other hand, the 0.75-approximation algorithm of Goemans-Williamson [7] finds a random

truth assignment of value at least

0.75W ∗
1 + 0.75W ∗

2 + 0.789W ∗
3 + 0.810W ∗

4 + 0.820W ∗
5 + 0.824W ∗

6 +
∑
k≥7

βkW ∗
k (6)
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where

2βk = 2 − 1

2k
−

(
1 − 1

k

)k

.

Note that βk < 1 − (0.75)k for k ≥ 7. Thus, for two algorithms of Yannakakis and Goemans-

Williamson, we cannot say that one is better than the other. In fact, for MAX 3SAT, Goemans-

Williamson’s algorithm is better than Yannakakis’ one and used to obtain a better performance

guarantee [11], while both are used for MAX SAT in [3] to obtain a performace guarantee 0.765.

In this paper, we will give an algorithm, an improvement of Yannakakis’ algorithm, for finding a

random truth assignment xp = (p1, p2, ..., pn) with value FC(xp) at least

0.75W ∗
1 + 0.75W ∗

2 + 0.791W ∗
3 + 0.811W ∗

4 + 0.823W ∗
5 + 0.850W ∗

6 +
∑
k≥7

(1 − (0.75)k)W ∗
k . (7)

Note that this bound is better than the bounds of Goemans-Williamson and Yannakakis. Our algo-

rithm also leads to a 0.770-approximation algorithm if it is combined with the algorithms in [3], [11].

2 Outline of an Improvement

The 0.75-approximation algorithm of Yannakakis divides the variables X = {x1, . . . , xn} of a given

instance (C, w) into three groups P , P ′ and P ′′ based on maximum network flows (some variables

will be negated appropriately). Then it sets independently each variable xi ∈ X to be true with

probability pi such that pi = 3/4 if xi ∈ P , pi = 5/9 if xi ∈ P ′ and pi = 1/2 if xi ∈ P ′′. The expected

value FC(xp) of this random truth assignment xp = (p1, p2, ..., pn) is at least the bound in (5).

To divide the variables X of a given instance (C, w) into three groups P , P ′ and P ′′, Yannakakis

transformed (C, w) into an equivalent instance (C′, w′) of the weighted clauses with some nice property

by using network flows. Note that two sets (C, w), (C′, w′) of weighted clauses over the same set of

variables are called equivalent if, for every truth assignment, (C, w) and (C′, w′) have the same value.

Based on [2], we call (C, w),(C′, w′) are strongly equivalent, if, for every random truth assignment,

(C, w) and (C′, w′) have the same expected value. Clearly, if (C, w),(C′, w′) are strongly equivalent

then they are also equivalent since a truth assignment is always a random truth assignment (the

converse is not true). Our notion of equivalence will be required when we try to obtain an improved

bound 0.770. The following lemma [2] plays a central role throughout this paper.

Lemma 1 Let all clauses below have the same weight. Then A = {x̄i ∨ xi+1|i = 1, ..., k} and

A′ = {xi ∨ x̄i+1|i = 1, ..., k} are strongly equivalent (we consider k + 1 = 1) . Furthermore, B =

{x1} ∪ {x̄i ∨ xi+1|i = 1, ..., �} and B′ = {xi ∨ x̄i+1|i = 1, ..., �} ∪ {x�+1} are strongly equivalent.

Proof. We can assume weights are all equal to 1. For a random truth assignment xp with xp
i = pi,

let FD(xp) ≡ ∑
C∈D C(xp) be the expected value of xp for D (D = A,A′,B,B′). Then, we have

FA(xp) =

k∑
i=1

(1 − pi(1 − pi+1)) = k −
k∑

i=1

pi +

k∑
i=1

pipi+1,

FA′(xp) =

k∑
i=1

(1 − pi+1(1 − pi)) = k −
k∑

i=1

pi +

k∑
i=1

pipi+1 by k + 1 = 1,

FB(xp) = p1 +

�∑
i=1

(1 − pi(1 − pi+1)) = � −
�∑

i=2

pi +

�∑
i=1

pipi+1,
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FB′(xp) = p�+1 +

�∑
i=1

(1 − pi+1(1 − pi)) = � −
�∑

i=2

pi +

�∑
i=1

pipi+1.

Thus, FA(xp) = FA′(xp) and FB(xp) = FB′(xp) for any random truth assignment xp and we have

the lemma. Q.E.D.

In this section, we present a brief outline of an improvement of the 0.75-approximation algorithm

of Yannakakis for MAX SAT. Our algorithm consists of 8 steps (Steps 0− 7 below) based on network

flows and divides the variables X into four groups. (Yannakakis’ algorithm consists of only 4 steps

and all steps below except Step 0 are different from those in Yannakakis’ one. We believe Yannakakis’

algorithm is simple from the network theoretical point of view, although most people think it is very

complicated. For those people, our algorithm below might be much more complicated.)

In each step except for Step 7, we output a set of weighted clauses which is strongly equivalent to a

set of weighted clauses given as an input of that step. The output of Step i (i = 1, 2, ..., 6) consists of

groups of weighted clauses and all but one group are set aside (we call such a group being split off).

The remaining group becomes an input of Step i + 1. After Step 6, we obtain a partition of X into

R6, Q6, P6, Z6 and in Step 7, we obtain a random truth assignment xp = (p1, p2, ..., pn) by setting

each variable xi to be true with probability pi such that pi = 0.75 if xi ∈ R6, pi = 0.629 if xi ∈ Q6,

pi = 0.557 if xi ∈ P6 and pi = 0.5 if xi ∈ Z6. Then, all groups of weighted clauses split off in Steps

1− 6 and the remaining group (D(6), w6) of weighted clauses after Step 6 have the expected values at

least the bound in (7). Since the set of all split groups together with (D(6), w6) is strongly equivalent

to a given instance (C, w) in Step 0, we have thus obtain the bound in (7). More specifically, (D(6), w6)

has the following property.

Property π.

(a) x ∈ R6 for each C = x ∈ D(6).

(b) For each C = x̄ ∨ y ∈ D(6), y ∈ R6 if x ∈ R6, y ∈ Q6 ∪ R6 if x ∈ Q6 and y ∈ P6 ∪ Q6 ∪ R6 if

x ∈ P6.

(c) For k = 3, 4, 5, 6, there is no clause in D(6) with k literals such that k1 (k1 ≥ 2k − 6) literals are

contained in R̄6 and all the remaining literals are in Q̄6.

(d) For a clause in D(6) with k literals (k = 3, 4) of form C = x̄1 ∨ · · · ∨ x̄k−1 ∨ a such that

x1, ..., xk−2 ∈ R6, a ∈ R6 ∪ Q6 if xk−1 ∈ R6 and a ∈ R6 ∪ Q6 ∪ P6 if xk−1 ∈ Q6.

(e) For a clause in D(6) of form C = x̄1 ∨ x̄2 ∨ x̄3, x3 �∈ R6 ∪ Q6 ∪ P6 if x1, x2 ∈ Q6 and x3 �∈ R6 if

x1, x2 ∈ P6.

It is easily observed that if (D(6), w6) satisfies property π then the random truth assignment xp =

(p1, p2, ..., pn) in Step 7 has the expected value at least the bound in (7). All the split groups also

have some nice properties assuring the bound in (7).

3 Improving Yannakakis’ Algorithm

Now we will go into details. Let C1,2 ≡ C1 ∪ C2 (the set of clauses in C with one or two literals). As

Yannakakis did, we first construct a network N(C) which represents the weighted clauses in (C1,2, w)

as follows. The set of nodes of N(C) consists of the set of literals in C and two new nodes s and t

which represent true (T ) and false (F ) respectively. The (directed) arcs of N(C) are corresponding

to the clauses in C1,2. Each clause C = x ∨ y ∈ C2 corresponds to two arcs (x̄, y) and (ȳ, x) with

capacity cap(x̄, y) = cap(ȳ, x) = w(C)/2 (¯̄x = x). Similarly, each clause C = x ∈ C1 corresponds to
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two arcs (s, x) and (x̄, t) with capacity cap(s, x) = cap(x̄, t) = w(C)/2. Thus, we can regard a clause

C = x ∈ C1 as x ∨ F when considering a network as above. Note that N(C) is a naturally defined

network since x ∨ y = x̄ → y = ȳ → x.

Two arcs (x̄, y) and (ȳ, x) are called symmetric arcs. If each symmetric two arcs in a network are of

the same capacity, then the network is called symmetric. By the above correspondence of a clause and

two symmetric arcs, a symmetric network N exactly corresponds to a set C(N) of weighted clauses

with one or two literals. In the case of N = N(C) defined above, we have C(N(C)) = (C1,2, w). Thus,

we can always construct the set C(N) of weighted clauses with one or two literals from a symmetric

network N and we sometimes use the term “the set of weighted clauses of a symmetric network” below.

Then we consider a symmetric flow f0 of maximum value v(f0) in N0 ≡ N(C) from source node s to

sink node t (flow f is called symmetric if f(x̄, y) = f(ȳ, x) for each symmetric arcs (x̄, y), (ȳ, x)). Let

L0 be the network obtained from the residual network N0(f0) of N0 with respect to f0 by deleting all

arcs into s and all arcs from t. Then L0 is clearly symmetric since N0 is a symmetric network and f0

is a symmetric flow.

Let (C′
1,2, w

′) be the set of weighted clauses of the symmetric network L0 ((C′
1,2, w

′) = C(L0)) and

let (C′, w′) be the set of weighted clauses obtained from (C, w) by replacing (C1,2, w) with (C′
1,2, w

′).
Then, for each truth assignment x,

FC(x) = FC′(x) + v(f0). (8)

Note that (8) holds even if x is a random truth assignment. This can be obtained by Lemma 1 using

an observation similar to the one in [12]. Note also that, for A,A′,B,B′ in Lemma 1, A corresponds

to a cycle and A′ corresponds to the reverse cycle. Similarly, B corresponds to a path from x1 to x�+1

(plus (s, x1)) and B′ corresponds to the reverse path from x�+1 to x1 (plus (s, x�+1)).

Since f0 is a maximum flow, there is no path from s to t in L0. Let R be the set of nodes that are

reachable from s in L0 and let Ȳ = {ȳ|y ∈ Y } for Y ⊆ X. Then, there is no arc from a node in R to a

node not in R and the set of nodes that can reach t is R̄ (in a symmetric network, x1, x2, ..., xk−1, xk is

a path if and only if x̄k, x̄k−1, ..., x̄2, x̄1 is a path) and R does not contain any complementary literals,

since L0 is a symmetric network and f0 is a maximum flow (x, x̄ ∈ R implies that there is a path from

s to t since L0 is symmetric and there are paths from s to x (by x ∈ R) and x to t (by x̄ ∈ R), which

contradicts the maximality of f0). This implies that every clause of form x̄ ∨ y with x ∈ R satisfies

y ∈ R. Thus, we can set all literals of R to be true consistently and, for each truth assignment x in

which all literals of R are true, every clause in C′
1,2 that contains a literal in R ∪ R̄ is satisfied. From

now on we assume that all literals in R are unnegated (R ⊆ X and thus all literals in R̄ are negated).

By the argument above we can summarize Step 0 of our algorithm as follows.

Step 0. Find R and (C′, w′) from (C, w) using the network N0, a symmetric flow f0 of N0 of maximum

value and the network L0 defined above.

Note that, by (8), if we have an α-approximation algorithm for (C′, w′), then it will also be an α-

approximation algorithm for (C, w). Thus, for simplicity, we can assume from now on (C′, w′) = (C, w)

(and thus, f0 = 0 and L0 = N0) and have the following assumption.

Assumption. C and N0 = N(C) satisfy the following:

(a) R ⊆ X and x ∈ R for each C = x ∈ C (there are arcs (s, x), (x̄, t)).

(b) y ∈ R for each C = x̄ ∨ y ∈ C with x ∈ R (there is no arc going outside from a node in R).
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Let γk be the coeffient of W ∗
k in (7), i.e.,

γk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.75 (k = 1, 2)

0.791 (k = 3)

0.811 (k = 4)

0.823 (k = 5)

0.850 (k = 6)

1 − 0.75k (k ≥ 7).

(9)

To obtain a 0.75-approximation algorithm, Yannakakis tried to set each variable in R to be true with

probability 0.75 and each variable in Z0 ≡ X−R to be true with probability 0.5. Then the probability

of a clause in C1,2 being satisfied is at least γ1 = γ2 = 0.75. Similarly, the probability of a clause in

C with five or more literals being satisfied is at least 0.75. Clauses satisfied with probability less than

0.75 have 3 or 4 literals and are of form x̄∨ȳ∨z̄ with x, y, z ∈ R or of form x̄∨ȳ∨z̄∨ū with x, y, z, u ∈ R

or of form x̄ ∨ ȳ ∨ a with x, y ∈ R and a ∈ Z0 ∪ Z̄0. Similarly, clauses of form C = x̄1 ∨ x̄2 ∨ · · · ∨ x̄k

with x1, x2, . . . , xk ∈ R (k = 5, 6) are satisfied with probability less than γk. To delete such clauses,

let A(1)
k be the set of clauses C of form C = x̄1 ∨ x̄2 ∨ · · · ∨ x̄k with x1, x2, . . . , xk ∈ R (k = 3, 4, 5, 6),

i.e.,

A(1)
k = {C = x̄1 ∨ · · · ∨ x̄k ∈ C|x1, . . . , xk ∈ R} (10)

To split off clauses in A(1)
3 ∪A(1)

4 ∪A(1)
5 ∪A(1)

6 , we consider the network N1 obtained from M0 ≡ N0

as follows. Let M−
0 be the network obtained from M0 by deleting all arcs from R̄ to R, all arcs from

R̄ to Z0 ∪ Z̄0 and all arcs from Z0 ∪ Z̄0 to R. Let (C−
1,2, w) = C(M−

0 ) (the set of weighted clauses

of the symmetric network M−
0 ). N1 is the network obtained from M−

0 as follows. For each clause

C = x̄1 ∨ x̄2 ∨ · · · ∨ x̄k ∈ A(1)
k with x1, x2, . . . , xk ∈ R (k = 3, 4, 5, 6), we consider two new nodes C, C̄

and let EA(C) be the set of arcs from xi (i = 1, 2, ..., k) to C and from C to t and their symmetric

arcs. Thus, EA(C) contains 2k + 2 arcs and

EA(C) = {(s, C̄), (C, t)} ∪ ∪k
i=1{(xi, C), (C̄, x̄i)} (11)

We add C, C̄ and EA(C) for all C = x̄1 ∨ x̄2 ∨ · · · ∨ x̄k ∈ A(1)
k with x1, x2, . . . , xk ∈ R (k = 3, 4, 5, 6).

We set the arcs (s, C̄), (C, t) to have capacity w(C) and all remaining arcs of forms (xi, C) and (C̄, x̄i)

to have capacity w(C)/a
(1)
k with

a
(1)
k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

6 (k = 3)

10 (k = 4)

14 (k = 5)

22 (k = 6).

(12)

N1 is the network obtained from M−
0 in this way. Then, we find a symmetric flow f1 of maximum

value from s to t in N1 such that

f1(x1, C) = f1(x2, C) = · · · = f1(xk, C)

for each clause C = x̄1 ∨ x̄2 ∨ · · · ∨ x̄k ∈ A(1)
k (k = 3, 4, 5, 6). Such a flow f1 can be obtained in a

polynomial time by [10]. Let L1 be the network obtained from the residual network N1(f1) of N1

with respect to f1 by deleting all arcs into s, all arcs from t and all nodes C, C̄ (and incident arcs)

with C ∈ A(1)
3 ∪A(1)

4 ∪ A(1)
5 ∪ A(1)

6 .

Now we can split off clauses in A(1)
3 ∪ A(1)

4 ∪ A(1)
5 ∪ A(1)

6 . For each C = x̄1 ∨ x̄2 ∨ · · · ∨ x̄k ∈ A(1)
k

(k = 3, 4, 5, 6), let f1(C) = f1(x1, C) and let

J (1)
1,k (C) = {x1, x2, . . . , xk, C} (13)
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with weights w1(x1) = w1(x2) = · · · = w1(xk) = 2f1(C) and w1(C) = a
(1)
k f1(C) ≥ 2kf1(C). Let

J (1)
1,k = ∪

C∈A(1)
k

J (1)
1,k (C), J (1) = ∪6

k=3J (1)
1,k . (14)

Let (D′(1)
1,2 , w1) = C(L1) (i.e., (D′(1)

1,2 , w1) is the set of weighted clauses with 1 or 2 literals of the

symmetric network L1) and let (D(1), w1) be the set of clauses with weight function w1 obtained from

(C, w) by replacing (C−
1,2, w) with (D′(1)

1,2 , w1) and by replacing the weight w(C) of each clause C ∈ A(1)
k

(k = 3, 4, 5, 6) with

w1(C) = w(C) − a
(1)
k f1(C)

(note that w1(C) ≥ 0 since f1(C) ≤ w(C)/a
(1)
k and we assume clauses with weight 0 are not included

in D(1)). Then (C, w) and (C1 ≡ D(1)∪J (1), w1) are shown to be strongly equivalent based on Lemma

1 (note that a clause C ∈ Ck with k = 3, 4, 5, 6 may be split off and appear in two groups of C1, for

example, in D(1) and J (1)
1,3 , but the total weight of C is not changed). Let R1 be the set of nodes

reachable from s in L1 (thus, y ∈ R1 for each y ∈ D(1) and for each x̄ ∨ y ∈ D(1) with x ∈ R1).

Clearly, R1 ⊆ R (R̄1 ⊆ R̄). Furthermore, there are no clauses in D(1) with k (k = 3, 4, 5, 6) literals all

contained in R̄1 by the maximality of f1.

By the argument above, we can summarize Step 1 of our algorithm and have a lemma as follows.

Step 1. Find R1 and (D(1)∪J (1), w1) using the network N1, a symmetric flow f1 of N1 of maximum

value and the network L1 defined above.

Lemma 2 (C, w) and (D(1) ∪ J (1), w1) are strongly equivalent and the following statements hold.

(a) x ∈ R1 for each C = x ∈ D(1).

(b) y ∈ R1 for each C = x̄ ∨ y ∈ D(1) with x ∈ R1.

(c) There is no clause in D(1) with 3,4,5 or 6 literals all contained in R̄1.

(d) R1 ⊆ R.

Next we will split off clauses Ck ∈ D(1) of k (k = 3, 4) literals such that Ck = x̄1 ∨ · · · ∨ x̄k−1 ∨ a

with x1, ..., xk−1 ∈ R1 and a ∈ Z1∪ Z̄1 (Z1 ≡ X −R1). Let B(2)
k be the set of such clauses Ck in D(1),

i.e.,

B(2)
k = {C = x̄1 ∨ · · · ∨ x̄k−1 ∨ a ∈ D(1) | x1, . . . , xk−1 ∈ R1, a ∈ Z1 ∪ Z̄1} (15)

Let M−
1 be the network obtained from the network M1 ≡ N(D(1)) representing the set of weighted

clauses in D(1) with one or two literals by deleting all arcs from X̄ ∪Z1 to R1 and all arcs from R̄1 to

Z1 ∪ Z̄1. Let (D(1)−
1,2 , w1) = C(M−

1 ). Let N2 be the network obtained from M−
1 as follows. For each

clause C = x̄1 ∨ · · · ∨ x̄k−1 ∨ a ∈ B(2)
k with x1, ..., xk−1 ∈ R1 and a ∈ Z1 ∪ Z̄1, we add two nodes C, C̄

and 2k + 2 arcs

EB(C) ≡ {(C, t), (s, C̄), (ā, C̄), (C, a)} ∪ ∪k−1
i=1 {(xi, C), (C̄, x̄i)} (16)

Two arcs (s, C̄),(C, t) have capacity w1(C) and all the remaining arcs have capacity w1(C)/b
(2)
k with

b
(2)
k =

{
6 (k = 3)

10 (k = 4).
(17)

N2 is the network obtained from M−
1 in this way. Then, we find a symmetric flow f2 of maximum

value from s to t in N2 such that f2(x1, C) = · · · = f2(xk−1, C) = f2(C, a) for each clause C =

x̄1 ∨ · · · ∨ x̄k−1 ∨ a ∈ B(2)
k . Let L2 be the network obtained from the residual network N2(f2) with
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respect to f2 by deleting all arcs into s, all arcs from t and all nodes C, C̄ (and incident arcs) with

C ∈ B(2)
3 ∪ B(2)

4 .

Now we can split off clauses C ∈ B(2)
3 ∪ B(2)

4 . For each clause C = x̄1 ∨ · · · ∨ x̄k−1 ∨ a ∈ B(2)
k with

x1, ..., xk−1 ∈ R1 and a ∈ Z1 ∪ Z̄1, using f2(C) ≡ f2(x1, C), let

K(2)
1,k(C) = {x1, ..., xk−1, ā, C, x0, x̄0} (18)

with weights w2(x1) = · · · = w2(xk−1) = w2(ā) = 2f2(C), w2(x0) = w2(x̄0) = −f2(C) and w2(C) =

b
(2)
k f2(C) (x0 is any variable in X and the negative weights are accepted in this case). Let

K(2)
1,k = ∪

C∈B(2)
k

K(2)
1,k(C), K(2) = K(2)

1,3 ∪ K(2)
1,4. (19)

Let (D′(2)
1,2 , w2) = C(L2) (the set of weighted clauses of the symmetric network L2) and let (D(2), w2)

be the set of weighted clauses obtained from (D(1), w1) by replacing (D(1)−
1,2 , w1) with (D′(2)

1,2 , w2) and

by replacing the weight w1(C) of each clause C ∈ B(2)
k (k = 3, 4) with

w2(C) = w1(C) − b
(2)
k f2(C) ≥ 0

(we assume clauses with weight 0 are not included in D(2)). Then, by the same argument as before,

(D(1), w1) and (D(2) ∪ K(2), w2) are shown to be strongly equivalent based on Lemma 1. Let R2 be

the set of nodes reachable from s in L2. Clearly, R2 ⊆ R1 (R̄2 ⊆ R̄1).

A node a ∈ Z1∪Z̄1∪(R1−R2) is called an entrance if there is a clause C = x̄1∨· · ·∨ x̄k−1∨a ∈ D(2)

with x1, ..., xk−1 ∈ R2 (w2(C) > 0 and k = 3, 4). Let Q2 be the set of nodes in Z1 ∪ Z̄1 ∪ (R1 −R2)∪
(R̄1 − R̄2) that are reachable from an entrance by a path in M2 ≡ N(D(2)). Note that M2 is also

obtained from L2 by adding all the arcs in M1 −M−
1 and that there is no arc from a node in R1 −R2

to a node in (X − R1) ∪ X̄. Thus, Q2 ⊂ Z1 ∪ Z̄1 ∪ (R1 − R2) and Q2 contains no complementary

literals by the symmetry and maximality of f2, and we can assume all literals in Q2 are unnegated.

Note that some variable in R−R1 will be in Q̄2 and we have to correct the previous assumption that

R ⊆ X. However, it suffices to assume that R1 ⊆ X (not R ⊆ X) in the argument below.

By the argument above we can summarize Step 2 of our algorithm and have a lemma as follows.

Step 2. Find R2, Q2 and (D(2) ∪K(2), w2) from (D(1), w1) using the network M−
1 , N2, a symmetric

flow f2 of N2 of maximum value and the network L2 defined above.

Lemma 3 (D(1), w1) and (D(2)∪K(2), w2) are strongly equivalent. Furthermore, the following state-

ments hold.

(a) x ∈ R2 for each C = x ∈ D(2).

(b) For each C = x̄ ∨ y ∈ D(2), y ∈ R2 if x ∈ R2 and y ∈ R2 ∪ Q2 if x ∈ Q2.

(c) There is no clause in D(2) with 3,4,5 or 6 literals all contained in R̄2.

(d) a ∈ Q2 ∪ R2 for each C ∈ D(2) with C = x̄ ∨ ȳ ∨ a and x, y ∈ R2 or with C = x̄ ∨ ȳ ∨ z̄ ∨ a and

x, y, z ∈ R2.

(e) R2 ⊆ R1 and Q2 ⊆ X − R2.

Now we would like to set each variable in R2 to be true with probability 0.75, each variable in Q2

to be true with probability 0.629 and each variable in Z2 ≡ X − (Q2 ∪R2) to be true with probability

0.5. Then, each clause Cj in D(2) of j literals except for a clause C of form C = x̄1 ∨ · · · ∨ x̄k with

k = 3, 4, 5, xi ∈ R2∪Q2 (i = 1, 2, ..., k−1) and xk ∈ Q2 is satisfied with probability at least γj defined

in (9), the coefficient of W ∗
j in (7).
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Thus, we will try to split off such clauses. Let A(3)
k (k = 3, 4) be the set of clauses C ∈ D(2) of form

C = x̄1 ∨ · · · ∨ x̄k with x1, xk−2 ∈ R2 and xk−1, xk ∈ Q2. Similarly, let A(3)
5 be the set of clauses

C ∈ D(2) of form C = x̄1∨ x̄2∨ x̄3∨ x̄4∨ x̄5 with x1, x2, x3, x4 ∈ R2 and x5 ∈ Q2. Thus, for k = 3, 4, 5,

A(3)
k = {C = x̄1 ∨ · · · ∨ x̄k ∈ D(2) | x1, . . . , x2k−3 ∈ R2, x2k−3+1, ..., xk ∈ Q2}. (20)

Let B(3)
k (k = 3, 4) be the set of clauses C ∈ D(2) of form C = x̄1∨· · ·∨ x̄k−1∨a with x1, ..., xk−1 ∈ R2

and a ∈ Q2, i.e.,

B(3)
k = {C = x̄1 ∨ · · · ∨ x̄k−1 ∨ a ∈ D(2) | x1, . . . , xk−1 ∈ R2, a ∈ Q2}. (21)

Let M−
2 be the network obtained from M2 ≡ N(D(2)) by deleting all arcs from X̄ ∪Q2 ∪Z2 to R2,

all arcs from X̄ ∪ Z2 to Q2 and their symmetric arcs. Let (D(2)−
1,2 , w2) = C(M−

2 ) and let N3 be the

network obtained from M−
2 as follows. For each clause C ∈ B(3)

k of form C = x̄1 ∨ · · · ∨ x̄k−1 ∨ a with

x1, ..., xk−1 ∈ R2 and a ∈ Q2, we add two nodes C, C̄ and (2k + 2) arcs EB(C) defined in (16) (i.e.,

EB(C) = {(C, t), (s, C̄), (ā, C̄), (C, a)} ∪ ∪k−1
i=1 {(xi, C), (C̄, x̄i)}). Two arcs (s, C̄), (C, t) have capacity

w2(C) and all the remaining arcs have capacity w2(C)/b
(3)
k with

b
(3)
k =

{
7 (k = 3)

12 (k = 4).
(22)

For each clause C = x̄1 ∨ x̄2 ∨ · · · ∨ x̄k ∈ A(3)
k (k = 3, 4, 5), we add two nodes C, C̄ and 2k + 2 arcs

EA(C) defined in (11) (i.e., EA(C) = {(C, t), (s, C̄)} ∪ ∪k
i=1{(xi, C), (C̄, x̄i)}). Two arcs (s, C̄),(C, t)

have capacity w2(C) and all the remaining arcs have capacity w2(C)/a
(3)
k with

a
(3)
k =

⎧⎪⎨
⎪⎩

6 (k = 3)

10 (k = 4)

12 (k = 5).

(23)

Then, we find a symmetric flow f3 of maximum value from s to t in N3 such that f3(x1, C) = · · · =

f3(xk−1, C) = f3(C, a) for each clause C = x̄1 ∨ · · · ∨ x̄k−1 ∨ a ∈ B(3)
k (k = 3, 4) and f3(x1, C) = · · · =

f3(xk, C) for each clause C = x̄1 ∨ x̄2 ∨ · · · ∨ x̄k ∈ A(3)
k (k = 3, 4, 5). Let L3 be the network obtained

from the residual network N3(f3) with respect to f3 by deleting all arcs into s, all arcs from t and all

nodes C, C̄ (and incident arcs) with C ∈ B(3)
3 ∪ B(3)

4 ∪ A(3)
3 ∪A(3)

4 ∪ A(3)
5 .

Now we can split off clauses C ∈ B(3)
3 ∪B(3)

4 ∪A(3)
3 ∪A(3)

4 ∪A(3)
5 . For each C = x̄1∨· · ·∨x̄k−1∨a ∈ B(3)

k

with x1, ..., xk−1 ∈ R2 and a ∈ Q2, let

K(3)
1,k(C) = {x1, ..., xk−1, ā, C, x0, x̄0} (24)

with weights w3(x1) = · · · = w3(xk−1) = w3(ā) = 2f3(C), w3(x0) = w3(x̄0) = −2f3(C) and w3(C) =

b
(3)
k f3(C) using f3(C) ≡ f3(x1, C) (x0 is any variable in X). Let

K(3)
1,k = ∪

C∈B(3)
k

K(3)
1,k(C), K(3) = K(3)

1,3 ∪ K(3)
1,4. (25)

For each clause C ∈ A(3)
k of form C = x̄1 ∨ · · · ∨ x̄k, let

J (3)
1,k (C) = {x1, ..., xk, C} (26)

with weights w3(x1) = · · · = w3(xk) = 2f3(C) and w3(C) = a
(3)
k f3(C) using f3(C) ≡ f3(x1, C). Let

J (3)
1,k = ∪

C∈A(3)
k

J (3)
1,k (C), J (3) = ∪5

k=3J (3)
1,k . (27)
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Let (D′(3)
1,2 , w3) = C(L3) (the set of weighted clauses of the symmetric network L3) and let (D(3), w3)

be the set of weighted clauses obtained from (D(2), w2) by replacing (D(2)−
1,2 , w2) with (D′(3)

1,2 , w3) and

by replacing the weight w2(C) of each clause C ∈ B(3)
3 ∪ B(3)

4 ∪ A(3)
3 ∪ A(3)

4 ∪A(3)
5 with

w3(C) =

{
w2(C) − a

(3)
k f3(C) (C ∈ A(3)

k )

w2(C) − b
(3)
k f3(C) (C ∈ B(3)

k )

(w3(C) ≥ 0 and we assume clauses with weight 0 are not included in D(3)). Then, by the same

argument as before, (D(2), w2) and (D(3)∪J (3)∪K(3), w3) are shown to be strongly equivalent. Let R3

be the set of nodes reachable from s in L3. Clearly, R3 ⊆ R2 (R̄3 ⊆ R̄2). A node a ∈ Q2∪(R2−R3) is

called an entrance if there is a clause C = x̄1∨· · ·∨x̄k−1∨a ∈ D(3) (k = 3, 4) such that x1, ..., xk−1 ∈ R3

(w3(C) > 0). Let Q3 be the set of nodes in Q2 ∪ (R2 − R3) that are reachable from an entrance by

a path in M3 ≡ N(D(3)) (M3 is also obtained from L3 by adding all arcs in M2 − M−
2 ). Then, by

the symmetry and maximality of f3, Q3 contains no complementary literals and all literals in Q3 are

unnegated.

By the argument above we can summarize Step 3 of our algorithm and have a lemma as follows.

Step 3. Find R3, Q3 and (D(3) ∪ J (3) ∪ K(3), w3) from (D(2), w2) using the network M−
2 , N3, a

symmetric flow f3 of N3 of maximum value and the network L3 defined above.

Lemma 4 (D(2), w2) and (D(3)∪J (3)∪K(3), w3) are strongly equivalent and the following statements

hold.

(a) x ∈ R3 for each C = x ∈ D(3).

(b) For each C = x̄ ∨ y ∈ D(3), y ∈ R3 if x ∈ R3 and y ∈ Q3 ∪ R3 if x ∈ Q3.

(c) There is no clause in D(3) with 3, 4, 5 or 6 literals all contained in R̄3.

(d) a ∈ Q3 ∪ R3 for each clause of form C = x̄1 ∨ · · · ∨ x̄k−1 ∨ a ∈ D(3) with x1, ..., xk−1 ∈ R3

(k = 3, 4).

(e) There is no clause C ∈ D(3) of form C = x̄1∨· · ·∨x̄k with x1, ..., x2k−3 ∈ R3, x2k−3+1, ..., xk ∈ Q3

for k = 3, 4, 5.

(f) R3 ⊆ R2 and Q3 ⊆ Q2 ∪ R2 − R3.

Step 4 below is almost similar to Step 3 above. Let

A(4)
3 = {x̄1 ∨ x̄2 ∨ x̄3 ∈ D(3) | x1, x2, x3 ∈ Q3}, (28)

B(4)
k = {x̄1 ∨ · · · ∨ x̄k−1 ∨ a ∈ D(3) | x1, . . . , xk−1 ∈ R3, a ∈ Q3} (29)

for k = 3, 4. Let M−
3 be the network obtained from M3 ≡ N(D(3)) by deleting all arcs from X̄∪Q3∪Z3

to R3, all arcs from X̄ ∪ Z3 to Q3 and their symmetric arcs. Let (D(3)−
1,2 , w3) = C(M−

3 ) and let

N4 be the network obtained from M−
3 as follows. For each clause C ∈ B(4)

k (k = 3, 4) of form

C = x̄1 ∨ · · · ∨ x̄k−1 ∨ a, we add two nodes C, C̄ and (2k + 2) arcs EB(C) defined in (16). Two arcs

(s, C̄), (C, t) have capacity w3(C) and all the remaining arcs have capacity w3(C)/b
(4)
k with

b
(4)
k =

{
7 (k = 3)

12 (k = 4).
(30)

For each clause C = x̄1 ∨ x̄2 ∨ x̄3 ∈ A(4)
3 , we add two nodes C, C̄ and 8 arcs EA(C) defined in (11).

Two arcs (s, C̄),(C, t) have capacity w3(C) and all the remaining arcs have capacity w3(C)/a
(4)
3 with

a
(4)
3 = 6. (31)
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Then, we find a symmetric flow f4 of maximum value such that f4(x1, C) = · · · = f4(xk−1, C) =

f4(C, a) for each clause C = x̄1∨· · ·∨ x̄k−1∨a ∈ B(4)
k (k = 3, 4) and f4(x1, C) = f4(x2, C) = f4(x3, C)

for each clause C = x̄1 ∨ x̄2 ∨ x̄3 ∈ A(4)
3 . Let L4 be the network obtained from the residual network

N4(f4) with respect to f4 by deleting all arcs into s, all arcs from t and all nodes C, C̄ (and incident

arcs) with C ∈ B(4)
3 ∪ B(4)

4 ∪ A(4)
3 .

Now we can split off clauses C ∈ B(4)
3 ∪ B(4)

4 ∪ A(4)
3 . For each C = x̄1 ∨ · · · ∨ x̄k−1 ∨ a ∈ B(4)

k , let

K(4)
1,k(C) = {x1, ..., xk−1, ā, C, x0, x̄0} (32)

with weights w4(x1) = · · · = w4(xk−1) = w4(ā) = 2f4(C), w4(x0) = w4(x̄0) = −2f4(C) and w4(C) =

b
(4)
k f4(C) using f4(C) ≡ f4(x1, C) (x0 is any variable in X). Let

K(4)
1,k = ∪

C∈B(4)
k

K(4)
1,k(C), K(4) = K(4)

1,3 ∪ K(4)
1,4. (33)

For each clause C ∈ A(4)
3 of form C = x̄1 ∨ x̄2 ∨ x̄3, let

J (4)
1,3 (C) = {x1, x2, x3, C} (34)

with weights w4(x1) = w4(x2) = w4(x3) = 2f4(C) and w4(C) = a
(4)
3 f4(C) using f4(C) ≡ f4(x1, C).

Let

J (4) = J (4)
1,3 = ∪

C∈A(4)
3
J (4)

1,3 (C). (35)

Let (D′(4)
1,2 , w4) = C(L4) (the set of weighted clauses of the symmetric network L4) and let (D(4), w4)

be the set of weighted clauses obtained from (D(3), w3) by replacing (D(3)−
1,2 , w3) with (D′(4)

1,2 , w4) and

by replacing the weight w3(C) of each clause C ∈ B(4)
3 ∪ B(4)

4 ∪ A(4)
3 with

w4(C) =

{
w3(C) − a

(4)
3 f4(C) (C ∈ A(4)

3 )

w3(C) − b
(4)
k f4(C) (C ∈ B(4)

k , k = 3, 4)

(w4(C) ≥ 0 and clauses with weight 0 are not included in D(4)). Then, by the same argument as

before, (D(3), w3) and (D(4) ∪J (4) ∪K(4), w4) are shown to be strongly equivalent. Let R4 be the set

of nodes reachable from s in L4. Clearly, R4 ⊆ R3 (R̄4 ⊆ R̄3). A node a ∈ Q3 ∪ (R3−R4) is called an

entrance again if there is a clause C = x̄1 ∨ · · · ∨ x̄k−1 ∨a ∈ D(4) (k = 3, 4) such that x1, ..., xk−1 ∈ R4

(w4(C) > 0). Let Q4 be the set of nodes in Q3 ∪ (R3 − R4) that are reachable from an entrance by

a path in M4 ≡ N(D(4)) (M4 is also obtained from L4 by adding all arcs in M3 − M−
3 ). Then, by

the symmetry and maximality of f4, Q4 contains no complementary literals and all literals in Q4 are

unnegated.

By the argument above we can summarize Step 4 of our algorithm and have a lemma as follows.

Step 4. Find R4, Q4 and (D(4) ∪ J (4) ∪ K(4), w4) from (D(3), w3) using the network M−
3 , N4, a

symmetric flow f4 of N4 of maximum value and the network L4 defined above.

Lemma 5 (D(3), w3) and (D(4)∪J (4)∪K(4), w4) are strongly equivalent and the following statements

hold.

(a) x ∈ R4 for each C = x ∈ D(4).

(b) For each C = x̄ ∨ y ∈ D(4), y ∈ R4 if x ∈ R4 and y ∈ Q4 ∪ R4 if x ∈ Q4.

(c) There is no clause in D(4) with 3, 4, 5 or 6 literals all contained in R̄4.

(d) a ∈ Q4 ∪ R4 for each clause of form C = x̄1 ∨ · · · ∨ x̄k−1 ∨ a ∈ D(4) with x1, ..., xk−1 ∈ R4

(k = 3, 4).
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(e) There is no clause C ∈ D(4) of form C = x̄1 ∨ · · · ∨ x̄k with x1, x2, x3 ∈ Q4 for k = 3 or with

x1, ..., x2k−3 ∈ R4, x2k−3+1, ..., xk ∈ Q4 for k = 3, 4, 5.

(f) R4 ⊆ R3 and Q4 ⊆ Q3 ∪ R3 − R4.

Now we would like to set each variable in R4 to be true with probability 0.75, each variable in Q4

to be true with probability 0.629 and each variable in Z4 ≡ X − (Q4 ∪R4) to be true with probability

0.5. Then, each clause in D(4) except for a clause C of form C = x̄1 ∨ · · · ∨ x̄k−1 ∨ a (k = 3, 4) with

x1, xk−2 ∈ R4, xk−1 ∈ Q4 and a ∈ Z4 ∪ Z̄4 (Z4 ≡ X − (R4 ∪Q4)) is satisfied with probability at least

γk in (9).

We will split off such clauses. For k = 3, 4, let

B(5)
k = {x̄1 ∨ · · · ∨ x̄k−1 ∨ a ∈ D(4) | x1, . . . , xk−1 ∈ R4, a ∈ Q4} (36)

B′(5)
k = {x̄1 ∨ · · · ∨ x̄k−1 ∨ a ∈ D(4) | x1, . . . , xk−2 ∈ R4, xk−1 ∈ Q4, a ∈ Z4 ∪ Z̄4} (37)

Let M−
4 be the network obtained from M4 ≡ N(D(4)) by deleting all arcs from X̄ ∪ Q4 ∪ Z4 to R4,

all arcs from X̄ ∪ Z4 to Q4 and their symmetric arcs. Let (D(4)−
1,2 , w3) = C(M−

4 ) and let N5 be the

network obtained from M−
4 as follows.

For each clause C ∈ B(5)
k ∪B′(5)

k of form C = x̄1∨· · ·∨ x̄k−1∨a, we add two nodes C, C̄ and (2k+2)

arcs EB(C) defined by (16). Two arcs (s, C̄), (C, t) have capacity w4(C) and all the remaining arcs

have capacity w4(C)/b
′′(5)
k with

b
′′(5)
k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

6.8 (C ∈ B(5)
k , k = 3)

12 (C ∈ B(5)
k , k = 4)

6.5 (C ∈ B′(5)
k , k = 3)

10 (C ∈ B′(5)
k , k = 4)

(38)

Then, we find a symmetric flow f5 of maximum value from s to t in N5 such that f5(x1, C) = · · · =

f5(xk−1, C) = f5(C, a) for each clause C = x̄1 ∨ · · · ∨ x̄k−1 ∨ a ∈ B(5)
k ∪ B′(5)

k . Let L5 be the network

obtained from the residual network N5(f5) with respect to f5 by deleting all arcs into s, all arcs from

t and all nodes C, C̄ (and incident arcs) with C ∈ B(5)
3 ∪ B(5)

4 ∪ B′(5)
3 ∪ B′(5)

4 .

Now we can split off clauses C ∈ B(5)
3 ∪B(5)

4 ∪B′(5)
3 ∪B′(5)

4 . For each C = x̄1∨· · ·∨x̄k−1∨a ∈ B(5)
k ∪B′(5)

k

(k = 3, 4), let

K′′(5)
1,k (C) = {x1, ..., xk−1, ā, C, x0, x̄0} (39)

with weights

w5(x1) = · · · = w5(xk) = w5(ā) = 2f5(C),

w5(x0) = w5(x̄0) =

{
−2f5(C) (C ∈ B(5)

k )

−f5(C) (C ∈ B′(5)
k ),

w5(C) = b
′′(5)
k f4(C) (C ∈ B(5)

k ∪ B′(5)
k )

using f5(C) ≡ f5(x1, C) (x0 is any variable in X). Let

K(5)
1,k = ∪

C∈B(5)
k

K′′(5)
1,k (C), K(5) = K(5)

1,3 ∪ K(5)
1,4, (40)

K′(5)
1,k = ∪

C∈B′(5)
k

K′′(5)
1,k (C), K′(5) = K′(5)

1,3 ∪ K′(5)
1,4 . (41)

Let (D′(5)
1,2 , w5) = C(L5) and let (D(5), w5) be the set of weighted clauses obtained from (D(4), w4) by

replacing (D(4)−
1,2 , w4) with (D′(5)

1,2 , w5) and by replacing the weight w4(C) of each clause C ∈ B(5)
k ∪B′(5)

k

(k = 3, 4) with

w5(C) = w4(C) − b
′′(5)
k f5(C) (C ∈ B(5)

k ∪ B′(5)
k )
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(w5(C) ≥ 0 and we assume clauses with weight 0 are not included in D(5)). Then, by the same

argument as before, (D(4), w) and (D(5) ∪K(5) ∪K′(5), w5) are strongly equivalent. Let R5 be the set

of nodes reachable from s in L5. Clearly, R5 ⊆ R4 (R̄5 ⊆ R̄4). A node a ∈ Q4 ∪ (R4 − R5) is called

an entrance1 if there is a clause C = x̄1 ∨ · · · ∨ x̄k−1 ∨ a ∈ D(5) (k = 3, 4) with x1, ..., xk−1 ∈ R5

(w5(C) > 0). Let Q5 be the set of nodes in Q4 ∪ (R4 − R5) that are reachable from an entrance1

by a path in M5 ≡ N(D(5)). Similarly, a node a ∈ ((R4 ∪ Q4) − (R5 ∪ Q5)) ∪ Z4 ∪ Z̄4 is called an

entrance2 if there is a clause C = x̄1 ∨ · · · ∨ x̄k−1 ∨ a ∈ D(5) (k = 3, 4) with x1, xk−2 ∈ R5, xk−1 ∈ Q5

(w5(C) > 0). Let P5 be the set of nodes in ((R4 ∪Q4)− (R5 ∪Q5))∪Z4 ∪ Z̄4 that are reachable from

an entrance2 by a path in M5. Then, Q5 and P5 contain no complementary literals by the symmetry

and maximality of f5 and we can assume all literals in Q5 ∪ P5 are unnegated.

By the argument above we can summarize Step 5 of our algorithm and have a lemma as follows.

Step 5. Find R5, Q5, P5 and (D(5) ∪ K(5) ∪ L(5), w5) from (D(4), w4) using the network M−
4 , N5, a

symmetric flow f5 of N5 of maximum value and the network L5 defined above.

Lemma 6 (D(4), w4) and (D(5)∪K(5)∪K′(5), w5) are strongly equivalent and the following statements

hold.

(a) x ∈ R5 for each C = x ∈ D(5).

(b) For each C = x̄ ∨ y ∈ D(5), y ∈ R5 if x ∈ R5, y ∈ Q5 ∪ R5 if x ∈ Q5 and y ∈ P5 ∪ Q5 ∪ R5 if

x ∈ P5.

(c) For k = 3, 4, 5, 6, there is no clause in D(5) with k literals such that k1 (k1 ≥ 2k− 6) literals are

contained in R̄5 and the remaining literals are in Q̄5.

(d) A clause in D(5) with 3 or 4 literals all except one contained in R̄5 has a literal in R5 ∪ Q5.

(e) A clause in D(5) with k literals (k = 3, 4) of form C = x̄1∨· · ·∨x̄k−1∨a such that x1, ..., xk−2 ∈ R5

and xk−1 ∈ Q5 satisfies a ∈ R5 ∪ Q5 ∪ P5.

(f) R5 ⊆ R4, Q5 ⊆ Q4 ∪ R4 − R5 and P5 ⊆ X − (R5 ∪ Q5).

Now we would like to set each variable in R5 to be true with probability 0.75, each variable in Q5

to be true with probability 0.629 and each variable in P5 to be true with probability 0.557 and each

variable in Z5 ≡ X − (P5 ∪ Q5 ∪ R5) to be true with probability 0.5. Then, each clause Ck in D(5)

of k literals except for a clause C of form C = x̄1 ∨ x̄2 ∨ x̄3 with x1 ∈ R5 and x2, x3 ∈ P5 or with

x1, x2 ∈ Q5 and x3 ∈ P5 is satisfied with probability at least γk in (9). We will split off such clauses.

Let

A(6)
3 = {x̄1 ∨ x̄2 ∨ x̄3 ∈ D(5) | (x1 ∈ R5, x2, x3 ∈ P5) or (x1, x2 ∈ Q5, x3 ∈ P5)}, (42)

B(6)
k = {x̄1 ∨ · · · ∨ x̄k−1 ∨ a ∈ D(5) | x1, . . . , xk−1 ∈ R5, a ∈ Q5} (43)

B′(6)
k = {x̄1 ∨ · · · ∨ x̄k−1 ∨ a ∈ D(5) | x1, . . . , xk−2 ∈ R5, xk−1 ∈ Q5, a ∈ P5} (44)

for k = 3, 4. Let M−
5 be the network obtained from M5 ≡ N(D(5)) by deleting all arcs from X̄∪Q5∪P5

to R5, all arcs from X̄ ∪P5 to Q5, all arcs from X̄ to P5 and their symmetric arcs. Let (D(5)−
1,2 , w5) =

C(M−
5 ) and let N6 be the network obtained from M−

5 as follows.

For each clause C ∈ B(6)
k ∪B′(6)

k of form C = x̄1∨· · ·∨ x̄k−1∨a, we add two nodes C, C̄ and (2k+2)

arcs EB(C) defined by (16). Two arcs (s, C̄), (C, t) have capacity w5(C) and all the remaining arcs

have capacity w5(C)/b
′′(6)
k with

b
′′(6)
k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

6.8 (C ∈ B(6)
k , k = 3)

12 (C ∈ B(6)
k , k = 4)

6.5 (C ∈ B′(6)
k , k = 3)

10 (C ∈ B′(6)
k , k = 4)

(45)
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For each clause in A(6)
3 of form C = x̄1 ∨ x̄2 ∨ x̄3, we add two nodes C, C̄ and 8 arcs EA(C) defined by

(11). Two arcs (s, C̄), (C, t) have capacity w5(C) and all the remaining arcs have capacity w5(C)/a
(6)
3

with

a
(6)
3 = 6. (46)

Then, we find a symmetric flow f6 of maximum value from s to t in N6 such that f6(x1, C) =

· · · = f6(xk−1, C) = f6(C, k) for each clause C = x̄1 ∨ · · · ∨ x̄k−1 ∨ a ∈ B(6)
k ∪ B′(6)

k and f6(x1, C) =

f6(x2, C) = f6(x3, C) for each clause C = x̄1 ∨ x̄2 ∨ x̄3 ∈ A(6)
3 . Let L6 be the network obtained from

the residual network N6(f6) with respect to f6 by deleting all arcs into s, all arcs from t and all nodes

C, C̄ (and incident arcs) with C ∈ B(6)
3 ∪ B(6)

4 ∪ B′(6)
3 ∪ B′(6)

4 ∪A(6)
3 .

Now we can split off clauses C ∈ B(6)
3 ∪ B(6)

4 ∪ B′(6)
3 ∪ B′(6)

4 ∪A(6)
3 . For each clause C ∈ B(6)

k ∪ B′(6)
k

(k = 3, 4) of form C = x̄1 ∨ · · · ∨ x̄k−1 ∨ a with x1, ..., xk−1 ∈ R5 and a ∈ Q5 (C ∈ B(6)
k ) or with

x1, xk−2 ∈ R5, xk−1 ∈ Q5 and a ∈ P5 (C ∈ B′(6)
k ), let

K′′(6)
1,k (C) = {x1, ..., xk−1, ā, C, x0, x̄0} (47)

with weights w6(x1) = · · · = w6(xk) = w6(ā) = 2f6(C), w6(x0) = w6(x̄0) = −2f6(C) and w5(C) =

b
′′(6)
k f5(C) using f6(C) ≡ f6(x1, C) (x0 is any variable in X). Let

K(6)
1,k = ∪

C∈B(6)
k

K′′(6)
1,k (C), K(6) = K(6)

1,3 ∪ K(6)
1,4, (48)

K′(6)
1,k = ∪

C∈B′(6)
k

K′′(6)
1,k (C), K′(6) = K′(6)

1,3 ∪ K′(6)
1,4 . (49)

For each clause C = x̄1 ∨ x̄2 ∨ x̄3 ∈ A(6)
3 , let

J (6)
1,3 (C) = {x1, x2, x3, C} (50)

with weights w6(x1) = w6(x2) = w6(x3) = 2f6(C), and w6(C) = a
(6)
3 f6(C) using f6(C) ≡ f6(x1, C).

Let

J (6) = J (6)
1,3 = ∪

C∈A(6)
3
J (6)

1,3 (C). (51)

Let (D′(6)
1,2 , w6) = C(L6) and let (D(6), w6) be the set of weighted clauses obtained from (D(5), w5)

by replacing (D(5)−
1,2 , w5) with (D′(6)

1,2 , w6) and by replacing the weight w5(C) of each clause C ∈
B(6)

3 ∪ B(6)
4 ∪ B′(6)

3 ∪ B′(6)
4 ∪ A(6)

3 with

w6(C) =

{
w5(C) − a

(6)
3 f6(C) (C ∈ A(6)

3 )

w5(C) − b
′′(6)
k f6(C) (C ∈ B(6)

k ∪ B′(6)
k )

(w6(C) ≥ 0 and we assume clauses with weight 0 are not included in D(6)). Then, by the same

argument as before, (D(5), w5) and (D(6) ∪J (6) ∪K(6) ∪K′(6), w6) are strongly equivalent. Let R6 be

the set of nodes reachable from s in L6. Clearly, R6 ⊆ R5 (R̄6 ⊆ R̄5). A node a ∈ Q5 ∪ (R5 − R6)

is called an entrance1 again if there is a clause C = x̄1 ∨ · · · ∨ x̄k−1 ∨ a ∈ D(6) (k = 3, 4) with

x1, ..., xk−1 ∈ R6 (w6(C) > 0). Let Q6 be the set of nodes in Q5 ∪ (R5 −R6) that are reachable from

an entrance1 by a path in M6 ≡ N(D(6)). A node a ∈ ((R5 ∪ Q5) − (R6 ∪ Q6)) ∪ P5 is called an

entrance2 if there is a clause C = x̄1 ∨ · · · ∨ x̄k−1 ∨ a ∈ D(6) (k = 3, 4) with x1, xk−2 ∈ R6, xk−1 ∈ Q6

(w6(C) > 0). Let P6 be the set of nodes in((R5 ∪ Q5) − (R6 ∪ Q6)) ∪ P5 that are reachable from

an entrance2 by a path in M6. Then, by the symmetry and maximality of f6, Q6 ∪ P6 contains no

complementary literals and all literals in Q6 ∪ P6 are unnegated.

By the argument above we can summarize Step 6 of our algorithm and have a lemma as follows.

Step 6. Find R6, Q6, P6 and (D(6) ∪J (6) ∪K(6) ∪K′(6), w6) from (D(5), w5) using the network M−
5 ,

N6, a symmetric flow f6 of N6 of maximum value and the network L6 defined above.
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Lemma 7 (D(5), w5) and (D(6) ∪ J (6) ∪ K(6) ∪ K′(6), w6) are strongly equivalent and R6 ⊆ R5,

Q6 ⊆ Q5 ∪ R5 − R6 and P6 ⊆ (P5 ∪Q5 ∪ R5)− (Q6 ∪ R6). Furthermore, (D(6), w6) satisfies property

π described in Section 2.

Now we are ready to set the probability for each variable to be true.

Step 7. Obtain a random truth assignment xp by setting independently each variable xi to be true

with probability pi as follows (Z6 ≡ X − (R6 ∪ Q6 ∪ P6)):

pi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.75 (xi ∈ R6)

0.629 (xi ∈ Q6)

0.557 (xi ∈ P6)

0.5 (xi ∈ Z6).

Then find a truth assignment xA ∈ {0, 1}n with value FC(xA) ≥ FC(xp) by the probabilistic method.

We will give an analysis of the expected value of the random truth assingment xp in the next section,

where the following lemma plays an important role.

Lemma 8 The probability pi of variable xi in Step 7 satisfies the following.

pi ∈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[0.371, 0.75] (xi ∈ R)

[0.443, 0.75] (xi ∈ Rj , j = 1, 2, 3)

[0.5, 0.75] (xi ∈ Rj j = 4, 5)

[0.443, 0.629] (xi ∈ Qj , j = 2, 3)

[0.5, 0.629] (xi ∈ Qj , j = 4, 5)

[0.5, 0.557] (xi ∈ P5)

[0.371, 0.629] (xi ∈ Zj , j = 0, 1)

[0.443, 0.557] (xi ∈ Zj , j = 2, 3, 4)

[0.5, 0.5] (xi ∈ Z5).

The above lemma can be obtained by Lemmas 2-7. For example, pi ∈ [0.443, 0.75] (xi ∈ R1) is

obtained by R1 ∩ R̄6 = ∅ and R1 ∩ Q̄6 = ∅ since R6 ⊆ R5 ⊆ R4 ⊆ R3 ⊆ R2 ⊆ R1 (R̄6 ⊆ R̄1) and

Q6 ⊆ Q5 ∪ R5 ⊆ Q4 ∪ R4 ⊆ Q3 ∪ R3 ⊆ Q2 ∪ R2 ⊆ Z1 ∪ Z̄1 ∪R1 = X ∪ Z̄1 (Q̄6 ⊆ Z1 ∪ X̄). The other

cases are similarly obtained.

4 Analysis

In this section we consider the expected value FC(xp) of the random truth assignment xp obtained

by Step 7. Let x∗ be an optimal truth assignment for (C, w). Then, the random truth assignment xp

satisfies (7), which will be shown below.

Let (C6, w6) = (D(6) ∪J (1) ∪K(2) ∪J (3) ∪K(3) ∪J (4) ∪K(4) ∪K(5) ∪K′(5) ∪J (6) ∪K(6) ∪K′(6), w6)

(we assume wi = w6 for i = 1, ..., 5). Let xr be any random truth assignment and let W r
k (L) be the

expected value of xr for the weighted clauses in (L, w6) with k literals. Thus, W r
k (C6) =

∑
W r

k (L),

where the summation is taken over for all L = D(6), J (1), K(2), J (3), K(3), J (4), K(4), K(5), K′(5),
J (6), K(6), K′(6). Similarly, let W r

k = W r
k (C) be the expected value of xr for the weighted clauses

in (C, w) with k literals. W ∗
k (L) is the value of the optimal truth assignment x∗ for weighted clauses

in (L, w6) with k literals and W ∗
k = W ∗

k (C) is the value of x∗ for weighted clauses in (C, w) with k

literals.
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Then we have the following lemmas since (C, w) and (C6, w6) are strongly equivalent by Lemmas

2-7.

Lemma 9 For any random truth assignment xr, the following statements hold.

(a) W r
k = W r

k (C6) for all k ≥ 3.

(b) W r
2 (C6) = W r

2 (D(6)) and W r
1 (C6) =

∑
W r

1 (L) where the summation is taken over for all

L = D(6), J (1), K(2), J (3), K(3), J (4), K(4), K(5), K′(5), J (6), K(6), K′(6). Furthermore, W r
1,2 =

W r
1,2(C6) where W r

1,2 ≡ W r
1 + W r

2 and W r
1,2(C6) ≡ W r

1 (C6) + W r
2 (C6).

Lemma 10 For xp obtained in Step 7 in Section 3 and an optimal truth assignment x∗, if

FL(xp) ≥
∑
k≥1

γkW ∗
k (L) (52)

for L = C6, then FC(xp) satisfies (7) (i.e., FC(xp) ≥ ∑
k≥1 γkW ∗

k (C)).

This lemma is obtained as follows. By Lemma 9 (for xr = x∗), we have W ∗
1 +W ∗

2 = W ∗
1 (C6)+W ∗

2 (C6)

and W ∗
k = W ∗

k (C6) for all k ≥ 3. Thus, FC(xp) satisfies (7) since (52) for L = C6 implies FC(xp) =

FC6(xp) ≥ γ1(W
∗
1 + W ∗

2 ) +
∑

k≥3 γkW ∗
k by Lemma 9 and γ1 = γ2.

By Lemma 10, we have only to show that (52) is true for L = C6. Furthermore, it suffices to show

that each group L satisfies (52) for L = D(6),J (i)
1,k,K(i)

1,k,K′(i)
1,k defined in Section 3. Similarly, if each

L(C) satisfies (52) then L satisfies (52). For simplicity, we first assume L(C) = L. Thus, for example,

J (1)
1,k = {x1, ..., xk, C} with x1, ..., xk ∈ R of weight 2f1(C) and C = x̄1∨· · ·∨ x̄k of weight a

(1)
k f1(C),

K(2)
1,k = {x1, ..., xk−1, ā, x0, x̄0, C} with x1, ..., xk−1 ∈ R1 and a ∈ Z1 ∪ Z̄1 of weight 2f2(C), x0, x̄0

with weight −f2(C) and C = x̄1 ∨ · · · ∨ x̄k−1 ∨ a of weight b
(2)
k f2(C).

Now we will find a lower bound on the expected value of FL(xp) for each (L, w6) based on the

assumption above (for simplicity, we first assume f1(C) = · · · = f6(C) = 1 and a = xk).

A. FJ (1)
1,k

(xp) = 2(p1 + · · · + pk) + a
(1)
k (1 − p1 · · · pk) (k = 3, 4, 5, 6).

Let p = k
√

p1p2 · · · pk and g(J (1)
1,k ) = 2kp + a

(1)
k (1 − pk). Then FJ (1)

1,k

(xp) ≥ g(J (1)
1,k ) by the

arithmetic/geometric mean inequality. Since xi ∈ R, we have pi ∈ [0.371, 0.75] by Lemma 8 and

p ∈ [0.371, 0.75]. In this interval, it can be easily shown that g(J (1)
1,k ) takes a minimum value at

p = 0.371 for k = 3, 4, 5, 6. Thus,

FJ (1)
1,k

(xp) ≥g(J (1)
1,k ) ≥ 2(0.371k) + a

(1)
k (1 − 0.371k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

7.9196 (k = 3)

12.7785 (k = 4)

17.6115 (k = 5)

26.3946 (k = 6).

On the other hand, W ∗
1 (J (1)

1,k ) = 2
∑k

i=1 x∗
i and W ∗

k (J (1)
1,k ) = a

(1)
k (1 − ∏k

i=1 x∗
i ). Using the inequality

1 −
k∏

i=1

x∗
i ≤ min{1, k −

k∑
i=1

x∗
i } (53)

for x∗
i = 0, 1 (this inequality holds even for 0 ≤ x∗

i ≤ 1 and will also be used below) and γ1 < γk, we
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have

γ1W
∗
1 (J (1)

1,k ) + γkW ∗
k (J (1)

1,k ) ≤ 2γ1

k∑
i=1

x∗
i + a

(1)
k γk min{1, k −

k∑
i=1

x∗
i }

≤ 2(k − 1)γ1 + a
(1)
k γk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4γ1 + 6γ3 = 7.746 (k = 3)

6γ1 + 10γ4 = 12.61 (k = 4)

8γ1 + 14γ5 = 17.522 (k = 5)

10γ1 + 22γ6 = 26.2 (k = 6)

and FJ (1)
1,3

(xp) ≥ γ1W
∗
1 (J (1)

1,k ) + γkW ∗
k (J (1)

1,k ).

B. FK(2)
1,k

(xp) = 2(p1 + · · · + pk−1 + 1 − pk) − 1 + b
(2)
k (1 − p1 · · · pk−1(1 − pk)) (k = 3, 4).

Let p = k−1
√

p1p2 · · · pk−1 and g(K(2)
1,k) = 2(k − 1)p + 2(1 − pk) − 1 + b

(2)
k (1 − pk−1(1 − pk)). Then

FK(2)
1,k

(xp) ≥ g(K(2)
1,k). Since xi ∈ R1 (i = 1, ..., k − 1) and xk ∈ Z1 ∪ Z̄1, we have pi, p ∈ [0.443, 0.75]

and pk ∈ [0.371, 0.629] by Lemma 8. In these intervals, g(K(2)
1,k) takes a minimum value at p = 0.443

and pk = 0.629 for k = 3, 4. Thus,

FK(2)
1,k

(xp) ≥ g(K(2)
1,k)

≥ 2(0.443(k − 1) + (1 − 0.629)) − 1 + b
(2)
k (1 − 0.443k−1(1 − 0.629)) =

{
7.077 (k = 3)

12.077 (k = 4).

Since W ∗
1 (K(2)

1,k) = 2(x∗
1 + · · · + x∗

k−1 + 1 − x∗
k) − 1 and W ∗

k (K(2)
1,k) = b

(2)
1,k(1 − x∗

1 · · ·x∗
k−1(1 − x∗

k)), we

also have

γ1W
∗
1 (K(2)

1,k) + γkW ∗
k (K(2)

1,k) ≤ γ1(2(

k−1∑
i=1

x∗
i + 1 − x∗

k) − 1) + b
(2)
k γk min{1, k − (

k−1∑
i=1

x∗
i + 1 − x∗

k)}

≤ (2(k − 1) − 1)γ1 + b
(2)
k γk =

{
3γ1 + 6γ3 = 6.996 (k = 3)

5γ1 + 10γ4 = 11.86 (k = 4)

and FK(2)
1,k

(xp) ≥ γ1W
∗
1 (K(2)

1,k) + γkW ∗
k (K(2)

1,k).

C. FJ (3)
1,k

(xp) = 2
∑k

i=1 pi + a
(3)
k (1 − ∏k

i=1 pi) (k = 3, 4, 5).

Let k1 = 2k−3, p = k1
√

p1 · · · pk1 , p′ = k−k1
√

pk1+1 · · · pk and g(J (3)
1,k ) = 2k1p + 2(k − k1)p

′ + a
(3)
k (1−

pk1p′k−k1). Then FJ (3)
1,k

(xp) ≥ g(J (3)
1,k ). Since xi ∈ R2 (i = 1, ..., k1) and xj ∈ Q2 (j = k1 + 1, ..., k),

we have pi ∈ [0.443, 0.75] and pj ∈ [0.443, 0.629] by Lemma 8. This implies p ∈ [0.443, 0.75] and

p′ ∈ [0.443, 0.629]. In these intervals, g(J (3)
1,k ) takes a minimum value at p = p′ = 0.443. Thus,

FJ (3)
1,k

(xp) ≥ g(J (3)
1,k ) ≥ 2(0.443k) + a

(3)
k (1 − 0.443k) =

⎧⎪⎨
⎪⎩

8.1363 (k = 3)

13.1588 (k = 4)

16.2252 (k = 5).

Since W ∗
1 (J (3)

1,k ) = 2
∑k

i=1 x∗
i and W ∗

k (J (3)
1,k ) = a

(3)
k (1 − ∏k

i=1 x∗
i ), we also have

γ1W
∗
1 (J (3)

1,k ) + γkW ∗
k (J (3)

1,k ) ≤ 2γ1

k∑
i=1

x∗
i + a

(3)
k γk min{1, k −

k∑
i=1

x∗
i }

≤ 2(k − 1)γ1 + a
(3)
k γk =

⎧⎪⎨
⎪⎩

4γ1 + 6γ3 = 7.746 (k = 3)

6γ1 + 10γ4 = 12.61 (k = 4)

8γ1 + 12γ5 = 15.876 (k = 5)
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and FJ (3)
1,k

(xp) ≥ γ1W
∗
1 (J (3)

1,k ) + γkW ∗
k (J (3)

1,k ) + 0.349.

D. FK(3)
1,k

(xp) = 2(p1 + · · · + pk−1 + 1 − pk) − 2 + b
(3)
k (1 − p1 · · · pk−1(1 − pk)) (k = 3, 4).

Let p = k−1
√

p1p2 · · · pk−1 and g(K(3)
1,k) = 2(k − 1)p + 2(1 − pk) − 2 + b

(3)
k (1 − pk−1(1 − pk)). Then

FK(3)
1,k

(xp) ≥ g(K(3)
1,k). Since xi ∈ R2 (i = 1, ..., k − 1) and xk ∈ Q2, we have pi, p ∈ [0.443, 0.75] and

pk ∈ [0.443, 0.629] by Lemma 8. In these intervals, g(K(3)
1,k) takes a minimum value at p = 0.75 and

pk = 0.443 for k = 3, 4. Thus,

FK(3)
1,k

(xp) ≥ g(K(3)
1,k)

≥ 2(0.75(k − 1) + (1 − 0.443)) − 1 + b
(3)
k (1 − 0.75k−1(1 − 0.443))

=

{
6.9208 (k = 3)

12.7941 (k = 4).

Since W ∗
1 (K(3)

1,k) = 2(x∗
1 + · · · + x∗

k−1 + 1 − x∗
k) − 2 and W ∗

k (K(3)
1,k) = b

(3)
1,k(1 − x∗

1 · · ·x∗
k−1(1 − x∗

k)), we

also have

γ1W
∗
1 (K(3)

1,k) + γkW ∗
k (K(3)

1,k) ≤ (2(k − 1) − 2)γ1 + b
(3)
k γk =

{
2γ1 + 7γ3 = 7.037 (k = 3)

4γ1 + 12γ4 = 12.732 (k = 4)

and FK(3)
1,4

(xp) ≥ γ1W
∗
1 (K(3)

1,4) + γ4W
∗
4 (K(3)

1,4) and FK(3)
1,3

(xp) ≥ γ1W
∗
1 (K(3)

1,3) + γ3W
∗
3 (K(3)

1,3) − 0.1162.

By similar arguments we have the following.

E. FJ (4)
1,3

(xp) = 2(p1 + p2 + p3) + a
(4)
3 (1 − p1p2p3).

g(K(4)
1,3) ≡ 6p+a

(4)
3 (1−p3) with p ≡ 3

√
p1p2p3 takes a minimum value at p = p′ = 0.443 since xi ∈ Q3

(i = 1, 2, 3) and pi, p ∈ [0.443, 0.629] by Lemma 8. Thus, FJ (4)
1,3

(xp) ≥ g(J (4)
1,3 ) ≥ 6(0.443) + a

(4)
3 (1 −

0.4433) = 8.13637. On the other hand, since γ1W
∗
1 (J (4)

1,3 ) + γkW ∗
k (J (4)

1,3 ) ≤ 4γ1 + a
(4)
3 γ3 = 7.746, we

have FJ (4)
1,3

(xp) ≥ γ1W
∗
1 (J (4)

1,3 ) + γkW ∗
k (J (4)

1,3 ) + 0.390.

F. FK(4)
1,k

(xp) = 2(p1 + · · · + pk−1 + 1 − pk) − 2 + b
(4)
k (1 − p1 · · · pk−1(1 − pk)) (k = 3, 4).

By the same argument as for FK(3)
1,k

(xp), we have

FK(4)
1,k

(xp) ≥
{

6.9208 (k = 3)

12.7941 (k = 4),

γ1W
∗
1 (K(4)

1,k) + γkW ∗
k (K(4)

1,k) ≤
{

2γ1 + 7γ3 = 7.037 (k = 3)

4γ1 + 12γ4 = 12.732 (k = 4)

and FK(4)1,4(x
p) ≥ γ1W

∗
1 (K(4)

1,4)+γ4W
∗
4 (K(4)

1,4) and FK(4)1,3(x
p) ≥ γ1W

∗
1 (K(4)

1,3)+γ3W
∗
3 (K(4)

1,3)−0.1162.

G. FK(5)
1,k

(xp) = 2(p1 + · · · + pk−1 + 1 − pk) − 2 + b
′′(5)
k (1 − p1 · · · pk−1(1 − pk)) (k = 3, 4).

By an argument similar to one above, g(K(5)
1,k) ≡ 2(k − 1)p + 2(1− pk)− 2 + b

′′(5)
k (1− pk−1(1− pk))

with p ≡ k−1
√

p1p2 · · · pk−1 takes a minimum value at p = 0.75 and pk = 0.5 for k = 3, 4 since xi ∈ R4

(i = 1, ..., k − 1), xk ∈ Q4 and thus pi, p ∈ [0.5, 0.75] (i = 1, ..., k − 1) and pk ∈ [0.5, 0.631] by Lemma
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8. Thus, we have

FK(5)
1,k

(xp) ≥ g(K(5)
1,k)

≥ 2(0.75(k − 1) + (1 − 0.5)) − 2 + b
′′(5)
k (1 − 0.75k−1(1 − 0.5))

=

{
6.8875 (k = 3)

12.96875 (k = 4),

γ1W
∗
1 (K(5)

1,k) + γkW ∗
k (K(5)

1,k) ≤ (2(k − 1) − 2)γ1 + b
′′(5)
k γk =

{
2γ1 + 6.8γ3 = 6.8788 (k = 3)

4γ1 + 12γ4 = 12.732 (k = 4)

and FK(5)
1,k

(xp) ≥ γ1W
∗
1 (K(5)

1,k) + γkW ∗
k (K(5)

1,k).

H. FK′(5)
1,k

(xp) = 2(p1 + · · · + pk−1 + 1 − pk) − 1 + b
′′(5)
k (1 − p1 · · · pk−1(1 − pk)) (k = 3, 4).

Let p = p1 if k = 3 and p =
√

p1p2 if k = 4. Then g(K′(5)
1,k ) ≡ 2(k − 2)p + 2pk−1 + 2(1 − pk) − 1 +

b
′′(5)
k (1 − pk−2pk−1(1 − pk)) takes a minimum value at p = pk−2 = 0.5, and pk = 0.557 for k = 3, 4,

since xi ∈ R4 (i = 1, ..., k − 2), xk−1 ∈ Q4 and xk ∈ Z4 ∪ Z̄4 and pi, p ∈ [0.5, 0.75], pk−1 ∈ [0.5, 0.629]

and pk ∈ [0.443, 0.557] by Lemma 8. Thus, we have

FK′(5)
1,k

(xp) ≥ g(K′(5)
1,k )

≥ 2(0.5(k − 1) + (1 − 0.557)) − 1 + b
′′(5)
k (1 − 0.5k−1(1 − 0.557))

=

{
7.66612 (k = 3)

12.3322 (k = 4),

γ1W
∗
1 (K′(5)

1,k ) + γkW ∗
k (K′(5)

1,k ) ≤ (2(k − 1) − 1)γ1 + b
′′(5)
k γk =

{
3γ1 + 6.5γ3 = 7.3915 (k = 3)

5γ1 + 10γ4 = 11.86 (k = 4)

and FK′(5)
1,k

(xp) ≥ γ1W
∗
1 (K′(5)

1,k ) + γkW ∗
k (K′(5)

1,k ).

I. FJ (6)
1,3

(xp) = 2(p1 + p2 + p3) + a
(6)
3 (1 − p1p2p3).

Let g(J (6)
1,3 ) = 4p + 2p′ + a

(6)
3 (1 − p2p′), where p =

√
p2p3 and p′ = p1 if x1 ∈ R5 and x2, x3 ∈ P5

and p =
√

p1p2 and p′ = p3 if x1, x2 ∈ Q5 and x3 ∈ P5 . Then g(J (6)
1,3 ) takes a minimum value at

p = p′ = 0.5, since p′ ∈ [0.5, 0.75], p ∈ [0.5, 0.557] or p ∈ [0.5, 0.629], p′ ∈ [0.5, 0.557] by Lemma 8, and

we have

FJ (6)
1,3

(xp) ≥ g(J (6)
1,3 )

≥ 6(0.5) + a
(6)
k (1 − 0.53) = 8.25

≥ 7.746 ≥ γ1W
∗
1 (J (6)

1,3 ) + γkW ∗
k (J (6)

1,3 ).

J. FK(6)
1,k

(xp) = 2(p1 + · · · + pk−1 + 1 − pk) − 2 + b
′′(6)
k (1 − p1 · · · pk−1(1 − pk)) (k = 3, 4).

By the same argument as for FK(5)
1,k

(xp), we have

FK(6)
1,k

(xp) ≥
{

6.8875 (k = 3)

12.96875 (k = 4),
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γ1W
∗
1 (K(6)

1,k) + γkW ∗
k (K(6)

1,k) ≤
{

2γ1 + 6.8γ3 = 6.8788 (k = 3)

4γ1 + 12γ4 = 12.732 (k = 4)

and FK(6)
1,k

(xp) ≥ γ1W
∗
1 (K(6)

1,k) + γkW ∗
k (K(6)

1,k).

K. FK′(6)
1,k

(xp) = 2(p1 + · · · + pk−1 + 1 − pk) − 2 + b
′′(6)
k (1 − p1 · · · pk−1(1 − pk)) (k = 3, 4).

By an argument similar to one for FK′(5)
1,k

(xp), we have

FK′(6)
1,k

(xp) ≥ 2(0.5(k − 1) + (1 − 0.557)) − 2 + b
′′(6)
k (1 − 0.5k−1(1 − 0.557))

=

{
6.66612 (k = 3)

11.3322 (k = 4),

γ1W
∗
1 (K′(6)

1,k ) + γkW ∗
k (K′(6)

1,k ) ≤
{

2γ1 + 6.5γ3 = 6.6415 (k = 3)

4γ1 + 10γ4 = 11.11 (k = 4)

and FK′(6)
1,k

(xp) ≥ γ1W
∗
1 (K′(6)

1,k ) + γkW ∗
k (K′(6)

1,k ).

L. FD(6)
k

(xp).

Let C = y1∨y2∨· · ·∨yk ∈ D(6)
k and let p(yi) be the probability of literal yi being true obtained in Step

7. Then C(xp) = 1−∏k
i=1(1− p(yi)) ≥ 1− 0.75k = γk for k ≥ 7. Similarly, if k ≤ 6, then it is easily

shown that C(xp) = 1 − ∏k
i=1(1 − p(yi)) ≥ γk by Lemma 7. Thus, by Wk(D(6)) =

∑
C∈D(6)

k

w6(C)

≥ W ∗
k (D(6)) =

∑
C∈D(6)

k

w6(C)C(x∗), FD(6)
k

(xp) satisfies (52).

We have shown that each group L satisfies (52) for L �= K(i)
1,3 (i = 3, 4). Note that, such K(i)

1,3

exists only if J (i)
1,k exists. Furthermore, a unit flow on (x̄k, Ck) with C = x̄1 ∨ · · · ∨ x̄k ∈ A(3)

1,k

(k = 3, 4, 5) such that x1, . . . , x2k−3 ∈ R and x2k−3+1, ..., xk ∈ Q2 comes from a unit flow on (Cj , a)

with Cj = ȳ1 ∨ · · · ∨ ȳj−1 ∨ a ∈ B(3)
j (j = 3, 4) such that y1, ..., yj−1 ∈ R2 and a ∈ Q2 by the

construction of N3. Thus, at worst, two units of FK(3)
1,j

(xp) corresponds to one unit of FJ (3)
1,3

(xp), two

units of FK(3)
1,j

(xp) corresponds to one unit of FJ (3)
1,4

(xp) and one unit of FK(3)
1,j

(xp) corresponds to one

unit of FJ (3)
1,5

(xp). Thus, for j = 3,

2FK(3)
1,3

(xp) + FJ (3)
1,3

(xp) ≥ 2(6.9208) + 8.1363

≥ 2(7.037) + 7.746

≥ 2γ1W
∗
1 (K(3)

1,3) + 2γ3W
∗
3 (K(3)

1,3) + γ1W
∗
1 (J (3)

1,3 ) + γ3W
∗
3 (J (3)

1,3 ).

Similarly, 2FK(3)
1,3

(xp) + FJ (3)
1,4

(xp) ≥ 2γ1W
∗
1 (K(3)

1,3) + 2γ3W
∗
3 (K(3)

1,3) + γ1W
∗
1 (J (3)

1,4 ) + γ4W
∗
4 (J (3)

1,4 ) and

FK(3)
1,3

(xp)+FJ (3)
1,5

(xp) ≥ γ1W
∗
1 (K(3)

1,3)+γ3W
∗
3 (K(3)

1,3) +γ1W
∗
1 (J (3)

1,5 )+γ5W
∗
5 (J (3)

1,5 ). Thus, we have (52)

for K(3)
1,3 and J (3)

1,k . Similarly we have (52) for J (4)
1,3 and K(4)

1,3. By the argument above FC6(xp) of xp

satisfies (52) and, by Lemma 10, we have (7).

5 Concluding Remarks

We have presented a refinement of Yannakakis’ algorithm with a better bound than Goemans-

Williamson. It leads to a 0.770-approximation algorithm if it is combined with the algorithms in [3],
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[11]. In fact, for an instance (C, w), if we choose the better solution bewteen two solutions obtained by

our algorithm in this paper and the algorithm in [3], it has the value at least 0.770FC(x∗) (the expected

value of a solution obtained by using our algorithm with probability 0.8427 and the algorithm in [3]

with probability 0.1573 can be shown to be at least 0.770FC(x∗)). Since a refinement of Yannakakis’

algorithm in this paper is not optimized yet, we believe further refinements can be done and the

performance guarantee for MAX SAT can be improved. Furthemore, if the refinement of Yannakakis’

algorithm in this paper is combined with the techniques proposed in 0.931-approximation algorithm

for MAX 2SAT by Feige-Goemans [5], it will lead to a better approximation algorithm.
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