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abstract
MAX SAT (maximum satisfiability problem) is stated as follows: given a set of clauses with weights,
find a truth assignment that maximizes the sum of the weights of the satisfied clauses. In this paper, we
consider approximation algorithms for MAX SAT proposed by Yannakakis and Goemans-Williamson
and present an approximation algorithm which is an improvement of Yannakakis’ algorithm. Although
Yannakakis’ original algorithm has no better performance guarantee than Goemans-Williamson, our
improved algorithm has a better performance guarantee and leads to a 0.770-approximation algorithm.

1 Introduction

MAX SAT (maximum satisfiability problem) is stated as follows: given a set of clauses with weights,
find a truth assignment that maximizes the sum of the weights of the satisfied clauses. MAX SAT
is well known to be NP-hard and many researchers have proposed approximation algorithms for
MAX SAT. Johnson [9] proposed a 0.5-approximation algorithm for MAX SAT based on the prob-
abilistic method. Since then a lot of works had been done for MAX SAT and Yannakakis [12]
and Goemans-Williamson [7] finally proposed 0.75-approximation algorithms. On the other hand,
Goemans-Williamson proposed, based on semidefinite programming [6], a 0.878-approximation algo-
rithm for MAX 2SAT, the restricted version of MAX SAT where each clause has at most 2 literals,
and showed that their algorithm, if combined with Johnson’s algorithm and Goemans-Williamson’s
0.75-approximation algorithm, leads to a 0.7584-approximation algorithm for MAX SAT [8]. Asano-
Ono-Hirata also proposed a semidefinte programming approach to MAX SAT [3] and obtained a 0.765-
approximation algorithm by combining it with Yannakakis’ 0.75-approximation algorithm as well as
the algorithms of Johnson and Goemans-Williamson. More recently, Asano-Hori-Ono-Hirata [2] pre-
sented a refinement of Yannakakis’ algorithm based on network flows, and suggested that it might
lead to a 0.767-approximation algorithm.

In this paper, we present a further refinement of the 0.75-approximation algorithm of Yannakakis
for MAX SAT and show that it has a better bound and leads to a 0.770-approximation algorithm.!
To explain our result more precisely, we need some notations.

An instance of MAX SAT is defined by (C,w), where C is a set of boolean clauses such that each
clause C € C is a disjunction of literals with a positive weight w(C). We sometimes write an instance
C instead of (C,w) if the weight function w is clear from the context. Let X = {z1,...,zn} be the

* The preliminary version of this paper was presented in the Proceedings of the 5th Israel Symposium on
Theory of Computing and Systems, 1997, pp.24-37, as a paper: Approximation algorithms for MAX SAT:
Yannakakis vs. Goemans-Williamson.
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I Several progresses have been made since this paper was presented, and the current best one is a 0.7877-
approximation algorithm (see [1,4]), however, we believe the method proposed in this paper will be used as
a building block in making improvement of approximation algorithms for MAX SAT.
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set of variables in the weighted clauses of (C,w). For each z; € X, let z; = 1 (z; = 0, resp.) if x;
is true (false, resp.). Then, Z; = 1 — z; and a clause C; € C can be considered to be a function of

x = (z1,...,%n) as follows:

Ci=Cijm)=1- [[ A==z [] = (1)

miEX;r :c,GX]’

where X;' (X, resp.) denotes the set of variables appearing unnegated (negated, resp.) in Cj. Thus,
Cj = Cj(x) =0 or 1 for any truth assignment « € {0,1}", and Cj is satisfied if C;(x) = 1. The value

of a truth assignment @ is defined to be

Fe(@) = Y w(C,)C; (@) @
cjec
That is, the value of @ is the sum of the weights of the clauses in C satisfied by @. Thus, MAX SAT
is to find an optimal truth assignment, i.e., a truth assignment of maximum value.

Let A be an algorithm for MAX SAT and let Fe(a“(C)) be the value of a truth assignment = (C)
produced by A for an instance C. If F¢(x“(C)) is at least o times the value Fe(2*(C)) of an optimal
truth assignment & (C) for any instance C, then A is called an approximation algorithm with perfor-
mance guarantee . A polynomial time approximation algorithm A with performance guarantee « is
called an a-approxzimation algorithm.

The 0.75-approximation algorithm of Yannakakis is based on the probabilistic method. Let P be
a random truth assignment with 0 < z¥ = p; < 1, that is, P is obtained by setting independently
each variable x; € X to be true with probability p;. Then the probability of a clause C; € C satisfied
by the assignment @®” is

Cia’) =1- [[ @-p) ] » (3)
zeX; z,€X

Thus, the expected value of the random truth assignment x? is

Fe(af) = ) w(Cy)Ci(="). (4)
cjec
The probabilistic method assures that there is a truth assignment 9 € {0, 1}" of value at least F¢(x?).
Such a truth assignment x? can be obtained by the method of conditional probability [7], [12]. The
0.75-approximation algorithm of Yannakakis [12] finds, for a given instance (C,w), a random truth
assignment &P of value Fe(x?) at least

0.75W7 + 0.75W5 + 0.75W3 + 0.765W5 + 0.762W5 + 0.822W5 + > (1= (0.75))Wi  (5)
E>7

where

Wi =Y w(C)C(=")

CeCy
for an optimal truth assignment &* of Cy, the set of clauses in C with k literals, and thus,
Fe(z™) =Y _ Wi,
k>1

On the other hand, the 0.75-approximation algorithm of Goemans-Williamson [7] finds a random
truth assignment of value at least

0.75W7 + 0.75W5 + 0.789W3 + 0.810W5 + 0.820W3 + 0.824W5 + > B Wi (6)
E>7
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where X
1 1

Note that 8 < 1 — (0.75)* for k > 7. Thus, for two algorithms of Yannakakis and Goemans-
Williamson, we cannot say that one is better than the other. In fact, for MAX 3SAT, Goemans-
Williamson’s algorithm is better than Yannakakis’ one and used to obtain a better performance
guarantee [11], while both are used for MAX SAT in [3] to obtain a performace guarantee 0.765.

In this paper, we will give an algorithm, an improvement of Yannakakis’ algorithm, for finding a
random truth assignment & = (p1, p2, ..., pn) with value F¢ (@) at least

0.75W7 + 0.75W5 + 0.791W3 + 0.811W5 + 0.823W3 + 0.850Wg + > (1 — (0.75)" )W, (7)
E>7

Note that this bound is better than the bounds of Goemans-Williamson and Yannakakis. Our algo-
rithm also leads to a 0.770-approximation algorithm if it is combined with the algorithms in [3], [11].

2 Outline of an Improvement

The 0.75-approximation algorithm of Yannakakis divides the variables X = {x1,...,2,} of a given
instance (C,w) into three groups P, P’ and P" based on maximum network flows (some variables
will be negated appropriately). Then it sets independently each variable z; € X to be true with
probability p; such that p; = 3/4 if x; € P, p; =5/9 if z; € P’ and p; = 1/2 if x; € P, The expected
value F¢(«?) of this random truth assignment &” = (p1,p2, ..., pn) is at least the bound in (5).

To divide the variables X of a given instance (C,w) into three groups P, P’ and P”, Yannakakis
transformed (C,w) into an equivalent instance (C’, w’) of the weighted clauses with some nice property
by using network flows. Note that two sets (C,w), (C’,w’) of weighted clauses over the same set of
variables are called equivalent if, for every truth assignment, (C,w) and (C’,w’) have the same value.
Based on [2], we call (C,w),(C’,w’) are strongly equivalent, if, for every random truth assignment,
(C,w) and (C’',w’) have the same expected value. Clearly, if (C,w),(C’,w’) are strongly equivalent
then they are also equivalent since a truth assignment is always a random truth assignment (the
converse is not true). Our notion of equivalence will be required when we try to obtain an improved
bound 0.770. The following lemma [2] plays a central role throughout this paper.

Lemma 1 Let all clauses below have the same weight. Then A = {Z; V ziy1]i = 1,..,k} and
A" = {x; V Zig1]i = 1,...,k} are strongly equivalent (we consider k + 1 = 1) . Furthermore, B =
{1} U{Zi Vaigali=1,....0} and B = {z; V Ziy1|i = 1,...,0} U{xp41} are strongly equivalent.

Proof. We can assume weights are all equal to 1. For a random truth assignment @ with z¥ = p;,
let Fp(x?) = ) ~cp C(x”) be the expected value of &” for D (D = A, A’ B,B’). Then, we have

k k k
Fa(@®) =) (1=pi(l=pit1)) =k =Y _pi+ Y pivit1,
=1 =1 =1
k k k
Fa(@) =) (1—piri(l—pi)) =k —> pi+ > pipir1 by k+1=1,

=1 =1 1=1

14 4 J4
Fg(@®) =p1+Y (1—pi(l—pit1)) =£— Y pi+ Y pivit1,

1=1 1=2 =1
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£ 4 4
Fp(@) =pey1+ Y (1—pip1(1=p:) =L— > pi+ Y pipitt.
=1 =2 i=1

Thus, Fa(x?) = Fa (x?) and Fg(a?) = Fr () for any random truth assignment «” and we have
the lemma. Q.E.D.

In this section, we present a brief outline of an improvement of the 0.75-approximation algorithm
of Yannakakis for MAX SAT. Our algorithm consists of 8 steps (Steps 0 — 7 below) based on network
flows and divides the variables X into four groups. (Yannakakis’ algorithm consists of only 4 steps
and all steps below except Step 0 are different from those in Yannakakis’ one. We believe Yannakakis’
algorithm is simple from the network theoretical point of view, although most people think it is very
complicated. For those people, our algorithm below might be much more complicated.)

In each step except for Step 7, we output a set of weighted clauses which is strongly equivalent to a
set of weighted clauses given as an input of that step. The output of Step 7 (i = 1,2, ...,6) consists of
groups of weighted clauses and all but one group are set aside (we call such a group being split off).
The remaining group becomes an input of Step ¢ + 1. After Step 6, we obtain a partition of X into
Re, Qs, Ps, Zs and in Step 7, we obtain a random truth assignment & = (p1,p2,...,pn) by setting
each variable x; to be true with probability p; such that p; = 0.75 if x; € Re, p; = 0.629 if x; € Qs,
pi = 0.557 if x; € Ps and p; = 0.5 if x; € Zg. Then, all groups of weighted clauses split off in Steps
1 — 6 and the remaining group (D(6) ,we) of weighted clauses after Step 6 have the expected values at
least the bound in (7). Since the set of all split groups together with (D®) ws) is strongly equivalent
to a given instance (C,w) in Step 0, we have thus obtain the bound in (7). More specifically, (D(6) , W6)
has the following property.

Property 7.

(a) z € Rg for each C =z € D).

(b) For eachC::E\/yeD(G), yE€ Reif x € R, y € Qs URg if z € Q¢ and y € Ps U Qg U Rg if
x € Ps.

(¢c) For k = 3,4,5,6, there is no clause in D) with k literals such that ki (k1 > 2k — 6) literals are
contained in Rg and all the remaining literals are in C_)g.

(d) For a clause in D® with & literals (k = 3,4) of foom C' = &1 V --- V Zx_1 V a such that
Ti,...,Tx—2 € Re, a € Rg U Q@ if x,_1 € Rg and a € Rg U QG UPs if xp,_1 € QG.

(e) For a clause in DO of form C = 71 V &2 V T3, x3 € Re UQes U Ps if 1,22 € Qg and x3 & Rg if
z1,22 € Ps.

It is easily observed that if (D(G), we) satisfies property 7 then the random truth assignment x? =
(p1,p2,...,pn) in Step 7 has the expected value at least the bound in (7). All the split groups also
have some nice properties assuring the bound in (7).

3 Improving Yannakakis’ Algorithm

Now we will go into details. Let C1,2 = C1 UC2 (the set of clauses in C with one or two literals). As
Yannakakis did, we first construct a network N(C) which represents the weighted clauses in (C1,2,w)
as follows. The set of nodes of N(C) consists of the set of literals in C and two new nodes s and ¢
which represent true (7') and false (F') respectively. The (directed) arcs of N(C) are corresponding
to the clauses in Ci,2. Each clause C = z V y € Ca2 corresponds to two arcs (Z,y) and (g, z) with
capacity cap(Z,y) = cap(y,z) = w(C)/2 (x = z). Similarly, each clause C = x € C1 corresponds to
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two arcs (s,z) and (Z,t) with capacity cap(s,z) = cap(Z,t) = w(C)/2. Thus, we can regard a clause
C =z € C; as ¢ V F when considering a network as above. Note that N(C) is a naturally defined
network since x Vy =% -y =9 — x.

Two arcs (Z,y) and (g, z) are called symmetric arcs. If each symmetric two arcs in a network are of
the same capacity, then the network is called symmetric. By the above correspondence of a clause and
two symmetric arcs, a symmetric network N exactly corresponds to a set C(N) of weighted clauses
with one or two literals. In the case of N = N(C) defined above, we have C(N(C)) = (C1,2,w). Thus,
we can always construct the set C(N) of weighted clauses with one or two literals from a symmetric
network N and we sometimes use the term “the set of weighted clauses of a symmetric network” below.
Then we consider a symmetric flow fo of maximum value v(fo) in No = N(C) from source node s to
sink node ¢ (flow f is called symmetric if f(Z,y) = f(g,z) for each symmetric arcs (Z,y), (§,x)). Let
Lo be the network obtained from the residual network No(fo) of No with respect to fo by deleting all
arcs into s and all arcs from ¢. Then Lo is clearly symmetric since Ny is a symmetric network and fo
is a symmetric flow.

Let (C] 2, w") be the set of weighted clauses of the symmetric network Lo ((C] 2, w") = C(Lo)) and
let (C’,w") be the set of weighted clauses obtained from (C,w) by replacing (C1,2,w) with (Cj 2, w").
Then, for each truth assignment @,

Fe(x) = Fer(z) +v(fo). (8)

Note that (8) holds even if @ is a random truth assignment. This can be obtained by Lemma 1 using
an observation similar to the one in [12]. Note also that, for A, A’, B, in Lemma 1, A corresponds
to a cycle and A’ corresponds to the reverse cycle. Similarly, B corresponds to a path from 1 to zeq1
(plus (s,71)) and B’ corresponds to the reverse path from 441 to 1 (plus (s, z¢+1)).

Since fop is a maximum flow, there is no path from s to ¢t in Lg. Let R be the set of nodes that are
reachable from s in Lo and let Y = {jj|ly € Y} for Y C X. Then, there is no arc from a node in R to a
node not in R and the set of nodes that can reach ¢ is R (in a symmetric network, 1,2, ..., Tx_1, Tk is
a path if and only if Z, Zr—1, ..., T2, Z1 is a path) and R does not contain any complementary literals,
since Lg is a symmetric network and fo is a maximum flow (z,Z € R implies that there is a path from
s to t since Lo is symmetric and there are paths from s to « (by z € R) and z to t (by & € R), which
contradicts the maximality of fo). This implies that every clause of form Z V y with z € R satisfies
y € R. Thus, we can set all literals of R to be true consistently and, for each truth assignment @ in
which all literals of R are true, every clause in CLQ that contains a literal in R U R is satisfied. From
now on we assume that all literals in R are unnegated (R C X and thus all literals in R are negated).

By the argument above we can summarize Step 0 of our algorithm as follows.

Step 0. Find R and (C’,w’) from (C, w) using the network No, a symmetric flow fo of No of maximum
value and the network Lg defined above.

Note that, by (8), if we have an a-approximation algorithm for (C’,w’), then it will also be an a-
approximation algorithm for (C,w). Thus, for simplicity, we can assume from now on (C’,w’) = (C, w)
(and thus, fo =0 and Lo = No) and have the following assumption.

Assumption. C and No = N(C) satisfy the following:
(a) RC X and z € R for each C = z € C (there are arcs (s, ), (Z,t)).
(b) y € R for each C =z Vy € C with x € R (there is no arc going outside from a node in R).
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Let ~yy be the coeffient of W} in (7), i.e.,

0.75 (k=1,2)
0.791 (k = 3)
0.811 (k= 4)
= 9
T 0.823 (k =5) ©)
0.850 (k = 6)
1-075% (k>7).

To obtain a 0.75-approximation algorithm, Yannakakis tried to set each variable in R to be true with
probability 0.75 and each variable in Zg = X — R to be true with probability 0.5. Then the probability
of a clause in C1,2 being satisfied is at least y1 = 2 = 0.75. Similarly, the probability of a clause in
C with five or more literals being satisfied is at least 0.75. Clauses satisfied with probability less than
0.75 have 3 or 4 literals and are of form zVyVZz with z,y, 2 € R or of form ZVyVzVa with x,y,z,u € R
or of form ZV §V a with 2,y € R and a € Zo U Zp. Similarly, clauses of form C =Z1 VZa V ---V Ty,
with x1,22,...,2x € R (k = 5,6) are satisfied with probability less than v;. To delete such clauses,
let A,S) be the set of clauses C of form C = %1 VT2 V -+ V T, with z1,22,...,2r € R (k= 3,4,5,6),
ie.,

AV —{C=zv---VE €Clz1,..., 25 € R} (10)

To split off clauses in ,Aél) U,Ail) U.Aél) u Aél), we consider the network N1 obtained from My = Ny
as follows. Let M/ be the network obtained from M by deleting all arcs from R to R, all arcs from
R to Zo U Zp and all arcs from Zo U Zo to R. Let (C,,w) = C(My') (the set of weighted clauses
of the symmetric network M; ). N1 is the network obtained from M as follows. For each clause
C=Z1VZ2V---VIy € A,(gl) with x1,22,...,2x € R (k= 3,4,5,6), we consider two new nodes C,C
and let E4(C) be the set of arcs from x; (i = 1,2,...,k) to C and from C to ¢t and their symmetric
arcs. Thus, E4(C) contains 2k + 2 arcs and

EA(C) = {(57 é)v (Cv t)} U Uf:l{(xi; C)ﬂ (é7jl)} (11)

We add C,C and E4(C) for all C =21 VZ2 V-V 3 € AV with 21,20,..., 21 € R (k= 3,4,5,6).
We set the arcs (s, C), (C,t) to have capacity w(C) and all remaining arcs of forms (z;,C) and (C, z;)
to have capacity w(C)/afcl) with

6 (k=3)
a _ 10 (k=4)

7Y 14 (k=5 (12)
22 (k=6).

N1 is the network obtained from M in this way. Then, we find a symmetric flow f1 of maximum

value from s to t in N7 such that
fi(z1,0) = fi(z2,C) = -+ = fi(wg, C)

for each clause C = T3 VT2 V- - VI € .A,(Cl) (k = 3,4,5,6). Such a flow fi1 can be obtained in a
polynomial time by [10]. Let Li be the network obtained from the residual network Ni(f1) of N1
with respect to fi by deleting all arcs into s, all arcs from ¢ and all nodes C,C (and incident arcs)
with ¢ € AP U AP uAM UAD.

Now we can split off clauses in Agl) U Afll) U Aél) U Aél). Foreach C =21 VZ2V - VI € .AS)
(k=3,4,5,6), let f1(C) = fi(xz1,C) and let

TENC) = {z1, 22,21, C} (13)
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with weights w1 (z1) = wi(22) = - -+ = wi(zx) = 2f1(C) and w1 (C) = a\") f1(C) > 2k f1(C). Let
T = UoeanTR(©€), TV =i} (14)

Let (D'l(é),wl) = C(L1) (i-e., (D’l(é),wl) is the set of weighted clauses with 1 or 2 literals of the
symmetric network L;) and let (D), w1) be the set of clauses with weight function w; obtained from
(C,w) by replacing (Cy 5, w) with (D;E12>7 w1) and by replacing the weight w(C') of each clause C' € Ag)
(k = 3,4,5,6) with

w1 (C) = w(C) - af” f1(C)

(note that w1 (C) > 0 since f1(C) < w(C)/aS) and we assume clauses with weight 0 are not included
in D). Then (C,w) and (C* = DM UJTM  w;) are shown to be strongly equivalent based on Lemma
1 (note that a clause C' € C with k = 3,4,5,6 may be split off and appear in two groups of C*, for
example, in D) and ‘_’71(’13), but the total weight of C is not changed). Let Ri be the set of nodes
reachable from s in L (thus, y € R; for each y € DWW and for each 7 Vy € DV with z € Ry).
Clearly, R C R (R1 C R). Furthermore, there are no clauses in D) with k (k = 3,4, 5, 6) literals all
contained in R; by the maximality of fi.
By the argument above, we can summarize Step 1 of our algorithm and have a lemma as follows.

Step 1. Find Ry and (DY UJW w;) using the network N1, a symmetric flow f1 of Ni of maximum
value and the network L; defined above.

Lemma 2 (C,w) and (D(l) U j(l),wl) are strongly equivalent and the following statements hold.
(a) z € Ry for each C =z € DV,
(b) y € Ry for each C =ZVy¢€ DY) with z € R;.
(¢) There is no clause in DY) with 3,4,5 or 6 literals all contained in Ry.
(d) R1 C R.

Next we will split off clauses Cj, € D™ of k (k = 3,4) literals such that Cy = Z1 V---V Zx_1 Va
with @1,...,75_1 € R1 and a € Z1UZ1 (Z1 = X — R1). Let B,(f) be the set of such clauses C}, in D(l),

i.e.,
B,(f):{c:ff1\/'~-\/:fk,1 VaED(1)| T1,...,Tp—1 € R, CLEZ1U21} (15)

Let M; be the network obtained from the network M; = N (D(l)) representing the set of weighted
clauses in D) with one or two literals by deleting all arcs from X U Z; to Ry and all arcs from R; to
ZiU Zy. Let (Df%*,wl) = C(M; ). Let N2 be the network obtained from M; as follows. For each
clause C=Z1V---VZr_1Vaé€ Bl(f) with z1,...,25_1 € R1 and a € Z1 U Z1, we add two nodes C, C
and 2k + 2 arcs

EB(C) = {(Ca t)v (57 é)v (da 0)7 (Cﬂ a)} U Ui?;ll (xia C)ﬂ (Cﬂ jl)} (16)

Two arcs (s,C),(C,t) have capacity wi(C) and all the remaining arcs have capacity w1(C)/b,(f) with

bk _{10(k:®. (a7

N> is the network obtained from M; in this way. Then, we find a symmetric flow f2 of maximum
value from s to ¢ in N2 such that fa(z1,C) = -+ = fo(zg—1,C) = f2(C,a) for each clause C =
Z1V---VZTp_1Vac B,(f). Let Lz be the network obtained from the residual network Na(f2) with
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respect to f2 by deleting all arcs into s, all arcs from ¢ and all nodes C,C (and incident arcs) with
ceBPuB?.

Now we can split off clauses C' € B§2) U 3512). For each clause C =Z1 V---VIr_1VaéeE B,(CQ) with
21, ...,Tx_1 € R1 and a € Z1 U Z1, using f2(C) = fa(z1,C), let

KEUC) = {@1, oy 21,8, C, 20, 70} (18)

with weights wa(z1) = -+ = wa(zp—1) = wa2(a) = 2f2(C), w2(x0) = w2(To) = —f2(C) and w2(C) =
b,(f) f2(C) (zo is any variable in X and the negative weights are accepted in this case). Let

K2 = Vo KIL(C), - K = K UK (19)

Let (Dll(;), ws2) = C(L2) (the set of weighted clauses of the symmetric network Lo) and let (D) w»)
be the set of weighted clauses obtained from (D(l),un) by replacing (Dsg_,wl) with (’D/l(;), wa) and
by replacing the weight w1 (C) of each clause C' € B,?) (k = 3,4) with

wa(C) = w1 (C) — b2 fo(C) > 0

(we assume clauses with weight 0 are not included in D(z)). Then, by the same argument as before,
(DM w1) and (D@ U K@), wy) are shown to be strongly equivalent based on Lemma 1. Let Rz be
the set of nodes reachable from s in Lo. Clearly, Ro C R1 (R2 C R1).

Anodea € Z1UZ; U(R1— R2) is called an entrance if there is a clause C = Z1V---VZ_1Va € D3
with 21,...,25_1 € R2 (w2(C) > 0 and k = 3,4). Let Q2 be the set of nodes in Z1 U Z1 U (R1 — Ra) U
(R1 — Rs) that are reachable from an entrance by a path in My = N(D®). Note that M is also
obtained from Lz by adding all the arcs in M1 — M, and that there is no arc from a node in R1 — R2
to a node in (X — R1) UX. Thus, Q2 C Z1 UZ; U (R1 — R2) and Q2 contains no complementary
literals by the symmetry and maximality of f2, and we can assume all literals in ()2 are unnegated.
Note that some variable in R — R; will be in Q2 and we have to correct the previous assumption that
R C X. However, it suffices to assume that R1 C X (not R C X) in the argument below.

By the argument above we can summarize Step 2 of our algorithm and have a lemma as follows.

Step 2. Find Rz, Q2 and (D(Q) UIC(Q),’LUQ) from (D(l),wl) using the network M; , N2, a symmetric
flow fo of N2 of maximum value and the network L2 defined above.

Lemma 3 (D™, w1) and (D@ UKP  wy) are strongly equivalent. Furthermore, the following state-
ments hold.

(a) z € Ry for each C =z € D@,

(b) For eachC =zVyeD?, ye Ry ifzr € Ry andy € RoUQ2 if x € Q.

(¢) There is no clause in D) with 3,4,5 or 6 literals all contained in Ra.

(d) a € Q2U Ry for each C € D@ with C =zV §Va and z,y € Ry or with C =ZV§V zVa and
z,Y,2 € Ra.

(e) R2o C Ry and Q2 C X — Rs.

Now we would like to set each variable in Rz to be true with probability 0.75, each variable in Q2
to be true with probability 0.629 and each variable in Z2 = X — (Q2 U R2) to be true with probability
0.5. Then, each clause C; in D3 of 7 literals except for a clause C' of form C = Z1 V --- V &), with
k=3,4,5,2; € RoUQ2 (i =1,2,...,k—1) and z € Q2 is satisfied with probability at least -y; defined
in (9), the coefficient of W} in (7).
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Thus, we will try to split off such clauses. Let .A;:’) (k = 3,4) be the set of clauses C € D of form
C =21V VT with 1,52 € R2 and xp_1,xr € Q2. Similarly, let .Aé?’) be the set of clauses
C € D@ of form C = Z1 VT2 VE3V T4V T5 with 21, 22, 23, 74 € Ro and 25 € Q2. Thus, for k = 3,4, 5,

Agf) ={C=Z1V---VI € p® | £1,...,%or-3 € R2, Tor-341,...,T € Q2}. (20)

Let Bl(;’) (k = 3,4) be the set of clauses C' € PP of form C =z, V- - “VZr_1Vawithzi,...,zx_1 € R2
and a € @2, i.e.,

31(63) ={C=Z1V- - VITp_1 VaeD? | z1,...,2k—1 € R2,a € Q2}. (21)

Let M, be the network obtained from Ma = N(D®) by deleting all arcs from X UQ2 U Z2 to Ro,
all arcs from X U Z3 to Q2 and their symmetric arcs. Let (Df%_,wg) = C(M5 ) and let N3 be the
network obtained from M, as follows. For each clause C' € B,(:’) of form C =21 V- --VIr_1Vawith
T1,...,Tk—1 € Ro and a € Q2, we add two nodes C,C and (2k + 2) arcs Eg(C) defined in (16) (i.e.,
Ep(C) = {(C,1),(s,C),(@,C),(C,a)} UUFH(x4,0),(C,7:)}). Two arcs (s,C), (C,t) have capacity
wz(C) and all the remaining arcs have capacity ws (C)/b,(f) with

3) _ 7 (k= 3)
b= { 12 (k=4). #2)

For each clause C = Z1 VT2V ---V T} € .A,(cg) (k = 3,4,5), we add two nodes C,C and 2k + 2 arcs
EA(C) defined in (11) (i.e., EA(C) = {(C,t),(s,C)} UUF_{(zs,C),(C,Z;)}). Two arcs (s,C),(C,1)
have capacity w2(C') and all the remaining arcs have capacity w2(C)/ ag’) with

6 (k=3)
a®={ 10 (k=4 (23)
12 (k=5).

Then, we find a symmetric flow f3 of maximum value from s to ¢ in N3 such that f3(z1,C) ==
f3(xr—1,C) = f3(C,a) for each clause C =Z1 V---VZr_1Va€ B,(CS) (k=3,4) and f3(21,C) =--- =
fa(xk, C) for each clause C =Z1 VT2 V-V Ty € AECS) (k=3,4,5). Let Lz be the network obtained
from the residual network N3(f3) with respect to f3 by deleting all arcs into s, all arcs from ¢ and all
nodes C, C' (and incident arcs) with C' € B§3> U Bf’) U A:(;’) U Af’) U Aég).

Now we can split off clauses C' € B§3) UBf)UA?)UAf’) UAéS). ForeachC =Zz1V---VTrp_1Va € B,(f)
with x1,...,xx—1 € R2 and a € Q2, let

’Cg?l)c(c) = {xla“'axk—laa7c7x07-f0} (24)
with weights ws(z1) = -+ = ws(wk—1) = ws(a) = 2f3(C), wz(zo) = w3(Zo) = —2f3(C) and w3(C) =
bl(c3)f3(c) using f3(C) = fs(z1,C) (zo is any variable in X). Let

K U KEL0), K9 = KUK 5

For each clause C € A,(f’) of form C =z V-V Ty, let

TENO) = {ar, o2, O} (26)
with weights ws(z1) = -+ = w3(zx) = 2f3(C) and w3 (C) = a,(cg)fg(C’) using f3(C) = f3(x1,C). Let
) = Uoeaw ZiR(©),  T9 =R} (27)
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Let (D'l(g), w3) = C(L3) (the set of weighted clauses of the symmetric network L3) and let (D), w3)
be the set of weighted clauses obtained from (D ws) by replacing (ng*,wg) with (D’l(g), ws) and
by replacing the weight w2(C) of each clause C € BéB) uBP U Ag3) uAP U Aé‘” with

ws(C) = { W20 —a [(C) (C e AY)
T w0 -0 () (CeBY)

(w3(C) > 0 and we assume clauses with weight 0 are not included in D®)). Then, by the same
argument as before, (D(Q) , w2) and (D(s) ug®uK®, ws) are shown to be strongly equivalent. Let R3
be the set of nodes reachable from s in Lz. Clearly, Rs C R2 (R3 C R2). A node a € Q2U(R2— R3) is
called an entrance if thereis a clause C = Z1V---VTr_1Va € DB (k = 3,4) such that z1,...,xx—1 € R3
(ws(C) > 0). Let Q3 be the set of nodes in Q2 U (R2 — R3) that are reachable from an entrance by
a path in M3 = N(D®)) (M3 is also obtained from L3 by adding all arcs in Ma — M, ). Then, by
the symmetry and maximality of f3, Q3 contains no complementary literals and all literals in Q)3 are
unnegated.
By the argument above we can summarize Step 3 of our algorithm and have a lemma as follows.

Step 3. Find R3, Q3 and (D® U J® UK® ws3) from (D, ws) using the network My, N3, a
symmetric flow f3 of N3 of maximum value and the network L3 defined above.

Lemma 4 (D(2), wa) and (D(S)UJ(B) UIC(?’>7 w3) are strongly equivalent and the following statements
hold.

(a) z € R3 for each C =z € D®),

(b) For eachC=zVyeD®, yeRsifv € Rs andy € Qs UR3 if x € Q3.

(c) There is no clause in D) with 3, 4, 5 or 6 literals all contained in Rs.

(d) @ € Q3 U R3 for each clause of form C = Z1 V-V ZTr_1 Va € D) with z1,...,x6_1 € Rs
(k=3,4).

(e) There is no clause C € DB of form C = T1V- - VT with 1, ..., Tor-s € Rs, Tok-311,...,Tk € Q3
for k=3,4,5.

(f) R3 C Ry and Q3 C Q2U Ry — Rs.

Step 4 below is almost similar to Step 3 above. Let

,A:(;L) ={Z1VI2VZI3€E DB | 21, 22,23 € Q3}, (28)
B ={z v Vi 1vaecD? a1, 21 € Rs, a€Qs) (29)

for k = 3,4. Let M3 be the network obtained from M3 = N(D(3>) by deleting all arcs from X UQ3UZ3
to Rs, all arcs from X U Z3 to Qs and their symmetric arcs. Let (ng_,wg) = C(My ) and let
N4 be the network obtained from Mj; as follows. For each clause C € B,(f) (k = 3,4) of form
C=2Z1V-VZr_1Va, we add two nodes C,C and (2k + 2) arcs Eg(C) defined in (16). Two arcs
(s,C), (C,t) have capacity w3(C) and all the remaining arcs have capacity w3(C)/b,(€4) with

4 7 (k= 3)
b = { 12 (k=4). (30)

For each clause C = Z1 V T2 V T3 € A§4), we add two nodes C,C and 8 arcs E4(C) defined in (11).
Two arcs (s, C),(C,t) have capacity w3(C) and all the remaining arcs have capacity w3(C)/a§4) with

a$? =6. (31)
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Then, we find a symmetric flow fs of maximum value such that f4(z1,C) = -+ = fa(zk-1,C) =
f4(C, a) for each clause C =z V---VZr_1Va € B,(:l) (k= 3,4) and f4(z1,C) = fa(z2,C) = fa(x3,C)
for each clause C =1 VT2 VI3 € .Agl). Let L4 be the network obtained from the residual network
Ny (fa) with respect to f4 by deleting all arcs into s, all arcs from ¢ and all nodes C,C (and incident
arcs) with C' € B§4) U 34(14) U .Az(f).

Now we can split off clauses C € B§4) U B£4) U Ag4). Foreach C=Z1V---VZr_1Vaée B,i‘l), let

(4)(0) ={z1,....,2k-1,a,C,x0,To} (32)

with weights wa(x1) = -+ = wa(xp—1) = wa(a) = 2f4(C), wa(zo) = wa(To) = —2f4(C) and w4(C) =
b,(c4)f4( C') using fa C’) = (a:l7 C) (xo is any variable in X). Let

4 4 4 4
K = Upego KO KO = K8 (Y, &9
For each clause C € A§4) of form C = %1 V T2 V T3, let
J{5(C) = {w1, 22,23,C) (34)

with weights w4 (z1) = wa(z2) = wa(x3) = 2f4(C) and wa(C) = ay )f4(C) using f4(C) = fa(z1,C).
Let
TW = I =Uge 40 I3 (0). (35)

Let (D'l(é) ,wa) = C(L4) (the set of weighted clauses of the symmetric network L4) and let (D(4) wa)
be the set of weighted clauses obtained from (D) w3) by replacing (Dg % ,ws) with (Dl B ,w4) and
by replacing the weight ws(C) of each clause C' € 8(4) U 3(4) U A(4) with

w3(C) — a$V f2(0)  (C e ALY
(€)= (1) @ 4 _
w3(C) — by f1(C)  (C € B, k=3,4)

(w4(C) > 0 and clauses with weight 0 are not included in D). Then, by the same argument as
before, (D™, w3) and (DWW U T UK®  wy) are shown to be strongly equivalent. Let Ry be the set
of nodes reachable from s in L4. Clearly, R4 C R3 (R4 C R3). A node a € Q3U (R3 — Ry) is called an
entrance again if there is a clause C = Z1 V-V Zp_1 Va € D@ (k = 3,4) such that z1,...,2x_1 € R4
(wa(C) > 0). Let Q4 be the set of nodes in Q3 U (R3 — R4) that are reachable from an entrance by
a path in My = N(DW) (My is also obtained from Ly by adding all arcs in M3 — M3 ). Then, by
the symmetry and maximality of fs4, Q4 contains no complementary literals and all literals in Q4 are
unnegated.

By the argument above we can summarize Step 4 of our algorithm and have a lemma as follows.

Step 4. Find R4, Q4 and (D(4) uJg®u K(4),w4) from (D(3),w3) using the network M; , Ny, a
symmetric flow f4 of N4 of maximum value and the network L4 defined above.

Lemma 5 (D(3), ws) and (D(4)UJ(4) uK®, wa) are strongly equivalent and the following statements
hold.

(a) z € Ry for each C =z € DY,

(b) For eachC=zVyeDY, ye Ry ifr € Ry andy € Qs URy if x € Qa.

(¢) There is no clause in DW with 8, 4, 5 or 6 literals all contained in Ry.

(d) @ € Q4 U R4 for each clause of form C = Z1 V-V ZTp_1 Va € DY with z1,...,x5_1 € Ry
(k=3,4).
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(e) There is no clause C € DW of form C = &1V -+ V Ty, with x1, 32,23 € Q4 for k = 3 or with
ZT1,...,Tok-3 € Ry, Tok—341,.., Tk € Q4 for k=3,4,5.
(f) R4+ C R3 and Q4 C Q3 U R3 — R4.

Now we would like to set each variable in R4 to be true with probability 0.75, each variable in Q4
to be true with probability 0.629 and each variable in Z4 = X — (Q4U R4) to be true with probability
0.5. Then, each clause in D@ except for a clause C of form C =21 V-V Tr_1 Va (k= 3,4) with
21,Tp—2 € Ra, 71 € Qaand a € Z4U Zy (Zs = X — (RaUQa)) is satisfied with probability at least
v, in (9).

We will split off such clauses. For k = 3,4, let

B ={z1v- v 1Vae DY |z1,... 251 € R, a € Qu} (36)
B;f(s) = {il\/---\/fk_l \/aED(4) |x1,...,$k_2 € Ry, xp—1 € Q4,0 € Z4UZ4} (37)

Let M, be the network obtained from My = N(D(4)) by deleting all arcs from X U Q4 U Z4 to Ry,
all arcs from X U Z4 to Q4 and their symmetric arcs. Let (D%g_,wg) = C(M, ) and let N5 be the
network obtained from M, as follows.

For each clause C € B,is) UB;(S) of form C = #1 V-V Z,_1Va, we add two nodes C, C' and (2k +2)
arcs Ep(C) defined by (16). Two arcs (s,C), (C,t) have capacity w4(C) and all the remaining arcs
have capacity w4(C’)/bZ(5) with

(CeB, k=23)

11(5) 12 (Ce BI(CS), k=4)

by = 15 4 (38)
65 (CeB®, k=3)

(

10 (CeB®, k=4)

Then, we find a symmetric flow f5 of maximum value from s to ¢ in N5 such that f5(x1,C) =--- =
f5(xzk—1,C) = f5(C,a) for each clause C = %1 V---V Tr_1Va € B,(f) U B;ﬂ(s). Let Ls be the network
obtained from the residual network Ns(f5) with respect to f5 by deleting all arcs into s, all arcs from
t and all nodes C,C (and incident arcs) with C' € Bés) U Bff’) U Bé(s) U Bi(s).

Now we can split off clauses C' € Bés)UBf)UBé(S)UBQ@. ForeachC =Z1V---VZr_1Va € B,(CS)UB;C(S)
(k=3,4), let

K{(C) = {21, ... x1-1,a,C, z0, To} (39)

with weights
ws(x1) = -+ = ws(xx) = ws(a) = 2f5(C),

5
winr=={ 24 €
ws(C) = b ® fa(C) (e BP uB®)
using f5(C) = f5(z1,C) (zo is any variable in X). Let
K2 = Ucw;p’clf,(;f ‘©), K®=xPuk), (40)
KLY = U K1), £ = K5 uKyy. (41)

Let (D/l(g)7 ws) = C(Ls) and let (D) ws) be the set of weighted clauses obtained from (D™, w,) by
replacing (DY}Q)_ , wq) with (D/l(g), ws) and by replacing the weight w4 (C') of each clause C € BS)UB;(E’)
(k = 3,4) with

ws(C) =wa(C) ~ 7 f5(0)  (Ce B UB®)
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(ws(C) > 0 and we assume clauses with weight 0 are not included in D). Then, by the same
argument as before, (D(4), w) and (D(5) uUK® uK®), ws) are strongly equivalent. Let Rs be the set
of nodes reachable from s in Ls. Clearly, Rs C R4 (R5 - R4). A node a € Q4 U (R4 — Rs) is called
an entrancel if there is a clause C = Z; V --- V Zx_1 Va € DO (k = 3,4) with z1,...,zx,_1 € Rs
(ws(C) > 0). Let @5 be the set of nodes in Q4 U (R4 — R5) that are reachable from an entrancel
by a path in M5z = N(D®)). Similarly, a node a € ((RaUQa) — (Rs UQ5)) U Z4 U Zy4 is called an
entrance2 if there is a clause C = 21V ---VZ,_1 Va € DO (k=3,4) with z1,2,_2 € Rs, -1 € Q5
(ws(C) > 0). Let Ps be the set of nodes in ((R4UQ4) — (Rs UQ5)) U Z4 U Z4 that are reachable from
an entrance2 by a path in Ms. Then, (5 and Ps contain no complementary literals by the symmetry
and maximality of f5 and we can assume all literals in Q5 U P5s are unnegated.
By the argument above we can summarize Step 5 of our algorithm and have a lemma as follows.

Step 5. Find Rs, @5, Ps and (D(5> UK® U £(5),w5) from (D(4>,w4) using the network M, , N5, a

symmetric flow fs of N5 of maximum value and the network Ls defined above.

Lemma 6 (D™, ws) and (D®UKOUK'®) ws) are strongly equivalent and the following statements
hold.

(a) = € Rs for each C =z € D).

(b) For eachC =zVyeD® yecRsifr€Rs,yc Qs URs ifz € Qs and y € Ps U Qs URs if
T € Ps.

(c) For k = 3,4,5,6, there is no clause in D) with k literals such that k1 (k1 > 2k — 6) literals are
contained in Rs and the remaining literals are in Qs.

(d) A clause in DO with 3 or 4 literals all except one contained in Rs has a literal in Rs U Qs.

(e) A clause in DO with k literals (k = 3,4) of form C = Z1V- - -VZp_1Va such that &1, ...,z _2 € Rs
and Tk_1 € Q5 satisfies a € Rs U Qs U Ps.

(f) Rs5 C Ry, Q5 C Q4UR4—R5 and P5s C X — (R5UQ5).

Now we would like to set each variable in Rs to be true with probability 0.75, each variable in Qs
to be true with probability 0.629 and each variable in P5 to be true with probability 0.557 and each
variable in Zs = X — (Ps U @5 U R5) to be true with probability 0.5. Then, each clause Cj in DO
of k literals except for a clause C of form C = Z1 V T2 V T3 with 1 € Rs and x2,z3 € Ps or with
z1,22 € Q5 and x3 € Ps is satisfied with probability at least i in (9). We will split off such clauses.
Let

AgG) ={Z1VZI2VZI3€E p®) | (1 € Rs, x2,23 € P5) or (z1,z2 € Qs, 3 € Ps5)}, (42)
8126) ={Z1V:---VZr_1Vac€ D® | z1,...,25—1 € R5, a € @5} (43)
B;Q(G) = {.7_31 V---VZr_1Vaé€ p®) | 1,...,Tp—2 € R5, T—1 €Q5, a € P5} (44)

for k = 3,4. Let My be the network obtained from M5 = N(D(5)) by deleting all arcs from X UQsU Ps
to Rs, all arcs from X U Ps to Qs, all arcs from X to Ps and their symmetric arcs. Let (Df;_,um) =
C(M; ) and let Ng be the network obtained from My as follows.

For each clause C &€ B,(CG) UB;C(G) of form C = Z1V---VZ,_1Va, we add two nodes C, C and (2k +2)
arcs Ep(C) defined by (16). Two arcs (s,C), (C,t) have capacity ws(C) and all the remaining arcs
have capacity wg,(C’)/bZ(G) with

(CeBY, k=23)
e _ ) 12 (CeBY, k=4) .
ko CeBY, k=3) (45)
(

CeBY k=4
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For each clause in .Agﬁ) of form C' = Z1 V Z2 V Z3, we add two nodes C,C and 8 arcs E4(C) defined by
(11). Two arcs (s, C), (C,t) have capacity ws(C) and all the remaining arcs have capacity w5(C’)/a§6)
with
ag6) =6. (46)

Then, we find a symmetric flow fg of maximum value from s to ¢ in Ng such that fe(z1,C) =
oo = fo(zk_1,C) = fo(C, k) for each clause C = 1 V--- V&1 Va € BY UBLY and fo(z1,0) =
fe(x2,C) = fe(xs,C) for each clause C =Z1 VT2 V T3 € .AgG). Let Le be the network obtained from
the residual network Ng(fs) with respect to fs by deleting all arcs into s, all arcs from ¢ and all nodes
C,C (and incident arcs) with C' € B§6) U 3516) U BQ(G) U 82(6) U .AéG).

Now we can split off clauses C' € BéG) U B£6> U B’;B) U BZL(G) U AgG). For each clause C' € B,(CG) U B;C(G)
(k=3,4) of foom C =Z1V--VZTr_1Vawith z1,....,24,-1 € Rs and a € Q5 (C € B,(f)) or with
Z1,Zk—2 € Rs, 2,—1 € Qs and a € P5s (C € B;C(G)), let

K{9(C) = {@1, .., w—1,a, C, w0, 0} (47)
with weights ws(z1) = -+ = we(wr) = we(a) = 2f6(C), we(wo) = we(To) = —2f6(C) and ws(C) =
bg(ﬁ)fs,(C) using f6(C) = fe(x1,C) (xo is any variable in X). Let

K = Ugepo KI(0), KO = kUK, (48)
K = UpegoKID(©), £ = k{5 uKyq. (49)

For each clause C' = %1V T2V I3 € Aéﬁ), let
TLR(C) = {z1, 22, 23,C} (50)

with weights we(z1) = we(z2) = we(x3) = 2f6(C), and we(C) = aéG)fG(C) using f6(C) = fe(x1,C).
Let
T =8 = Upaw T (C). (51)

Let (Dll(g),wﬁ) = C(Le) and let (D® we) be the set of weighted clauses obtained from (D®, ws)
by replacing (D;f’%_,wg,) with (Dll(g),wg) and by replacing the weight ws(C) of each clause C €
B uB® uBY UBLY U AP with

()= { (@)= f(C) (€ e
YT ws(0) — 0O fs(c) (€ e B UBL©)

(ws(C) > 0 and we assume clauses with weight 0 are not included in D(®). Then, by the same
argument as before, (D(5), ws) and (D(G) uJ©@uK® uK©, we) are strongly equivalent. Let Re be
the set of nodes reachable from s in Lg. Clearly, R¢ C Rs (Rs C R5). A node a € Q5 U (Rs — Rg)
is called an entrancel again if there is a clause C = Z; V -+~ V Zp_1 Va € DO (k = 3,4) with
Z1, .y Tp—1 € Re (ws(C) > 0). Let Q¢ be the set of nodes in Qs U (Rs — Rg) that are reachable from
an entrancel by a path in Mg = N(D©®). A node a € ((Rs UQs) — (Rs U Qs)) U Ps is called an
entrance2 if there is a clause C = 21V ---VZ,_1 Va € DO (k=3,4) with z1,2,—2 € Re, k-1 € Qs
(we(C) > 0). Let Ps be the set of nodes in((Rs U @s) — (Rs U Q¢)) U Ps that are reachable from
an entrance2 by a path in Mg. Then, by the symmetry and maximality of fs, Qs U Ps contains no
complementary literals and all literals in Q¢ U Ps are unnegated.
By the argument above we can summarize Step 6 of our algorithm and have a lemma as follows.

Step 6. Find Rg, Qs, Ps and (D(G) ug@ UKy K’(G),we) from (D(s)7 ws) using the network M,
Ng, a symmetric flow fe of Ng of maximum value and the network Le defined above.
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Lemma 7 (D®,ws) and (D©® U J7© U K® U KO we) are strongly equivalent and Rs C Rs,
Qs CQRsURs — Re and Ps C (Ps UQs U Rs) — (Qs U Rg). Furthermore, (D(G), we) satisfies property

7 described in Section 2.

Now we are ready to set the probability for each variable to be true.

Step 7. Obtain a random truth assignment ®? by setting independently each variable z; to be true
with probability p; as follows (Zs = X — (Re U Q¢ U Ps)):

0.75 (z: € Rs)

-} 0629 (z; € Qo)
Pr= 057 (2 e Po)
0.5 (z: € Zs).

Then find a truth assignment & € {0,1}" with value F¢(x”) > Fe(«P) by the probabilistic method.

We will give an analysis of the expected value of the random truth assingment x? in the next section,

where the following lemma plays an important role.

Lemma 8 The probability p; of variable x; in Step 7 satisfies the following.

(0.371,0.75] (zi € R)
[0.443, 0.75] (zi € Rj, j=1,2,3)
[0.5,0.75] (zi € Rj j =4,5)
[0.443, 0.629] (zi € Qj, j=2,3)
pi € [0.5,0.629] (zi € Qj, j=4,5)
0.5,0.557] (zi € Ps)
0.371,0.629] (v € Z;, §=0,1)
[0.443,0.557] (z: € Z;, j =2,3,4)
0.5,0.5] (zi € Zs).

The above lemma can be obtained by Lemmas 2-7. For example, p; € [0.443,0.75] (z; € R1) is
obtained by R1 N Rg = () and R1 N Qg = ) since R¢ € R5s € R4 C R3 C R2 C Ry (Rs C R1) and
Qs CQRsUR; CQ1URs CQ3UR3 CQ2UR2 C Z1UZ1UR1 ZXUZ1 (Q@ C Z1 UX) The other

cases are similarly obtained.

4 Analysis

In this section we consider the expected value F¢ (@) of the random truth assignment @ obtained
by Step 7. Let &* be an optimal truth assignment for (C,w). Then, the random truth assignment x?
satisfies (7), which will be shown below.

Let (C%,we) = (PO UIV UKD UugEuE®ug®uKk®uK®urK’@ug@uK® UK ©® we)
(we assume w; = we for ¢ = 1,...,5). Let " be any random truth assignment and let W} (L) be the
expected value of " for the weighted clauses in (£, ws) with k literals. Thus, Wy (C%) = 3. W} (L),
where the summation is taken over for all £ = D©® g @ 76 G 7@ (@) 6 xr6)
JO K© k) Similarly, let W] = W (C) be the expected value of " for the weighted clauses
in (C,w) with k literals. Wy, (L) is the value of the optimal truth assignment a* for weighted clauses
in (£, ws) with k literals and Wy = W} (C) is the value of &* for weighted clauses in (C,w) with k

literals.
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Then we have the following lemmas since (C,w) and (C®, ws) are strongly equivalent by Lemmas
2-7.

Lemma 9 For any random truth assignment x”, the following statements hold.

(a) Wi = W (CP) for all k > 3.

(b) W3 (C% = W3(D©®) and WT(C®) = SW{ (L) where the summation is taken over for all
L=DO gW @ g6 @ 7@ K@ G kG 70 () k6)  Pyurthermore, Wiy =
W1 5(C%) where Wi o =W{ + W35 and Wi 5(C°%) = WT(C®%) + W3 (C®).

Lemma 10 For ®® obtained in Step 7 in Section 3 and an optimal truth assignment x*, if

Fr(x?) > > wWi(L) (52)
k>1

for L =CS, then Fc(xP) satisfies (7) (i.e., Fe(aP) > Y es1 W WE(C)).

This lemma is obtained as follows. By Lemma 9 (for &” = x*), we have W7 +W3 = W7 (C®)+ W3 (C°)
and Wy = Wy (C®) for all k > 3. Thus, F¢ () satisfies (7) since (52) for £ = C® implies F¢(xP) =
Feo(x) > (Wi + W3') + 32,53 Wy by Lemma 9 and 71 = 72.

By Lemma 10, we have only to show that (52) is true for £ = C%. Furthermore, it suffices to show
that each group L satisfies (52) for £ = D), ~71(,i12a IC@C, IC’l(fk) defined in Section 3. Similarly, if each
L(C) satisfies (52) then L satisfies (52). For simplicity, we first assume £(C) = L. Thus, for example,

T = {21,y op, C} with z1, ..., x5, € R of weight 2f1(C) and C = 1 V-~V @y, of weight af" f1(C),

ICSL = {z1,...,2k-1, G, To, To, C} with z1,....,zy_1 € R1 and a € Z1 U 71 of weight 2f2(C), zo, To
with weight —f2(C) and C =Z1 V -+ V ZTi_1 V a of weight b,(f)fQ(C).

Now we will find a lower bound on the expected value of Fr(xP) for each (L£,ws) based on the

assumption above (for simplicity, we first assume f1(C) =--- = f6(C) =1 and a = zy).

A. Fyo (@) =2(pi+-+p) +a (L-piope) (k=3,4,5,6).
1,k

Let p = ¥/pip2-- pr and g(,’fl(,lk)) = 2kp + a,(cl)(l — pk). Then Fj(l)(a:p) > 9(~71(,1k)) by the
arithmetic/geometric mean inequality. Since x; € R, we have p; € [0.317’761,0.75] by Lemma 8 and
p € [0.371,0.75]. In this interval, it can be easily shown that g(Jl(lk)) takes a minimum value at
p = 0.371 for k = 3,4,5,6. Thus,

7.9196 (k= 3)
12.7785 (k= 4)
17.6115 (k= 5)
26.3946 (k = 6).

Foo(xP) >g(J5) > 2(0.371k) + af’ (1 — 0.371%) =
1,k ’

On the other hand, Wl*(Jl(lk)) =2 Zle x; and Wy (jl(lk)) = ag)(l - Hle x;). Using the inequality

k k
1—Hw;k§min{1,k—2xf} (53)
i=1 i=1

for z7 = 0,1 (this inequality holds even for 0 < zj < 1 and will also be used below) and v1 < g, we
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have

Wi (T, (1))—|-7ka( ())<2’Y1Zx1+a vk min{1l, k — le

1=1 i=1
41 + 6y3 = 7.746 (k=3)
6v1 + 10y4 = 12.61 k=4
<20k — Dy +a v, = n " ( )
8v1 + 14y5 = 17.522 (k=15)
1071 +22v = 26.2  (k=06)

and F 0 (@) 2 1 Wi (T05) + Wi (T5).

B. Fyo(x?) =2(p1+ - +pr—1+1—pr) -1+ B2 (1 —p1proa(1—pr)) (k= 3,4).
Let p = *~/pipz - pr_1 and g(IC(Q) =2k—1p+2(1—pr) -1+ b,(f)(l —p""1(1 = pi)). Then
Fio () > g(ICﬁ)C). Since x; € R1 (i = 1,....,k — 1) and x, € Z1 U Z1, we have p;,p € [0.443,0.75]
1,k ’

and py € [0.371,0.629] by Lemma 8. In these intervals, g(ngzl)C) takes a minimum value at p = 0.443
and pi = 0.629 for k = 3,4. Thus,

Feen (27) 2 g(K?)

7077 (k=3)

2(0.443(k — 1 1-0.629)) — 1+ b2 (1 —0.443""1(1 — 0.629)) =
( ( )+ ( ) =1+ b ( ( ) 12,077 (k = 4).

Since Wi (K%)= 2(xf + -+ + 51 + 1 —2f) — L and W (KF) = 501 — af - af_1 (1 — 27)), we
also have

nWT (KR + Wi (KF) <m0 af +1—2i) = 1)+ b7 yemin{l,k— (Y 27 +1-2})}

i=1
3v1 4 673 = 6.996 (k= 3)

<2k —1) =Dy + Py =
S @R = Dm0 =0 0 = 1186 (k = 4)

and Fen (@) > Wi (K3) + Wi (K1)

C. F o (@) =230 ps —|—a(3)(1— 15, pi) (k=3,4,5).
Let k1 = 2573 p= w/pipr,, o/ = *~5/Bir1 b and g(J\y) = 2kip+2(k — ka)p/ +af (1 -
p*ip™* 7). Then F ) (2”) > g(73)). Since 2 € Ro (i = 1,...,k1) and 25 € Q2 (j = k1 + 1,..., k),
1,k ’
we have p; € [0.443,0.75] and p; € [0.443,0.629] by Lemma 8. This implies p € [0.443,0.75] and
p’ € [0.443,0.629]. In these intervals, g(jl(?’k)) takes a minimum value at p = p’ = 0.443. Thus,

8.1363 (k=3)
F o (@) 2 g(J TE)) > 2(0.443k) + ¥ (1 - 0.443%) = { 13.1588 (k=4)
" 16.2252 (k= 5).

Since W7 (J. (3)) 2 Zle x; and Wi (T, (3)) = (3)(1 Hl 1 7 ), we also have

W (TED) + Wi (7, (3))<271Za:1+a ve min{1,k — sz

=1 =1
4~1 + 6v3 = 7.746 (k=3)
<2k — Dy +aP v =< 691+ 1074 = 1261 (k =4)

8v1 + 12v5 = 15.876 (k= 5)
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and F e (x”) > Wi (T5) + Wi (T5) +0.349
*71(3k), T = Y1W1 + e Wy + 0. .

D. Fiew (@) =2(pr+ -+ pe—1 +1—pp) =2+ (1 —p1 pro1(1—pr)) (k= 3,4).
Let p = »~Ypip2 - pr—1 and g(le’,)C) =2(k—1)p+2(1 —pr)—2+ b,(f)(l —pkil(l — pk)). Then

K(s) () > g(IC§3,)€) Since z; € Rz (i = 1,...,k — 1) and x; € Q2, we have p;,p € [0.443,0.75] and

pr € [0.443,0.629] by Lemma 8. In these intervals, g(ng ) takes a minimum value at p = 0.75 and
pr = 0.443 for k = 3,4. Thus,

Fo (@) > g(K)
> 2(0.75(k — 1) + (1 — 0.443)) — 1 4+ (¥ (1 — 0.75"71(1 — 0.443))

| 6.9208 (k=3)
] 12.7941 =4).

Since Wi (K{%) = 2(x] + -+ +aj_y +1—2f) — 2 and Wi (KP) =) (1 — 2t - wk_4 (1 - 2})), we

also have

2y 4+ T3 =7.037  (k=3)

wi (k) Wik < (2(k— 1) — 2 by =
YW1 (K37%) + Wi (Ky7) < (2( ) = 2)71 + b d 41295 = 12732 (k = 4)

* 3 * 3 * 3 * 3
and Fie (@) = Wi (K{%) +7aWi (K1) and Fie (@7) 2 nWi (KE3) +95W5 (K1%) — 0.1162
By similar arguments we have the following.

E. F (@) = 2(p1 + p2 +p3) + a$” (1 — pipaps).

(ng4§) = 6p—|—a(4)( 1—p*) with p = ¢/p1paps takes a minimum value at p = p’ = 0.443 since z; € Q3
(i =1,2,3) and p;,p € [0.443,0.629] by Lemma 8. Thus, F ) (") > g(J, (4)) > 6(0.443) + a(4)(
1,3

0.443%) = 8.13637. On the other hand, since v1 W7y (7, (4)) + 'ykW,:(Jl(fg) <4y + ag )'yg = 7.746, we
have Fw (") > nWi (7, T+ Wi (1Y) + 0.390.

F. Fee (&) = 2(p1+ -+ pp1 +1=pk) = 24 50 (1= prpra (L= pi)) (k =3,4).

By the same argument as for F.) ("), we have
1,k

6.9208 k=3
Fiw (") > ( )
o 127941 (k = 4),

2v1 4 Tys =7.037  (k=3)

Wi (K + Wi (K1) <
NI (L) + Wi (KY) < Ayi + 1274 = 12,732 (k = 4)

and Fica14(”) > Wi (KS) +7a Wi (K{2) and Ficoy a(2P) > n Wi (K{%) +9s W3 (K1) —0.1162.

G. F,Cisi(asp) =2(p1+-+pr—1+1—px) —2+b;€’(5)(1 —p1-pr_1(1—pp)) (k= 3,4).

By an argument similar to one above, g(ICgsl)c) =2k—1Dp+2(1—pr)—2+ b”(s)( PP —pr))
with p = *~/p1p2 - pr_1 takes a minimum value at p = 0.75 and pg = 0.5 for k = 3,4 since z; € R4
(i=1,...,k—1), zx € Qs and thus p;,p € [0.5,0.75] (i =1,...,k — 1) and px € [0.5,0.631] by Lemma
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8. Thus, we have
5
Fr (@) 2 g(KT)
>2(0.75(k — 1) + (1 — 0.5)) — 2+ b/ (1 —0.75""1(1 — 0.5))
68875 (k=3)
] 1296875 (k= 4),

291 + 6.873 = 6.8788 (k = 3)

Wi (k) Wi (KP) < (2(k —1) — 2)71 + by Py =
MWL) Wi (i) < G =D =2 F BT =0 ) o — 12732 (k=)

and Fyeo) (@) 2 Wi (K{3) + Wi (K)).

H. F;c’1<§’j(mp) =2(p1+-+pr—1+1—pr)— 1+b;’(5)(1 —p1-pe—1(1 —pr)) (k=3,4).

Let p=p1 if k = 3 and p = \/p1p2 if K = 4. Then g(IC/l(j’c)) =2(k—2)p+2pk—1 +2(1 —pi) — 1+
bZ(S)(l — p" 2pp_1(1 — pg)) takes a minimum value at p = py_o = 0.5, and p;, = 0.557 for k = 3,4,
since v; € Ry (i=1,....k —2), zx—1 € Qq and 23 € Z4 U Z4 and p;,p € [0.5,0.75], pr.—1 € [0.5,0.629]
and py € [0.443,0.557] by Lemma 8. Thus, we have

Fic’1<_5k> (x¥) > Q(K;(,i))
>2(0.5(k — 1) + (1 —0.557)) — 1+ /(1 — 0.5 (1 — 0.557))
| 766612 (k=3)
] 123322 (k=4),

3v1 + 6.573 = 7.3915  (k = 3)

Wi (KS) + Wi (15 < (2(k — 1) = Dy + by Py =
WKL) + Wi (K) < (2(k = 1) = D)y + b e 514+ 1092 = 11.86 (k= 4)

and Fyo (@) 2 n Wi (K1) + 3 Wi (K15).

1. Fjl(sa)(a:p) =2(p1 +p2+p3)+ a§,6)(1 — p1p2p3).

Let g(Jl(g)) =dp+2p + agj)(l — p?p), where p = \/pap3 and p’ = p; if 21 € Rs and z2,23 € Ps
and p = /pipz and p’ = ps if 21,22 € Q5 and x3 € P5 . Then g(Jl(%)) takes a minimum value at
p=p = 0.5, since p’ € [0.5,0.75], p € [0.5,0.557] or p € [0.5,0.629], p’ € [0.5,0.557] by Lemma 8, and
we have

F (") > g(7\%)
1,3
>6(0.5) +al® (1 —0.5%) =8.25
> 7746 > Wi (TL9) + Wi (9.

J. Fyo (@) = 2(p1 + -+ pree1 + 1= pi) =240 O (1= pr-pea (1= pi) (k= 3,4).

By the same argument as for F.c) (x?), we have
1,k

6.8875  (k=3)

F xP) >
i) ( )—{ 12.96875 (k= 4),
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2v1 + 6.8y3 = 6.8788 (k = 3)

Wi (K + v Wi (K1) <
W () + Wi (K43) < dyy + 1274 = 12,732 (k = 4)

and F' (6) (IBp) > ’YIW1 (IC ) + ryka (’Cgsl)c)

K. FK,1<?(:1:”) =2+ AP+ 1—pr) =246 DA —p1 - pe1(1—pr)) (k=3,4).

By an argument similar to one for Fy..: (), we have
1,k

Foo(@P) > 2(0.5(k — 1) + (1 — 0.557)) — 2+ b, @ (1—0.5"71(1 - 0.557))

K:l,k
_ | 666612 (k=3)
] 11.3322  (k=4),

291 + 6.573 = 6.6415 (k = 3)

W IC/(6) Wi IC/(6) <
Wi ( 1,k)+’Yk k ( 1,k)7 Ay + 1074 = 11.11 (k = 4)

and Fyo (@) = Wi (K5) + 3 Wi (K1),

L. F,D(G) (x?).
k
Let C = y1VyaV- - -Vyi € D,(f) and let p(y;) be the probability of literal y; being true obtained in Step
7. Then C(a?) =1— Hf:l(l —p(yi)) > 1—0.75% =~ for k > 7. Similarly, if k < 6, then it is easily
shown that C(x?) =1 — Hle(l — p(yi)) > v by Lemma 7. Thus, by Wy (D©®) = Zcebfj") we (C)
> Wi (D) = > cep® we(C)C(x"), Fpe (x”) satisfies (52).
k k

We have shown that each group L satisfies (52) for £ # IC?% (i = 3,4). Note that, such ICY)Q,'
exists only if jl(f,z exists. Furthermore, a unit flow on (Zg,Ck) with C = Z; V --- V I € Ag?’,)c
(k = 3,4,5) such that z1,...,%o—3 € R and k-3, 1, ...,2x € Q2 comes from a unit flow on (Cj,a)
with Cj = 71 V-V g—1 Va € B (j = 3,4) such that y1,...,95-1 € Rz and a € Q2 by the
construction of N3. Thus, at worst, two units of F, (3>( P) corresponds to one unit of F' (3>( Py, two

units of F, K () corresponds to one unit of F' 7 (a: ) and one unit of F K () corresponds to one

unit of FJ<3)(:13 ). Thus, for j = 3,
1,5

2F @ (@) + F o (2") > 2(6.9208) + 8.1363
1,3 1,3
> 2(7.037) + 7.746
> 2 Wi (K) + 293 W3 (KP) + Wi (7)) + W3 (753).
Similarly, 2Fycs) (27) + F ;e (27) > 20 Wi (KY3) + 23W3 (K13) + Wi (I13) +7aWi (7(3) and
Fyew (2" >+F o <wp> > mwl (KD +7v3Ws (KE) 4+ Wi (73) +4sWe (7\Y). Thus, we have (52)

for IC§33 and ._7 . Similarly we have (52) for J. (4) and ICY,L;. By the argument above Fgs(x?) of a”
satisfies (52) and, by Lemma 10, we have (7).

5 Concluding Remarks

We have presented a refinement of Yannakakis’ algorithm with a better bound than Goemans-
Williamson. It leads to a 0.770-approximation algorithm if it is combined with the algorithms in [3],
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[11]. In fact, for an instance (C,w), if we choose the better solution bewteen two solutions obtained by
our algorithm in this paper and the algorithm in [3], it has the value at least 0.770F¢(z*) (the expected
value of a solution obtained by using our algorithm with probability 0.8427 and the algorithm in [3]
with probability 0.1573 can be shown to be at least 0.770F¢(z™)). Since a refinement of Yannakakis’
algorithm in this paper is not optimized yet, we believe further refinements can be done and the
performance guarantee for MAX SAT can be improved. Furthemore, if the refinement of Yannakakis’
algorithm in this paper is combined with the techniques proposed in 0.931-approximation algorithm
for MAX 2SAT by Feige-Goemans [5], it will lead to a better approximation algorithm.
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